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Abstract Targeted memory reactivation (TMR) during post-learning sleep is known to enhance 
motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, 
we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR 
enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling 
between slow (0.5–2 Hz) and sigma (12–16 Hz) oscillations after the SW peak was related to higher 
TMR effect on performance. Importantly, sounds that were not associated to learning strengthened 
SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of 
the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data 
suggest that, depending on their precise temporal coordination during post learning sleep, slow and 
sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant 
information; two processes that critically contribute to motor memory consolidation.

Editor's evaluation
The authors demonstrate that targeted memory reactivation (TMR) can enhance motor memory 
consolidation. TMR has mainly been used to strengthen declarative memories, and, on a neurophys-
iological level, TMR has been shown to strengthen oscillatory cross-frequency coupling. Here the 
authors extend previous findings into the motor domain and reveal that TMR strengthens motor 
memories and again, cross-frequency coupling of cardinal sleep oscillations, namely slow waves and 
spindles. Collectively, their findings provide additional evidence for the idea that the temporal preci-
sion of cross-frequency network coordination is critical for timed information transfer from short-
term to long-term mnemonic storage.

Introduction
Motor memory is the capacity that affords the development of a repertoire of motor skills essential for 
daily life activities such as typing on a keyboard or buttoning a shirt. After initial acquisition, a motor 
memory undergoes consolidation, which is the offline (i.e. without further practice) process by which 
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the acquired memory trace becomes stable and long-lasting (Maquet, 2001; Robertson et al., 2004). 
Sleep, and non-rapid eye movement sleep (NREM) in particular (Albouy et al., 2008; Albouy et al., 
2013), is thought to offer a privileged window for the consolidation process to occur (King et al., 
2017). The specific electrophysiological events characterizing NREM sleep, such as slow waves (SW - 
high amplitude waves in the 0.5–2 Hz frequency band) (Ngo et al., 2013b), thalamo-cortical spindles 
(short burst of oscillatory activity in the 12–16 Hz sigma band) (Barakat et al., 2013; Ngo et al., 2019) 
and hippocampal ripples (80–100 Hz oscillations in humans) (Axmacher et al., 2008), as well as their 
precise synchrony, have been described to support neuroplasticity processes underlying consolidation 
(Muehlroth et al., 2019).

In recent years, there has been increasing evidence in both the declarative and motor memory 
domains that consolidation processes can be augmented by experimental interventions such as 
targeted memory reactivation (TMR) applied during post-learning sleep (Rudoy et al., 2009; Cousins 
et al., 2016; Schönauer et al., 2014; Hu et al., 2020). In TMR protocols, sensory stimuli (e.g. sounds) 
that are associated to the learned material during the learning episode are presented offline, during 
the consolidation interval, in order to reactivate the encoded memory trace (Ngo et al., 2013b). This 
memory reinstatement is thought to be supported by a TMR-mediated reinforcement of the endoge-
nous brain reactivation patterns that occur spontaneously during the consolidation process. Such reac-
tivations are thought to support the transfer of memory traces to the neocortex (Born and Wilhelm, 
2012). While the beneficial effect of TMR on motor performance has been highlighted in previous 
research (e.g. Antony et al., 2012 ; Faul et al., 2007; Schönauer et al., 2014; Cousins et al., 2016), 
the neurophysiological processes supporting these effects have been scarcely studied. Therefore, 
the goal of the present study was to elucidate the neurophysiological processes supporting memory 
reactivation during sleep which underlie TMR-induced enhancement in motor memory consolidation.

We designed a within-participant experiment (Figure 1) pre-registered in the Open Science Frame-
work (available at https://​osf.​io/​y48wq). Young healthy participants were trained on a Serial Reaction 
Time task (Nissen and Bullemer, 1987 ) during which they learned two different motor sequences, 
each associated to a particular sound. Participants were then offered a 90-min nap that was moni-
tored with polysomnography. During NREM 2–3 sleep stages, the sound associated to one of the 
two trained sequences (‘Associated’ sound to the ‘Reactivated’ sequence) as well as a control sound 
(‘Unassociated’) that was not associated to the learned material were played. The sound associated 
to the other learned sequence was not presented during the nap, thus serving as a no-reactivation 
control condition (‘Non-reactivated’). The time course of the TMR-induced consolidation process was 
assessed with retests after the nap episode as well as after a night of sleep spent at home. At the 
behavioral level, results demonstrated the expected TMR benefit. At the brain level, they indicate a 
TMR-mediated enhancement of SWs and SW-sigma coupling after the peak of the SW such that the 
higher the coupling, the greater the effect of TMR on motor performance. Intriguingly, unassociated 
sounds also strengthened SW-sigma coupling but at a different phase of the SW (trough) and the 
increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was 
related to the TMR benefit. Altogether, our findings suggest that sigma oscillations may play a dual 
role in the consolidation process depending on both the nature of the information to be processed 
and the phase of the slow oscillation in which they occur. We propose that sigma oscillations protect 
or reinstate motor memory depending on their temporal coordination with slow oscillations during 
post-learning sleep.

