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Abstract Interictal epileptiform discharges (IEDs), also known as interictal spikes, are large inter-
mittent electrophysiological events observed between seizures in patients with epilepsy. Although 
they occur far more often than seizures, IEDs are less studied, and their relationship to seizures 
remains unclear. To better understand this relationship, we examined multi- day recordings of micro-
electrode arrays implanted in human epilepsy patients, allowing us to precisely observe the spatio-
temporal propagation of IEDs, spontaneous seizures, and how they relate. These recordings showed 
that the majority of IEDs are traveling waves, traversing the same path as ictal discharges during 
seizures, and with a fixed direction relative to seizure propagation. Moreover, the majority of IEDs, 
like ictal discharges, were bidirectional, with one predominant and a second, less frequent antip-
odal direction. These results reveal a fundamental spatiotemporal similarity between IEDs and ictal 
discharges. These results also imply that most IEDs arise in brain tissue outside the site of seizure 
onset and propagate toward it, indicating that the propagation of IEDs provides useful information 
for localizing the seizure focus.

Editor's evaluation
This manuscript describes the propagation patterns of electrical activity in the brains of 
patients with drug- resistant epilepsy. Specifically, the authors demonstrate that interictal spikes, 
commonly observed electrical events in epileptic patients, propagate in a similar manner to 
seizures, which are relatively uncommon and more difficult to capture. This suggests that inter-
ictal spikes could be used in surgical planning, improving the localization and treatment of 
epileptic networks.
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Introduction
While seizures are mostly unpredictable and rare, electrical recordings from people with epilepsy 
often show isolated epileptiform discharges between seizures (Alarcon et al., 1997; Jefferys and 
Avoli, 2012; Tatum et al., 2016). These IEDs are far more frequent, occurring up to several times 
per minute, and exhibit multidien variation in their frequency that correlates with seizure likelihood, 
making IEDs an attractive personalized biomarker for seizure risk (Baud et al., 2018). Beyond such 
temporal information about seizure occurrence, there is some evidence for overlap between cortical 
areas where seizures originate and those with more IEDs (Alarcon et al., 1997; Conrad et al., 2020; 
Marsh et al., 2010). Furthermore, some retrospective studies showed that removing brain areas with 
more IEDs improved surgical outcomes in patients with medically refractory epilepsy (Kim et  al., 
2010; Smart et al., 2012). Despite these findings, the long- debated relationship between IEDs and 
seizure generating tissue remains unresolved (Jefferys and Avoli, 2012; Paolicchi et al., 2000; Tonini 
et al., 2004; Vakharia et al., 2018).

Microelectrode array recordings in epilepsy patients have revealed the spatiotemporal features of 
ictal self- organization (Eissa et al., 2017; Martinet et al., 2017; Smith et al., 2020; Schevon et al., 
2012; Smith et al., 2016). These studies reported two classes of recordings, one in which neuronal 
firing is recruited into the ongoing seizure, and another in which neuronal firing is relatively unaffected, 
despite seizure- like field potentials appearing on the same microelectrodes. These classes correspond 
to two dynamically evolving regions known as the ictal core and penumbra, respectively (Schevon 
et al., 2012). A slowly- propagating, narrow band of tonic action potential firing, the ictal wavefront 
(IW), delineates the transition between the core and penumbra (Martinet et al., 2015; Schevon et al., 
2012; Trevelyan et al., 2006; Trevelyan et al., 2007). These dynamic seizure regions exhibit distinct 
spatial features. The slowly traveling IW repetitively emits rapidly traveling ictal discharges backwards, 
toward the seizure core (Figure 1—figure supplement 1, Figure 1—video 1). These discharges occur 
following the passage of the ictal wavefront and have thus been termed ‘post- recruitment’ discharges 
(Smith et  al., 2016). In some patients, earlier ictal discharges, termed ‘pre- recruitment’, are also 
emitted outward, toward the penumbra (Martinet et al., 2017; Smith et al., 2020; Smith et al., 
2016). To avoid confusion between ictal discharges and interictal discharges, we will from here on 
refer to ictal discharges as seizure discharges (SDs).

The discovery of these spatiotemporal features of human seizure activity inspired a computational 
model designed to explain the neuronal underpinnings of seizure dynamics from biophysical prin-
ciples (Liou et al., 2020). After several induced seizures in this model, the network produces spon-
taneous seizures and IEDs with spatiotemporal dynamics. One prediction of the model is that the 
repeated barrages of traveling synaptic activity during SDs eventually coopt mechanisms of synaptic 
plasticity, biasing local tissue to propagate IEDs in similar directions as SDs, that is in the opposite 
direction of the slow propagation of seizure expansion. In this study we test the resultant hypothesis 
that IEDs have a predominant direction of propagation, towards the site of seizure onset; opposite the 
direction of seizure expansion. We found that the data supported this hypothesis, and further, that in 
the majority of participants, IEDs traveled bimodally on a linear axis with predominant and auxiliary 
sub- distributions whose directions, speeds, and proportions echoing those of SDs. Finally, we directly 
quantified the extent to which IED directions could be used to predict SD directions.

Results
IED detection in human microelectrode array recordings
To examine the spatiotemporal propagation of IEDs, we used a multi- institutional dataset of Utah- style 
microelectrode array (UEA; 10 × 10 microelectrodes in 4 × 4 mm grid, penetrating 1 mm) recordings 
from 10 epilepsy patients (two female, µ ±σ age: 29 ± 5.24 years) undergoing monitoring for neuro-
surgical treatment of medically refractory epilepsy (clinical details in Appendix 1—table 1). In order to 
capture seizures (2.2 ± 1.6 seizures recorded per participant; 22 total), we recorded data continuously 
throughout the patients’ monitoring periods (Figure 1A; 4.3 ± 2.4 days per participant; 43 total). 
Searching through weeks’ worth of microelectrode data, we detected 45,623 candidate IEDs across 
the 10 participants (4562.3 ± 5171.7 per participant) using an IED detection algorithm designed for 
microelectrode recordings, that operated on features of IEDs based on the American Clinical Neuro-
physiological Society’s definition, namely high- amplitude bursts of beta- range (20–40 Hz) local field 
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potential (LFP) power occurring across multiple microelectrodes (Figure 1—figure supplement 2; 
Appendix1 - algorithm 1) (Tatum et  al., 2016). We evaluated the positive predictive value of the 
algorithm against the ratings of two clinician experts yielding a µ ±σ precision of 0.86 ± 0.04. Inter-
rater reliability (Cohen’s Kappa) was 44.9%, which is similar to that reported across a large multicenter 
study of IED ratings (Jing et al., 2020). Interrater reliability between the algorithm and board- certified 
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Figure 1. IEDs are traveling waves. (A) A electron micrograph of an UEA and a picture of an UEA implanted next to an ECoG electrode. (B) A raster 
plot showing an example time course of semi- chronic microelectrode recording during an epilepsy patient’s hospital stay. Each gray dot represents 
the time of one IED (y- axis is arbitrary). (C) An example IED recorded across microelectrodes. Each gray line is the same IED recorded on a different 
microelectrode. The mean IED waveform is overlaid in white. (D) Mean spectrogram of the IED shown in (C) across microelectrodes. (E) A temporally 
expanded view of the IED shown in (C) color coded by when the IED occurs. Black dots indicate the location of the IED negative peaks for each 
microelectrode. (F) A raster plot of IED- associated MUA firing for the same IED as in (C) and the same timescale shown in (F). (G) IED voltage minima 
timings, color- coded as in (E), superimposed across the footprint of the UEA. A white velocity vector derived from the multilinear regression model 
is also shown on the UEA footprint. (H) A polar histogram showing the distribution of all IED traveling waves from which the IED in (C) was taken. See 
Figure 2—figure supplement 1 and Appendix 1- Algorithm 1 for IED detection and traveling wave classification details.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Schematic of seizure domains and hypothesized interictal dynamics.

Figure supplement 2. IED detection and artifact rejection.

Figure supplement 3. Classifying IED traveling waves.

Figure supplement 4. Non- traveling IEDs.

Figure 1—video 1. Video of IEDs and ictal recruitment.

https://elifesciences.org/articles/73541/figures#fig1video1

https://doi.org/10.7554/eLife.73541
https://elifesciences.org/articles/73541/figures#fig1video1


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  4 of 20

neurologist was 61.1%. Using this algorithm, we detected an average of 0.43 ± 0.51 IEDs per minute. 
The UEA enabled us to record both LFP data and multiunit action potential firing (MUA) across high- 
density spatial grid during each IED. These features of an example IED are shown in Figure 1C–G.

