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Abstract Although alternative splicing is a fundamental and pervasive aspect of gene expression 
in higher eukaryotes, it is often omitted from single- cell studies due to quantification challenges 
inherent to commonly used short- read sequencing technologies. Here, we undertake the analysis 
of alternative splicing across numerous diverse murine cell types from two large- scale single- cell 
datasets—the Tabula Muris and BRAIN Initiative Cell Census Network—while accounting for under-
studied technical artifacts and unannotated events. We find strong and general cell- type- specific 
alternative splicing, complementary to total gene expression but of similar discriminatory value, and 
identify a large volume of novel splicing events. We specifically highlight splicing variation across 
different cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial 
cells, and we show that the implicated transcripts include many genes which do not display total 
expression differences. To elucidate the regulation of alternative splicing, we build a custom predic-
tive model based on splicing factor activity, recovering several known interactions while generating 
new hypotheses, including potential regulatory roles for novel alternative splicing events in critical 
genes like Khdrbs3 and Rbfox1. We make our results available using public interactive browsers to 
spur further exploration by the community.

Editor's evaluation
This paper presents a new method to study known and novel alternative splicing events at the 
single- cell level and perform differential analysis across cell types. The method addresses current 
challenges in the analysis of splicing in single cells related to technical variation and experimental 
biases. Performing one of the most comprehensive studies to date with data from different mice, 
this work expands the body of splicing events that potentially define individual cell types.

Introduction
The past decade’s advances in single- cell genomics have enabled the data- driven characterization 
of a wide variety of distinct cell populations. Despite affecting more than 90% of human pre- mRNAs 
(Wang et al., 2008), isoform- level variation in gene expression has often been ignored because of 
quantification difficulties when using data from popular short- read sequencing technologies such as 
10x Genomics Chromium and Smart- seq2 (Picelli et al., 2014). Long- read single- cell technologies, 
which greatly simplify isoform quantification, are improving (Byrne et al., 2017; Gupta et al., 2018; 
Volden and Vollmers, 2020; Lebrigand et al., 2020; Joglekar et al., 2021), but remain more costly 
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and lower- throughput than their short- read counterparts. For these reasons and others, short- read 
datasets predominate and we must work with short reads to make use of the rich compendium of 
available data. In response, researchers have developed several computational methods to investi-
gate splicing variation despite the sizable technical challenges inherent to this regime. A selection of 
these challenges and methods are summarized in the Appendix.

To complement single- cell gene expression atlases, we analyze alternative splicing in large single- 
cell RNA- seq (scRNA- seq) datasets from the Tabula Muris consortium (Schaum et  al., 2018) and 
BRAIN Initiative Cell Census Network (BICCN) (Yao et al., 2021). These data span a broad range of 
mouse tissues and cell types, and remain largely unexplored at the level of transcript variation. During 
our initial analyses, we encountered pervasive coverage biases, a heretofore largely unappreciated 
mode of technical variation which greatly confounds biological variation across cell types. Unsatisfied 
with the performance of current methods when confronted by these biases, we implemented our own 
quantification, visualization, and testing pipeline, named scQuint (single- cell quantification of introns), 
which allowed us to continue our analyses in a robust, annotation- free, and computationally trac-
table manner. Parts of the scQuint pipeline are based on adaptations of the bulk RNA- seq alternative 
splicing analysis method LeafCutter (Li et al., 2018) to handle the unique challenges of scRNA- seq 
data. As we demonstrate in subsequent sections, our modifications in the quantification, statistical 
modeling, and optimization procedures lead to improved robustness, scalability, and calibration when 
working with data from single cells (Figure 2—figure supplement 2, also see Materials and methods).

Applying scQuint to these datasets, we find a strong signal of cell- type- specific alternative splicing 
and demonstrate that cell type can be accurately predicted given only splicing proportions. More-
over, our annotation- free approach enables us to detect a large quantity of cell- type- specific novel 
splicing events. In certain cell types, particularly the neuron subclasses, as many as 30% of differential 
splicing events that we detect are novel. In general, across the many considered cell types and tissues 
in both datasets, we find only a narrow overlap between the top differentially expressed and the 
top differentially spliced genes within a given cell type, illustrating the complementarity of splicing 

eLife digest Cells are the basic building blocks of all living things. There are numerous types of 
cells, and each cell has its own machinery to fulfill a specialised role. Despite their different purposes, 
most cells contain the same instructions, stored as DNA, on how to assemble the proteins needed 
to perform their intended functions. Cell types often vary in the frequency that each gene is read, 
leading to different quantities of proteins produced.

Moreover, a process known as alternative splicing enables cells to build multiple proteins from the 
same gene. It works by joining fragments of a gene’s code in various combinations. The resulting RNA 
sequences are molecular templates that cells use to assemble proteins.

Analysing these RNA sequences reveals which genes are switched on in different tissues of the 
body, and what proteins are being made. However, despite recent advancements, alternative splicing 
is rarely studied in single cells because of some sizeable technical challenges.

Benegas, Fischer and Song developed a computational toolkit designed to handle the unique chal-
lenges of analysing alternative splicing events in single cells. The analysis pipeline, called scQuint, was 
tested on two large datasets that capture cell- to- cell differences in the brain and other tissues of mice.

Nearly all the cell types studied exhibited clear differences in alternative splicing, such that cell 
types could be distinguished based on their splicing profiles. Intriguing patterns of splicing were 
highlighted in some immune cells and certain types of neurons. Across cell types, the genes with 
unique splicing patterns were often not the same as those with unique activity patterns, indicating 
that gene expression and alternative splicing are two complementary processes. New types of alter-
native splicing events were also identified. Benegas et al. also developed a statistical model to probe 
the roles of splicing regulators in different cell types.

In summary, the scQuint toolkit overcomes critical technical challenges typically encountered when 
analysing alternative splicing in single cells. It also reveals new insights about mechanisms of alter-
native splicing. The results are open access, made available using public interactive browsers, which 
should spur on other researchers to interrogate how alternative splicing differs in single cells.

https://doi.org/10.7554/eLife.73520
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to expression. Our examination of neurons in 
the primary motor cortex suggests that splicing 
distinguishes neuron classes and subclasses as 
readily as does expression. We showcase alterna-
tive splicing patterns specific to the GABAergic 
(inhibitory) and Glutamatergic (excitatory) neuron 
classes as well as the subclasses therein. The impli-
cated transcripts include key synaptic molecules 
and genes which do not display expression differ-
ences across subclasses. In developing marrow B 
cells, we find alternative splicing and novel tran-
scription start sites (TSS) in critical transcription 
factors such as Smarca4 and Foxp1, while further 
investigation reveals dissimilar trajectories for 
expression and alternative splicing in numerous 
genes across B cell developmental stages. These 
findings buttress our belief in the complementary 
nature of these processes and provide clues to 
the regulatory architecture controlling the early 
B cell life cycle. To facilitate easy exploration of 
these datasets and our results, we make available 
several interactive browsers as a resource for the 
genomics community.

Finally, to advance our understanding of 
alternative splicing regulation, we build a statis-
tical machine learning model to predict splicing 
events by leveraging both the expression levels 
and splicing patterns of splicing factors across cell 
types. This model recovers several known regula-
tory interactions such as the repression of splice 
site four exons in neurexins by Khdrbs3, while 
generating new hypotheses for experimental 
follow- up. For example, in addition to the regu-
latory effect of the whole- gene Khdrbs3 expres-
sion, the model predicts a regulatory role for a 
novel alternative TSS in this gene. In aggregate, 
our results imply that alternative splicing serves as 
a complementary rather than redundant compo-
nent of transcriptional regulation and supports 
the mining of large- scale single- cell transcrip-
tomic data via careful modeling to generate 
hypothetical regulatory roles for splicing events.

