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Abstract Post-mortem magnetic resonance imaging (MRI) provides the opportunity to acquire 
high-resolution datasets to investigate neuroanatomy and validate the origins of image contrast 
through microscopy comparisons. We introduce the Digital Brain Bank (open.win.ox.ac.uk/Digi-
talBrainBank), a data release platform providing open access to curated, multimodal post-mortem 
neuroimaging datasets. Datasets span three themes—Digital Neuroanatomist: datasets for detailed 
neuroanatomical investigations; Digital Brain Zoo: datasets for comparative neuroanatomy; and 
Digital Pathologist: datasets for neuropathology investigations. The first Digital Brain Bank data 
release includes 21 distinctive whole-brain diffusion MRI datasets for structural connectivity inves-
tigations, alongside microscopy and complementary MRI modalities. This includes one of the 
highest-resolution whole-brain human diffusion MRI datasets ever acquired, whole-brain diffusion 
MRI in fourteen nonhuman primate species, and one of the largest post-mortem whole-brain cohort 
imaging studies in neurodegeneration. The Digital Brain Bank is the culmination of our lab’s invest-
ment into post-mortem MRI methodology and MRI-microscopy analysis techniques. This manuscript 
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provides a detailed overview of our work with post-mortem imaging to date, including the devel-
opment of diffusion MRI methods to image large post-mortem samples, including whole, human 
brains. Taken together, the Digital Brain Bank provides cross-scale, cross-species datasets facilitating 
the incorporation of post-mortem data into neuroimaging studies.

Editor's evaluation
This paper describes a new open-access digital brain bank of post-mortem brains that have been 
scanned with high-resolution, multimodal magnetic resonance imaging and with select datasets 
accompanied by histological data. This valuable resource can be used to study healthy human 
brains, pathological human brains, and the brains of other species, opening new opportunities for 
comparative neuroanatomy and the biological validation of non-invasive neuroimaging signals.

Introduction
Magnetic resonance imaging (MRI) occupies a unique position in the neuroscience toolkit. In humans, MRI is 
used at the single-subject level diagnostically and is increasingly deployed at the population level in epide-
miology (Marcus et al., 2007; Miller et al., 2016; Snoek et al., 2021; Van Essen et al., 2013). MRI is well-
established in the context of imaging causal manipulations in experimental organisms ranging from mice 
(Denic et al., 2011; Thiessen et al., 2013) to nonhuman primates (Absinta et al., 2017; Klink et al., 2021) 
and provides precise measurements in cellular and tissue preparations (Wilhelm et al., 2012). This extensive 
landscape of overlap with the broader neuroscience toolkit creates the potential for MRI to facilitate inte-
gration between technologies and investigations. Although MRI hardware and acquisition protocols often 
need to be tailored to a specific domain, the underlying technology associated with all MRI measurements 
gives rise to a common set of signal forming mechanisms, facilitating cross-domain comparisons. There are 
few methods available to neuroscientists that span this breadth of domains.

One challenge to the use of MRI as a bridging technology is the need for common measurements 
— for example, the same MRI measurements made across multiple species, or MRI and microscopy 
measurements in the same brain tissue (Mars et al., 2021). Post-mortem MRI provides unique oppor-
tunities for such common measurements. MRI in post-mortem tissue can be used to identify the 
origins of image contrast through integration with microscopy (Keren et  al., 2015; Langkammer 
et al., 2012; Mollink et al., 2017), directly addressing concerns over the nonspecificity of MRI signals. 
In this context, post-mortem MRI data are important because they share common signal forming 
mechanisms with in vivo MRI and a common tissue state with microscopy, providing a framework for 
investigation across multiple spatial scales. Post-mortem MRI facilitates comparative anatomy inves-
tigations in species that are not traditionally accessible for in vivo imaging (Berns et al., 2015; Bhag-
wandin et al., 2017; Grewal et al., 2020; Heuer et al., 2019), including extinct species (Berns and 
Ashwell, 2017). Long post-mortem scans provide the opportunity to push the boundaries of spatial 
resolution, providing whole human brain coverage reaching voxel sizes of 100–500 μm (Edlow et al., 
2019; Foxley et al., 2016; Fritz et al., 2019; Weigel et al., 2021), edging closer to microscopy tech-
niques but benefitting from compatibility with in vivo imaging. As a nondestructive technique, post-
mortem MRI enables the examination of tissue microstructure whilst preserving tissue, facilitating 
repeat MRI measurements with novel contrasts and technologies; and more generally, its integration 
with tools for post-mortem investigations (e.g., histopathology or proteomics).

In this work, we introduce the Digital Brain Bank (open.win.ox.ac.uk/DigitalBrainBank), a data 
release platform resulting from a decade of post-mortem MRI research at the University of Oxford. 
The Digital Brain Bank provides open access to several post-mortem neuroimaging datasets spanning 
investigations into human neuroanatomy, cross-species neuroanatomy, and neuropathology. All data-
sets provide post-mortem MRI, including diffusion MRI, with complementary microscopy data (e.g., 
immunohistochemistry or PLI) included with some datasets.

Our post-mortem imaging research has been specifically aimed at achieving whole-brain post-
mortem MRI to support the investigation of multiple brain systems/regions and long-range connec-
tions (Foxley et al., 2014; Miller et al., 2011; Miller et al., 2012), and the first release to the Digital 
Brain Bank contains 21 distinct whole-brain post-mortem MRI datasets, including from whole human 
brains. All datasets are available to access, and prospective users of the Digital Brain Bank can explore 
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a subset of data directly on the Digital Brain Bank website using Tview: a bespoke, open-source, and 
web-based image viewer. Tview has been developed for efficient browsing of imaging data spanning 
drastically different spatial scales, from submicron resolution microscopy to millimeter MRI acquisi-
tions. It enables real-time visualization and interaction (zooming/panning) of both MRI and microscopy 
images, and with flexible overlays of different modalities.

All datasets uploaded to the Digital Brain Bank are associated with researchers at the University of Oxford, 
or from close collaborators. Limited Derived Outputs from users of Digital Brain Bank datasets will also be 
considered for data upload. The first release to the Digital Brain Bank includes data from multiple published 
projects covering a breadth of neuroimaging research, including whole-brain diffusion MRI in 14 nonhuman 
primate species (Bryant et al., 2021; Roumazeilles et al., 2020; Roumazeilles et al., 2021), and one of 
the largest post-mortem whole-brain cohort imaging studies combining whole-brain MRI and microscopy 
in human neurodegeneration (Pallebage-Gamarallage et al., 2018). In addition, we present a previously 
unpublished project providing one of the highest-resolution whole-brain human diffusion MRI datasets ever 
acquired (500 μm isotropic resolution). The Digital Brain Bank will continue to grow over the coming years, 
with a number of further datasets already at the early stages of curation (Howard et al., 2019a; Martins-
Bach et al., 2021; Martins-Bach et al., 2020; Wu et al., 2021).

Results
The Digital Brain Bank is accessible at open.win.ox.ac.uk/DigitalBrainBank. Datasets have been orga-
nized into categories reflecting three predominant themes of post-mortem neuroimaging research:

•	 Digital Anatomist: datasets for detailed neuroanatomical investigations.
•	 Digital Brain Zoo: datasets for comparative neuroanatomy.
•	 Digital Pathologist: datasets for neuropathology investigations.

Here, we provide an overview of each theme, with examples from available datasets in the first 
release to the Digital Brain Bank. A brief description of all the datasets provided with the first release, 
alongside relevant publications, is provided in Table 1.

Digital Anatomist
Datasets within the Digital Anatomist provide a new direction for answering fundamental questions 
in neuroanatomy, through ultra-high resolution MRI data and complementary microscopy within the 
same sample in humans and model nonhuman species.

The long scan times available in post-mortem MRI affords imaging at ultra-high spatial resolutions, facil-
itating the delineation of small tissue structures within the human brain, one of the key aims of the Digital 
Anatomist. Often, post-mortem investigations are limited to small sections of excised brain tissue that repre-
sent a limited anatomical region. However, our developments in whole-brain post-mortem diffusion imaging 
(Foxley et al., 2014; McNab et al., 2009; Miller et al., 2011; Miller et al., 2012; Tendler et al., 2020b) 
provide the opportunity to investigate structural connectivity and gross neuroanatomy, at scales that are 
unobtainable in vivo. These developments have culminated in the Human High-Resolution Diffusion MRI-PLI 
dataset, providing one of the highest-resolution whole-brain human diffusion MRI datasets ever acquired 
(500 μm isotropic resolution), as shown in Figure 1. Companion datasets acquired at 1 mm and 2 mm 
(isotropic) provide a comparison at cutting-edge and conventional in vivo resolutions (Figure 1a).

In addition to providing a new insight into human neuroanatomy, these data can be used to inform 
experimental design and the interpretation of results. Here, the Human High-Resolution Diffusion 
MRI-PLI dataset enables users to identify the resolution required to visualize certain brain structures 
(Figure 1a), and how spatial resolution impacts tractography performance (e.g., overcoming ‘gyral 
bias’—Figure 1b; Cottaar et al., 2021; Schilling et al., 2018). Polarised light imaging (PLI) provides 
estimates of myelinated fiber orientation (Axer et al., 2011), and complementary PLI data acquired in 
a subset of brain regions (4 μm in-plane) facilitates cross-scale comparisons (Figure 1b and c).