Results
The analyses presented in the current paper that were not pre-registered are referred to as exploratory.

Behavioral data
As per our pre-registration, behavioral analyses focused on performance speed (i.e. response time 
(RT) on correct key presses) on the motor sequence learning task measured at three time points: 
pre-nap, post-nap, and post-night (Figure 1a). Results of the analyses on performance accuracy are 
presented in Figure 2—figure supplement 1.

Analyses of the pre-nap training data indicated that participants learned the two sequence condi-
tions (reactivated and non-reactivated sequences) to a similar extent during initial learning (16 blocks 
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of training; main effect of Block: F(15, 345)=34.82; p-value = 2.04e-26; η²=0.6; main effect of Condi-
tion: F(1, 23)=0.16; p-value = 0.69; Block by Condition interaction: F(15, 345)=1.09; p-value = 0.37; 
Figure 2a). After initial training, participants were offered a short break (~5 min) and were then tested 
again on the learned motor sequences. This short pre-nap test session was designed to offer a fatigue-
free measure of the end-of-training, asymptotic performance to be used as baseline for the computa-
tion of subsequent offline changes in performance (see description below) (Pan and Rickard, 2015). 
Before computing offline changes in performance, we first assessed whether participants reached 
stable and similar performance levels between conditions during the pre-nap test session. Results 
showed that while performance reached similar levels between conditions (4 blocks; main effect of 
Condition: F(1,23) = 3.39e-5; p-value = 0.99; Block by Condition interaction: F(3,69) = 1.21; p-value = 
0.31), asymptotic performance levels were not reached as shown by a significant Block effect (F(3,69) 
= 6.67; p-value = 0.001; η²=0.22). To meet the performance plateau pre-requisite to compute offline 
changes in performance, the first block of the pre-nap test session driving this effect was removed 
from further analyses. Performance on remaining blocks was stable as indicated by a non-significant 
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Figure 1. Experimental protocol. (a) General design. Following a habituation nap that was completed approximately one week prior to the experiment, 
participants underwent a pre-nap motor task session, a 90 minute nap episode monitored with polysomnography during which targeted memory 
reactivation (TMR) was applied and a post-nap retest session. Participants returned to the lab the following morning to complete an overnight retest 
(post-night). During the motor task, two movement sequences were learned simultaneously and were cued by two different auditory tones. For each 
movement sequence, the respective auditory tone was presented prior to each sequence execution (i.e. one tone per sequence). One of these specific 
sounds was replayed during the subsequent sleep episode (Reactivated) and the other one was not (Non-reactivated). During the NREM 2–3 stages of 
the post-learning nap, two different sounds were presented. One was the sound associated (Associated) to one of the previously learned sequences, 
that is to the reactivated sequence, and one was novel, that is not associated to any learned material (Unassociated). (b) Stimulation protocol. Stimuli 
were presented during three-minute stimulation intervals of each cue type alternating with a silent 1 minute period (rest intervals). The inter-stimulus 
interval (ISI) was of 5 sec. The stimulation was manually stopped when the experimenter detected REM sleep, NREM1 or wakefulness.
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Block effect (F(2,46) = 1.56; p-value = 0.22). Similar to above, the main effect of Condition (F(1,23) = 
0.04; p-value = 0.85) and the Block by Condition interaction (F(2,46) = 1.81; p-value = 0.18) were not 
significant. Altogether, these results indicate that a performance plateau was ultimately reached and 
both sequence conditions were learned similarly (Figure 2a).