Results
Methods overview
Robust, annotation-free quantifica-
tion based on alternative introns
Most methods rely on the assumption that 
coverage depth across a transcript is essentially 
uniform (e.g., Akr1r1, Figure  1—figure supple-
ment 1a). We instead found that Smart- seq2 data 
(Picelli et  al., 2014) frequently contain sizable 
fractions of genes with coverage that decays with increasing distance from the 3’ ends of transcripts. 
For example, in mammary gland basal cells from the Tabula Muris dataset (Schaum et al., 2018), 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1. Clustering patterns by cell type and plate 
in the mammary gland from a three month- old female 
mouse in Tabula Muris. Cell embeddings based on 
different features were obtained by running PCA (gene 
expression) or VAE (the rest) followed by UMAP and 
subsequently colored by cell type (left column) and 
the plate in which they were processed (right column). 
(a) Gene expression, quantified using featureCounts 
(log- transformed normalized counts). (b) Isoform 
proportions. Isoform expression was estimated with 
kallisto and divided by the total expression of the 
corresponding gene to obtain isoform proportions. 
(c) Coverage proportions of 100 base- pair bins along 
the gene, as proposed by ODEGR- NMF. (d) Exon 
proportions, as proposed by DEXSeq. (e) Intron 
proportions across the whole gene, as proposed by 
DESJ. (f) Alternative intron proportions quantified by 
LeafCutter. (g) Alternative intron proportions (for introns 
sharing a 3’ acceptor site) as quantified by scQuint.

The online version of this article includes the following 
figure supplement(s) for figure 1:

Figure supplement 1. Coverage artifacts in mammary 
gland basal cells from Tabula Muris.

Figure supplement 2. Technical artifacts in BICCN 
Cortex.

https://doi.org/10.7554/eLife.73520
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Ctnbb1 shows a gradual drop in coverage (Figure 1—figure supplement 1b) while Pdpn displays an 
abrupt reduction halfway through the 3’ UTR (Figure 1—figure supplement 1c). That the magnitude 
of these effects varies across technical replicates (plates) suggests they could be artifacts, possibly 
related to degradation or interrupted reverse transcription. Similar coverage bias artifacts are also 
apparent in the BICCN primary motor cortex data (Yao et al., 2021; Figure 1—figure supplement 2).

Such coverage biases affect gene expression quantification, and in some cases these batch effects 
are sufficient to comprise a significant proportion of the observed variation in expression levels. For 
the Tabula Muris mammary gland dataset, a low- dimensional embedding of cells based on gene 
expression reveals that some cell type clusters exhibit internal stratification by plate (Figure 1a). A 
subsequent test of differential gene expression between plate B002438 and all other plates returns 
2870 significant hits after correction for multiple hypothesis testing, and all manually inspected differ-
entially expressed genes exhibit these types of coverage biases. Perhaps unsurprisingly, quantification 
at the transcript level is apt to be even more sensitive to these artifacts than gene- level quantification, 
especially if it is based on coverage differences across the whole length of the transcript. The UMAP 
embeddings of isoform proportions (kallisto by Bray et  al., 2016), exon proportions (DEXSeq by 
Anders et al., 2012), 100 bp bin coverage proportions (ODEGR- NMF by Matsumoto et al., 2020) or 
junction usage proportions across the whole gene (DESJ by Liu et al., 2021) depict a plate clustering 
pattern which scrambles the anticipated cell type clusters (Figure 1b–e).

With these considerations in mind, we sought to quantify transcript variation in a fashion that would 
be more robust to coverage differences along the transcript. Although some bulk RNA- seq methods 
such as RSEM (Li and Dewey, 2011) can model positional bias, they do so globally rather than in the 
gene- specific manner we encounter. One potential approach is alternative intron quantification as 
performed by bulk RNA- seq methods MAJIQ (Vaquero- Garcia et al., 2016), JUM (Wang and Rio, 
2018), and LeafCutter (Li et al., 2018). Promisingly, quantification via LeafCutter (Figure 1f) yields 
an embedding that displays less clustering by plate than the other approaches we tried. We there-
fore based scQuint’s quantification approach on LeafCutter’s, with the key difference of restricting to 
alternative introns which share a common 3’ acceptor site (Figure 2). This results in alternative splicing 
events that are equidistant from the 3’ end of transcripts and which are less affected by the coverage 
biases we observed in scRNA- seq data. The embedding of cells based on our quantification approach 
(Figure 1g) shows less clustering by plate than LeafCutter and other methods.

Another advantage of alternative intron quantification is the ability to easily discover novel alter-
native splicing events. Whereas short reads generally cannot be associated with specific transcript 
isoforms, nor even exons if they partially overlap, split reads uniquely associate with a particular intron. 
Consequently, intron- based quantification does not depend on annotated transcriptome references 
and permits the discovery of novel alternative splicing events. This is important since, as detailed later, 
we estimate up to 30% of cell- type- specific differential splicing events are novel. Other annotation- 
free methods have been applied to single- cell short- read full- length data, but they do not provide a 
statistical test for differential splicing between two groups of cells (Appendix 1—table 1).

We do not recommend using scQuint to analyze alternative splicing in 10x Genomics Chromium 
data given its strong 3’ transcript bias and evidence suggesting that these data can detect about half 
the number of junctions detected by Smart- seq2 (Wang et al., 2021). This imposes a fundamental 
limit on the number of transcripts that can be distinguished, and we expect alternative intron quan-
tification to be sub- optimal in this setting. Nonetheless, several approaches for differential transcript 
usage in 10x data have been developed: Sierra (Patrick et al., 2020), SpliZ (Olivieri et al., 2020), and 
a kallisto- based approach which could be adapted for this task (Ntranos et al., 2019).

Dimensionality reduction with Variational Autoencoder
To perform dimensionality reduction using splicing profiles, we developed a novel Variational Autoen-
coder (VAE) (Kingma and Welling, 2014) with a Dirichlet- Multinomial noise model, a natural distribu-
tion for sparse, overdispersed count data (Figure 2b, Materials and methods). For example, the often 
encountered ‘binary’ splicing (Buen Abad Najar et al., 2020) can be modeled by fitting a concen-
tration parameter close to zero. VAEs are flexible and scalable generative models which have been 
successfully applied to analyze gene expression (Lopez et al., 2020) but have not yet been employed 
to investigate alternative splicing. To verify that we prevent leakage of gene expression information 
into our splicing profiles, we applied our VAE to embed a shuffled dataset obtained by resampling 

https://doi.org/10.7554/eLife.73520
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b. Dimensionality reduction c. Hypothesis testing
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Figure 2. Overview of scQuint. (a) Intron usage is quantified from split reads in each cell, with introns sharing 3’ splice sites forming alternative intron 
groups. (b) Genome- wide intron usage is mapped into a low dimensional latent space using a Dirichlet- Multinomial VAE. Visualization of the latent 
space is done via UMAP. (c) A Dirichlet- Multinomial GLM tests for differential splicing across conditions such as predefined cell types or clusters 
identified from the splicing latent space.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Splicing latent space when alternative intron counts are shuffled.

Figure supplement 2. Comparison with LeafCutter.

https://doi.org/10.7554/eLife.73520
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alternative intron counts with a fixed proportion in all cells. This shuffled dataset contained expression 
variability between cells but no splicing differences, and, as hoped, the resulting splicing latent space 
did not distinguish among cell types, indicating that it captures differences in splicing proportions 
rather than changes in absolute gene expression (Figure 2—figure supplement 1). We compared the 
latent space obtained with the VAE to the one obtained using Principal Component Analysis (PCA), 
a standard dimensionality reduction technique used in the LeafCutter and BRIE2 software packages. 
The VAE better distinguishes cell types than PCA (Figure 3), especially in the mammary gland and 
diaphragm.

Differential splicing hypothesis testing with Generalized Linear Model
To test for differential splicing across cell types or conditions, we adopt a Dirichlet- Multinomial Gener-
alized Linear Model (GLM) coupled with a likelihood- ratio test (Figure 2c, Materials and methods). We 
do so by adapting one of LeafCutter’s proposed models for bulk RNA- seq to the scRNA- seq setting 
and apply it to our Smart- seq2 intron quantification. Namely, due to the sparse nature of scRNA- seq 
splicing data, we implement a more parsimonious statistical model featuring gene- level rather than 
intron- level parameters. Furthermore, we adjust the model- fitting algorithm at the initialization and 
optimization stages (see Materials and methods). After our modifications, we obtain well- calibrated 
p- values whereas those from LeafCutter’s original differential splicing model are anti- conservative 

(a) BICCN primary motor cortex

(b) Tabula Muris mammary gland

(c) Tabula Muris diaphragm

Figure 3. Comparison of splicing latent spaces obtained with PCA and VAE. Cells from (a) the cortex, (b) mammary gland and (c) diaphragm are 
projected into a latent space using PCA or VAE and visualized using UMAP. Cell type labels are obtained from the original data sources and are based 
on clustering in the expression latent space. The VAE is able to better distinguish cell types in the splicing latent space than PCA.

https://doi.org/10.7554/eLife.73520
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(Figure 2—figure supplement 2) and perhaps prone to extra false positives if applied directly to 
scRNA- seq data. We also find improvements in computational cost, both in runtime and memory 
usage (Figure 2—figure supplement 2).