A further aim of the Digital Anatomist is to perform quantitative validations across modalities, 
relating MRI to microscopic measures. These kinds of analyses can only be achieved with accurately 
coregistered data, enabling pixel-wise comparisons across modalities acquired at drastically different 
spatial resolutions. This potential is most clearly seen in the Human Callosum MRI-PLI-Histology dataset, 
which provides diffusion MRI (400 μm isotropic), alongside complementary PLI (4 μm in-plane), and 
histology (myelin and astrocytes) (0.25 μm in-plane) in three excised human corpus callosum samples 
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(Mollink et al., 2017). These data offer multiple pathways of investigation, including the identification 
of the origins of image contrast; validation of microstructural models of tissue (Mollink et al., 2017); 
and developing unique models explicitly linking MRI with microscopy (Howard et al., 2019b).

Digital Brain Zoo
The Digital Brain Zoo provides curated datasets to investigate neuroanatomy in nonhuman species and 
compare anatomy across species.

Post-mortem MRI has enormous potential to inform comparative neuroanatomy for three reasons. First, 
it enables the scanning of species that would be extremely difficult or impossible to study in vivo. Second, 
samples can be imaged with minimal handling and without invasive procedures, enabling the study of 
rare specimens that would not be appropriate to dissect. Third, MRI investigations can be performed in 
whole-brain samples, rather than excised tissue sections. This makes post-mortem MRI ideally placed to 

Figure 1. The Digital Anatomist. (a) Whole-brain diffusion MRI data available in the Human High-Resolution Diffusion MRI-PLI dataset reveals the wealth 
of information provided at increased spatial scales, one of the key aims of the Digital Anatomist. Here, the 500 μm dataset uncovers the information 
hidden at lower spatial resolutions, for example, visualizing the interdigitating transverse pontine fibers with the corticospinal tract or striations through 
the internal capsule. (b) Similarly, datasets across multiple spatial scales can inform us of the limitations at reduced imaging resolutions. Here, gyral 
tractography (occipital lobe) reveals an overall pattern of fibers turning into the gyral bank at 0.5 mm. At 1 mm, an underestimation of connectivity at 
the gyral banks is observed, known as the ‘gyral bias’ (Cottaar et al., 2021; Schilling et al., 2018). At 2 mm, tractography bears little resemblance to 
the expected architecture. Multimodal comparisons enable us to validate our findings, with complementary polarised light imaging (PLI) data at over 2 
orders of magnitude increase in resolution (125×) revealing a similar pattern of gyral connectivity, and (c) excellent visual agreement with tractography 
across the pons. (a) displays diffusion tensor principal diffusion direction maps (modulated by fractional anisotropy).

https://doi.org/10.7554/eLife.73153
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characterize macroscopic brain structure, long-range structural connectivity, and tissue microstructure in 
species that are not traditional experimental models, and in particular rare species where very few brain 
samples may be available (Berns and Ashwell, 2017; Bhagwandin et al., 2017; Grewal et al., 2020; Mars 
et al., 2014).

MRI data from multiple species allows one to formally compare brain organization, important for 
large-scale comparative neuroscience which has traditionally relied on very limited measures (e.g., 
whole or regional brain size measures of brain organization) (Mars et al., 2014). The ability to acquire 
data from whole brains opens up the possibility of elucidating principles of neural diversity across 
larger orders of mammalian species (Friedrich et al., 2021), and create between-species mappings 
to formally identify homologies and quantify unique aspects of any given brain (Mars et al., 2018). 
This also allows one to improve translational neuroscience by better understanding the relationship 
between the human brain and that of model species (e.g., macaque, marmoset, rat, and mouse).

The Digital Brain Zoo provides access to post-mortem imaging datasets in nonhuman species covering 
multiple taxonomic ranks (Figure 2a), including nonhuman primate species (Bryant et al., 2021; Rouma-
zeilles et al., 2020; Roumazeilles et al., 2021), Carnivora (Grewal et al., 2020), Marsupials (Berns and 
Ashwell, 2017), and Cetaceans (Berns et al., 2015). As with other collections in the Digital Brain Bank, 
the Digital Brain Zoo currently focuses primarily on whole-brain diffusion MRI. These datasets offer multiple 
pathways of investigation in comparative neuroanatomy, for example, through the examination of structural 
connections across brains (Figure 2b; Bryant et al., 2021). Furthermore, our developments in imaging large 
post-mortem samples have enabled us to acquire several high-quality post-mortem imaging datasets in 
species with brains that are too large to fit into specialized preclinical MRI systems, conventionally used to 
improve image quality in post-mortem MRI (see Discussion).

Digital Pathologist
Datasets within the Digital Pathologist provide a new direction for examining neuropathology and 
MRI-pathology correlates in humans and established laboratory models.

One of the biggest challenges in the use of MRI clinically is the lack of specificity to disease mech-
anisms. Many neurological diseases are characterized by changes at the cellular and subcellular level, 
which cannot be directly visualized with the limited resolution of MRI. Nevertheless, MRI contrast can 
be made sensitive to cellular-level phenomena that are relevant to disease. Acquisition of MRI and 
histology in the same tissue enables us to relate microscopic changes in the neural microenvironment 
to MRI image contrast. The primary aim of the Digital Pathologist is to facilitate these cross-scale 
comparisons, imaging brain tissue associated with a neurological disease.

Such data are provided in the Human ALS MRI-Histology dataset (Figure 3a), which aims to iden-
tify how neuropathological changes in amyotrophic lateral sclerosis (ALS) give rise to altered MRI 
contrast, and answer specific questions related to ALS pathology. The Human ALS MRI-Histology 
dataset provides whole-brain multimodal MRI and selective histology in a cohort of 12 ALS (diag-
nosis during lifetime, confirmed ALS neuropathology) and 3 control (no known neuropathology) brains 
(Pallebage-Gamarallage et al., 2018) provided by the Oxford Brain Bank. MRI data includes diffu-
sion, structural, quantitative susceptibility maps (via quantitative susceptibility mapping, QSM), and 
quantitative T1, T2, and T2* maps. Histology includes markers for proteinopathy (pTDP-43), microglia 
(CD68 and IBA1), myelin (PLP), neurofilaments (SMI-312), and iron (ferritin) in order to detect changes 
in a range of microstructures within cortical and subcortical regions (anterior cingulate cortex, corpus 
callosum, hippocampus, primary motor cortex, and visual cortex) associated with different proposed 
stages of ALS disease progression (Jucker and Walker, 2013).

Different MRI modalities have known sensitivities to different components of the cellular environ-
ment. Combined with multimodal histology, these data provide the opportunity to relate neuropatho-
logically induced changes in tissue microstructure to MRI image contrast. While these aims could 
be partially achieved by dissecting and scanning subregions of the brain, our approach of scanning 
whole post-mortem brains enables us to investigate neuropathological spread across the entire brain 
(Jucker and Walker, 2013). This facilitates investigations across long-range fiber-tracts associated 
with pathology (Figure 3b), or microstructural changes in multiple brain regions (Figure 3c). Notably, 
these analyses are being facilitated by accurate cross-modality image coregistrations (Huszar et al., 
2019), enabling us to perform pixel-wise evaluations and integrate structural analyses to identify 
how pathology influences MR image contrast (Figure 3d) in a subset of brain regions associated with 

https://doi.org/10.7554/eLife.73153
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Figure 2. The Digital Brain Zoo. (a) The first release of the Digital Brain Zoo provides whole-brain MRI datasets spanning multiple species and 
taxonomic ranks. Notably, we provide whole-brain diffusion MRI datasets from 14 nonhuman primate species, with samples selected for their high 
quality and to ensure sampling of all major branches of the primate evolutionary tree (Prosimian, New World monkey, Old World monkey, and Great 
Ape). (b) compares the relative volume of four tracts derived from nine nonhuman primate post-mortem datasets provided in the Digital Brain Zoo 
(Bryant et al., 2021), where increased distance from the centre corresponds to an increased volume.

https://doi.org/10.7554/eLife.73153
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Figure 3. The Digital Pathologist. One of the key aims of the Digital Pathologist is the examination of neuropathological spread in neurological disease. 
The Human ALS MRI-Histology dataset (a) facilitates these investigations, combining whole-brain multimodal MRI and histology (selected brain regions) 
in a cohort of 12 ALS and 3 control brains. (b) Displays the reconstruction of five white matter pathways associated with different ALS stages in a single 
post-mortem brain (Kassubek et al., 2014). Comparisons between ALS and control brains over the corpus callosum of the cohort (c) reveals changes 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73153
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different proposed stages of ALS disease progression (Jucker and Walker, 2013). MRI data for the 
Human ALS MRI-Histology dataset for all 12 ALS and 3 control brains are immediately available to 
access, alongside a subset of histology data. Remaining histology data and MRI-histology coregistra-
tions are being actively curated for future release to the Digital Brain Bank.

Tview
The Digital Brain Bank website enables users to browse a subset of data easily. A key feature of 
many datasets is that they contain both MRI and microscopy data. Few available viewers, whether 
downloadable or online, support both MRI and microscopy file formats, creating a barrier of entry for 
potential users. Moreover, 2D microscopy datasets are extremely high resolution: single images can 
exceed 10,000,000,000 pixels, running to gigabytes in size.