IEDs propagate in predominant and auxiliary directions
In order to determine whether the detected IEDs were traveling waves, and to measure wave speeds 
and directions, we fit a plane to the timings of both IED voltage extrema and MUA event times 
measured on each microelectrode using multi- linear regression (Liou et al., 2017). IEDs with regres-
sion slopes that were significantly different from zero were classified as traveling waves (permutation 
test against a distribution of 1000 spatially permuted timings; Figure 1H, Figure 1—figure supple-
ment 3). Traveling wave speeds and directions were then derived from each significant model’s slope. 
Based on this operational definition, 30,278 IEDs (3027.8 ± 3190.0 per participant) were classified 
as traveling waves (66.4%). Example non- traveling IEDs and regression model betas are shown in 
Figure 1—figure supplement 4.

Summary statistics for the spatiotemporal features of IEDs are shown in Table 1. Mean IED speeds 
were on the same order as SDs before the passage of the ictal wavefront (Liou et al., 2017; Smith 
et al., 2016). Traveling waves were also detected from MUA, independent of LFP recordings, though 
at a slightly reduced rate (2215.7 ± 3237.6 per participant; 22,157 total; 48.6%;  χ

2
  = 2957, p < 0.05). 

This result was expected, as LFP is a more reliable signal to record, and action potential firing during 
IEDs has previously been shown to be remarkably heterogeneous, particularly in areas further from 
the seizure onset zone (Keller et al., 2010). That there were significantly more IED traveling waves 
in UEA recordings that were eventually recruited into the seizure core, further supports the idea that 
more firing, closer to the seizure onset zone improves reliability of traveling wave detection with MUA 
(McNemar Test,  χ

2 (1
)

= 2957,  p <  10−6 ). We therefore focus our analysis on IED traveling waves 
measured from LFP minima in order to understand IED propagation across participants.

Having determined the majority of IEDs met the criteria to be classified as traveling waves, we 
next sought to understand whether IEDs from each participant exhibited a predominant propagation 
direction. We therefore tested whether distributions of IED traveling wave directions deviated from a 
uniform circular distribution (Fisher, 1953), we found that each participant’s IED traveling wave distri-
bution exhibited a dominant direction (Figure 2A; Hermans- Rasson Tests, 1000 permutations, all p < 
10–3). These results show that many IEDs are traveling waves with predominant, consistent directions 
of travel in each participant.

In addition to a predominant direction common to all participants, many participants appeared to 
have a second, auxiliary, distribution of IED directions. We therefore fit each participant’s IED distribu-
tion into a mixture of two circular normal sub- distributions (von Mises distribution). The mixture model 

Table 1. Summary statistics for spatiotemporal features of the dataset.

Participant Seizure class N detected IEDs
N (%) traveling waves 
(LFP)

N traveling waves 
(MUA)

Median speed 
(cm/s) Bimodal? N seizures

1 recruited 1,761 1,567 (89.0) 640 20.9 yes 1

2 recruited 1,532 1,217 (79.4) 131 59.2 no 3

3 recruited 17,988 10,220 (56.8) 10,380 25.3 yes 1

4 recruited 2,806 1,429 (50.9) 284 63.7 yes 1

5 recruited 2,148 1,538 (71.6) 1,131 108.3 yes 2

6 recruited 3,502 3,143 (89.7) 2006 69 yes 2

7 penumbral 4,348 2,132 (49.0) 2,236 76.8 yes 5

8 penumbral 8,369 7,351 (87.8) 4,977 134.7 no 0

9 penumbral 834
296
(35.5) 50 80.5 yes 3

10 penumbral 2,335 1,385 (59.3) 322 70.7 yes 4

Totals   45,623 30,278 22,157   22

https://doi.org/10.7554/eLife.73541
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was compared to a single von Mises distribution model by using permutation- based Kuiper tests 
(Figure 2—figure supplement 1; see Materials and methods). IED traveling wave distributions were 
thus classified as bimodal in 8 of the 10 participants (Figure 2B). The mean and ±s.d. angles between 
the two IED sub- distributions was 177.9 and 10.7 degrees, respectively (Figure 2C). These results 
show that IEDs also frequently propagate antipodally to their predominant direction, suggesting that 
IEDs may travel both directions on a linear track through a fixed recording site.

Spatial features of IED distributions echo ictal self-organization
We next sought to understand whether IED speed and direction related to the spatial self- organization 
of seizures. We hypothesize that spatial features of IED traveling waves would correlate with seizure 
propagation direction and those of seizure discharges. We therefore measured the spatial features 
of seizures first. Fast and slow spatial features of focal seizures were measured in both ictal LFP and 
MUA bands as in previous reports (Liou et al., 2017; Schevon et al., 2012; Smith et al., 2016). Both 
of these features were measured using the same multilinear regression framework used to measure 
IED speed and direction.

Following previous reports with microelectrode arrays, we confirmed that seizures could be divided 
into two classes based on ictal recruitment: ‘recruited’ and ‘penumbral’ (see Materials and methods; 
Khodagholy et al., 2015; Martinet et al., 2017; Merricks et al., 2021). Recruited tissue exhibited a 
slow expansion of tonic neuronal firing, the ictal wavefront (Figure 3D–E; Figure 3—figure supple-
ment 1A- D), followed by rapidly traveling SDs. Penumbral tissue showed neither an IW nor repetitive 
SDs associated with phase- locked firing (Figure 3—figure supplement 1E- H). Six participants’ micro-
electrode arrays were recruited into the ictal core (10 seizures; Figure 3A–C), while the four remaining 
participants were penumbral (12 seizures).

As predicted by our theoretical work (Liou et al., 2020), similar patterns of IED and SD propagation 
were apparent in the majority of seizures in participants with ‘recruited’ seizures. The majority of IEDs 
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Figure 2. IED traveling wave distributions are non- uniform and bimodal. (A) Polar histograms of IED traveling 
wave directions for all 10 participants. Each participant number is indicated in bold above and to the right of each 
histogram. (B) Classification index for bimodality of IED distributions across subjects. Criterion is indicated with a 
dashed line. (C) Difference in median angles of sub- distributions for bimodal IED distributions, with non- bimodal 
subjects omitted. See Figure 3 for bimodality classification details.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Procedures for clustering and evaluating the goodness- of- fit of overall and von Mises 
Mixture distributions.

https://doi.org/10.7554/eLife.73541
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Figure 3. IEDs reflect ictal self- organization. (A) Mean voltage recorded across the UEA at the start of a seizure. (B) Mean MUA firing rate across 
microelectrodes. (C) A raster plot ordered by time of recruitment and color coded to show the IW (blue) and ictal core (“recruited”, pink). (D) Slow firing 
rate dynamics on each microelectrode colored by time of maximum firing rate. (E) Times of maximum firing rate on each microelectrode superimposed 
on the footprint of the UEA, color- coded as in (D). (F) A polar histogram of IEDs and the direction of the IW. (G) Polar histograms showing probability 
densities of IEDs and SDs, and the direction of the IW. See Figure 4 for examples of classes of microelectrode array recorded ictal self- organization.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Examples of each class of microelectrode seizure recording.

https://doi.org/10.7554/eLife.73541
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travelled opposite the direction of seizure expan-
sion (i.e. the IW; direction difference from IEDs 
= 148.9 ± 17.2  degrees; median tests between 
IW and IED distributions, all p < 0.05; Figure 3F). 
Moreover, IEDs traveled in similar directions as 
SDs in these participants (example in Figure 3G; 
mean ± s.d. angle difference across participants 
= 23.7 ± 33.7  degrees). Direction distributions 
for IEDs, SDs, relative to the direction of the ictal 
wavefront are shown for all ‘recruited’ participants 
in Figure 4A–F, and direction summaries for these 
participants are shown in Figure 4G–H (raw direc-
tions shown in Figure 4—figure supplement 1). 
In the ‘penumbral’ category, where the tissue 
under the UEAs were not obviously recruited from 
adjacent cortex as in the ‘recruited’ category, we 
could not reliably detect or measure the direction 
of seizure expansion.

