Different B cell subpopulations show distinct patterns in their IgH repertoire metrics

  1. Marie Ghraichy
  2. Valentin von Niederhäusern
  3. Aleksandr Kovaltsuk
  4. Jacob D Galson
  5. Charlotte M Deane
  6. Johannes Trück  Is a corresponding author
  1. University Children's Hospital, University of Zurich (UZH), Switzerland
  2. University of Oxford, United Kingdom
  3. Alchemab Ltd, United Kingdom

Abstract

Several human B-cell subpopulations are recognized in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations.

Data availability

Raw data used in this study are available at the NCBI Sequencing Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA748239 including metadata meeting MiAIRR standards (32). The processed dataset is available in Zenodo (https://doi.org/10.5281/zenodo.3585046) along with the protocol describing the exact processing steps with the software tools and version numbers.

The following data sets were generated

Article and author information

Author details

  1. Marie Ghraichy

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    Competing interests
    No competing interests declared.
  2. Valentin von Niederhäusern

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Aleksandr Kovaltsuk

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jacob D Galson

    NA, Alchemab Ltd, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4916-800X
  5. Charlotte M Deane

    University of Oxford, Oxford, United Kingdom
    Competing interests
    Charlotte M Deane, Reviewing editor, eLife.
  6. Johannes Trück

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    For correspondence
    Johannes.Trueck@kispi.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0418-7381

Funding

Swiss National Science Foundation (PZ00P3_161147)

  • Johannes Trück

Swiss National Science Foundation (PZ00P3_183777)

  • Johannes Trück

Gottfried und Julia Bangerter-Rhyner-Stiftung

  • Johannes Trück

Olga Mayenfisch Stiftung

  • Johannes Trück

Palatin-Stiftung

  • Johannes Trück

Biotechnology and Biological Sciences Research Council (BB/M011224/1)

  • Aleksandr Kovaltsuk

UCB Pharma Ltd

  • Aleksandr Kovaltsuk

Royal Commission for the Exhibition of 1851 Industrial Fellowship

  • Aleksandr Kovaltsuk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Buffy coat samples were obtained from 10 anonymous healthy adults, hence no approval from the local ethics committee was necessary.

Copyright

© 2021, Ghraichy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,321
    views
  • 318
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Ghraichy
  2. Valentin von Niederhäusern
  3. Aleksandr Kovaltsuk
  4. Jacob D Galson
  5. Charlotte M Deane
  6. Johannes Trück
(2021)
Different B cell subpopulations show distinct patterns in their IgH repertoire metrics
eLife 10:e73111.
https://doi.org/10.7554/eLife.73111

Share this article

https://doi.org/10.7554/eLife.73111

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Peng Li, Sree Pulugulla ... Warren J Leonard
    Short Report

    Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements. One such novel interaction was identified at CNS9, an upstream conserved noncoding region in the human IL10 gene, which harbors a non-canonical IKZF1 binding site. We confirmed the cooperative binding of JUN and IKZF1 and showed that the activity of an IL10-luciferase reporter construct in primary B and T cells depended on both this site and the AP1 binding site within this composite element. Overall, our findings reveal an unappreciated global association of IKZF1 and AP1 and establish SPICE as a valuable new pipeline for predicting novel transcription binding complexes.

    1. Immunology and Inflammation
    2. Medicine
    Edwin A Homan, Ankit Gilani ... James C Lo
    Short Report

    Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.