We aim to provide online viewing of microscopy and MRI data using standard internet browsers, with 
a viewer that can handle data at very different spatial scales, provide flexible image overlays, and support 
color visualization for diffusion-derived measures, PLI, and multiple histological counterstains. Unable to 
identify existing software with these features, we developed a web-based image viewer, Tview. Tview is 
based on software originally used to display satellite imagery at multiple elevations, and enables real-time 
visualization, interaction (zooming/panning), and flexible overlays of different modalities in a single 2D plane 
of MRI and microscopy data. Visualization of multimodal (i.e., MRI and microscopy) datasets on the Digital 
Brain Bank website is achieved with Tview. An example Tview implementation is available at open.win.ox.​
ac.uk/DigitalBrainBank/#/tileviewer, where cross-modality coregistrations were performed using the Tensor 
Image Registration Library (TIRL) (Huszar et al., 2019) and FNIRT (Andersson et al., 2007; Jenkinson et al., 
2012), both available as part of FSL. Code for Tview, the website, and server implementation are available 
at https://git.fmrib.ox.ac.uk/thanayik/dbb.

The benefits of Tview are most readily realized with datasets incorporating MRI and microscopy images, 
enabling visualization of distinct contrasts over multiple spatial scales. However, many datasets provided in 
the first release to the Digital Brain Bank do not contain any microscopy data. For these datasets, a detailed 
static image is currently used for visualization on the Digital Brain Bank website.

Requirements for data access and referencing datasets
The Digital Brain Bank has been designed to minimize the burden on the user to access datasets, within 
ethical constraints. For many datasets, we have developed conditions of use terms via a material transfer 
agreement (MTA), which users agree to prior to access. The MTAs are primarily designed to ensure that 
datasets are used for research/educational purposes, to prevent misuse, and to satisfy funding requirements.

For datasets restricted by MTAs, when possible, a subset of example data (e.g., data from a single 
subject) is available to download directly on the website. Upon signing the MTA, users will be granted 
access to the full dataset. MTAs are currently approved by the University of Oxford. This is currently 
achieved via the email address provided with each dataset on the Digital Brain Bank website. We are 
actively exploring alternatives to streamline this process.

Upon downloading Digital Brain Bank datasets, users agree to acknowledge the source of the data 
in any outputs. Users are asked to cite the original study for any given dataset and the Digital Brain 
Bank. Details of associated publications and citation instructions are available on an information page 
associated with each dataset on the Digital Brain Bank website.

in fractional anisotropy (FA, normalized to Par/Temp/Occ lobe), with biggest changes associated with motor and prefrontal regions (Hofer and Frahm, 
2006) (*=p<0.05; **=p<0.05 following multiple comparison correction) (full details of the corpus callosum analysis provided in Appendix 2). This reflects 
the anticipated changes in ALS with brain regions associated with motor function, in good agreement with a previous study (Chapman et al., 2014), 
which identified the greatest FA difference between ALS and controls in these regions. Accurate MRI-histology coregistrations facilitate cross-modality 
comparisons, and (d) displays an example of MRI-histology coregistration over the visual cortex of a single ALS brain achieved using the Tensor Image 
Registration Library (TIRL) (Huszar et al., 2019). V1=principal diffusion direction, FA=fractional anisotropy, MD=mean diffusivity, D⊥=radial diffusivity, 
MO=mode from diffusion tensor output, Dyad1=principal dyad orientation, f1=principal fiber fraction and D=diffusivity from Ball and Two-Stick output, 
swMRI=susceptibility-weighted MRI, χ=magnetic susceptibility. Details of stain contrasts in (b) and (d) are provided in Table 1. ALS, amyotrophic lateral 
sclerosis; MRI, magnetic resonance imaging.

Figure 3 continued

https://doi.org/10.7554/eLife.73153
https://open.win.ox.ac.uk/DigitalBrainBank/#/tileviewer
https://open.win.ox.ac.uk/DigitalBrainBank/#/tileviewer
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Discussion
The Digital Brain Bank represents one of the most substantial resources of its kind, providing data from 
45 brains across all three themes in the first release. It has been specifically designed to cover the breadth 
of spatial scales and modalities encountered in post-mortem imaging. Features on the website facilitate 
data discovery, with users able to interact with a subset of available datasets prior to access. The Digital 
Brain Bank is envisioned as a growing resource reflecting a range of post-mortem neuroimaging projects. 
Alongside the first release, we aim to first bring together datasets that have been accumulated over the 
past decade at the University of Oxford. Beyond this, the Digital Brain Bank will be the primary resource to 
release new post-mortem imaging datasets associated with both departmental and collaborative projects.

The Digital Brain Bank is a comprehensive resource focusing on post-mortem MRI spanning multiple 
investigative themes in neuroanatomy, neuropathology, and comparative neuroanatomy. Given this broad 
coverage, we anticipate that datasets provided by the Digital Brain Bank will complement existing open-
science initiatives in both human and nonhuman neuroimaging. There are several existing resources providing 
outputs derived from post-mortem data focusing on other domains, including the Allen Brain Map (tran-
scriptomics) (https://portal.brain-map.org/), the BigBrain Project (histology) (https://bigbrainproject.org/), 
and databases compiling datasets from multiple sources such as EBRAINS (https://ebrains.eu/). Primarily, 
we foresee the greatest overlap and integration between the Digital Brain Bank and existing databases 
for in vivo and post-mortem MRI. For example, the high-resolution diffusion MRI datasets provided by the 
Digital Anatomist complement the aims of existing studies such as the Human Connectome Project (Van 
Essen et al., 2013), providing the opportunity to validate in vivo findings with higher spatial resolution. The 
Digital Brain Zoo’s current focus on nonhuman primates complements several existing in vivo and post-
mortem MRI databases, including PRIME-DE (Milham et al., 2018) and the JMC Primates Brain Imaging 
Repository (Sakai et al., 2018). The multiple taxonomic ranks covered by the Digital Brain Zoo draws direct 
parallels with resources such as the Brain Catalogue (Toro et al., 2014), which provides nonhuman post-
mortem MRI datasets for structural investigations; and the mammalian MRI database (Assaf et al., 2020), 
containing diffusion and T2-/T1-weighted scans of 123 different species (datasets available on request as 
described in Assaf et al., 2020). For the Digital Pathologist, we anticipate the strongest integration of our 
datasets with existing in vivo cohort studies in human or animal models of neuropathology. For the Human 
ALS MRI-Histology dataset, this includes multimodal MRI and biofluid biomarker sampling platforms such 
as the Oxford Study for Biomarkers in Motor Neurone Disease (Menke et al., 2014; Menke et al., 2015; 
Menke et al., 2016; Menke et al., 2018) and the Canadian ALS Neuroimaging Consortium (Kalra et al., 
2020). All of these comparisons are supported further by the microscopy data available in select Digital 
Brain Bank datasets, providing the opportunity to link MRI contrast to microscopy-derived features across 
multiple domains.

Post-mortem MRI
Post-mortem MRI facilitates the noninvasive investigation of brain anatomy, tissue composition, and 
structural connectivity through the acquisition of high-resolution datasets and subsequent microscopy 
comparisons. Despite this potential, post-mortem MRI remains a relatively niche approach, in part due 
to technical challenges and the need for multidisciplinary expertise. In order to provide post-mortem 
MRI as an experimental technique to neuroscientists in Oxford, we have had to develop a broad range 
of underpinning technologies, including: (i) pulse sequences that provide high-quality data under the 
harsh imaging conditions of post-mortem tissue (McNab et al., 2009; Miller et al., 2011); (ii) analyses 
that account for the signal formation mechanisms of these sequences (Tendler et al., 2020a; Tendler 
et al., 2020b) or properties unique to post-mortem tissue (Tendler et al., 2021); (iii) experimental 
approaches that enable the use of ultra-high field MRI to increase SNR for high-resolution imaging 
(Foxley et al., 2014; Tendler et al., 2020b); (iv) development of custom sample holders to maximize 
SNR and minimize imaging artifacts (Appendix 3—figure 1 and Appendix 3—figure 2); (v) tools for 
aligning small 2D microscopy images into 3D whole-brain MRI (Huszar et al., 2019); (vi) strategies for 
co-analyzing MRI and microscopy data (Howard et al., 2019b; Mollink et al., 2017); and (vii) tech-
niques for between-species comparisons (Eichert et al., 2020; Mars et al., 2018).

The investment of multidisciplinary expertise and effort required to create these datasets will inevi-
tably be a barrier to similar studies elsewhere. The Digital Brain Bank makes our data openly available 
to researchers worldwide to enable a much broader range of investigations. Considerable work has 
been performed to process images in a manner that users can immediately incorporate into their own 
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analyses (e.g., diffusion tensor and ball and sticks signal models) reducing user burden to develop 
their own data processing methods. Further details of these outputs and the types of data available 
are provided in the Materials and methods.