As described in Materials and methods, we generated synthetic data in order to benchmark scQuint 
against three other methods that also offer two- sample tests for differential transcript usage propor-
tions: BRIE2 and DTUrtle, both designed for scRNA- seq, and LeafCutter, designed for bulk RNA- seq 
(Figure 4). While the choice of an appropriate simulation model for scRNA- seq data is very much 
an open area of debate, particularly at the transcript level, we attempted to recreate a challenging 
setting for inference by assuming low coverage (1–2X) and high overdispersion (variance- to- mean 
ratio of 8). We performed three in silico experiments to assess performance under the differing condi-
tions of even transcript coverage, unannotated events, and coverage decay across the transcript. In 
the case of even coverage, scQuint, LeafCutter, and BRIE2 perform similarly and do a good job of 
correctly identifying events, while DTUrtle is slightly behind. scQuint does only slightly worse with low 
cell counts and low coverage, which is probably a trade- off for the robustness that comes from only 
using reads from junctions sharing 3’ acceptor sites. Next, we recreated the unannotated setting by 
masking the reference given to methods. Only scQuint and LeafCutter are able to perform differential 
transcript usage testing in this setting, and, as expected, they performed nearly identically to the 
annotated setting with even coverage. Lastly, we created a setting where transcript coverage decays 
with distance from the 3’ in one of the two groups, mirroring a pattern we often saw in the real data 
analyzed for this paper. Here, scQuint outperforms the other tested methods by a wide margin with 
performance improving at higher coverages, unlike other methods. These results validate that scQuint 
is robust to both incomplete annotations and coverage decay while only paying a modest penalty 
relative to other methods under ideal conditions (even coverage and annotated events).

Figure 4. Evaluation of differential splicing test on simulated data. ROC AUC for detecting differential transcript usage between two groups, based on 
the p- value produced by different methods. Unannotated: the transcript reference given to methods is masked. Coverage decay: coverage decay with 
distance to the 3’ end of the transcript is induced in one of the two groups.

https://doi.org/10.7554/eLife.73520
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Augmenting cell atlases with splicing information
We applied scQuint to two of the largest available Smart- seq2 datasets. The first comprehensively 
surveys the mouse primary motor cortex (BICCN Cortex) (Yao et al., 2021) while the second contains 
over 100 cell types distributed across 20 mouse organs (Tabula Muris) (Schaum et al., 2018; Table 1). 
We detect more alternative introns in BICCN Cortex neurons than in the entire broad range of cell 
types present in Tabula Muris (which includes neurons but in much smaller number). This observation 
comports with previous findings that the mammalian brain has exceptionally high levels of alternative 
splicing (Yeo et al., 2004). Booeshaghi et al., 2021 analyzed BICCN Cortex at the transcript level, but 
focused on changes in absolute transcript expression rather than proportions. While the authors indi-
rectly find some differences in transcript proportions by inspecting genes with no differential expres-
sion, this is not a systematic analysis of differential transcript usage. Meanwhile, only microglial cells in 
Tabula Muris (Nip et al., 2020) have been analyzed at the transcript level. (Tabula Muris also contains 
10x Chromium data analyzed at the transcript level [Patrick et al., 2020]).

As a community resource, we provide complementary ways to interactively explore splicing 
patterns present in these datasets (Figure 5), available at (https://github.com/songlab-cal/scquint- 
analysis, Benegas, 2021a) with an accompanying tutorial video. The UCSC Genome Browser (Kent 
et al., 2002) permits exploration of alternative splicing events within genomic contexts such as amino 
acid sequence, conservation score, or protein binding sites, while allowing users to select different 
length scales for examination. We additionally leverage the cell×gene browser (Megill et al., 2021) 
(designed for gene expression analysis) to visualize alternative intron PSI (percent spliced- in, defined 
as the proportion of reads supporting an intron relative to the total in the intron group) via cell embed-
dings. Further, one can generate histograms to compare across different groups defined by cell type, 
gender, or even manually selected groups of cells. These tools remain under active development by 
the community, and we hope that both the genome- and cell- centric views will soon be integrated 
into one browser.

Cell-type-specific splicing signal is strong and complementary to gene 
expression
Primary motor cortex
We first explored the splicing latent space of BICCN Cortex cells by comparing it to the usual expres-
sion latent space (Figure 6a). Cells in the splicing latent space strongly cluster by cell type (annotated 
by Yao et al., 2021 based on gene expression). A similar analysis was recently performed (Feng et al., 
2021) on a different cortex subregion in which most, but not all, neuron subclasses could be distin-
guished based on splicing profiles (e.g., L6 CT and L6b could not be separated). However, the authors 
only considered annotated skipped exons, a subset of the events we quantify, and used a different 
dimensionality reduction technique.

Figure  6b (top left) highlights some differentially spliced genes between Glutamatergic and 
GABAergic neurons, including the glutamate metabotropic receptor Grm5 as well as Shisa9/
Ckamp44, which associates with AMPA ionotropic glutamate receptors (von Engelhardt et al., 2010). 
The expression pattern of these genes, meanwhile, does not readily distinguish the neuron classes 
(Figure 6b, top right). In Pgm2, a gene of the glycolysis pathway thought to be regulated in the 

Table 1. Overview of analyzed datasets.
Number of cells, tissues, cell types, individuals, detected genes, and detected alternative introns 
(including the percentage of introns that are not present in the Ensembl reference) for both data 
sources.

Dataset Cells Tissues Cell types Individuals Genes Alt. introns Unannotated

BICCN Cortex 6220 1 11 45 26,488 39,357 29%

Tabula Muris 44,518 23 117 8 27,348 29,965 25%

The online version of this article includes the following source data for table 1:

Source data 1. Number of cells per cell type and donor in BICCN Cortex.

Source data 2. Number of cells per tissue and donor in Tabula Muris.

https://doi.org/10.7554/eLife.73520
https://github.com/songlab-cal/scquint-analysis
https://github.com/songlab-cal/scquint-analysis
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developing cortex by mTOR (Schüle et al., 2021), we discover a novel exon preferentially included in 
Glutamatergic neurons (Figure 6c, Figure 6—figure supplement 2).

Our differential splicing test reveals thousands of cell- type- specific splicing events (further discussed 
below in subsection Comparison of selected tissues), highlighting marker introns that distinguish 
neuron subclasses, while the expression of their respective genes does not; for example, compare 
the bottom left and bottom right panels of Figure 6b. Genes that better distinguish cell types at the 
expression level can be seen in Figure 6—figure supplement 1. As another example of the many 

 a.  Genome-centric view

b.  Cell-centric view

Skipped
exon

Intron proportion = exon inclusion level

Intron proportion histogram
for different cell types

Aggregate read
coverage

Intron proportion for each cell Global intron proportion
histogram

Myl6

Annotated isoforms

Figure 5. Interactive visualizations of splicing patterns. As an example, a skipped exon in Myl6. (a) The UCSC 
Genome browser visualization of this locus. Bottom: annotated isoforms of Myl6, including a skipped exon. Center: 
aggregate read coverage in three cell types with varying inclusion levels of the skipped exon. Top: three alternative 
introns that share a 3’ acceptor site. The identified intron’s proportion corresponds to the skipped exon’s inclusion 
level. (b) cell×gene browser visualization of the marked intron’s proportions (Myl6_chr10:128491034–128491720). 
Center: intron proportion for each cell in the UMAP expression embedding. Sides: intron proportion histogram for 
(left) different cell types and (right) all cells.