In order to directly quantify information 
about the full distribution of SDs that is gained 
from observing IEDs, we measured the Kullback- 
Leibler Divergence (KLD) between IED and SD 
distributions for each participant. The µ ± σ KLD 
across these 10 seizures was 0.66 ± 0.56, and are 
shown next to each pair of distributions in orange 
in Figure 4. The KLD values between IED and SD 
distributions were all significantly greater than 
would be expected to occur by chance in each 
patient (permutation tests, all p < 0.01). These 
results indicate that less than one extra bit of 
information is needed to encode the direction of 
SDs with IEDs on average, suggesting that IED 
directions could be used to accurately predict SD 
directions.

Spatial features of IED sub-
distributions predict those of SD 
sub-distributions
Finally, we sought to further understand 
geometric features of bimodal IED distributions 
and how they related to patterns of SD propa-
gation. Such an understanding was only relevant 
for the ‘recruited’ participants with bimodal IED 
distributions (five participants, seven seizures). 
Using the same bimodality classification strategy 
as for IEDs, we found that five of the seven these 
seizures in these participants exhibited bimodal 
SD distributions, with similarly antipodal sub- 
distribution directions (Figure 5A–B; µ ± σ angle 
difference = 135.2 ± 24.6). Only participants 
with bimodal IED distributions had bimodal SD 
distributions, and only one participant, who had 
the least bimodal IED distribution, did not have 
clearly bimodal SDs.
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Figure 4 continued on next page
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In order to determine whether IEDs in each 
sub- distribution came from neurophysiologically 
distinct IED populations, we tested for differences 
between IED waveforms and firing rates between 
IED sub- distributions. Such differences might 
indicate that each IED sub- distribution reflected 
a separate population of IEDs propagating across 
the footprint of the UEA. However, neither firing 
rates nor IED waveforms differed between IED 
sub- distributions (Figure  5C–D; cluster- based 
permutation tests, all p > 0.05), indicating that 
neither IED waveforms nor firing rates between 
the two sub- distributions could be statistically 
distinguished.

Differences between speeds and proportions 
of IED sub- distributions, corresponding to those 
we previously showed in SD sub- distributions 
(Smith et  al., 2016), would support a learned 

relationship between IEDs and SDs, as predicted by the centripetal pattern of learning in the theo-
retical model (Liou et al., 2020). To address this question, we tested for differences in speed and 

SD distributions are shown in black. Both IED and SD 
distributions are plotted relative to the direction of 
the IW (blue line). See Figure 5 for raw IED, SD, and 
IW directions. (G) Direction difference summaries for 
each seizure ordered and color coded as in (A–F). Dots 
indicate median directions and lines indicate standard 
deviations. (H) Median and standard deviation IED 
direction summaries relative to median SD directions. 
See Figure 5 for raw IW, IED, and SD directions.

The online version of this article includes the following 
figure supplement(s) for figure 4:

Figure supplement 1. Raw IED and SD distributions in 
‘recruited’ UEA recordings.

Figure supplement 2. Qualitative relationship 
between IED propagation and epileptogenic zone in 
ECoG.

Figure 4 continued
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Asterisks indicate significant differences (p < 0.05). (F) Distribution summaries for IED and SD traveling wave directions, separated by sub- distribution 
across subjects, and color coded as in (A- B). For the two participants with more than one seizure (P4, P6), each seizure is shown separately in (E) and (F).

https://doi.org/10.7554/eLife.73541


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  9 of 20

relative size of SD and IED sub- distributions. Speeds were significantly different between IED sub- 
distributions within each participant (Figure 5E; Mann- Whitney U, all p < 10–4). Speeds were also 
significant between SD sub- distributions in five of the seven seizures (Figure 5E; Mann- Whitney U, p 
< 0.04 in five seizures; p > 0.62 in two seizures). Finally, the proportion of IED directions in each sub- 
distribution predicted the direction of each SD sub- distribution in four of the five participants (two 
sample proportion tests, χ2 > 347.6, p < 10–6). More pre- recruitment discharges occurred in a fifth 
patient with nearly equivalent proportions of IEDs across sub- distributions. Importantly, the directions 
of significant differences in these spatial features corresponded across IED and SD sub- distributions. 
These results show that when IED and SD distributions were bimodal, their spatial features were 
similar, underscoring the extent to which IEDs mimic spatiotemporal features of ictal self- organization.

Discussion
Our results, using microelectrode array recordings in patients with epilepsy, show that IEDs are trav-
eling waves that echo – and are predictive of – the propagation patterns of SDs, along a parallel 
axis to the direction of expansion of the seizure core. It is likely that the frequent barrages of coordi-
nated activity seen during seizures—SDs—potentiate propagation pathways through neocortex that 
are revisited during IEDs. This conclusion is corroborated by the predictions of our theoretical work, 
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where a computational model incorporating spike- timing dependent plasticity and realistic connec-
tivity between inhibitory and excitatory cells self- organized to produce IWs, SDs, and IEDs that echo 
through the pathways potentiated by the strong, repeated barrages of SD activity, antipodal to the 
IW direction (Figure 6; Liou et al., 2020; Nguyen et al., 2020). Therefore, these results suggest that 
IEDs originate from tissue immediately eccentric to the seizure core and propagate inwardly across 
the seizure onset zone, indicating their potential use for localizing the seizure source (Liou et al., 
2020; Liou et al., 2019).

The empirical results reported here extend our understanding of the geometric properties of 
epileptic tissue, beyond the model predictions, in showing that IEDs travel largely bidirectionally on 
a linear axis. The bidirectional propagation of IEDs is similar to the bidirectional traveling waves we 
have previously observed during seizures (Liou et al., 2017; Smith et al., 2016). The bidirectional 
pattern of traveling waves during seizures emanated from a slowly expanding, motile source of ictal 
activity—the IW—passing through a fixed recording site (Smith et al., 2016). The data presented here 
show that IEDs travel in similarly oriented, bimodal distributions, even in the absence of an IW or ictal 
self- organization.

The IED directions we report are not perfectly antipodal to the IW. These differences in mean 
angles may be due in part to error when fitting a plane to the IW, which discounts the propagating 
wave’s curvature, or biological variability, such as changes in brain state and arousal. Furthermore, 
much of the deviation in the summary statistics is driven by one participant (P3). Rigorous statistical 
analysis of cluster bimodality, the resulting mean angles from that analysis, and KLD between IEDs and 
SDs all support the major result of the paper, that IEDs and SDs travel bidirectionally along a similar 
path. The dominant direction of travel is largely in the opposite direction of seizure expansion.

The theoretical model predicted that the directional preferences of IEDs were learned from SDs via 
spike- timing dependent plasticity (Bi and Poo, 1998). While we cannot address the specific learning 
mechanism with this dataset, in participants whose UEAs were recruited into the seizure core from 
adjacent cortical tissue, we showed correspondences between several spatial properties of IEDs and 
SDs. The speeds, directions, and relative sizes of IED sub- distributions echoed those of SDs. More-
over, predominant IED and SD directions opposed the directions of the ictal wavefronts in ‘recruited’ 
UEAs. These relationships were unable to be determined from UEAs that were not recruited into the 
seizure core (‘penumbral’ recordings). Together, these results suggest that spatiotemporal biases exist 
in epileptic tissue. Whether spatiotemporal biases in IEDs arise from learning during SDs or vice versa 
remains to be determined. While the theoretical model indicates that several seizures must occur 
before IEDs begin to form, electrographic discharges, similar to IEDs, often appear before seizures in 
animal models of epilepsy (Staley et al., 2011).

While we show that the majority of IEDs are traveling waves whose directions overlap with those of 
SDs, it is important to recognize the small spatial scale of the recordings analyzed here. Beyond the 
small area of brain we recorded from, there is some sampling bias inherent in these recordings, as we 
sought to place the microelectrode arrays as close to the site of seizure onset as possible, and within 
the area of resection. Additional, more eccentric populations of IEDs could be propagating from 
distant areas that are connected to the seizure onset zone, though not necessarily from adjacent tissue 
on the cortical surface (Gelinas et al., 2016). Higher density ECoG that spans a larger cortical territory 
than the UEA would be useful in gaining more context on where IEDs arise, and how IEDs propagate 
across the cortical surface. On the other hand, there is currently no evidence that the ictal wavefront 
can be detected without action potential recordings, though the time of seizure recruitment can be 
roughly estimated on each ECoG electrode from high- frequency LFP (Smith et al., 2020; Weiss et al., 
2013). Precise IED propagation patterns are also difficult to measure with the relatively low sampling 
density of ECoG, and minor shifts in the relative orientation of the ECoG grid and microelectrode 
array could impugn the accuracy of comparing traveling wave directions between the two modalities. 
Animal studies using calcium indicators capable of imaging neuronal activity across large cortical terri-
tories may overcome these limitations (Liou et al., 2019; Wenzel et al., 2017). Such animal studies 
are also poised to understand how learning and plasticity contributes to the geometric relationships 
reported here.