Here, we provide an overview of how we overcame challenges associated with imaging these 
samples, notably those associated with imaging large post-mortem brains. Datasets were acquired 
over many years from multiple imaging sites, resulting in evolving experimental setup, acquisition, and 
processing methods between datasets. To avoid an exhaustive list of different imaging approaches, 
below we describe the methodology undertaken for acquisitions performed at the University of 
Oxford, where the majority of datasets in the first release were acquired. Details of the acquisition 
location and scanner used for all datasets are provided in Table 2.

Choice of MRI scanner
Specialized RF coils and imaging gradients facilitate the acquisition of high-resolution, high-SNR post-
mortem MRI datasets. Preclinical systems often deliver in this space, notably with powerful gradient 
sets, and where possible should be adopted for post-mortem imaging. Specifically, post-mortem 
tissue that has undergone chemical preservation with aldehyde solutions (e.g., formalin) is character-
ized by short relaxation time constants (T1, T2, and T2*) (Birkl et al., 2016; Birkl et al., 2018; Dawe 
et al., 2009; Kamman et al., 1985; Nagara et al., 1987; Pfefferbaum et al., 2004; Shepherd et al., 
2009; Thelwall et al., 2006), and low diffusivity (D’Arceuil et al., 2007; Shepherd et al., 2009; Sun 
et  al., 2003; Sun et  al., 2005; Thelwall et  al., 2006) when compared to in vivo tissue. Powerful 

Table 2. Acquisition site and MRI scanner associated with all projects in the first release to the 
Digital Brain Bank.

Category Dataset(s) Acquisition location MRI scanner

Digital Anatomist
Human High-Resolution 
Diffusion MRI-PLI University of Oxford

Siemens 7T Magnetom
32-channel receive/1-channel transmit 
head coil (Nova Medical)

Digital Anatomist
Human Callosum MRI-PLI-
Histology University of Oxford

9.4T 160 mm horizontal bore VNMRS 
preclinical MRI system
100 mm bore gradient insert (Varian 
Inc)
26 mm ID quadrature birdcage coil 
(Rapid Biomedical GmbH)

Digital Brain Zoo NonHuman Primates University of Oxford

Baboon, Chimpanzee, Gorilla
Siemens 7T Magnetom
28-channel receive/1 channel transmit 
knee coil (QED)
All other brains
7T magnet with Agilent Direct-Drive 
console
72 mm ID quadrature birdcage RF coil 
(Rapid Biomedical GmbH)

Digital Brain Zoo Marsupials Emory University

Siemens 3T Trio
32-channel receive/1-channel transmit 
head coil

Digital Brain Zoo Cetaceans Emory University

2× Tasmanian devil and 1× Thylacine
Siemens 3T Trio
32-channel receive/1-channel transmit 
head coil
1× Thylacine
Bruker 9.4T BioSpec preclinical MR 
system

Digital Brain Zoo Carnivora University of Oxford

Siemens 7T Magnetom
28-channel receive/1 channel transmit 
knee coil (QED)

Digital Pathologist Human ALS MRI-Histology University of Oxford

Siemens 7T Magnetom
32-channel receive/1-channel transmit 
head coil (Nova Medical)

https://doi.org/10.7554/eLife.73153
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gradient sets provide rapid signal sampling and strong diffusion weighing, which boosts SNR versus 
conventional gradients (Dyrby et al., 2011; Roebroeck et al., 2019) in this environment.

Broadly speaking, post-mortem MRI data provided in the first release to the Digital Brain Bank can 
be categorised into two experimental designs. Small post-mortem samples (e.g., small NHP brains 
and excised tissue blocks) were scanned using specialized preclinical systems with powerful gradient 
sets. At the University of Oxford, these scans were performed with either a 7T preclinical system with 
Agilent DirectDrive console (Agilent Technologies, CA) or a 9.4T 160 mm horizontal bore VNMRS 
preclinical MRI system equipped with a 100-mm bore gradient insert (Varian Inc, CA).

Whole brains of larger species do not physically fit into these preclinical systems (maximum sample 
diameter 7–8  cm) and can only be accommodated in human scanners. These systems often have 
comparatively low gradient strengths, reducing the available SNR. At the University of Oxford, these 
brains were scanned on a Siemens 7T Magnetom human scanner. Here, we addressed the imaging 
environment of fixed, post-mortem tissue and comparatively low gradient-strengths by investing in 
alternative MR sequences to increase SNR. Further details of this are provided below.

Sample preparation
All brains and tissue samples in the first release of the Digital Brain Bank were chemically fixed using 
aldehyde solutions (e.g., formalin) to prevent decomposition (D’Arceuil and de Crespigny, 2007) and 
minimize deformation during the course of scanning. All fixed nonhuman brains and excised tissue 
blocks scanned at the University of Oxford were prepared by soaking the samples in phosphate-
buffered saline (PBS) prior to scanning, which increases image SNR by raising T2-values closer to 
those found in vivo (Shepherd et al., 2009). This was not performed in whole human brains, as brain 
size necessitates a soaking time of multiple weeks for the buffer fluid to penetrate throughout tissue 
(Dawe et al., 2009; Tendler et al., 2021; Yong-Hing et al., 2005) which was incompatible with our 
experimental design. We note that soaking tissue for an insufficient time can lead to artificial ‘bound-
aries’ in resulting images, where PBS has not penetrated into deep tissue (Miller et al., 2011).

Scanning medium and sample holder
Susceptibility artifacts (arising due to air-tissue or air-medium interfaces) can be exacerbated in post-
mortem imaging without an appropriate scanning medium. All samples scanned at the University of 
Oxford were imaged in a proton-free susceptibility-matched fluid (Fomblin LC08, Solvay Solexis; or 
Fluorinert FC-3283, 3M). The choice of a proton-free fluid means that there is no signal outside of the 
brain, bringing the additional advantage of minimizing the required field-of-view for any acquisitions, 
and addressing scaling issues arising from a bright background signal.

For whole human brain imaging, we built a two-stage custom holder (Appendix 3—figure 1), which has 
become the standard for all of our whole-brain human imaging experiments. The holder was designed to fit 
into a 32-channel receive/1-channel transmit head coil (Nova Medical), securing brains throughout the acqui-
sition, and contains a spherical cavity to minimize field-inhomogeneities across the brain. The holder enables 
brains to be placed in a consistent position (equivalent to an in vivo supine scan), minimizing variability of 
B0-orientation dependent effects (e.g., susceptibility anisotropy; Liu, 2010), as well as avoiding any potential 
motion. While motion is clearly less problematic than in vivo, samples must be well-secured, as even small 
motions can give rise to coregistration challenges and artifacts across the acquisition period (often >24 hr). 
All human brains were scanned in this holder, with the exception of the Human High-Resolution Diffusion 
MRI-PLI dataset (data acquired prior to holder construction). Full information on this experimental setup is 
provided in Wang et al., 2020.

Large nonhuman brains scanned at the University of Oxford (Gorilla, Chimpanzee, Wolf, and Baboon) 
were placed inside a 28-channel receive/1-channel transmit knee coil (QED) to boost SNR (smaller 
distance between sample and the imaging coil). These brains were placed inside a cylindrical brain holder 
(Appendix 3—figure 2), with a cylindrical cavity that is compatible with the shape of the knee coil, and is 
a shape that minimizes B0 field inhomogeneities. Small nonhuman brains/excised tissue blocks scanned on 
preclinical systems were placed in simpler containers, for example, syringes filled with fluorinert.

Structural MRI
Structural MRI enables the delineation of fine tissue structures and cortical surface reconstruction 
through high contrast, high-resolution imaging datasets. However, the convergence of T1 relaxation 
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times for gray and white matter in formalin-fixed post-mortem tissue leads poor contrast with conven-
tional T1-weighted structural protocols (Miller et al., 2011). All structural MRIs available in the first 
data release were acquired using either a balanced SSFP (bSSFP) or T2-weighted sequence, which 
demonstrate excellent gray/white matter contrast in fixed post-mortem tissue. Notably, bSSFP signal 
forming mechanisms lead to an extremely high SNR-efficiency (even when considering the reduced 
T1 and T2 of post-mortem tissue), affording the acquisition of ultra-high resolution (<500 μm) imaging 
volumes to delineate fine tissue structures in large post-mortem samples.

Contrast in bSSFP and T2-weighted structural MRI datasets is reversed in comparison to conven-
tional in vivo T1-weighted acquisitions (i.e., gray matter appears bright, and white matter appears 
dark). For these datasets, image contrast is predominantly driven by gray and white matter, facilitating 
the delineation of fine tissue structures and surface reconstructions (Roumazeilles et al., 2020). An 
example bSSFP dataset is displayed in Appendix 4—figure 1. Integration with conventional structural 
MRI processing pipelines often needs to account for the reversal of image contrast.

Diffusion MRI
Post-mortem diffusion MRI is particularly challenging due to the MR-relevant properties of fixed 
tissue, with reductions in measured relaxation time constants T1, T2, and T2* (Birkl et al., 2016; Birkl 
et al., 2018; Dawe et al., 2009; Kamman et al., 1985; Nagara et al., 1987; Pfefferbaum et al., 
2004; Shepherd et al., 2009; Thelwall et al., 2006), and diffusivity (D’Arceuil et al., 2007; Shepherd 
et al., 2009; Sun et al., 2003; Sun et al., 2005; Thelwall et al., 2006) routinely reported in literature.