https://doi.org/10.7554/eLife.73520
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Figure 6. Splicing patterns in BICCN Cortex. (a) Expression and splicing latent spaces, visualized using UMAP. The expression (splicing) latent space is 
defined by running PCA (VAE) on the gene expression (alternative intron proportion, PSI) matrix. Cell types separate well in both latent spaces. (b) PSI 
of selected introns (left) and expression (log- transformed normalized counts) of their respective genes (right) averaged across cell types. Top: introns 
distinguishing Glutamatergic and GABAergic neuron classes. Bottom: introns distinguishing neuron subclasses. (c–e) Sashimi plots (Garrido- Martín 

Figure 6 continued on next page
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novel events we discover, we showcase a novel alternative transcription start site in Rbfox1, a splicing 
factor known to regulate cell- type- specific alternative splicing in the brain (Wamsley et al., 2018; 
Figure 6d, Figure 6—figure supplement 3). This novel TSS (exon chr16:5763871–5763913, intron 
Rbfox1_26172), which lies in a highly- conserved region, is (partially) used by only L6b neurons. We 
are also able to detect well- known cell- type- specific alternatively spliced genes such as Nrxn1, which 
encodes a key pre- synaptic molecule (Figure 6e, Figure 6—figure supplement 4; Fuccillo et al., 
2015). In this case, we observe an exon (known as splice site 2) exclusively skipped in Vip and Lamp5 
neurons.

General patterns in Tabula Muris
We next turned our attention to Tabula Muris, which comprises a wide variety of organs and cell types 
from across the entire body. As before, we initially compared the expression and splicing latent spaces 
using UMAP (Figure 7a). This revealed broadly consistent clusters between projections, but a visible 
shift in the global layout of these clusters. In particular, whereas cell types were better separated in 
the expression projection, cell classes (e.g., endothelial, epithelial, immune) formed more coherent 
clusters in the splicing projection.

To supplement our qualitative comparison of UMAP projections with a more rigorous approach, 
we built dendrograms and a tanglegram using the respective distances between cells in each of the 
expression and splicing latent spaces (Figure 7b). Despite minor shifts, the dendrograms resemble 
one another, and most subtree structure is preserved. The low value of their entanglement, a quanti-
tative measure of the discrepancy between hierarchical clusterings, at only 6% indicates a high degree 
of similarity. (For comparison, the entanglement value between the dendrogram for all expressed 
genes and that for transcript factors is 11% [Schaum et al., 2018]). As in the UMAP visualization, 
immune cells group together more closely in the splicing dendrogram. However, unlike the UMAP 
projection, we observe that several types of pancreatic cells cluster together with neurons, a cell type 
long believed to share an evolutionary origin (Le Roith et al., 1982). Notably, the left dendrogram in 
Figure 7b shows that hepatocytes are clear outliers in the expression latent space. We suspect this 
may be due to technical differences from using 96- well plates rather than the 384- well plates used for 
other cell types.

B cell development in the marrow
We then focused on developing B cells from the bone marrow in Tabula Muris. In the splicing latent 
space, we found that immature B cells are harder to distinguish from the other B cell subpopulations 
(Figure  8a), reflecting less refined splicing programs or limitations in transcript capture efficiency. 
Immature B cells have also fewer differential splicing events when compared to the other stages of 
B cell development (Figure 8b). The top differential splicing events we identified throughout devel-
opment displayed splicing trajectories mostly independent from the trajectories of gene expression 
(Figure 8c). We highlight alternative TSSs (one of them novel) in two transcription factors essential 
for B cell development: Smarca4, encoding BRG1 (Bossen et al., 2015; Figure 8d, Figure 8—figure 
supplement 1); and Foxp1 (Hu et  al., 2006; Figure  8e, Figure  8—figure supplement 2). While 
Foxp1 expression peaks in pre- B cells and does not follow a monotonic trend over developmental 
stages, the alternative TSS is progressively included throughout B cell development. Combining 
gene- level expression with TSS usage, which can influence translation rate, provides a more nuanced 

et al., 2018) of specific alternative splicing events, displaying overall read coverage with arcs indicating usage of different introns (certain introns are 
shrunk for better visualization). (c) Novel skipped exon in Pgm2. (d) Novel alternative transcription start site (TSS) in Rbfox1. (e) Annotated skipped exon 
(SE) in Nrxn1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Intron coordinates for panel (b).

Figure supplement 1. Marker genes for cell types in BICCN Cortex.

Figure supplement 2. PSI distribution of Pgm2_32951.

Figure supplement 3. PSI distribution of Rbfox1_26172.

Figure supplement 4. PSI distribution of Nrxn1_8067.

Figure 6 continued
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a

b

Expression latent space Splicing latent space

Figure 7. Global analysis of Tabula Muris. (a) UMAP visualization of the expression (left) and splicing (right) latent spaces. Each dot is a cell, colored 
by organ, and overlays indicate the primary cell type comprising that cluster. (b) Tanglegram comparing dendrograms of major cell types based on 
distances in the expression (left) and splicing (right) latent spaces, highlighting functional classes with specific colors.

https://doi.org/10.7554/eLife.73520
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Figure 8. Splicing in developing marrow B cells from Tabula Muris. B cell developmental stages include pro- B, pre- B, immature B, and naive B. 
(a) Expression versus splicing latent space, as defined previously. In the splicing latent space, some cells types (pro- B) are better distinguished than 
others (immature B). (b) Number of differential splicing events when comparing a B cell stage vs. the rest. (c) PSI of some introns that are differentially 
spliced throughout development, together with expression of the respective genes (log- transformed normalized counts). Expression and splicing 

Figure 8 continued on next page
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characterization of the expression patterns of these important transcription factors. Some other differ-
entially spliced genes with well- known roles in B cell development are Syk (Cornall et  al., 2000), 
Dock10 (García- Serna et  al., 2016), Selplg/Psgl- 1 (González- Tajuelo et  al., 2020), and Rps6ka1 
(Stein et al., 2017).

Epithelial and endothelial cell types across organs
Having compared different cell types within organs, we analyzed putatively similar cell types which 
are present in multiple organs to investigate splicing variation associated with tissue environment 
and function. We find many alternative introns with strong PSI differences across epithelial cell types, 
including several which are novel (Figure 9a). Conversely, apart from those in the brain, endothelial 
cell types fail to display such striking differences (Figure 9b). These patterns are consistent with the 
UMAP projection and dendrogram, both of which suggested less heterogeneity among endothelial 
than epithelial cells (Figure 7).

Our analysis revealed a novel alternative TSS in Itpr1 (Figure 9c, Figure 9—figure supplement 
2), an intracellular calcium channel in the endoplasmic reticulum, which regulates secretory activity in 
epithelial cells of the gastrointestinal tract (Lemos et al., 2020). This novel TSS yields a shorter protein 
isoform (full view in Figure 9—figure supplement 1) which preserves the transmembrane domain, 
though it is unclear whether this isoform is functional. Notably, it is the predominant isoform in large 
intestine secretory cells, and these cells express Itpr1 at the highest level among all epithelial cell 
types in the dataset. All nine novel alternative splicing events in Figure 9a are alternative TSSs, with 
four affecting the 5’ UTR and five affecting the coding sequence.

Figure 9d (PSI distribution in Figure 9—figure supplement 3) illustrates a complex alternative 
splicing event in Khk involving the well- studied exons 3a and 3c (Hayward and Bonthron, 1998). 
Khk catalyzes the conversion of fructose into fructose- 1- phosphate, and the two protein isoforms 
corresponding to either exon 3a or 3c inclusion differ in their thermostability and substrate affinity 
(Asipu et al., 2003). While the literature describes these exons as mutually exclusive, the transcrip-
tome reference includes transcripts where neither or both may be included. Although we did not find 
cell types with high inclusion rates for both exons, we did see multiple cell types where both exons 
are predominantly excluded, for example, epithelial cells from the large intestine. Other differentially 
spliced genes are involved in cellular junctions, which are particularly important in epithelial tissue. 
These include Gsn, Eps8, Tln2, Fermt3, and Mapre2.