While these MEA recordings inform fundamental geometric relationships between IED propa-
gation and ictal self- organization, several MEAs flanking the seizure onset zone may be required 
to accurately triangulate the SOZ from traveling wave directions. Additional spatial context may 

https://doi.org/10.7554/eLife.73541


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  11 of 20

also inform our understanding of ‘penumbral’ tissue and its relevant spatial biases (Smith et al., 
2020). Future work will therefore focus on translating these microelectrode array results to a more 
clinically relevant spatial scale. For example, using ECoG (Khodagholy et al., 2015Khodagholy 
et al., 2015; Viventi et al., 2011) with vector field or convolutional methods (Muller et al., 2016), 
or examining propagation of source- localized IEDs in stereo- EEG along white matter tracts. Such 
approaches will be useful for linking the micro results reported in this paper to the coarser spatial 
resolutions and broader coverages encountered with typical intracranial recordings. Recordings 
with a broader spatial scale could also inform how IEDs propagate in a larger epileptic network, 
including patients whose seizures have a common onset site: the mesial temporal lobe (MTL). 
Three of the participants in this study (P1, P2, and P3) were classified as having MTL seizure onsets 
from their clinical reports, yet still exhibited similar IED and SD traveling wave dynamics. Despite 
MTL onsets, these patients’ seizures spread to the lateral temporal cortex, and eventually to the 
microelectrode array site in all three cases. We would speculate that this lateral seizure spread in 
neocortex could establish similar spatiotemporal biases to those in the other patients, yet a more 
widespread recording technology with higher resolution than ECoG may be required to full reveal 
the dynamics of MTL to neocortex seizure spread. It is noteworthy that two of these patients had 
larger differences between median IED and SD direction distributions than the others. Integrating 
these multi- scale geometrical understandings of how IEDs relate to the seizure onset zone could 
then provide an additional piece of information to inform diagnosis and treatment of medically 
refractory epilepsy, and potentially enable localizing the seizure source without having to directly 
observe seizures.

Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm MATLAB https://www.mathworks.com/products/matlab.html SCR:001662   

Software, algorithm NPMK
https://github.com/BlackrockNeurotech/NPMK (Torab, 2014) 

  

Software, algorithm IED analysis code https://github.com/elliothsmith/IEDs (Smith, 2022)   

Software, algorithm
Circular statistics 
toollbox

https://github.com/circstat/circstat-matlab (Berens et al., 
2019)   

Software, algorithm fitmvmdist https://github.com/chrschy/mvmdist   

Software, algorithm hrtest https://github.com/cnuahs/hermans-rasson (Cloherty, 2020)   

Participants, ethics statement, and data
The data for this study were acquired from Utah- style microelectrode arrays (UEAs) that were 
implanted in 10 human patients across two surgical sites who were undergoing neurophysiological 
monitoring for surgical treatment for medically refractory seizures. Clinical details for all partic-
ipants are shown in Appendix 1—table 1. The Institutional Review Boards at the University of 
Utah (IRB_00114691) and Columbia University Medical Center (IRB- AAAB6324) approved these 
studies. All participants provided informed consent prior to surgery for implantation of the clinical 
electrocorticography (ECoG) electrodes and UEA (10 × 10 electrodes in 4 × 4 mm, penetrating 
1 mm). Methodological details of surgical implantation of UEAs into human epilepsy patients area 
described in detail in House et al., 2006. During implantation of ECoG electrodes, UEAs were 
pneumatically inserted into areas that were most likely to be in the seizure onset zone, and there-
fore most likely to be resected. Electrophysiological data were pseudodifferentially amplified by 
10 and acquired at 30 kilosamples per second using a neural signal processing system (Blackrock 
Microsystems, Salt Lake City, UT) semi- chronically, that is throughout the duration of the partici-
pants’ hospital stays. Patients were weaned off their antiepileptic medication during that time, as 
dictated by their individual clinical courses. Throughout the manuscript, numerical quantities are 
presented as mean ± standard deviation (µ ±σ).
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IED detection and signal processing
In order to detect IEDs from continuous data recorded on each UEA channel, we developed a simple 
algorithm for detecting IEDs across a microelectrode array (Appendix 1 - Algorithm S1). For each 
channel on each UEA, we first resampled the data at 400 samples per second and zero- phase filtered 
the data between 20 and 40 Hz using a fourth- order Butterworth filter. We then detected any peaks 
in the absolute amplitude of this signal that were greater than eight times the standard deviation of 
the remainder of the recording segment (2- hr median duration; Figure 1—figure supplement 3A). In 
order to remove redundant detections, those following any other detection by less than 250ms were 
discarded. Only detections that occurred within the same 250ms window across at least 10 electrodes 
on the UEA were retained for further analysis (Figure 1—figure supplement 3B). Spectrograms of 
IEDs were generated via the continuous wavelet transform following the methods used in Schevon 
et al., 2012; Smith et al., 2020, and colored with the turbo color map (Mikhailov, 2021).

Multiunit action potentials (MUA) were detected on each microelectrode by filtering each channel 
between 0.3 and 3 kilohertz and detecting peaks in the filtered signal less than –4 times its root mean 
square. The times of these peaks were retained for further analysis. Example retained detections are 
shown in Figure 1—figure supplement 3C,E.

We employed several post- detection processing steps to ensure the quality of this expansive data 
set and reject artifacts. First, temporally outlying voltage extrema were removed in order to constrain 
extrema detection into a temporally focused window (approximately 50  ms duration) around the 
time of IED detection and to exclude broken microelectrodes or those without IED signal. Next, we 
excluded any discharges with outlying amplitudes, defined as double the interquartile range of the 
distribution of IED voltage ranges (Figure 1—figure supplement 3F,G).

In order to validate the detection algorithm’s ability to detect real IEDs, we calculated the algo-
rithm’s positive predictive value (precision) against ratings of experienced clinicians (C.A.S. and J.D.R.) 
on a dataset of 78 random IED detections, including 9 of those that did not pass our post- detection 
quality assurance steps described in the previous paragraph. Algorithmic positive predictive value 
(precision) was defined as the ratio of the number of true positive detections to the number of total 
positive detections. Cohen’s Kappa was also calculated to evaluate inter- rater reliability against 
chance.

Traveling wave measurement
In order to measure IED traveling wave speed and direction, we fit a plane to the timings of IED 
voltage minima, and MUA event times, using ordinary multilinear regression, regularized via the 
absolute deviation of the signal (Figure 1—figure supplement 4). This methodology is described 
in detail and validated for measuring traveling waves during ictal discharges in Liou et al., 2017. 
Briefly, the regression model for each IED yielded three coefficients, describing the best- fit plane 
to the timing of IEDs across the UEA in spacetime. Traveling wave direction was determined by the 
gradient direction of the plane and speed was defined as the inverse of that gradient norm. Each 
IED was operationally defined as a traveling wave if its model significantly deviated from a plane 
with zero slope. Statistical significance for this measure was determined by a permutation test in 
which the model was reevaluated 1,000 times with the microelectrode spatial locations randomly 
permuted. Differences in IED speed across and within participants were tested using a two- way 
Kruskal- Wallis Test with a participant factor (10 levels; one for each participant) and a signal factor 
in which the two levels were the speed measurements derived from LFP and MUA. Only MUA 
times from 50ms before and after the median time of the LFP negative peak were included in the 
regression model (Liou et al., 2017). Post- hoc pairwise comparisons were carried out using Dunn’s 
test (Dunn, 1964). The significance criterion was chosen as 0.05 for all of these tests.