Post-nap and post-night offline changes in performance were then computed for both conditions 
as the relative change in speed between the three plateau blocks of the pre-nap test and the first four 
blocks of the post-nap and post-night sessions, respectively. As such, improvement in performance 
from training to retest (i.e. faster performance at retest compared to training) was reflected by posi-
tive offline changes in performance. A repeated measures analysis of variance (rmANOVA) performed 
on offline changes in performance with Time-point (post-nap vs. post-night) and Condition (reacti-
vated vs. non-reactivated) as within-subject factors showed a significant Time-point effect, whereby 
changes in performance were significantly higher at the post-night as compared to the post-nap retest 
(F(1,23) = 46.53; p-value = 5.89e-7; η²=0.67; Figure 2b). Critically, offline changes in performance for 
the reactivated sequence were significantly higher than for the non-reactivated sequence (Condition 
effect: F(1,23) = 4.75; p-value = 0.0397; η²=0.17). The Condition by Time-point interaction was not 
significant (F(1,23) = 7.42e-4; p-value = 0.98). In conclusion, our behavioral results indicate a TMR-
induced enhancement in performance that did not differ across nap and night intervals.

Electrophysiological data
Participants’ sleep was recorded using a 6-channel EEG montage during a 90-min episode following 
learning. Sleep was monitored online and sounds were presented during NREM sleep stages. Sleep 
characteristics resulting from the offline sleep scoring as well as the distribution of auditory cues 
across sleep stages are shown in in Supplementary file 1. Briefly, results indicate that all the partici-
pants slept during the nap (average total sleep time: 67 min; average sleep efficiency: 74.9%) and that 
cues were accurately presented in NREM sleep (average stimulation accuracy: 88.4%).
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Figure 2. Behavioral results. (a) Performance speed (N = 24; mean reaction time in ms) across participants plotted as a function of blocks of practice 
during the pre- and post-nap sessions (+/-standard error in shaded regions) for the reactivated (magenta) and the non-reactivated (blue) sequences 
and for the random SRTT (Black overlay). (b) Offline changes in performance speed (N = 24; % of change) averaged across participants (box: median 
(horizontal bar), mean (diamond) and first(third) as lower(upper) limits; whiskers: 1.5 x InterQuartile Range (IQR)) for post-nap and post-night time-
points and for reactivated (magenta) and non-reactivated (blue) sequences. Using a repeated-measure ANOVA, the results highlighted a main effect of 
Time-point (***: p-value <0.001) and a main effect of Condition (*: p-value <0.05). Note that the main effect of condition is marginally significant when 
excluding the extreme participant (p=0.077).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Behavioral results on performance accuracy.

Figure supplement 2. Behavioral results per sequence.

https://doi.org/10.7554/eLife.73930
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Event-related analyses
Event-related analyses assessed the effect of the sound condition (i.e. associated vs. unassociated) 
on both the potentials (ERP) but also the oscillatory activity (time-frequency analyses) evoked by the 
auditory cues.

For the analyses of the auditory evoked potentials, we first computed ERPs on each EEG channel 
(see Figure 3—figure supplement 1 for channel level data) separately for associated and unasso-
ciated auditory cues presented during NREM2-3 stages and subsequently averaged ERPs across 
channels (Figure 3a). ERP amplitude was extracted for the 2 conditions from the temporal window 
highlighted in Figure  3a in which the amplitude of the auditory responses across conditions was 
significantly lower (trough) than zero (from 0.44 to 0.63 s relative to cue onset, see Figure 3—figure 
supplement 2 and Figure 3—figure supplement 3 for across- and within-channel level data, respec-
tively). Between-condition comparisons using Wilcoxon signed-rank test showed that the amplitude 
of the ERP trough was significantly deeper (V=75, p-value = 0.016) following associated as compared 
to unassociated cues (Figure 3b).

For the analyses of the auditory evoked oscillatory activity, we investigated whether EEG sigma 
oscillation power (12–16 Hz) evoked by the auditory cues on each channel was modulated by the 
different stimulation conditions in the 2.5 s following the cue onset. Note that, for completeness, time-
frequency analyses were performed on a wider frequency range (5–30 Hz) and that analyses outside 
the sigma band were considered as exploratory. Cluster Based Permutations (Maris and Oostenveld, 
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Figure 3. Event-related potentials (ERP). (a) Potentials averaged across all EEG channels and all participants (N = 24; +/-standard error in shaded 
regions) evoked by the associated (magenta) and the unassociated (yellow) auditory cues from –0.3 to 2.5 s relative cue onset. The gray region 
represents the temporal window (trough) in which ERPs across conditions were significantly different from zero. (b) ERP amplitude (N = 24; box: median 
(horizontal bar), mean (diamond) and first(third) as lower(upper) limits; whiskers: 1.5 x IQR) extracted from the temporal window highlighted in panel a, 
that is at 0.44 – 0.63 s post-cue onset (trough) in each condition. *: p-value <0.05 (Wilcoxon signed-rank test).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Topography of event-related potentials.