Comparison of selected tissues
Because of the breadth of the Tabula Muris dataset, we can look for general trends across a diverse 
array of tissues and cell types. Table 2 summarizes differential expression and splicing for some of the 
cell types and tissues with the largest sample sizes. First, we note the intersection between the top 
100 most differentially expressed and top 100 most differentially spliced genes (ranked by p- value) is 
consistently low. This means that most differentially spliced genes, which might be of critical impor-
tance in a biological system, will go unnoticed if a study only considers differential expression. Second, 
L5 IT neurons have a larger fraction of genes with differential splicing relative to the number of differ-
entially expressed genes.

We found many more cell- type- specific differential splicing events in the cortex than in the marrow, 
as expected (Yeo et al., 2004), as well as a higher proportion of events involving novel junctions, 
which can reach 30% (Figure 10a). Differences in proportion of novel junctions should be interpreted 
with care, however, since they can be affected by sequencing depth and number of cells, both of 

can have very different trajectories. (d) Sashimi plot of novel alternative transcription start site (TSS) in Smarca4. The novel TSS has maximum usage in 
pre- B cells, and then decays, while the expression peaks at pro- B cells. (e) Sashimi plot of an annotated alternative TSS in Foxp1. The proximal TSS in 
increasingly used as development progresses, while the expression peaks at pre- B cells.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Intron coordinates for panel (c).

Figure supplement 1. PSI distribution of Smarca4_28720.

Figure supplement 2. PSI distribution of Foxp1_11076.

Figure 8 continued

https://doi.org/10.7554/eLife.73520


 Research article      Chromosomes and Gene Expression | Computational and Systems Biology

Benegas et al. eLife 2022;11:e73520. DOI: https:// doi. org/ 10. 7554/ eLife. 73520  15 of 30

a b

Khk

5'

Itpr1

3'

5' 3'

c d

Novel TSS
Exon
52/62

Exon
53/62

Figure 9. Alternative splicing patterns across epithelial and endothelial cell types. (a–b) PSI of selected introns (left) and expression (log- transformed 
normalized counts) of the corresponding genes (right) averaged across cell types. Novel intron groups are marked with (*). (a) Introns distinguishing 
epithelial cell types. (b) Introns distinguishing endothelial cell types. (c) Sashimi plot of an alternative TSS in Itpr1. (d) Sashimi plot of a complex 
alternative splicing event in Khk.

Figure 9 continued on next page
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which vary between the two tissues. Very similar patterns are seen when grouping differential splicing 
events that occur in the same gene (Figure 10b). Most differential splicing events that we detected 
with alternative introns fall in the coding portion of the gene, with high proportions in the 5’ UTR 
(Figure 10c). This is a property of our quantification approach and does not reflect the total number 
of alternative splicing events in different gene regions; still, the relative proportion can be compared 
across tissues. We find an increased proportion of differentially spliced non- coding RNA in the cortex, 
the majority of which are previously unannotated events. To systematically evaluate how well cell 
types can be distinguished in the expression and splicing latent spaces, we calculated the ROC AUC 
score for the one- versus- all classification task for each cell type in each tissue using a binary logistic 
regression model (Figure 10d). Since cell type labels were defined using gene expression values, 
near- perfect classification is to be expected using the expression latent space. Classification based 
only on the splicing latent space is very good in general, suggesting that cell- type- specific differential 
splicing is rather pervasive. A few cell types were more challenging to classify correctly using splicing 
patterns alone. One such example is immature B cells, a reflection of the lower degree of separation 
observed in the embedding of Figure 8a.

Finding splicing factors associated with specific alternative splicing 
events
Several splicing factors have been identified as regulators of specific alternative splicing events, but 
most regulatory interactions remain unknown (see Vuong et al., 2016 for a review focused on the 
brain). To complement expensive and laborious knockout experiments, we sought to generate regula-
tory hypotheses by analyzing the correlation between splicing outcomes and splicing factor variation 
across cell types. Focusing on a subset of highly expressed genes in BICCN primary motor cortex 
neurons, we fit a sparse linear model regressing PSI of skipped exons on both expression and splicing 

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Intron coordinates for panel (a).

Source data 2. Intron coordinates for panel (b).

Figure supplement 1. Full- gene view of novel alternative TSS in Itpr1.

Figure supplement 2. PSI distribution of Itpr1_26257.

Figure supplement 3. PSI distribution of Khk_24896.

Figure 9 continued

Table 2. Summary of differential expression and splicing for select cell types with the largest sample 
sizes.
The overlap between the top 100 differentially expressed genes and the top 100 differentially 
spliced genes is low, indicating that splicing provides complementary information. In addition, L5 
IT neurons have a higher ratio of differentially spliced genes to differentially expressed genes than 
the other cell types. Diff. spl. genes: number of differentially spliced genes between the cell type 
and other cell types in the same tissue. Diff. exp. genes: number of differentially expressed genes 
between the cell type and other cell types in the same tissue. See Materials and methods for details 
on the tests for differential splicing and expression.

Tissue Total # cells # cell types Cell type # cells Diff. spl. genes Diff. exp. genes Ratio Top- 100 overlap

Brain 
Non- 
Myeloid 3049 6 Oligodendrocyte 1390 880 8835 0.10 4

Cortex 6220 10 L5 IT 1571 1447 6402 0.23 2

Heart 4144 6
Endothelial cell of 
coronary artery 1126 465 7108 0.07 5

Large 
Intestine 3729 5

Enterocyte of 
epithelium 1112 586 10,786 0.05 2

Marrow 4783 10
Hematopoietic 
stem cell 1363 692 9909 0.07 2

https://doi.org/10.7554/eLife.73520
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Figure 10. Patterns across tissues. (a) Number of differential splicing events detected in each cell type. Cortex 
cell types have more differential splicing events and larger proportions of novel events (those involving an intron 
absent from the reference). (b) Number of genes with a detected differential splicing event, for different cell types. 
(c) Number of differential splicing events in different gene regions aggregated over cell types (duplicate events 

Figure 10 continued on next page
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patterns of splicing factors (Figure 11a and Figure 11—figure supplement 1). Our model recovers 
several known regulatory interactions such as Khdrbs3/Slm2/T- Star’s repression of splice site 4 (SS4) in 
neurexins, modulating their binding with post- synaptic partners (Traunmüller et al., 2016). Addition-
ally, the proportion of a novel alternative TSS (though annotated in the human reference) in Khdrbs3 
(Figure 11b, Figure 11—figure supplement 2) is negatively associated with SS4 in Nrxn1 and Nrxn3. 
This novel isoform lacks the first 30 amino acids of the Qua1 homodimerization domain and could 
affect dimerization, which modulates RNA affinity (Feracci et al., 2016). The model also recovers the 
known regulation of a skipped exon in Camta1, a transcription factor required for long- term memory 
(Bas- Orth et al., 2016), by Rbfox1 (Pedrotti et al., 2015). The skipping of exon 5 (E5) of Grin1, which 
controls long- term synaptic potentiation and learning (Sengar et al., 2019), is known to be regulated 
by Mbnl2 and Rbfox1 (Vuong et al., 2016). The model associates Grin1 E5 PSI with the expression 
of Rbfox1 but not Mbnl2; however, it does suggest an association with the PSI of two skipped exons 
in Mbnl2 (Figure 11c, Figure 11—figure supplements 3 and 4) and further implicates the inclusion 
level of the novel alternative TSS in Rbfox1 reported above (Rbfox1_26172, chr16:5763912–6173605, 
Figure  6d). These results help clarify the disparate impacts of expression and alternative splicing 
in splicing factors, and encourage the use of regression models to suggest candidate regulators of 
cell- type- specific alternative splicing. Such computationally generated hypotheses are particularly 
valuable for splicing events in splicing factors because of the heightened difficulty to experimentally 
perturb specific exons rather than whole genes.