Directional statistics
Polar histograms were plotted using 18 bins. Circular normal distributions were fit using the circular 
statistics toolbox (Berens, 2009). These distributions defined by two parameters, μ and κ, which 
describe the central angle and concentration of the distribution, respectively. μ and 1/κ are analo-
gous to the mean and variance parameters that define a standard normal distribution. Directional 
statistics were carried out using modified functions from the circular statistics toolbox (Berens, 
2009). These modifications were such that statistical significance was evaluated using permutation 

https://doi.org/10.7554/eLife.73541


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  13 of 20

tests from which p- values were derived by comparing the circular test statistic with a distribution 
of circular test statistics from 1000 permuted datasets. As an example, testing for differences 
between IED and SD means would involve comparing the test statistic from the true data to a 
distribution of 1000 test statistics in which the measurement categories were permuted. The signif-
icance criterion was chosen to be 0.05. Hypotheses that within- participant IED propagation direc-
tions were non- uniform, were tested with Hermans- Rasson tests of circular non- uniformity, again 
with 1000 permutations (Landler et al., 2018).

Bimodality and sub-distributions
In order to determine whether two, unimodal distributions better fit the ostensibly bimodal IED and 
SD distributions we observed, we first fit von Mises Mixture (vMM) Models to overall distributions of 
IED and SD directions using the Matlab function fitmvmdist (https://github.com/chrschy/mvmdist; 
Schymura, 2016). Overall IED direction distributions were then clustered into two component vMM 
distributions using the Matlab function cluster. We did not observe distributions that appeared to 
have more than two modes and therefore set an upper limit on the number of hypothesized clusters, 
 h , at two. These vMMs yielded three parameters for each sub- distribution,  h ∈ N  , such that  h ≤ 2 : the 
sub- distribution means,  µh  , concentration parameters,  κh  , and probability densities,  θh  .

Rather than assuming these vMM models better fit overall IED and SD distributions, we assessed 
whether the overall distribution or each vMM sub- distribution better fit the distributions defined 
by  µh  and  κh  . The permutation- based Kuiper tests used to assess goodness- of- fit were carried out 
as follows. We first estimated  µh  ,  κh  , and  θh  for both the overall and vMM sub- distributions. We 
then carried out permutation- based Kuiper tests, to compare empirical distributions of 60 randomly 
sampled IED directions to theoretical circular normal distributions derived from  µh  and  κh  from both 
the original and vMM sub- distributions. We repeated this procedure 1,000 times in order to create a 
permutation distribution. In this way, we were able to measure the extent to which randomly sampled 
IED angles deviated from theoretical circular distributions defined by the overall and vMM param-
eters. This is akin to cross- validating vM parameters and choosing  h  corresponding to the highest 
log- likelihood, yet in a model- free way. Comparing Kuiper test statistics to a permutation distribution, 
rather than zero (the null hypothesis of a uniform distribution), makes the tests more conservative and 
allows us to determine whether the distribution cannot be determined to be non- normal (Louter and 
Koerts, 1970). We then defined our circular bimodality index as the minimum difference between the 
Kuiper test statistic for the overall distribution and each vMM sub- distribution. Positive bimodality 
indices thus indicated that overall traveling wave distributions were better modeled as two vMM sub- 
distributions, and negative bimodality indices indicated that overall traveling distributions were better 
modeled as a single von Mises distribution. The Matlab functions for implementing these classifica-
tions are highlighted in the online code repository.

Seizure characterization
In order to study the propagation patterns of IEDs relative to seizures, it was necessary to quantify 
spatial features of SDs and seizure expansion for each recorded seizure. These measures have also 
been described in previous publications (Smith et al., 2020; Schevon et al., 2012; Smith et al., 2020; 
Smith et al., 2016). The ictal wavefront (IW) is the slowly expanding edge of the seizure representing 
the spatial signature of failure of feedforward inhibition, and therefore defines recruitment of the 
tissue surrounding an electrode into the ictal core (Schevon et al., 2012). This biomarker of seizure 
recruitment and expansion has thus far only been detected with recordings of multiunit firing rates 
(Smith et al., 2016), although can also be detected on single microelectrodes by observing widening 
of action potential waveforms (Smith et  al., 2020; Merricks et  al., 2015). We followed methods 
from our previous manuscripts to generate multiunit firing rates, that is filtering the broadband data 
between 300 and 3000 Hz and detecting any peaks larger than the median absolute value of the 
signal divided by 0.6745 (Quiroga et al., 2004).

To find seizures, we examined time periods in the microelectrode array recordings that corre-
sponded to the seizure times reported in the clinical monitoring reports and confirmed that the micro-
electrode array LFP exhibited the characteristic high amplitude, rhythmic discharging associated with 
seizures. We then looked for tonic multiunit firing spreading across the array that would suggest the 
presence of an ictal wavefront, and phase locked multiunit bursting associated with ictal discharges. 
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We detected the ictal wavefront feature of seizures by smoothing the firing rates on each microelec-
trode with a 250 ms Gaussian kernel and fitting a multilinear regression model to the peaks of these 
slow firing rate estimates across the UEA (Liou et al., 2017; Smith et al., 2016). We detected ictal 
discharges by detecting peaks in multiunit firing rates, calculated with a 25 ms Gaussian kernel, as 
we have previously (Liou et al., 2017; Smith et al., 2016). We quantified the propagation direction 
and speed of ictal discharges using the same methods used to determine IED traveling wave speeds 
and directions, as in Liou et al., 2017. IED speeds and directions were measured in a manner that 
was blinded to each microelectrode array’s recruitment classification. We defined the presence of 
ictal phase- locked firing with a Hermans- Rasson test of circular uniformity on MUA action poten-
tial times across microelectrodes relative to the phase of the mean LFP recorded across the UEA, 
similarly to Schevon et al., 2012. Using these measures, we operationally defined two patterns of 
ictal self- organization, based on observed patterns in these fast and slow spatial features of seizures: 
‘recruited’ seizures were operationally defined as those with a significant ictal wavefront multilinear 
regression model and significant phase- locked multiunit firing (Figure 3—figure supplement 1A- D). 
‘Penumbral’ seizures were operationally defined as those seizures in which we were unable to detect 
an ictal wavefront on the microelectrode array (Fig Figure 3—figure supplement 1E- H). Similar clas-
sifications of adjacent and non- adjacent recruitment have been reported by other groups (Martinet 
et al., 2015; Schevon et al., 2012). For seizures that were associated with secondary generalization, 
we only included discharges up to the clinically defined point of secondary generalization in order to 
constrain our study to the dynamics of focal seizure onset and spread.

Comparing IED and SD sub-distributions
Mean firing rates were estimated by binning MUA event times into one- hundred 10 ms bins across 
microelectrodes. For distributions that were determined to be bimodal, we used cluster- based permu-
tation tests to test for differences between median IED waveforms and firing rates between IEDs from 
the two component vMM distributions for each participant. Permutation tests consisted of carrying 
out t- tests on each sample in the IED waveforms and each bin in the IED firing rates. The t- statistics for 
each sample or bin were then compared to permutation distributions of t- statistics for each sample or 
bin in which the sub- distribution labels were shuffled. If any of these p- values exceeded the specified 
alpha value of 0.05, we considered that sample significant, and included it with adjacent significant 
samples in a temporal cluster. In order to control for multiple hypothesis testing, we used cluster- 
based correction over temporal clusters. This procedure involved finding the largest temporal clusters 
of significant samples or bins in the permutation distributions and comparing those clusters to the 
largest temporal clusters of significant samples or bins in the real data.

In order to test for different directions of overall distributions and sub- distributions of IEDs and 
SDs, we used Watson- Williams multi- sample tests for equal means. To test for differences in IED speed 
between different sub- distributions, we used within- participant Mann- Whitney U tests. In order to test 
differences in the proportion of IEDs from predominant and auxiliary sub- distributions we used two- 
sample proportion tests. We employed a significance criterion of 0.05 for all of these tests.