To achieve high SNR in these conditions, specialized preclinical systems and tissue preparation 
methods are often required (Roebroeck et al., 2019), with many groups focusing on tissue sections 
that can be scanned on rodent scanners with specialized hardware (Beaujoin et al., 2018; Calabrese 
et al., 2015). Unfortunately, size constraints restrict the use of preclinical systems to small post-mortem 
tissue samples (e.g., small NHP brains or excised tissue blocks). As described above, large whole brains 
do not physically fit into preclinical systems and can only be accommodated in human scanners. These 
systems often have comparatively low gradient strengths; combined with conventional methods (e.g., 
diffusion-weighted spin-echo, DW-SE), this can lead to low-SNR diffusion imaging volumes.

Over the past decade, our lab has invested considerably into the use of an alternative diffusion imaging 
technique, diffusion-weighted steady-state free precession (DW-SSFP) (Kaiser et al., 1974; Le Bihan, 1988; 
Merboldt et al., 1989a; Merboldt et al., 1989b), to achieve high-SNR datasets in large post-mortem 
samples. DW-SSFP is well suited to the environment of fixed post-mortem tissue, achieving strong diffu-
sion weighting and rapid signal sampling, even when hardware achieves limited gradient amplitudes and 
when T2 values are low (McNab et al., 2009; Vasung et al., 2019; Wilkinson et al., 2016). The DW-SSFP 
sequence has demonstrated improved SNR-efficiency compared to conventional DW-SE when imaging 
post-mortem tissue (Miller et al., 2012), further enhanced at ultra-high field (7T) (Foxley et al., 2014). For 
more details regarding DW-SSFP, please see McNab and Miller, 2010.

Broadly, two separate diffusion imaging approaches were used for the first release of data to the 
Digital Brain Bank. Small brains and excised tissue blocks imaged on preclinical systems were scanned 
using conventional DW-SE sequences, where tissue preparation and powerful diffusion gradients 
provide imaging volumes with high SNR. Diffusion imaging for larger post-mortem samples scanned 
on a human scanner (Siemens 7T Magnetom) was performed using DW-SSFP.

To facilitate cross-dataset comparisons, the majority of diffusion datasets from the Digital Brain 
Bank provide derived diffusivity estimates in the form of diffusion tensor and/or ball and sticks model 
parameters (Behrens et al., 2007). Whilst there are a number of standard software packages available 
for DW-SE data, this was achieved for DW-SSFP datasets using a custom imaging pipelines incorpo-
rating the full DW-SSFP model (including T1, T2, and B1 dependencies) (Tendler et al., 2020b).

There are some differences between derived diffusivity estimates from DW-SSFP and DW-SE data. 
Importantly, the DW-SSFP signal does not have a well-defined b-value (McNab and Miller, 2010; 
Tendler et al., 2020a). For all DW-SSFP datasets acquired in whole human brains (e.g., the Human 
ALS MRI-Histology dataset and the Human High-Resolution Diffusion MRI-PLI dataset), we utilized a 
recently proposed approach to transform DW-SSFP datasets acquired at two flip angles into equiv-
alent measurements at a single, well-defined b-value (Tendler et al., 2020a; Tendler et al., 2020b). 
This facilitates within dataset comparisons, alongside comparisons with datasets acquired with the 
DW-SE sequence. However, this approach was not possible for the nonhuman DW-SSFP datasets 
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due to differences in the acquisition protocol. Although the diffusivity estimates for the nonhuman 
DW-SSFP datasets directly relate to the underlying diffusivity of tissue, the DW-SSFP signal forming 
mechanisms lead to varying effective b-values within and between these datasets (Tendler et  al., 
2020a). Conservatively, we recommend the nonhuman DW-SSFP datasets to be primarily used for 
structural connectivity (e.g., tractography) investigations.

More generally, differences in the number of diffusion directions, choice of b-value (for DW-SE 
and DW-SSFP transformed datasets), imaging resolution, and SNR exist across datasets, a result of 
available scanning hardware, scanning time, experimental design, and sample properties (e.g., type 
of fixative used and size of the brain). These limitations can lead to differences in resulting diffusivity 
estimates and should be considered when performing comparisons across different datasets in the 
Digital Brain Bank. Full details of the acquisitions are provided in the original publications, alongside 
information on the Digital Brain Bank website and dataset files.

Other sequences
Quantitative T1 and T2 maps are provided with the post-mortem whole-brain human datasets, 
acquired using conventional turbo inversion-recovery (TIR) and turbo spin-echo (TSE) sequences. 
Notably, T1-convergence of gray and white matter in fixed post-mortem tissue leads to low contrast 
on T1 maps, as described in the Structural MRI section above. T1 maps were fitted assuming mono-
exponential signal recovery. T2 maps were processed using an extended phase graph (EPG) fitting 
scheme (Weigel, 2015), which accounts for B1-inhomogeneity at 7T (details of acquisition and 
processing are described in Tendler et al., 2021).

Whole human brain quantitative T2* and quantitative susceptibility maps are available in a subset 
of brains provided with the Human ALS MRI-Histology dataset. These data were acquired using a 
multiecho gradient-echo sequence and processed following the procedure in Wang et al., 2020.

Cross-scale comparisons
Post-mortem imaging experiments combining MRI and microscopy are routinely used to validate the origins 
of image contrast. However, these comparisons are often restricted to simple summary statistics (e.g., ROI 
averages), rather than utilizing all the available data through pixel-wise comparisons and structural analyses 
(Mollink et al., 2017). These more detailed approaches are facilitated by accurate cross-modality coregis-
trations, a considerable challenge given differences in image contrast and tissue deformations arising from 
microscopy processing (Huszar et al., 2019; Iglesias et al., 2018; Ohnishi et al., 2016). These challenges 
are further exacerbated when considering small tissue sections excised from large post-mortem samples, 
where the corresponding microscopy sampling region must be identified in a 3D imaging volume. To 
address this, our group has developed TIRL, a novel MR-microscopy coregistration toolbox (Huszar et al., 
2019). Further details are provided in the Materials and methods.

Future directions: dataset visualization
To improve visualization of MRI-only datasets on the Digital Brain Bank website, we are currently inte-
grating NiiVue (Rorden et al., 2021), a web-based 3D volumetric viewer for navigating MRI datasets. 
NiiVue additionally supports binary overlays, which will be used to visualize the location of tissue 
sampling in the brain. Further details are available at https://github.com/niivue/niivue, (copy archived 
at swh:1:rev:e67273337430a378a41d6753d91364e9e89b4d33, Hanayik, 2022).

Future directions: available datasets
Several datasets are under active preparation for future release to the Digital Brain Bank, notably extending 
the Digital Anatomist and Digital Pathologist categories beyond human tissue for neuroanatomical and 
neuropathological investigations. These datasets include — Digital Anatomist: (1) Forget-Me-Not devel-
oping Human Connectome Project (dHCP) study (Wu et  al., 2021), providing diffusion MRI datasets 
acquired in unfixed, post-mortem neonatal brains; (2) BigMac dataset (Howard et al., 2019a) providing 
in vivo MRI, post-mortem MRI, PLI, and immunohistochemistry in a single, whole macaque brain. Digital 
Brain Zoo: further primate species are currently in preparation, as are extensions into orders Carnivora and 
Rodentia. Digital Pathologist: a cohort study combining multimodal MRI and histology to investigate mouse 
models of ALS (Martins-Bach et al., 2020; Martins-Bach et al., 2021).
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Materials and methods
Web development and Tview
The Digital Brain Bank is a web application made up of individual service components, created using 
a combination of open-source software. Services include the dataset downloader, the website, and 
Tview. The web application is hosted on our own server hardware, and the various services of the 
application are orchestrated using container management system Docker (docker.com).

The core website and user interface were created using Vue (vuejs.org), a front-end web frame-
work for composing reusable application components. The Vue website communicates with multiple 
back-end services (via HTTP requests) to retrieve information (e.g., which Tview tiles to display, which 
datasets are available for download). The reactive web application ensures that changes to website 
are seen in real time, or on the next possible page reload.

Tview provides real-time zooming/panning of high-resolution microscopy and MRI overlays using leafletjs, 
a software library originally used to display satellite imagery at multiple elevations. We have adapted our 
microscopy datasets to be compatible with this software library in order to take advantage of the features 
it offers. This is achieved by converting images into tiles at multiple zoom levels (via libvips), and uploading 
these tiles to the local web server. Only the relevant subset of tiles is downloaded when users interact with 
images using Tview. Individual tiles comprise a small file size, facilitating real-time interaction.

Continued use of the Digital Brain Bank requires a simple process for collaborators to upload post-mortem 
datasets, and an application administration layer is under active development to facilitate this process. Code 
for the Digital Brain Bank web application is available at https://git.fmrib.ox.ac.uk/thanayik/dbb.

Datasets
The Digital Brain Bank is not designed as a stand-alone resource—when possible, datasets are asso-
ciated with available publications which extensively describe the methodology used. This approach 
facilitates the referencing of available datasets, and similarly ensures that sufficient detail is provided 
on how data were acquired and processed. A list of the associated publications with the first release 
of datasets is provided in Table 1. However, as part of the first release of the Digital Brain Bank, we 
provide a human dataset that has not yet been described in literature, the Human High-Resolution 
Diffusion MRI-PLI dataset. We additionally provide four new species datasets for the Digital Brain Zoo, 
the Hamadryas baboon, Golden Lion Tamarin, Cotton-Top tamarin, and European wolf. A full descrip-
tion of the acquisition and data processing for these data are provided in Appendix 1.

