Different B cell subpopulations show distinct patterns in their IgH repertoire metrics

  1. Marie Ghraichy
  2. Valentin von Niederhäusern
  3. Aleksandr Kovaltsuk
  4. Jacob D Galson
  5. Charlotte M Deane
  6. Johannes Trück  Is a corresponding author
  1. University Children's Hospital, University of Zurich (UZH), Switzerland
  2. University of Oxford, United Kingdom
  3. Alchemab Ltd, United Kingdom

Abstract

Several human B-cell subpopulations are recognized in the peripheral blood, which play distinct roles in the humoral immune response. These cells undergo developmental and maturational changes involving VDJ recombination, somatic hypermutation and class switch recombination, altogether shaping their immunoglobulin heavy chain (IgH) repertoire. Here, we sequenced the IgH repertoire of naïve, marginal zone, switched and plasma cells from 10 healthy adults along with matched unsorted and in silico separated CD19+ bulk B cells. Using advanced bioinformatic analysis and machine learning, we show that sorted B cell subpopulations are characterised by distinct repertoire characteristics on both the individual sequence and the repertoire level. Sorted subpopulations shared similar repertoire characteristics with their corresponding in silico separated subsets. Furthermore, certain IgH repertoire characteristics correlated with the position of the constant region on the IgH locus. Overall, this study provides unprecedented insight over mechanisms of B cell repertoire control in peripherally circulating B cell subpopulations.

Data availability

Raw data used in this study are available at the NCBI Sequencing Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA748239 including metadata meeting MiAIRR standards (32). The processed dataset is available in Zenodo (https://doi.org/10.5281/zenodo.3585046) along with the protocol describing the exact processing steps with the software tools and version numbers.

The following data sets were generated

Article and author information

Author details

  1. Marie Ghraichy

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    Competing interests
    No competing interests declared.
  2. Valentin von Niederhäusern

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    Competing interests
    No competing interests declared.
  3. Aleksandr Kovaltsuk

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Jacob D Galson

    NA, Alchemab Ltd, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4916-800X
  5. Charlotte M Deane

    University of Oxford, Oxford, United Kingdom
    Competing interests
    Charlotte M Deane, Reviewing editor, eLife.
  6. Johannes Trück

    University Children's Hospital, University of Zurich (UZH), Zurich, Switzerland
    For correspondence
    Johannes.Trueck@kispi.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0418-7381

Funding

Swiss National Science Foundation (PZ00P3_161147)

  • Johannes Trück

Swiss National Science Foundation (PZ00P3_183777)

  • Johannes Trück

Gottfried und Julia Bangerter-Rhyner-Stiftung

  • Johannes Trück

Olga Mayenfisch Stiftung

  • Johannes Trück

Palatin-Stiftung

  • Johannes Trück

Biotechnology and Biological Sciences Research Council (BB/M011224/1)

  • Aleksandr Kovaltsuk

UCB Pharma Ltd

  • Aleksandr Kovaltsuk

Royal Commission for the Exhibition of 1851 Industrial Fellowship

  • Aleksandr Kovaltsuk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Buffy coat samples were obtained from 10 anonymous healthy adults, hence no approval from the local ethics committee was necessary.

Copyright

© 2021, Ghraichy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,360
    views
  • 322
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marie Ghraichy
  2. Valentin von Niederhäusern
  3. Aleksandr Kovaltsuk
  4. Jacob D Galson
  5. Charlotte M Deane
  6. Johannes Trück
(2021)
Different B cell subpopulations show distinct patterns in their IgH repertoire metrics
eLife 10:e73111.
https://doi.org/10.7554/eLife.73111

Share this article

https://doi.org/10.7554/eLife.73111

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.