Finally, in order to directly quantify the reduction in uncertainty about the direction of SD travel that 
can be estimated from observing IED directions, we calculated the Kullback- Leibler Divergence (KLD) 
between distributions of IED and SD directions (Kullback and Leibler, 1951). We estimated the KLD 
as the expectation of the logarithmic difference between discrete distributions of IED and SD direc-
tions on the half- closed interval between 0 and 2π. We interpret the KLD as measuring the information 
that can be gained about SD directions from observing IED directions. We also tested for whether 
these KLD values were significantly greater than would be expected by chance by comparing the true 
KLD values against a distribution of 1000 KLD values generated from directions drawn at random from 
both IED and SD distributions.
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Raw data is available upon establishment of a data use agreement with Columbia University 
Medical Center as required by their Institutional Review Board (IRB). Data from human subjects 
was analyzed, from which the dates of implants can potentially be reconstructed. This is especially 
true for a study like this one, in which chronic recordings were carried out for the full duration 
of the patients' hospital stays. Sharing these data widely could therefore expose private health 
information of participants, which is why a data use agreement is required by the IRB. Interested 
Researchers should contact Dr. Schevon to get the data use agreement process started with the 
Columbia University Medical Center IRB. Analysis code is upload to GitHub: https://github.com/ 
elliothsmith/IEDs, (copy archived at swh:1:rev:218f6e60e8f0b32d4e16a88298475618d5c09589). 
We have included preprocessed data files for all IEDs, hosted online at OSF: https://osf.io/zhk24/. 
Data files include LFP, MUA event times, and traveling wave model coefficients for all detected 
IEDs.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Smith EH, Liou JY, 
Merricks EM, Davis 
TS, Thomson K, 
Greger B, House 
PA, Emerson RG, 
Goodman RR, 
McKhann II GM, 
Sheth SA, Schevon 
CA, Rolston JD

2021 Human interictal 
epileptiform discharges 
are bidirectional traveling 
waves echoing ictal 
discharges

https:// osf. io/ zhk24/ Open Science Framework,  
osf. io/ zhk24/

References
Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE, Elwes RD, Ortiz Blasco JM. 1997. 

Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for 
pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120 (Pt 12):2259–2282. DOI: https:// 
doi.org/10.1093/brain/120.12.2259, PMID: 9448581

Baud MO, Kleen JK, Mirro EA, Andrechak JC, King- Stephens D, Chang EF, Rao VR. 2018. Multi- day rhythms 
modulate seizure risk in epilepsy. Nature Communications 9:88. DOI: https://doi.org/10.1038/s41467-017- 
02577-y, PMID: 29311566

Berens P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. J Stat Soft 31:v031. DOI: https://doi.org/10. 
18637/jss.v031.i10

Berens P, Sinz F, Haddad A, Krause M, Zittrell F, Zavatone- Veth J. 2019. circstat- matlab. 302acc1. GitHub. 
https://github.com/circstat/circstat-matlab

Bi GQ, Poo MM. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, 
synaptic strength, and postsynaptic cell type. The Journal of Neuroscience 18:10464–10472. DOI: https://doi. 
org/10.1523/JNEUROSCI.18-24-10464.1998, PMID: 9852584

Cloherty S. 2020. hermans- rasson. ceef2c4. GitHub. https://github.com/cnuahs/hermans-rasson
Conrad EC, Tomlinson SB, Wong JN, Oechsel KF, Shinohara RT, Litt B, Davis KA, Marsh ED. 2020. Spatial 

distribution of interictal spikes fluctuates over time and localizes seizure onset. Brain 143:554–569. DOI: 
https://doi.org/10.1093/brain/awz386, PMID: 31860064

Dunn OJ. 1964. Multiple Comparisons Using Rank Sums. Technometrics: A Journal of Statistics for the Physical, 
Chemical, and Engineering Sciences 6:241. DOI: https://doi.org/10.2307/1266041

Eissa TL, Dijkstra K, Brune C, Emerson RG, van Putten M, Goodman RR, McKhann GM, Schevon CA, 
van Drongelen W, van Gils SA. 2017. Cross- scale effects of neural interactions during human neocortical seizure 
activity. PNAS 114:10761–10766. DOI: https://doi.org/10.1073/pnas.1702490114, PMID: 28923948

Fisher R. 1953. Dispersion on a Sphere. Proceedings of the Royal Society A 217:295–305. DOI: https://doi.org/ 
10.1098/rspa.1953.0064

Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. 2016. Interictal epileptiform discharges induce 
hippocampal- cortical coupling in temporal lobe epilepsy. Nature Medicine 22:641–648. DOI: https://doi.org/ 
10.1038/nm.4084, PMID: 27111281

https://doi.org/10.7554/eLife.73541
https://github.com/elliothsmith/IEDs
https://github.com/elliothsmith/IEDs
https://archive.softwareheritage.org/swh:1:dir:ddb76a4ca2f6c5c2ba9f06cd0fa3e579f27f07dc;origin=https://github.com/elliothsmith/IEDs;visit=swh:1:snp:6cd277323318107c1861561e0a81eb330b84ba9b;anchor=swh:1:rev:218f6e60e8f0b32d4e16a88298475618d5c09589
https://osf.io/zhk24/
https://osf.io/zhk24/
https://doi.org/10.1093/brain/120.12.2259
https://doi.org/10.1093/brain/120.12.2259
http://www.ncbi.nlm.nih.gov/pubmed/9448581
https://doi.org/10.1038/s41467-017-02577-y
https://doi.org/10.1038/s41467-017-02577-y
http://www.ncbi.nlm.nih.gov/pubmed/29311566
https://doi.org/10.18637/jss.v031.i10
https://doi.org/10.18637/jss.v031.i10
https://github.com/circstat/circstat-matlab
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://www.ncbi.nlm.nih.gov/pubmed/9852584
https://github.com/cnuahs/hermans-rasson
https://doi.org/10.1093/brain/awz386
http://www.ncbi.nlm.nih.gov/pubmed/31860064
https://doi.org/10.2307/1266041
https://doi.org/10.1073/pnas.1702490114
http://www.ncbi.nlm.nih.gov/pubmed/28923948
https://doi.org/10.1098/rspa.1953.0064
https://doi.org/10.1098/rspa.1953.0064
https://doi.org/10.1038/nm.4084
https://doi.org/10.1038/nm.4084
http://www.ncbi.nlm.nih.gov/pubmed/27111281


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  17 of 20

House PA, MacDonald JD, Tresco PA, Normann RA. 2006. Acute microelectrode array implantation into human 
neocortex: preliminary technique and histological considerations. Neurosurgical Focus 20:1–4. DOI: https:// 
doi.org/10.3171/foc.2006.20.5.5, PMID: 16711661

Jefferys JGR, Avoli M. 2012. Interictal Epileptiform Discharges in Partial Epilepsy. Noebels J, Avoli M, Rogawski 
M, Olsen R, Delgado- Escueta A (Eds). Jasper’s Basic Mechanisms of the Epilepsies. Oxford University Press. p. 
213–227. DOI: https://doi.org/10.1093/med/9780199746545.003.0017

Jing J, Herlopian A, Karakis I, Ng M, Halford JJ, Lam A, Maus D, Chan F, Dolatshahi M, Muniz CF, Chu C, Sacca V, 
Pathmanathan J, Ge W, Sun H, Dauwels J, Cole AJ, Hoch DB, Cash SS, Westover MB. 2020. Interrater 
Reliability of Experts in Identifying Interictal Epileptiform Discharges in Electroencephalograms. JAMA 
Neurology 77:49–57. DOI: https://doi.org/10.1001/jamaneurol.2019.3531, PMID: 31633742

Keller CJ, Truccolo W, Gale JT, Eskandar E, Thesen T, Carlson C, Devinsky O, Kuzniecky R, Doyle WK, 
Madsen JR, Schomer DL, Mehta AD, Brown EN, Hochberg LR, Ulbert I, Halgren E, Cash SS. 2010. 
Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. Brain 
133:1668–1681. DOI: https://doi.org/10.1093/brain/awq112, PMID: 20511283

Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, Buzsáki G. 2015. NeuroGrid: 
recording action potentials from the surface of the brain. Nature Neuroscience 18:310–315. DOI: https://doi. 
org/10.1038/nn.3905, PMID: 25531570

Kim DW, Kim HK, Lee SK, Chu K, Chung CK. 2010. Extent of neocortical resection and surgical outcome of 
epilepsy: intracranial EEG analysis. Epilepsia 51:1010–1017. DOI: https://doi.org/10.1111/j.1528-1167.2010. 
02567.x, PMID: 20384767

Kullback S, Leibler RA. 1951. On Information and Sufficiency. The Annals of Mathematical Statistics 22:79–86. 
DOI: https://doi.org/10.1214/aoms/1177729694

Landler L, Ruxton GD, Malkemper EP. 2018. Circular data in biology: advice for effectively implementing 
statistical procedures. Behavioral Ecology and Sociobiology 72:128. DOI: https://doi.org/10.1007/s00265-018- 
2538-y, PMID: 30100666