Tensor Image Registration Library
The Digital Brain Bank makes use of the TIRL to perform cross-modality MRI-microscopy coregistra-
tions (Huszar et al., 2019). TIRL can be automated for coregistering 3D MR volumes to 2D microscopy 
images, typically given a set of sequential block-face photographs taken during the tissue dissection 
process. These coregistrations are available for all released histology in the Human ALS MRI-Histology 
(Digital Pathologist) dataset (Figure 3d). Remaining coregistrations are being actively curated and will 
be provided in a future release to the Digital Brain Bank.

The decision to present MRI-microscopy coregistrations in the 2D histology space (Figure 3d) was 
chosen to facilitate visualization. During manual histology sampling, the cutting process introduces 
non-linear deformities. Furthermore, the cutting angle is not constrained to be parallel to the MRI 
voxel plane. In general, the excised tissue used for histology will pass through multiple MRI voxel 
planes nonlinearly, limiting visualization in the 3D MRI space. Importantly, TIRL has been specifically 
designed to deal with the deformations induced during cutting. Our TIRL pipeline has a specific stage 
for estimating these deformations from photographs and MRI, and a later stage that refines those 
deformations for the specific histology slice. Further information is provided in Huszar et al., 2019.

Conditions for data uploading
All datasets hosted on the Digital Brain Bank are associated with projects performed at the University 
of Oxford, in collaboration with members of the University of Oxford, or from close collaborators. In 
addition, limited Derived Outputs from users of Digital Brain Bank datasets will also be considered 
for data upload, subject to quality control on an individual basis. Information regarding the primary 
contributors to the dataset are explicitly stated on the Digital Brain Bank website. All projects must 
have been granted ethical approval from the relevant brain banks and departmental ethics boards. 
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Datasets will be shared on the Digital Brain Bank website on the condition that data providers do not 
require co-authorship for any subsequent outputs based on the use of the datasets alone.

Types of data provided
The Digital Brain Bank uses the following definitions:

•	 Raw Data: MRI and microscopy images obtained directly from the MRI or slide scanner. These 
data require further processing be useful (i.e., the value in individual pixels is not directly inform-
ative about biological processes or properties).

•	 Pre-Processed Outputs: imaging outputs from individual brains produced by a first stage of 
processing suitable for a broad range of subsequent analysis. For example, diffusion parameter 
estimates (e.g., diffusion tensor outputs), quantitative relaxometry maps, or PLI fiber orientation 
maps. These outputs can be immediately fed into an analysis to answer a hypothesis- or data-
driven neuroscientific question.

•	 Derived Outputs: results produced from subsequent analysis that use Pre-Processed Outputs 
as an input specific to a domain of neuroscientific investigation. For example, tractography-
derived pathway segmentations or group-averaged atlases.

The Digital Brain Bank aims to capture a broad range of datasets under the umbrella of post-
mortem neuroimaging, and as such we have aimed to keep the resource flexible for uploaded data-
sets. There are no strict criteria regarding the types and structure of post-mortem data released to the 
Digital Brain Bank. In addition, the Digital Brain Bank aims to facilitate the investigation of research 
hypotheses designed by the user. To reflect this, we primarily provide Pre-Processed Outputs. Limited 
Derived Outputs associated with specific projects will be also made available at the discretion of the 
Digital Brain Bank. Raw data for a given dataset is available on request.

These pre-processed outputs reduce the burden on the user to develop their own processing 
pipelines, of particular importance when considering datasets acquired with alternative sequences not 
addressed with commonly used imaging software (e.g., DW-SSFP) (Tendler et al., 2020b), or datasets 
which required specialized fitting approaches (e.g., EPG fitting required for T2 mapping at 7T, used 
in the Human ALS MRI-Histology and Human High-Resolution Diffusion MRI-PLI datasets) (Tendler 
et al., 2021; Weigel, 2015). For diffusion MRI datasets acquired with DW-SE, we also provide the 
Pre-Processed Outputs of individual diffusion volumes, which users can feed into a broad range of 
available software. For DW-SSFP, we do not by default provide the individual diffusion volumes, as 
no widely available diffusion MRI software packages incorporate the DW-SSFP signal model. We 
share our custom software for analyzing these data through the Digital Brain Bank. DW-SSFP diffusion 
volumes are available upon request, with the caveat that care needs to be taken in analyzing these 
data in light of the unusual dependences (e.g., T1 and T2) and signal model of DW-SSFP (Buxton, 
1993; Tendler et al., 2020a; Tendler et al., 2020b).

First and foremost, the Digital Brain Bank is a data sharing resource. Details of the acquisition and 
processing methodology associated with each dataset is provided with the accompanying manu-
scripts, on the Digital Brain Bank website (Information page associated with each project), and with 
the downloaded dataset. However, data hosts are encouraged to provide pre-processing code when 
available. This code will be linked with each dataset on the Digital Brain Bank website (on the Infor-
mation page), or packaged with the dataset download.

For multimodal (MRI and microscopy) datasets in the first release (Human High-Resolution Diffusion 
MRI-PLI, Human Callosum MRI-PLI-Histology, and Human ALS MRI-Histology dataset), raw high-resolution 
microscopy images are provided. A full set of coregistered data to enable MRI-microscopy voxelwise 
comparisons via TIRL (Huszar et al., 2019) are being actively curated for future release (Figure 3d). These 
are currently available for the histology released with the Human ALS MRI-Histology dataset.

Metadata specific to the analysis of post-mortem tissue (e.g., fixative type, post-mortem interval, 
etc.) or relevant to distinguishing individual datasets in a cohort study (e.g., control brain or brain with 
a neurological disease) is provided when available.

Data storage database
As is the nature of a data resource associated with both completed and ongoing projects, some 
datasets will be updated over time. These future releases will typically be associated with new 
images being made available or improvements to existing processing pipelines. Until more 
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streamlined data access methods are in place, we will contact users directly to inform them of any 
updates made to a given dataset. This approach is aligned with the current framework for data 
access, with users required to contact the Request Data Contact on the Digital Brain Bank website 
to request access.

A future ambition of the Digital Brain Bank is to streamline data access procedures by integrating 
user sign-up, authentication, and approval combined with access to specific dataset versions within 
our database over time. To achieve this, we are continuously developing the platform and incorpo-
rating feedback and feature requests including enabling a programmatic interface to datasets for 
approved users, and detailed dataset versioning. We will investigate associating dataset versions with 
DOIs directly on the Digital Brain Bank website (or through known providers), to facilitate the tracking 
and reproducibility of individual datasets and analysis pipelines.
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Appendix 1
Human high-resolution diffusion MRI-PLI dataset
MRI preparation and scanning
Data were acquired from a post-mortem human brain (n=1) with no known neuropathology. The brain was 
extracted from the skull within 72 hr after death and fixed in 10% PBS buffered formalin (4% formaldehyde) 
for 6 weeks prior to scanning. The brain was removed from formalin and placed in plastic bags filled 
with Fomblin LC08 (Solvay Solexis), a susceptibility-matched perfluoropolyether liquid that contributes no 
signal to the imaging experiment.

The brain was imaged with a Siemens 7T whole-body scanner (1 Tx/32 Rx head coil). Diffusion-
weighted volumes were acquired using DW-SSFP sequence. As highlighted in the main text, the 
choice of DW-SSFP was motivated by the sequences potential to simultaneously address the short 
T2 and low diffusivity of fixed, post-mortem tissue, when limited to human scanners.

Whole-brain diffusion MRI datasets were acquired at 500 μm, 1 mm, and 2 mm isotropic resolution. 
Details of the acquisition parameters are provided in Appendix 1—table 1, where we note that the 500 μm 
dataset took approximately 6 days of continuous scanning to acquire. DW-SSFP datasets were obtained 
at two flip angles to address B1-inhomogeneity at 7T, as previously described in Tendler et al., 2020b.

The DW-SSFP signal is dependent on tissue relaxation time-constants (T1 and T2) and the 
acquisition flip angle, which must be estimated for accurate modeling. These parameters were 
estimated using a TIR, TSE, and actual flip angle imaging (AFI) (Yarnykh, 2007) sequence. A 
structural scan was additionally acquired using a true fast imaging with steady-state precession 
(TRUFI) sequence (bSSFP), which produces high gray/white matter contrast in post-mortem tissue. 
Details of the acquisition parameters are provided in Appendix 1—table 2.

MRI processing
A Gibbs ringing correction was applied to the DW-SSFP, TIR, and TSE datasets (Kellner et al., 2016). 
All coregistrations within-and-between modalities were performed using a six degrees-of-freedom 
coregistration using FSL FLIRT (Jenkinson and Smith, 2001). T1 maps were estimated from the 
TIR volumes assuming mono-exponential signal evolution. T2 maps were estimated from the TSE 
volumes using an EPG framework (Weigel, 2015), as described in Tendler et al., 2021. B1 maps 
were estimated from the AFI volumes as described in the original AFI publication (Yarnykh, 2007). 
Structural scans were estimated from the TRUFI volumes, with banding artifacts minimized by taking 
the maximum intensity across volumes (Bangerter et al., 2004).