Discussion
In this study, we introduce scQuint, a toolkit for the quantification, visualization, and statistical infer-
ence of alternative splicing in full- length scRNA- seq data without the need for annotations. This allows 
us to successfully extend the analysis of two single- cell atlases to the level of alternative splicing, over-
coming the usual technical challenges as well as coverage artifacts and incomplete annotations. Our 
results, which we make available for public exploration via interactive browsers, indicate the presence 
of strong cell- type- specific alternative splicing and previously unannotated splicing events across a 
broad array of cell types. In most cases, splicing variation is able to differentiate cell types just as well 
as expression levels. We also note a striking lack of overlap between the most strongly differentially 
expressed and spliced genes (Table 2), suggesting that expression and splicing are complementary 
rather than integrated processes. Moreover, this complementarity may also manifest temporally, as we 
show in developing B cells in the marrow. Another outstanding question is the functional significance 
of isoforms, and we find that most differential splice sites appear in the coding sequence with a size-
able minority also mapping to 5’ UTRs. The apparent predilection for events to occur in these regions 
rather than 3’ UTRs poses questions about the role of splicing in protein synthesis from translational 
regulation to the formation of polypeptide chains. Answering these questions requires a more precise 
understanding of how variation in UTRs and coding sequences affects final protein output as well 
as the biophysical characteristics of protein isoforms and their roles in different biological systems. 
These factors, combined with the large fraction of unannotated events in several cell types, should 
encourage tissue specialists to more deeply consider the contribution of transcript variation to cell 
identity and cell and tissue homeostasis.

Despite the clear association between splicing and cell identity, our analyses are yet to produce 
instances in which clustering in the splicing latent space reveals new cell subpopulations not visible in 
the expression latent space. This, of course, does not preclude the possibility in other settings where 
alternative splicing is known to be important, such as in specific developmental transitions or disease 
conditions. Nevertheless, our current experience leads us to believe that gene expression and splicing 
proportions provide two different projections of the same underlying cell state. Incidentally, RNA 

removed). Cortex cell types have higher proportions of events in coding regions and non- coding RNAs. Note: 
y- axes are not on the same scale. (d) ROC AUC score for classification of each cell type versus the rest based on 
either the expression or splicing latent space, using logistic regression, training and testing in non- overlapping sets 
of individuals. The score for splicing- based classification is near- perfect in most cell types with some exceptions 
such as immature B cells in the marrow.

Figure 10 continued
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Figure 11. Associations between splicing factors and alternative splicing. (a) Regression analysis of exon skipping 
based on expression and splicing of splicing factors, using the BICCN mouse primary motor cortex dataset. Left 
panel: mean PSI of skipped exons across cell types. Bottom panel: mean z- scores of selected splicing factor 
features across cell types, including whole- gene expression (gene name) and PSI of alternative introns (gene name 
and numerical identifier). Center panel: regression coefficients (log- odds) of each splicing factor feature used to 
predict skipped exon PSI in our sparse Dirichlet- Multinomial linear model. (b) Novel alternative TSS in Khdrbs3. 
(c) Annotated skipped exons in Mbnl2.

The online version of this article includes the following source data and figure supplement(s) for figure 11:

Source data 1. Intron coordinates are available for panel (a).

Figure supplement 1. Full plot of associations between splicing factors and alternative splicing.

Figure supplement 2. PSI distribution of Khdrbs3_25689.

Figure 11 continued on next page
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Velocity (La Manno et al., 2018) estimates can be distorted by alternative splicing, and (Bergen et al., 
2020) discuss incorporating isoform proportions into the model as a future direction.

To support our understanding of cell- type- specific splicing, we implemented a regularized gener-
alized linear regression model which exploits the natural variation of splicing factors in different cell 
types. We recovered a number of previously identified (via knockout experiments) regulatory interac-
tions and propose novel regulatory interactions involving genes known to play important regulatory 
roles. A key component of our analysis is the decision to include both the expression and alternative 
splicing patterns of splicing factors as features in the model. Consequently, we infer that several alter-
native splicing events in splicing factors themselves (some previously unannotated) contribute to their 
regulatory activity. Our model thus provides several opportunities for follow- up and does so with an 
increased granularity that distinguishes between effects due to expression and splicing differences. 
To facilitate further exploration of these data, we have uploaded our results to cell and genome 
browsers (linked at https://github.com/songlab-cal/scquint-analysis, (Benegas, 2021a copy archived 
at swh:1:rev:97dc31babf2a585666af4a38b1e4aa59a92bbf87)).

Our experience analyzing these large datasets, initially with prior methods and then scQuint, has 
led to a series of general observations regarding the analysis of splicing in scRNA- seq data. As most 
analyses use full- length short- read protocols because of the cost of long- read data and the necessary 
focus on the 3’ end of transcripts in most UMI- based techniques, we restrict our attention to the full- 
length short- read setting and its incumbent challenges. For example, low transcript capture efficiency 
introduces additional technical noise into isoform quantification (Arzalluz- Luque and Conesa, 2018; 
Westoby et al., 2020; Buen Abad Najar et al., 2020), and incomplete transcriptome annotations 
result in discarded reads and reduced sensitivity to cross- cell differences (Westoby et  al., 2020). 
Nonetheless, we considered several methods (summarized in Appendix 1—table 1) to analyze tran-
script variation in short- read, full- length scRNA- seq. We found each of the classes of current methods 
to be problematic in the context of our datasets for varying reasons. Methods which depend on 
transcript annotations (Bray et al., 2016; Qiu et al., 2017; Huang and Sanguinetti, 2017; Hu et al., 
2020; Yan et al., 2015; Wen et al., 2020; Liu et al., 2021; Huang and Sanguinetti, 2021; Tekath 
and Dugas, 2021) cannot easily identify unannotated alternative splicing events. In large collections 
of previously unsurveyed cell types, these may comprise a sizable fraction of events. Indeed, we 
found up to 30% of differential splicing events were unannotated in certain cell types. Annotation- free 
approaches are also available, but they either do not provide a formal statistical test for differential 
transcript usage across conditions (Song et al., 2017; Ling et al., 2020; Nip et al., 2020; Welch 
et al., 2016), or only do so in a specialized manner (Matsumoto et al., 2020), reducing their potential 
impacts. Finally, methods’ different approaches to quantification are affected by coverage biases to 
varying degrees. Some methods may thus lead to erroneous inference of cell clusters due to technical 
rather than biological variation. Until the prevalence and severity of coverage biases are better under-
stood, we advocate quantifying transcript variation in a robust manner.

Recent and future experimental advances will catalyze the study of isoform variation in single cells. 
For instance, Smart- seq3 (Hagemann- Jensen et  al., 2020) allows sequencing of short reads from 
the entire length of a gene together with unique molecular identifiers, improving mRNA capture and 
allowing for the filtering of PCR duplicates; however, experiments show that less than 40% of reads 
can be unambiguously assigned to a single (annotated) isoform. Ultimately, long- read scRNA- seq will 
provide the definitive picture of isoform variation between cells. Until then, there is much biology to 
be studied using short- read protocols, and variation at the transcript level should not be disregarded.

Materials and methods
Datasets
Tabula Muris data (Schaum et  al., 2018) have accession code GSE109774. Cells were filtered to 
those from 3- month- old mice present in this collection: https://czb-tabula-muris-senis.s3-us-west-2. 

Figure supplement 3. PSI distribution of Mbnl2_25376.

Figure supplement 4. PSI distribution of Mbnl2_25378.

Figure 11 continued
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amazonaws.com/Data-objects/tabula-muris-senis-facs-processed-official-annotations.h5ad (filtering 
details in Tabula Muris Consortium, 2020). BICCN Cortex data (Yao et al., 2021) were downloaded 
from https://assets.nemoarchive.org/dat-ch1nqb7 and filtered as in Booeshaghi et al., 2021.

Simulation
A preliminary set of exon skipping events was obtained by running briekit- event from the BRIE2 
software package. For each event, one pair of transcripts was selected if they only differed on the 
skipped exon, resulting in 561 pairs, each from a different gene. Reads were simulated using Polyester 
(Frazee et al., 2015), which allows us to control overdispersion and induce different kinds of biases. 
For roughly half of the genes, differential transcript usage (DTU) was induced by overexpressing one 
transcript 1.5- fold in one of the two conditions. The number of reads was generated using a highly 
overdispersed negative binomial distribution with variance equal to eight times the mean. To simulate 
coverage decay in one of the conditions, the option bias="cdnaf" was added. To ensure coverage 
decays as a function of absolute distance to the 3’ end of the transcript, reads were generated no 
farther away from the 3’ than the minimum of the lengths of the two alternative transcripts. The Area 
Under the Receiver Operating Characteristic Curve (ROC AUC) for classifying genes into DTU vs. non- 
DTU was computed using the p- values from each method, excluding genes that were not tested by a 
given method (e.g., because of a minimum reads threshold).