Figure supplement 2. Event-related potential across conditions.

Figure supplement 3. Topography of event-related potentials.
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2007) (CBP) tests computed on power averaged across all channels did not highlight any significant 
clusters between the two auditory cues.

Sleep event detection
Slow waves (SWs) and spindles were detected automatically (Vallat, 2020) on all EEG channels in all 
NREM2-3 sleep epochs (thus including associated and unassociated sound stimulation intervals as 
well as non-stimulation intervals, see Figure 1b). The detection tool identified on average 424.8 [95% 
CI 328–521.6] slow waves and 98 [95% CI: 82.8–113.2] spindles averaged across channels during the 
nap episode (see methods for details on the detection algorithms and in Supplementary file 2 for the 
number of events detected on each channel and each condition).

Concerning the detected SWs (Figure 4a), both peak-to-peak (PTP) amplitude and density (aver-
aged across all EEG channels) were greater for the associated as compared to the unassociated stim-
ulation intervals (amplitude: t=2.7; df = 21; p-value = 0.009; Cohen’s d=0.55; and density V=197; 
p-value = 0.01; r=0.58). Exploratory analyses including the detected SWs in the non-stimulation (rest) 
intervals did not highlight PTP amplitude differences between the rest intervals and the two types 
of stimulation intervals (rest vs. associated: t=0.82; df = 21; p-value = 0.42; rest vs. unassociated: 
t=–0.92; df = 21; p-value = 0.42; Figure 4b–c). However, SW density was significantly lower during 
the rest as compared to the stimulation intervals, regardless of the cue type (rest vs. associated: 
V=232; p-uncorrected=0.0002; p-FDR=0.0004; r=0.66; rest vs. unassociated: V=224; p- uncorrected = 
0.0008; p-FDR=0.00081; r=0.6; Figure 4d). Altogether, these results indicate that auditory stimulation 
induced an overall increase in SW density, and, more importantly, that the associated sounds resulted 
in an increase in SW amplitude and density as compared to the unassociated sounds.

Sleep spindle density averaged across all channels did not differ between associated and unassoci-
ated stimulation intervals (V=98, p-value = 0.89). Similarly, exploratory analyses on additional spindle 
features including amplitude and frequency did not yield any significant differences between stimula-
tion conditions (all p-values > 0.2). As no effect of stimulation was observed on spindle characteristics, 
the two conditions were pooled together in exploratory analyses including spindles detected during 
rest intervals (Figure 5). Results show that spindle density did not differ between stimulation and 
rest intervals (V=97, p-value = 0.22). Interestingly, the difference in spindle amplitude was marginally 
significant with higher amplitudes during the auditory stimulation intervals as compared to the rest 
intervals (V=199; p-value = 0.065; r=0.73), whereas spindle frequency showed the opposite pattern 
(t=–3.42; df = 22; p-value = 0.005; Cohen’s d=0.71). In summary, these results indicate that while audi-
tory stimulation altered spindle features (frequency and amplitude to a lesser extent) as compared to 
rest, the two sound conditions did not differently influence these characteristics.

Phase-amplitude coupling
We investigated whether the phase of the slow oscillations in the 0.5–2 Hz frequency band was coupled 
to the amplitude of sigma (12–16 Hz) oscillations following either the auditory cue or the negative 
peak of the detected (i.e. spontaneous) SWs. The analyses presented below focus on the comparison 
between conditions but see Figure 6—figure supplement 1 for coupling analyses performed within 
each stimulation condition and at rest.

Event-related phase-amplitude coupling (ERPAC) analyses were performed across channels on a 
wider frequency range (7–30 Hz) for completeness; thus, analyses outside the pre-registered sigma 
band (see red frame in Figure 6) are considered exploratory. The ERPAC values locked to the auditory 
cues were compared between the two stimulation conditions. The CBP test did not highlight any 
significant clusters (alpha threshold = 0.025, cluster p-value = 0.44). The preferred coupling phase, 
which represents the phase at which the maximum amplitude is observed, did not significantly differ 
between conditions (F(1,46) = 0.3, p-value = 0.9). These results suggest that the stimulation condi-
tions did not influence the coupling between the phase of the slow oscillations and the amplitude of 
sigma oscillations at the auditory cue.