For the diffusion outputs, Tensor and Ball and Two-Stick models were fit to the DW-SSFP data as 
described in Tendler et al., 2020b. In brief, fitting was performed using the full DW-SSFP Buxton 
model (Buxton, 1993), estimating a shared set of diffusion orientations (e.g., tensor eigenvectors), 
and a unique set of diffusivity estimates (e.g., tensor eigenvalues) per DW-SSFP flip angle. The fitting 
process incorporated the estimated T1, T2, and B1 maps, in addition to a noise-floor correction.

The DW-SSFP sequence does not have a well-defined b-value. To address this, the diffusivity estimates 
at each flip angle were combined to generate diffusivity estimates at an effective b-value of 4000 s/mm2. 
Details of this procedure, in addition to the motivation behind the choice of 4000 s/mm2 are detailed in 
Tendler et al., 2020b. Note that a small modification was made to the original minimization procedure, 
as described below.

Appendix 1—table 1. DW-SSFP Acquisition parameters at 0.5, 1.0, and 2.0 mm.

DW-SSFP (0.5 mm) DW-SSFP (1.0 mm)

q-value (cm–1) 300 q-value (cm–1) 300

Diffusion gradient duration (ms) 14.10 Diffusion gradient duration (ms) 14.10

Diffusion gradient strength (mTm–1) 50 Diffusion gradient strength (mTm–1) 50

Flip angles (°) 33 and 98 Flip angles (°) 33 and 98

No. of directions (per flip angle) 90 No. of directions (per flip angle) 60

No. of non-DW (per flip angle) 6 (q=20 cm–1) No. of non-DW (per flip angle) 5 (q=20 cm–1)

Appendix 1—table 1 Continued on next page
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DW-SSFP (0.5 mm) DW-SSFP (1.0 mm)

Resolution (μm3) 500·500·500 Resolution (mm3) 1.0·1.0·1.0

TE (ms) 21 TE (ms) 21

TR (ms) 30 TR (ms) 30

EPI factor 1 EPI factor 1

Bandwidth (Hz per pixel) 198 Bandwidth (Hz per pixel) 130

Acquisition time (per direction/non-DW) 45 min 03 s No. of averages 1

Acquisition time (total) 6 days 0 hr  �

No. of averages 1  �

 �   �

DW-SSFP (2.0 mm)  �

q-value (cm–1) 300  �

Diffusion gradient duration (ms) 14.10  �

Diffusion gradient strength (mTm–1) 50  �

Flip angles (°) 33 and 98  �

No. of directions (per flip angle) 221  �

No. of non-DW (per flip angle) 6 (q=20 cm–1)  �

Resolution (mm3) 2.0·2.0·2.0  �

TE (ms) 21  �

TR (ms) 30  �

EPI factor 1  �

Bandwidth (Hz per pixel) 130  �

No. of averages 1  �

Appendix 1—table 2. Acquisition parameters for the TIR, TSE, structural (TRUFI), and B1-mapping 
(AFI) sequences.

Turbo inversion-recovery (TIR)
True-Fast Imaging with 
SSFP (TRUFI)

Resolution (mm3) 0.75·0.75·1.60 Resolution (μm3) 312.5·312.5·500

Number of inversions 6 TE (ms) 5.95

TE (ms) 12 TR (ms) 11.9

TR (ms) 1000 Flip angle (°) 35

TIs (ms) 31, 62, 125, 250, 500, and 850 Bandwidth (Hz per pixel) 130

Flip angle (°) 180 Phase increments (o) 0 and 180

Bandwidth (Hz per pixel) 199
Number of averages (per set 
of increments) 16

Number of averages 1  �

 �   �

Turbo spin-echo (TSE) – T2

Actual flip-angle imaging 
(AFI) – B1

Resolution (mm3) 0.75·0.75·1.60 Resolution (mm3) 1.50·1.50·1.50

Number of echoes 6 TE (ms) 1.5

Appendix 1—table 1 Continued

Appendix 1—table 2 Continued on next page
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Turbo inversion-recovery (TIR)
True-Fast Imaging with 
SSFP (TRUFI)

TEs (ms) 14, 28, 42, 56, 70, and 84 TR1/TR2 (ms) 6/30

TR (ms) 1,000 Flip angle (°) 60

Flip angle (°) 180 Bandwidth (Hz per pixel) 630

Bandwidth (Hz per pixel) 130 Number of averages 1

Number of averages 1  �

Modification to minimization procedure
Tendler et al., 2020b described an approach to estimate DW-SSFP diffusivity estimates at a single 
effective b-value, achieved by incorporating a non-Gaussian diffusion model into the DW-SSFP signal 
equations. In Tendler et al., 2020b, non-Gaussianity was modeled using a Gamma distribution of 
diffusivities, estimating a mean (‍Dm‍) and standard deviation (‍Ds‍) of the Gamma distribution per 
voxel. Here, the Gamma fitting procedure (Equation 4 in Tendler et al., 2020b was replaced with:

	﻿‍

min
Dmi ,Dsi

∥∥∥∥∥

(
Lisim : αlow

(
Dmi ,Dsi

)
−Liexp : αlow

)

SD
(

Liexp : αlow

)
∥∥∥∥∥

2

2

+

∥∥∥∥∥∥

(
Lisim : αhigh

(
Dmi ,Dsi

)
−Liexp : αhigh

)

SD
(

Liexp : αhigh

)

∥∥∥∥∥∥

2

2‍,� (1)

where ‍αlow‍ and ‍αhigh‍ are the voxelwise DW-SSFP flip angles, ‍Liexp : αlow/αhigh‍ are the voxelwise 
experimental diffusivity estimates (Tensor eigenvalues or Ball and Two-Stick diffusivity estimates) 
at each flip angle, ‍Lisim : αlow/αhigh‍ are the simulated diffusivity estimates for a given ‍Dmi‍ and ‍Dsi‍ , and 

‍
SD

(
Liexp : αlow /αhigh

)
‍
 are the estimated experimental standard deviation of the diffusivity estimates. 

This approach was found to reduce spurious diffusivity estimates in regions of low SNR. For further 
details of the modeling approach, see Tendler et al., 2020b.

PLI preparation, scanning, and processing
Tissue samples from the anterior commissure, corpus callosum, occipital lobe gurus, pons, thalamus, 
and external capsule were extracted from the post-mortem brain. Samples were stored in a 30% 
sucrose solution with PBS and 0.025% azide for 3 weeks. Tissue blocks were subsequently embedded 
in optimal cutting temperature compound (Sakura, Finetek Inc, USA) and frozen to –80°C. 60-μm 
sections were cut from the tissue blocks with a cryostat microtome (Leica, Germany). No tissue 
staining was performed, as birefringence is naturally expressed by the myelin sheath.

PLI was performed using a Leica DM4000B microscope, equipped with a polarizing filter, a quarter 
wave plate (QWP), and a rotatable analyzer with orientation ‍ρ‍. Samples were illuminated with a white LED 
(pE-100wht Cooled). The fast axis of the QWP was oriented 45° with respect to the transmission axis of the 
polarising filter to create circular polarization. The rotating analyzer captured the phase shift induced by the 
myelin sheath. A total of 18 images were acquired for each field of view at equidistant analyzer orientation 

angles, 
‍
ρ =

{
0◦, 10◦, . . . , 170

◦}
‍
. Images were magnified 1.25× (0.04 NA, Leica) and captured with a Leica 

DFC420 CCD camera (4 μm/pixel). The green color image channel was used for further analysis.
The entire sample was imaged via raster scanning, with each row composed of multiple contiguous 

field-of-views (FOVs). These FOVs were automatically stitched together using in-house software 
(MATLAB 2015b, MathWorks, Natick, MA). For each specimen, a series of background images were 
acquired to correct for illumination inhomogeneities (Dammers et  al., 2010). Microscopic fiber 
orientations were derived using Jones calculus (Jones, 1941), as described below.

PLI fiber orientations
The light intensity (‍I‍) for a birefringent specimen inside a PLI-setup is described using Jones calculus 
(Jones, 1941), defining:

	﻿‍ I
(
ρ
)

= I0
2
[
1 + sin

(
2ρ− 2φ

)
· sin δ

]
,‍� (2)
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where ‍I0‍ is the average light intensity, ‍ρ‍ is the polarizer orientation, ‍φ‍ is the in-plane orientation of 
the myelin sheath, and ‍δ‍ is the phase shift, defined as:

	﻿‍ δ ≈ 2π d·∆n
λ · cos2 α,‍� (3)

where ‍d‍ is the sample thickness, ‍∆n‍ is the sample birefringence, ‍λ‍ is the light wavelength, and ‍α‍ is 
the inclination angle of the myelin sheath (α). Microscopic fiber orientations were derived using as 
above, fitting to each pixel in the raw PLI images as previously reported in Axer et al., 2011.

Digital Brain Zoo datasets
Here, we provide the acquisition and processing protocol for four previously unreleased datasets to 
the Digital Brain Zoo.