Liou J- Y, Smith EH, Bateman LM, McKhann GM, Goodman RR, Greger B, Davis TS, Kellis SS, House PA, 
Schevon CA. 2017. Multivariate regression methods for estimating velocity of ictal discharges from human 
microelectrode recordings. Journal of Neural Engineering 14:044001. DOI: https://doi.org/10.1088/1741-2552/ 
aa68a6, PMID: 28332484

Liou JY, Baird- Daniel E, Zhao M, Daniel A, Schevon CA, Ma H, Schwartz TH. 2019. Burst suppression uncovers 
rapid widespread alterations in network excitability caused by an acute seizure focus. Brain 142:3045–3058. 
DOI: https://doi.org/10.1093/brain/awz246, PMID: 31436790

Liou J, Smith EH, Bateman LM, Bruce SL, McKhann GM, Goodman RR, Emerson RG, Schevon CA, Abbott L. 
2020. A model for focal seizure onset, propagation, evolution, and progression. eLife 9:e50927. DOI: https:// 
doi.org/10.7554/eLife.50927

Louter AS, Koerts J. 1970. On the Kuiper test for normality with mean and variance unknown. Statistica 
Neerlandica 24:83–87. DOI: https://doi.org/10.1111/j.1467-9574.1970.tb00110.x

Marsh ED, Peltzer B, Brown MW, Wusthoff C, Storm PB, Litt B, Porter BE. 2010. Interictal EEG spikes identify the 
region of electrographic seizure onset in some, but not all, pediatric epilepsy patients. Epilepsia 51:592–601. 
DOI: https://doi.org/10.1111/j.1528-1167.2009.02306.x, PMID: 19780794

Martinet LE, Ahmed OJ, Lepage KQ, Cash SS, Kramer MA. 2015. Slow Spatial Recruitment of Neocortex during 
Secondarily Generalized Seizures and Its Relation to Surgical Outcome. The Journal of Neuroscience 35:9477–
9490. DOI: https://doi.org/10.1523/JNEUROSCI.0049-15.2015, PMID: 26109670

Martinet LE, Fiddyment G, Madsen JR, Eskandar EN, Truccolo W, Eden UT, Cash SS, Kramer MA. 2017. Human 
seizures couple across spatial scales through travelling wave dynamics. Nature Communications 8:14896. DOI: 
https://doi.org/10.1038/ncomms14896, PMID: 28374740

Merricks EM, Smith EH, McKhann GM, Goodman RR, Bateman LM, Emerson RG, Schevon CA, Trevelyan AJ. 
2015. Single unit action potentials in humans and the effect of seizure activity. Brain 138:2891–2906. DOI: 
https://doi.org/10.1093/brain/awv208, PMID: 26187332

Merricks EM, Smith EH, Emerson RG, Bateman LM, McKhann GM, Goodman RR, Sheth SA, Greger B, House PA, 
Trevelyan AJ, Schevon CA. 2021. Neuronal Firing and Waveform Alterations through Ictal Recruitment in 
Humans. The Journal of Neuroscience 41:766–779. DOI: https://doi.org/10.1523/JNEUROSCI.0417-20.2020, 
PMID: 33229500

Mikhailov A. 2021. Turbo, An Improved Rainbow Colormap for Visualization. Google AI Blog.
Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ. 2016. Rotating waves during human sleep 

spindles organize global patterns of activity that repeat precisely through the night. eLife 5:e17267. DOI: 
https://doi.org/10.7554/eLife.17267, PMID: 27855061

Nguyen QA, Moolchand P, Soltesz I. 2020. Connecting Pathological Cellular Mechanisms to Large- Scale Seizure 
Structures. Trends in Neurosciences 43:547–549. DOI: https://doi.org/10.1016/j.tins.2020.04.006, PMID: 
32376035

Paolicchi JM, Jayakar P, Dean P, Yaylali I, Morrison G, Prats A, Resnik T, Alvarez L, Duchowny M. 2000. Predictors 
of outcome in pediatric epilepsy surgery. Neurology 54:642–647. DOI: https://doi.org/10.1212/wnl.54.3.642, 
PMID: 10680797

Quiroga RQ, Nadasdy Z, Ben- Shaul Y. 2004. Unsupervised spike detection and sorting with wavelets and 
superparamagnetic clustering. Neural Computation 16:1661–1687. DOI: https://doi.org/10.1162/ 
089976604774201631, PMID: 15228749

https://doi.org/10.7554/eLife.73541
https://doi.org/10.3171/foc.2006.20.5.5
https://doi.org/10.3171/foc.2006.20.5.5
http://www.ncbi.nlm.nih.gov/pubmed/16711661
https://doi.org/10.1093/med/9780199746545.003.0017
https://doi.org/10.1001/jamaneurol.2019.3531
http://www.ncbi.nlm.nih.gov/pubmed/31633742
https://doi.org/10.1093/brain/awq112
http://www.ncbi.nlm.nih.gov/pubmed/20511283
https://doi.org/10.1038/nn.3905
https://doi.org/10.1038/nn.3905
http://www.ncbi.nlm.nih.gov/pubmed/25531570
https://doi.org/10.1111/j.1528-1167.2010.02567.x
https://doi.org/10.1111/j.1528-1167.2010.02567.x
http://www.ncbi.nlm.nih.gov/pubmed/20384767
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s00265-018-2538-y
https://doi.org/10.1007/s00265-018-2538-y
http://www.ncbi.nlm.nih.gov/pubmed/30100666
https://doi.org/10.1088/1741-2552/aa68a6
https://doi.org/10.1088/1741-2552/aa68a6
http://www.ncbi.nlm.nih.gov/pubmed/28332484
https://doi.org/10.1093/brain/awz246
http://www.ncbi.nlm.nih.gov/pubmed/31436790
https://doi.org/10.7554/eLife.50927
https://doi.org/10.7554/eLife.50927
https://doi.org/10.1111/j.1467-9574.1970.tb00110.x
https://doi.org/10.1111/j.1528-1167.2009.02306.x
http://www.ncbi.nlm.nih.gov/pubmed/19780794
https://doi.org/10.1523/JNEUROSCI.0049-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26109670
https://doi.org/10.1038/ncomms14896
http://www.ncbi.nlm.nih.gov/pubmed/28374740
https://doi.org/10.1093/brain/awv208
http://www.ncbi.nlm.nih.gov/pubmed/26187332
https://doi.org/10.1523/JNEUROSCI.0417-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/33229500
https://doi.org/10.7554/eLife.17267
http://www.ncbi.nlm.nih.gov/pubmed/27855061
https://doi.org/10.1016/j.tins.2020.04.006
http://www.ncbi.nlm.nih.gov/pubmed/32376035
https://doi.org/10.1212/wnl.54.3.642
http://www.ncbi.nlm.nih.gov/pubmed/10680797
https://doi.org/10.1162/089976604774201631
https://doi.org/10.1162/089976604774201631
http://www.ncbi.nlm.nih.gov/pubmed/15228749


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  18 of 20

Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, Trevelyan AJ. 2012. Evidence of an 
inhibitory restraint of seizure activity in humans. Nature Communications 3:1060. DOI: https://doi.org/10.1038/ 
ncomms2056, PMID: 22968706

Schymura C. 2016. mvmdist. 9b28bf0. GitHub. https://github.com/chrschy/mvmdist
Smart O, Maus D, Marsh E, Dlugos D, Litt B, Meador K. 2012. Mapping and mining interictal pathological 

gamma (30- 100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy. Expert Systems with 
Applications 39:7355–7370. DOI: https://doi.org/10.1016/j.eswa.2012.01.071, PMID: 23105174

Smith EH, Liou J, Davis TS, Merricks EM, Kellis SS, Weiss SA, Greger B, House PA, McKhann GM, Goodman RR, 
Emerson RG, Bateman LM, Trevelyan AJ, Schevon CA. 2016. The ictal wavefront is the spatiotemporal source 
of discharges during spontaneous human seizures. Nature Communications 7:11098. DOI: https://doi.org/10. 
1038/ncomms11098, PMID: 27020798

Smith EH, Merricks EM, Liou JY, Casadei C, Melloni L, Thesen T, Friedman DJ, Doyle WK, Emerson RG, 
Goodman RR, McKhann GM, Sheth SA, Rolston JD, Schevon CA. 2020. Dual mechanisms of ictal high 
frequency oscillations in human rhythmic onset seizures. Scientific Reports 10:19166. DOI: https://doi.org/10. 
1038/s41598-020-76138-7, PMID: 33154490