Comparison of the ERPAC locked to the negative peak of the SWs (Figure  6 and Figure  6—
figure supplement 2 for channel level data) between stimulation conditions revealed a significant 
cluster (alpha threshold = 0.025, cluster p-value = 0.024; Cohen’s d=–0.56). Specifically, the coupling 
between the phase of the signal in the 0.5–2 Hz frequency band and the amplitude of the signal in 
the 14–18 Hz frequency band was significantly stronger around the negative SW peak (from –0.8 to 

https://doi.org/10.7554/eLife.73930


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Nicolas et al. eLife 2022;11:e73930. DOI: https://doi.org/10.7554/eLife.73930 � 7 of 26

20µV

- 60

-400 800 ms0 -400

0

- 20

- 40

- 80

a. Detected slow waves: Group average

b. Zoom at Nega�ve Peak 

-90

-70

-60 µV

100 ms-100 0

-80

c. Peak-to-Peak

125

150 µV

100
* n.s.

n.s.

Am
pl

itu
de

Condi�ons UnassociatedRest Associated

d. Density

10

20

** ******

25

0

Sl
ow

 w
av

es
 p

er
 m

in
ut

es

15

5

Figure 4. Detected Slow Waves (SWs). (a) Average at the negative peak (N = 22; +/-standard error) across all 
detected slow waves on all channels during the associated (magenta) and unassociated (yellow) stimulation 
intervals as well as in the rest (i.e. unstimulated) intervals (gray). (b) Zoom on the negative peak of the detected 
SWs. Shaded regions represent SEM. (c) Peak-to-peak SW amplitude (μV) was higher for associated as compared 
to unassociated sounds (Student t-test). (d) SW density (number of SWs per total time in minutes spent in 
stimulation or rest intervals) was higher during stimulation as compared to rest intervals and for associated as 
compared to unassociated sounds (Wilcoxon signed-rank test). Box: median (horizontal bar), mean (diamond) and 
first(third) as lower(upper) limits; whiskers: 1.5 x IQR; *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001; n.s.: 
not significant .
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0.2 s relative to negative peak) during unassociated as compared to associated stimulation intervals 
(Figure 6b). The exploratory comparison between rest and associated stimulation intervals did not 
reveal any significant clusters (alpha threshold = 0.025, all cluster p-values > 0.6) but a significant 
cluster was observed between unassociated stimulation and rest (alpha threshold = 0.025, cluster 
p-value = 0.001; Cohen’s d=0.53; Figure 6c). This cluster was observed between 13.5 and 20 Hz and 
–1–0.5 s around the negative peak of the SW. The preferred phases in each of the conditions were not 
significantly different (associated vs. unassociated: F(1,42) = 0;007, p-value = 0.94; associated vs. rest: 
F(1,42) = 0.01, p-value = 0.91; unassociated vs. rest: F(1,42) = 0.3, p-value = 0.87; see Figure 6—figure 
supplement 1). Altogether, these results suggest that slowand sigma oscillation coupling observed 
just before the onset of the SW was stronger during unassociated as compared to associated and rest 
intervals but that the preferred coupling phase was not modulated by the experimental conditions.

Correlational analyses
Correlation analyses between the TMR index (i.e. the difference in offline changes in performance 
– averaged across time points – between the reactivated and the non-reactivated sequence) and 
the density of SW and spindles as well as with the amplitude of the ERP did not yield any significant 
results (density of spontaneous SW: S=2486, p-value = 0.97) density of spontaneous spindles S=1412, 
p-value = 0.24; amplitude of the negative peak of the ERP S=2282, p-value = 0.73. However, the 
correlational CBP analysis between the TMR index and the difference in TF power elicited by the 
different auditory cues highlighted one significant cluster (alpha threshold = 0.025, cluster centered 
on 0.5 s post-cue p-value = 0.022, rho = - 0.46; Figure 7a and Figure 7—figure supplement 1 for 
channel level data). For illustration purposes, we extracted the difference in TF power within the signif-
icant cluster included in the pre-registered frequency band (12–16 Hz) and from 0.35 to 1 s post-cue 
onset (see Figure 3). The resulting scatter plot presented in Figure 7b indicates that higher TMR 
index (i.e. greater behavioral benefit of TMR) was related to higher sigma oscillation power for the 
unassociated compared to the associated sound condition.