European wolf and Hamadryas baboon
Formalin-fixed European wolf and Hamadryas baboon brains were provided by Copenhagen zoo. 
Prior to scanning, the brains were rehydrated using a PBS solution. The size of the European wolf and 
Hamadryas baboon brain necessitated scanning on the Siemens 7T whole-body scanner (1 Tx/28 Rx 
knee coil, QED), using the brain holder displayed in Appendix 3—figure 2. The brain holder was 
filled with fluorinert (FC-3283, 3M) during the scanning procedure, a susceptibility matched fluid 
that gives off no signal. Diffusion-weighted volumes were acquired using DW-SSFP sequence. As 
highlighted in the main text, the choice of DW-SSFP was motivated by the sequences potential to 
simultaneously address the short T2 and low diffusivity of fixed, post-mortem tissue, when limited 
to human scanners. A structural scan was additionally acquired using a TRUFI sequence (bSSFP), 
which produces high gray/white matter contrast in post-mortem tissue. Acquisition parameters are 
provided in Appendix 1—table 3.

Structural scans were formed by averaging over all 16 TRUFI datasets (root-mean sum of squares). 
Diffusion datasets were processed using a similar approach to the great ape datasets in Bryant 
et al., 2021 and (Roumazeilles et al., 2020). In brief, a Gibbs ringing correction (Kellner et al., 
2016) was applied to the diffusion and non-diffusion weighted datasets, with all coregistrations 
performed using FSL FLIRT (Jenkinson and Smith, 2001). Fitting was performed using the full DW-
SSFP Buxton model (Buxton, 1993) adapted to incorporate Tensor and Ball and Two-Stick estimates. 
The fitting process incorporated estimated T1, T2, and B1 maps derived from a TIR, TSE, and AFI 
(Yarnykh, 2007) sequence acquired in the same session.

Appendix 1—table 3. Acquisition parameters for the DW-SSFP and structural (TRUFI) sequences.
The only difference between the European wolf and Hamadryas baboon acquisition was the number 
of non-diffusion weighted directions acquired (13 for wolf and 11 for baboon).

DW-SSFP
True-Fast Imaging with 
SSFP (TRUFI)

q-value (cm–1) 300 Resolution (μm3) 217·217·220

Diffusion gradient 
duration (ms) 13.56 TE (ms) 7.33

Diffusion gradient 
strength (mTm–1) 52 TR (ms) 14.65

Flip angle (°) 39 Flip angle (°) 30

No. of directions 160 Bandwidth (Hz per pixel) 100

No. of non-DW 13/11 (q=20 cm–1) Phase increments (o)
0, 45, 90, 135, 180, 225, 270, 
and 315

Resolution (μm3) 600·600·600
No. of averages (per set of 
increments) 2

TE (ms) 21  �

TR (ms) 29  �

EPI factor 1  �

Appendix 1—table 3 Continued on next page
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DW-SSFP
True-Fast Imaging with 
SSFP (TRUFI)

Bandwidth (Hz per pixel) 100  �

Acquisition time (per 
direction/non-DW) 16 min 25 s  �

Acquisition time (total) 1 day 20 hr  �

No. of averages 1  �

Cotton-Top and Golden Lion tamarins
Formalin-fixed Cotton-Top and Golden Lion tamarin brains were provided by Copenhagen zoo. Prior 
to scanning, the brains were rehydrated using a phosphate-buffered saline solution. Scanning was 
performed using a 7T magnet with Agilent Direct-Drive console and 72 mm ID quadrature birdcage 
RF coil (Rapid Biomedical GmbH). The brain holder was filled with fluorinert during the scanning 
procedure, a susceptibility matched fluid that gives off no signal. Diffusion-weighted volumes were 
acquired using diffusion-weighted spin-echo protocol with single line readout (DW-SEMS) sequence. 
Acquisition parameters are provided in Appendix 1—table 4.

The diffusion datasets were processed using a similar approach to the prosimian and monkey 
data in Bryant et  al., 2021. Datasets were preprocessed using FSL tools implemented in the 
Phoenix module of the MR Comparative Anatomy Toolbox (Mr Cat, https://www.neuroecologylab.​
org/). Tensor and ball and Two/Three-stick estimates were derived using FSL’s dtifit and bedpostX 
(Behrens et al., 2007).

Appendix 1—table 4. Acquisition parameters for the DW-SEMS sequence.

DW-SEMS

b-value (s/mm2) 4000

δ (ms) 7

Δ (ms) 13

Diffusion gradient strength (mTm–1) 320

No. of directions 128

No. of non-DW 16

Resolution (μm3) 300·300·300

TE (ms) 25

TR (s) 10

EPI factor 1

Bandwidth (kHz) 100

Acquisition time (per direction/non-DW) 21 min 20 s

Acquisition time (total)
2 days 
4 hr

No. of averages 1

Appendix 1—table 3 Continued
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Appendix 2
Human ALS MRI-histology callosum analysis
A comparison of diffusivity properties between the ALS and control cohort (12 ALS and 3 control 
brains) was performed in the corpus callosum, as displayed in Figure 3c (Main Text). To achieve this, 
a standard-space mask of the corpus callosum was first generated using the Jülich atlas (Eickhoff 
et al., 2005). The callosum mask was subsequently split into five distinct regions of interest (ROIs) 
associated with specific fiber projections as proposed by Hofer and Frahm (Hofer and Frahm, 2006), 
and transformed into the space of each post-mortem brain. Briefly, a standard space FA template 
(FMRIB58_FA, available as part of FSL) was modified to display similar contrast to the post-mortem 
FA maps. Coregistration matrices were subsequently estimated between the FA map of each post-
mortem brain and the modified standard space FA template using a non-linear coregistration (ANTS) 
(Avants et al., 2011). The callosum masks were subsequently coregistered into the space of each 
post-mortem brain using the estimated coregistration matrices, and multiplied by a white matter 
mask (generated using FAST; Zhang et al., 2001) to remove any remaining gray matter regions.

Diffusion estimates were obtained by taking the mean over each ROI. Values were normalized 
to the splenium (Par/Temp/Occ) estimate, which has been proposed as a control region with little 
pathological burden in ALS (Cardenas et al., 2017). Differences in the normalized FA, MD, axial, 
and radial diffusivity between the ALS and control cohort were assessed with a two-tailed, family-
wise error rate (FWER) corrected t-test using PALM (Winkler et al., 2014). Full results are provided 
in Appendix 2—table 1. Although our statistical analysis does account for sample size, it does not 
consider other confounds that may contribute to differences between the two groups (e.g., age and 
sex). Source data for the corpus callosum analysis are provided in a Supplementary file 1.

Appendix 2—table 1. p-values associated with differences between the ALS and control cohort for 
the diffusivity estimates.
Here ‘p’ defines the p-value, and ‘PFWER’ defines the FWER-corrected p-value (‍∗‍=p<0.05; 
‍∗∗‍=pFWER<0.05). The largest differences between the ALS and control cohort were found in the 
Body (Pre/Supp Motor) category, followed by the Genu (PreFrontal) and Body (Motor) category. No 
differences were found in the Body (Sensory) category.

Body (Sensory) Body (Motor)
Body (Pre/Supp 
Motor) Genu (PreFrontal)

Fractional anisotropy 
(FA)

p=0.34
pFWER=0.70

p=0.042*  
pFWER=0.11

p=0.0044* 
pFWER=0.013**

p=0.013*  
pFWER=0.037**

Mean diffusivity (MD) p=0.99
pFWER=1.00

p=0.18
pFWER=0.48

p=0.015*  
pFWER=0.053

p=0.037*  
pFWER=0.12

Axial diffusivity (AD) p=0.53
pFWER=0.92

p=0.58
pFWER=0.95

p=0.084
pFWER=0.27

p=0.11
pFWER=0.32

Radial diffusivity (RD) p=0.66
pFWER=0.97

p=0.073
pFWER=0.23

p=0.0022* 
pFWER=0.015**

p=0.022*  
pFWER=0.062

https://doi.org/10.7554/eLife.73153
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Appendix 3
Post-mortem brain holders

Appendix 3—figure 1. Post-mortem human brain holder. The brain holder ensures consistent placement during 
scanning. Here, the custom holder tightly seals the brain in place, whilst the 3D printed shell (provided by Dr Alard 
Roebroeck, Maastricht University) prevents pressure on the brain. The holder is designed with a spherical cavity to 
maximize field homogeneity. For further information on our scanning procedure for human post-mortem brains, 
see Wang et al., 2020.

Appendix 3—figure 2. Post-mortem cylindrical brain holder. The brain holder used for scanning large nonhuman 
brains which fit inside the 28 channel QED knee coil. This consisted of a cylindrical container, with plastic gauze 
(black) used to secure samples during the acquisition.

https://doi.org/10.7554/eLife.73153
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Appendix 4
Example structural MRI dataset

Appendix 4—figure 1. Structural MRI. Example structural MRI dataset acquired using a bSSFP sequence in the 
European wolf (Canis lupus) at a resolution of 220 μm (isotropic). bSSFP Structural MRI datasets display excellent 
gray-white matter contrast, facilitating the delineation of fine tissue structures and integration with processing 
pipelines for surface reconstruction. Contrast in bSSFP datasets is reversed compared to conventional T1-weighted 
structural MRI scans (gray matter appears bright, and white matter appears dark), which must be accounted for in 
any analysis pipeline.

https://doi.org/10.7554/eLife.73153
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