Quantification
The bioinformatic pipeline was implemented using Snakemake (Köster and Rahmann, 2012). Raw 
reads were trimmed from Smart- seq2 adapters using Cutadapt (Martin, 2011) before mapping to 
the GRCm38/mm10 genome reference (https://hgdownload.soe.ucsc.edu/goldenPath/mm10/chro-
mosomes/) and the transcriptome reference from Ensembl release 101 (ftp://ftp.ensembl.org/pub/ 
release-101/gtf/mus_musculus/Mus_musculus.GRCm38.101.gtf.gz). Alignment was done using STAR 
(Dobin et al., 2013) in two- pass mode allowing novel junctions as long as they were supported by 
reads with at least 20 base pair overhang (30 if they are non- canonical) in at least 30 cells. Also, multi-
mapping and duplicate reads were discarded using the flag --ba mRem oveD upli cate sTyp e Un ique 
Iden tica l (while this can remove duplicates from the second PCR step of Smart- seq, it will not remove 
duplicates from the first PCR step). Soft- clipped reads were removed as well. Additionally, reads were 
discarded if they belonged to the ENCODE region blacklist (Amemiya et al., 2019) (downloaded 
from https://github.com/Boyle-Lab/Blacklist/raw/master/lists/mm10-blacklist.v2.bed.gz).

Gene expression was quantified using featureCounts (Liao et al., 2014), and total- count normal-
ized such that each cell had 10,000 reads (as in the Scanpy (Wolf et al., 2018) tutorial). Intron usage 
was quantified using split reads with an overhang of at least six base pairs. Introns were discarded if 
observed in fewer than 30 cells in BICCN Cortex or 100 cells in Tabula Muris. Introns were grouped 
into alternative intron groups based on shared 3’ splice acceptor sites. Introns not belonging to any 
alternative intron group were discarded. Additionally, we decided to subset our analysis to introns 
with at least one of their donor or acceptor sites annotated, so we could assign a gene to each intron 
and facilitate interpretation for our specific analyses.

Dimensionality reduction
To run PCA, we worked with alternative intron proportions (PSI, Percent Spliced In) rather than their 
absolute counts, as the latter would be confounded by gene expression differences. We first introduce 
some notation:

•  c : cell identifier
•  g : intron group identifier
•  ⃗y

(c)
g  : vector of counts of introns in intron group  g  and cell  c 

•  normalize(⃗x) = x⃗
sum(⃗x) : function to divide each entry of a vector by the total sum.

Then, PSI can be defined as:

 
−→
PSI(c)

g = normalize
(

y⃗(c)
g

)
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However, given the sparsity of single- cell data, a very high proportion of alternative intron groups 
will have no reads in a given cell, leaving PSI undefined. More generally, an intron group may contain 
few reads, resulting in defined but noisy PSI estimates. To navigate this issue, we introduce a form of 
empirical shrinkage towards a central value. We first define the ‘global PSI’ by aggregating reads from 
all cells and normalizing. Then, we add this global PSI as a pseudocount vector to each cell before 
re- normalizing to obtain each cell’s shrunken PSI profile (these are non- uniform pseudocounts adding 
up to one).

 

−→
PSI(global)

g = normalize

(∑
c

y⃗(c)
g

)

  

 
−−−−−−−−−−−−→
SMOOTHED_PSI(c)

g = normalize
(

y⃗(c)
g +

−→
PSI(global)

g

)
  

We then run standard PCA on the cell- by- intron- smoothed PSI matrix.
The VAE was implemented using PyTorch (Paszke et  al., 2019) and scvi- tools (Gayoso et  al., 

2021). The following is the generative model, repeated for each cell (we drop the superscript indexing 
the cell in  ⃗z  ,  ⃗p  ,  ⃗y   and  ⃗n  ):

1. Sample the latent cell state  ⃗z ∼ Normal(0, I) 
2. For each intron group  g :

a. Obtain the underlying intron proportions:  ⃗pg = softmax(fg (⃗z)) 
b. Sample the intron counts conditioning on the total observed 

ng:  ⃗yg|ng ∼ DirichletMultinomial
(
ng,αg · p⃗g

)
 

Here fg, known as the decoder, can be any differentiable function, including linear mappings and 
neural networks.  αg  is a scalar controlling the amount of dispersion. We optimize a variational posterior 
on cell latent variables  q(z|y)  (Gaussian with diagonal covariance, given by an encoder neural network) 
as well as point estimates of global parameters fg,  αg . The encoder takes as input the smoothed PSI 
values, as in PCA, but the likelihood is based on the raw intron counts. The objective to maximize is 
the evidence lower bound (ELBO), consisting of a reconstruction term and a regularization term:

 ELBO(y) = Ez∼q(z|y)[log p(y|z)] − KL(q(z|y)∥p(z)),  

where KL  (·∥·)  denotes the Kullback–Leibler divergence. Optimization is performed using Adam 
(Kingma and Ba, 2015), a stochastic gradient descent method. To avoid overfitting in cases of rela-
tively few cells with respect to the number of features, we considered a linear decoder (Svensson 
et al., 2020), as well as a  Normal(0,σ)  prior on the entries of the decoder matrix. Hyperparameters 
were tuned using reconstruction error on held- out data and are described in Table 3.

Differential splicing test
Our differential splicing test across conditions (such as cell types) is based on a modified version of 
the Dirichlet- Multinomial Generalized Linear Model proposed in LeafCutter (Li et al., 2018) for bulk 
RNA- seq. For each intron group  g  with  L  alternative introns:

•  ⃗yg  is a vector of counts for each of the  L  introns;
• The independent variable,  x , equals 0 in one condition and 1 in the other;
•  ⃗ag, b⃗g ∈ RL−1

  are the intercept and coefficients of the linear model;
•  αg ∈ R  is a dispersion parameter shared across conditions; and

• the function 
 
softmax : (z1, . . . , zL−1) �→

(
ez1

1+
∑L−1

i=1 ezi
, . . . , ezL−1

1+
∑L−1

i=1 ezi
, 1

1+
∑L−1

i=1 ezi

)

 
 maps from  RL−1  to 

the  (L − 1) - dimensional probability simplex.

The Dirichlet- Multinomial Generalized Linear Model then proceeds as follows:

Table 3. VAE hyperparameters.

Dataset Decoder Layers  σ Latent dimension

BICCN Cortex Linear 1 26.8 18

Tabula Muris Non- linear 2 - 34

https://doi.org/10.7554/eLife.73520
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1. Obtain the underlying intron proportions:  ⃗pg = softmax(⃗ag + b⃗gx) 
2. Sample the intron counts conditioned on the total observed, 

ng:  ⃗yg|ng ∼ DirichletMultinomial
(
ng,αgp⃗g

)
 

We implemented this model in PyTorch and optimized it using L- BFGS (Liu and Nocedal, 1989).
To test for differential splicing across the two conditions, we compare the following two hypotheses:

Null hypothesis H0: b⃗g = 0⃗  
Alternative hypothesis H1: b⃗g ̸= 0⃗  

We use the likelihood- ratio test, the test statistic for which is asymptotically distributed as a  χ
2
  

random variable with  L − 1  degrees of freedom under H0. Finally, we correct p- values for multiple 
testing using the Benjamini- Hochberg FDR procedure (Benjamini and Hochberg, 1995).

The differences with LeafCutter are the following:

• LeafCutter groups introns that share a 5’ donor or 3’ acceptor site while scQuint groups introns 
that share a 3’ acceptor site.

• LeafCutter has a vector of concentration parameters, one for each intron, while scQuint uses a 
single concentration parameter per intron group.

• The LeafCutter and scQuint optimization procedures were implemented separately and differ 
in initialization strategies as well as L- BFGS hyperparameters.