Smith E. 2022. IEDs. 218f6e6. GitHub. https://github.com/elliothsmith/IEDs
Staley KJ, White A, Dudek FE. 2011. Interictal spikes: harbingers or causes of epilepsy? Neuroscience Letters 

497:247–250. DOI: https://doi.org/10.1016/j.neulet.2011.03.070, PMID: 21458535
Tatum WO, Selioutski O, Ochoa JG, Clary HM, Cheek J, Drislane FW, Tsuchida TN. 2016. American Clinical 

Neurophysiology Society Guideline 7: Guidelines for EEG Reporting. The Neurodiagnostic Journal 56:285–293. 
DOI: https://doi.org/10.1080/21646821.2016.1245576, PMID: 28436792

Tonini C, Beghi E, Berg AT, Bogliun G, Giordano L, Newton RW, Tetto A, Vitelli E, Vitezic D, Wiebe S. 2004. 
Predictors of epilepsy surgery outcome: a meta- analysis. Epilepsy Research 62:75–87. DOI: https://doi.org/10. 
1016/j.eplepsyres.2004.08.006, PMID: 15519134

Torab K. 2014. Neural Processing Matlab Kit. 2.8.1.0. GitHub. https://github.com/BlackrockNeurotech/NPMK
Trevelyan AJ, Sussillo D, Watson BO, Yuste R. 2006. Modular propagation of epileptiform activity: evidence for 

an inhibitory veto in neocortex. The Journal of Neuroscience 26:12447–12455. DOI: https://doi.org/10.1523/ 
JNEUROSCI.2787-06.2006, PMID: 17135406

Trevelyan AJ, Sussillo D, Yuste R. 2007. Feedforward inhibition contributes to the control of epileptiform 
propagation speed. The Journal of Neuroscience 27:3383–3387. DOI: https://doi.org/10.1523/JNEUROSCI. 
0145-07.2007, PMID: 17392454

Vakharia VN, Duncan JS, Witt JA, Elger CE, Staba R, Engel J. 2018. Getting the best outcomes from epilepsy 
surgery. Annals of Neurology 83:676–690. DOI: https://doi.org/10.1002/ana.25205, PMID: 29534299

Viventi J, Kim D- H, Vigeland L, Frechette ES, Blanco JA, Kim Y- S, Avrin AE, Tiruvadi VR, Hwang S- W, Vanleer AC, 
Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers JA, 
et al. 2011. Flexible, foldable, actively multiplexed, high- density electrode array for mapping brain activity in 
vivo. Nature Neuroscience 14:1599–1605. DOI: https://doi.org/10.1038/nn.2973, PMID: 22081157

Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, Schevon CA. 2013. Ictal high 
frequency oscillations distinguish two types of seizure territories in humans. Brain 136:3796–3808. DOI: https:// 
doi.org/10.1093/brain/awt276, PMID: 24176977

Wenzel M, Hamm JP, Peterka DS, Yuste R. 2017. Reliable and Elastic Propagation of Cortical Seizures In Vivo. 
Cell Reports 19:2681–2693. DOI: https://doi.org/10.1016/j.celrep.2017.05.090, PMID: 28658617

https://doi.org/10.7554/eLife.73541
https://doi.org/10.1038/ncomms2056
https://doi.org/10.1038/ncomms2056
http://www.ncbi.nlm.nih.gov/pubmed/22968706
https://github.com/chrschy/mvmdist
https://doi.org/10.1016/j.eswa.2012.01.071
http://www.ncbi.nlm.nih.gov/pubmed/23105174
https://doi.org/10.1038/ncomms11098
https://doi.org/10.1038/ncomms11098
http://www.ncbi.nlm.nih.gov/pubmed/27020798
https://doi.org/10.1038/s41598-020-76138-7
https://doi.org/10.1038/s41598-020-76138-7
http://www.ncbi.nlm.nih.gov/pubmed/33154490
https://github.com/elliothsmith/IEDs
https://doi.org/10.1016/j.neulet.2011.03.070
http://www.ncbi.nlm.nih.gov/pubmed/21458535
https://doi.org/10.1080/21646821.2016.1245576
http://www.ncbi.nlm.nih.gov/pubmed/28436792
https://doi.org/10.1016/j.eplepsyres.2004.08.006
https://doi.org/10.1016/j.eplepsyres.2004.08.006
http://www.ncbi.nlm.nih.gov/pubmed/15519134
https://github.com/BlackrockNeurotech/NPMK
https://doi.org/10.1523/JNEUROSCI.2787-06.2006
https://doi.org/10.1523/JNEUROSCI.2787-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17135406
https://doi.org/10.1523/JNEUROSCI.0145-07.2007
https://doi.org/10.1523/JNEUROSCI.0145-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17392454
https://doi.org/10.1002/ana.25205
http://www.ncbi.nlm.nih.gov/pubmed/29534299
https://doi.org/10.1038/nn.2973
http://www.ncbi.nlm.nih.gov/pubmed/22081157
https://doi.org/10.1093/brain/awt276
https://doi.org/10.1093/brain/awt276
http://www.ncbi.nlm.nih.gov/pubmed/24176977
https://doi.org/10.1016/j.celrep.2017.05.090
http://www.ncbi.nlm.nih.gov/pubmed/28658617


 Research article      Computational and Systems Biology | Neuroscience

Smith et al. eLife 2022;11:e73541. DOI: https://doi.org/10.7554/eLife.73541  19 of 20

Appendix 1

Appendix 1 - Algorithm 1. Algorithm for detecting IEDs from microelectrode recordings.

Input: A matrix of microelectrode voltage recordings, V(c, t), where measured voltage is a function of time, t, and which 
microelectrode array channel it was recorded on, c.

Output: A vector of IED times, I(t).

1: for each c, do:

2: filter data between 20 and 40 Hz (non- causal, 4th order Butterworth filter)

3: detect peaks, p, in filtered signal greater than eight times the standard deviation of the beta power in the data.

4: discard peaks that occur within 250ms of a preceding detection

5: for each p, co- occurring within 250ms, across more than 10 microelectrodes.

6: find all local minima of V(c, t) in time, across all c.

7: bin local minima in time, across all c.

8: convolve the resulting histogram with a modified Heaviside function,

 

H
(

t
)

:




0, 0 ≥ n < 0.4

10t, 0.4 ≥ n < 0.5

−t, 0.5 ≥ n < 1
 

9: find absolute minima of V(c, t) within the bin containing the most local minima.

https://doi.org/10.7554/eLife.73541
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Appendix 1—table 1. Clinical details for research participants.

Participant Age Sex Epileptogenic zone UEA implant site Pathology Outcome

1 19 female
right posteriror 
lateral temporal

Right posterior temporal, 1 cm 
inferior to angular gyrus Non- specific

Engel 1 a 
at >2 years

2 32 female
left inferior 
temporal lobe

inferior temporal gyrus, 2.5 cm 
from temporal pole

one neuronal loss; lateral 
temporal nonspecific

Engel 1 a at 
55 months

3 32 male
Right mesial 
temporal lobe right inferior frontal gyrus Normal hippocampus

Engel1a at 
2.5 years

4 28 male
left dorsal posterior 
prefrontal cortex

left posterior middle frontal 
gyrus

Mild reactive astrogliosis, 
patchy microgliosis, Chaslin’s 
marginal sclerosis

Engel 3 a at 
32 months

5 26 male
left middle 
subtemporal

left posterior inferior temporal 
gyrus

Diffusely infiltrating low 
grade glioma, IDH- 1 
negative

Engel 4 a at 
2 years, 5 months

6 25 male
Left mesial 
temporal lobe

Left middle temporal gyrus, 
3 cm posterior to temporal 
pole Non- specific

Engel 1 a at 
7 months

7 30 male

right middle 
inferior temporal 
gyrus right middle temporal gyrus Mild astrocytosis

Engel 1 a at 
12 months

8 30 male

right lateral and 
mesial temporal 
lobe; nonlesional

Right middle temporal gyrus, 
4 cm posterior to the temporal 
pole Mesial temporal sclerosis

Engel 2 at 
22 months

9 30 male
left supplementary 
motor area left supplementary motor area

N/A (multiple subpial 
transections performed)

Engel three 
at >2 years

10 39 male
left frontal 
operculum

left lateral frontal, 2 cm 
superior to Broca’s Area Nonspecific

Engel 1 a 
at >2 years

https://doi.org/10.7554/eLife.73541
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