Latent space analysis
The expression latent space was obtained by running PCA with 40 components on log- transformed 
and normalized gene expression values. The splicing latent space was obtained by running the VAE 
on the alternative intron count matrix (or equivalent features, e.g., Kallisto transcript counts, DEXSeq 
exon counts). Both latent spaces were visualized using UMAP (McInnes et al., 2018). In the compar-
ison of Figure 1, we used our own implementation of the quantifications proposed by ODEGR- NMF, 
DEXSeq, and DESJ for ease of application to large single- cell datasets.

Dendrograms were constructed using hierarchical clustering (R function hclust) based on euclidean 
distance between the median latent space embedding of cells of each type. Tanglegram and entangle-
ment were calculated using the dendextend R package, with the step2side method, as also described 
in Schaum et al., 2018.

Reported scores for cell type classification within a tissue were obtained by running a binary logistic 
regression classifier over different splits of cells into train and test sets. To assess generalization across 
individuals, we ensured the same individual was not present in both train and test sets.

Cell-type-specific differential splicing
For differential splicing testing between a given cell type and the rest of the tissue, we only consid-
ered introns expressed in at least 50 cells and intron groups with at least 50 cells from both of the 
conditions. We called an intron group ‘differentially spliced’ if it was both statistically significant using 
a 5% FDR and if it contained an intron with a PSI change greater than 0.05. We considered a differ-
entially spliced intron group as unannotated if it contained an unannotated intron with a PSI change 
greater than 0.05. Differential expression was performed using the Mann- Whitney test. A gene was 
considered differentially expressed if it was statistically significant using a 5% FDR and if the fold 
change was at least 1.5.

For selection of marker genes or introns, we proceeded in a semi- automated fashion. For each cell 
type, we first filtered to keep only significant genes or introns and then ranked them by effect size. We 
picked a certain number of genes or introns from the top of this list for each cell type, while ensuring 
there were no repetitions.

Splicing factor regression analysis
We obtained 75 mouse splicing factors using the Gene Ontology term ‘alternative mRNA splicing, 
via spliceosome’ (http://amigo.geneontology.org/amigo/term/GO: 0000380). A skipped exon annota-
tion, processed by BRIE (Huang and Sanguinetti, 2017), was downloaded from https://sourceforge. 
net/projects/brie-rna/files/annotation/mouse/gencode.vM12/SE.most.gff3/download. Instead of 
using single cells as replicates, we partitioned the BICCN primary motor cortex dataset into roughly 

https://doi.org/10.7554/eLife.73520
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200 clusters of 30 cells each that were pooled to create pseudobulks, aiming to reduce variance in 
the expression and splicing of splicing factors used as covariates in the model. We filtered target 
exon skipping events to those defined in at least 95% of the replicates, and those having a PSI stan-
dard deviation of at least 0.2. We used log- transformed normalized expression and PSI of alternative 
splicing events as input features. We chose to keep the PSI of only one intron per intron group to 
avoid the presence of highly correlated features and improve clarity, even if some information from 
non- binary events is lost. Input features were filtered to those having standard deviation of at least 
0.05, and then standardized. A lasso Dirichlet- Multinomial GLM was fit to the data (in this instance, the 
model reduces to a Beta- Binomial because skipped exons are binary events), with the sparsity penalty 
selected via cross- validation. As a first approach, we fit a regular lasso linear regression model on PSI 
instead of raw counts, resulting in roughly similar patterns in the coefficients. Figure 11c shows the 
coefficients of the lasso Dirichlet- Multinomial model for the top 30 targets with the highest variance 
explained by the regular lasso model, all above 68%.

Code and data availability
scQuint is implemented in Python and is available at https://github.com/songlab-cal/scquint, 
(Benegas, 2021b copy archived at swh:1:rev:a9db6454e13d42af25f47deee19e201e74d2bdd0). 
Differential splicing results and access to cell and genome browsers, together with the code to repro-
duce our results, are available at https://github.com/songlab-cal/scquint-analysis, (Benegas, 2021c 
copy archived at swh:1:rev:97dc31babf2a585666af4a38b1e4aa59a92bbf87). Processed alternative 
intron count matrices are provided in the AnnData format (anndata.readthedocs.ioanndata.readthe-
docs.io) for easy manipulation with Scanpy (Wolf et al., 2018), Seurat (Stuart et al., 2019), and other 
tools.
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All data analyzed in this study are publicly available and URL links are provided in the Mate-
rials and methods section of our manuscript. Our source code as well as all results repre-
sented in figures and tables are publicly available on our lab's GitHub repositories: https:// 
github.com/songlab-cal/scquint, (copy archived at swh:1:rev:a9db6454e13d42af25f-
47deee19e201e74d2bdd0) and https://github.com/songlab-cal/scquint-analysis, (copy archived at 
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Schaum et al 2018 Tabula Muris https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE109774

NCBI Gene Expression 
Omnibus, GSE109774

Yao et al 2021 BRAIN Initiative Cell 
Census Network Cortex

https:// assets. 
nemoarchive. org/ dat- 
ch1nqb7

nemoarchive, dat- ch1nqb7
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Appendix 1
Overview of available methods for alternative splicing analysis in full-
length scRNA seq data
Due to experimental considerations, the analysis of transcript variation in 10x Chromium data 
is mostly restricted to the 3’ end of genes; in contrast, Smart- seq2 and other full- length, short- 
read protocols theoretically enable characterization of transcript variation along the whole gene. 
Nevertheless, numerous challenges impede such analyses in practice. For example, low transcript 
capture efficiency introduces additional technical noise into transcript quantification (Arzalluz- 
Luque and Conesa, 2018; Westoby et al., 2020; Buen Abad Najar et al., 2020), and incomplete 
transcriptome annotations result in discarded reads and reduced sensitivity to cross- cell differences 
(Westoby et al., 2020). Some authors have even recommended avoiding the analysis of alternative 
splicing in single- cell RNA sequencing (scRNA- seq) data until such obstacles can be suitably 
overcome (Westoby et  al., 2020). Despite these difficulties, several methods (summarized in 
Appendix 1—table 1) have sought to analyze transcript variation in short- read, full- length scRNA- 
seq. Many methods, including kallisto (Bray et al., 2016), Census (Qiu et al., 2017), BRIE (Huang 
and Sanguinetti, 2017), SCATS (Hu et  al., 2020), Quantas (Yan et  al., 2015), VALERIE (meant 
only for visualization) (Wen et al., 2020), DESJ (Liu et al., 2021), BRIE2 (Huang and Sanguinetti, 
2021) and DTUrtle (Tekath and Dugas, 2021), depend on transcript annotations and consequently 
cannot easily identify unannotated alternative splicing events, which may comprise a sizable fraction 
of events. Currently available annotation- free methods, such as ODEGR- NMF (Matsumoto et al., 
2020), Expedition (Song et al., 2017), ASCOT (Ling et al., 2020), SingleSplice (Welch et al., 2016) 
and RNA- Bloom (Nip et al., 2020), do not provide a statistical test for differential transcript usage 
across conditions. Appendix 1—table 1 summarizes this information and makes the comparison of 
different methods easier.

Appendix 1—table 1. Summary of methods available to analyze transcript variation in short- read 
full- length scRNA- seq.
Annotation- free: Does quantification require an accurate transcriptome reference? Differential 
transcript usage: Does the method provide a two- sample test for differences in transcript 
proportions? Some methods, denoted by (*), provide other statistical tests. Quantas requires cells 
to be aggregated into known subgroups of each group and therefore does not perform a test at 
the single- cell level. SingleSplice tests for alternative splicing within a single population. kallisto 
and ODEGR- NMF test for differential transcript expression, i.e., changes in absolute transcript 
expression rather than their proportions. Census tests for differential transcript usage along a 
pseudotime trajectory.

Method Annotation- free Differential transcript usage

Quantas [80] *

SingleSplice [76]  ✓ *

kallisto [10] *

Census [56] *

BRIE [27]  ✓ 

Expedition [60]  ✓ 

ODEGR- NMF [46]  ✓ *

SCATS [26]  ✓ 

RNA- Bloom [49]  ✓ 

ASCOT [41]  ✓ 

DESJ [43]  ✓ 

BRIE2 [28]  ✓ 

DTUrtle [65]  ✓ 

scQuint  ✓  ✓ 
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