Finally, with respect to ERPAC-TMR index correlation analyses, no significant correlation was 
observed between the auditory-locked ERPAC metrics and the TMR index (alpha threshold = 0.025, 
cluster p-values >0.09). In contrast, cluster-based permutation correlational tests performed between 
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Figure 5. Detected spindles. 
 (a) Spindle density (number of spindles per total time in minute spent in stimulation or rest intervals) did not 
differ between stimulation intervals (irrespective of sound type; black) and rest (gray) intervals (Wilcoxon signed-
rank test). (b) Spindle frequency (Hz) was lower during stimulation as compared to rest intervals (Student t-test). 
(c) Spindle amplitude (µV) was higher during stimulation as compared to rest intervals. All spindle features were 
averaged across channels (Wilcoxon signed-rank test). N = 23; Box: median (horizontal bar), mean (diamond) and 
first(third) as lower(upper) limits; whiskers: 1.5 x IQR; **: p-value <0.01; n.s.: not significant.
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the 12 and 16 Hz TFR SW-locked ERPAC difference between the two conditions and the TMR index 
revealed a significant cluster. Results show that the associated vs. unassociated difference in coupling 
strength between the phase of the signal in the 0.5–2 Hz frequency band and the amplitude of the 
signal in the 14.5–17 Hz frequency band, just after the SW peak (0.5 and 1 s), was positively correlated 
with the TMR index (alpha threshold = 0.025, cluster p-value = 0.0499, rho = 0.55; Figure 8a and 
Figure 8—figure supplement 1 for channel level data). For illustration purposes, we extracted the 
difference in ERPAC in the significant cluster included in the pre-registered frequency band (between 
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Figure 6. Event related phase-amplitude coupling locked to the detected slow wave negative peaks. 
 (a) Time-Frequency Representation (TFR) of group average (N = 22) coupling strength between the phase of the 0.5–2 Hz frequency band and the 
amplitude from 7 to 30 Hz (y-axis) from –1 to 2 s (x-axis) relative to SW negative peak for the three interval types. (b) ERPAC was significantly higher 
during the unassociated as compared to the associated sound intervals in the highlighted cluster (cluster-based permutation test). (c) ERPAC was 
significantly higher during the unassociated sound as compared to the rest intervals in the highlighted cluster (cluster-based permutation test). Red 
frames indicate the pre-registered sigma frequency band of interest. Superimposed on the TFR in panels b and c (black line): SW grand average across 
individuals and conditions (N = 22; y-axis on right).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Preferred phase.

Figure supplement 2. Topography of the phase-amplitude coupling locked to the detected slow wave negative peaks.

Figure supplement 3. Correlation between SW-locked phase-amplitude coupling during unassociated intervals and SW features (left panel: peak-to-
peak amplitude, right panel: density).

https://doi.org/10.7554/eLife.73930
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Figure 7. Correlation between power difference and TMR Index. 
 (a) Time-Frequency Representation (TFR) of the rho values issued from the correlation between the TMR index and the difference between the power 
elicited by the associated auditory cues and the unassociated ones (N = 24). Highlighted, the negative clusters in which the TMR index is significantly 
correlated with the difference in power (cluster-based permutation test). Red frame indicates the pre-registered sigma frequency band of interest. 
Superimposed on the TFR (black line): Grand average across individuals (N = 24) and conditions of event related potentials elicited by the auditory cues 
(y-axis on right). (b) Negative correlation between the difference in power elicited by the associated and unassociated cues (0.35–1 s post-cue, 12–16 Hz) 
and the TMR index (dots represent individual datapoints).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Topography of the correlation between power difference and TMR Index.
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Figure 8. Correlation between SW-locked event related phase-amplitude coupling difference and TMR Index. 
 (a) Time-Frequency Representation (TFR) of the rho values issued from the correlation between the TMR index and the difference between the 
SW-locked ERPAC during the associated vs. unassociated stimulation intervals (N = 22). Highlighted, the positive cluster in which the TMR index is 
significantly correlated with the difference in SW-locked ERPAC (cluster-based permutation test). Superimposed on the TFR (black line): SW grand 
average across individuals and conditions. Red frame highlights the pre-registered sigma frequency band of interest. (b) Positive correlation between 
the SW-locked ERPAC difference (0.55–1.05 s post negative peak, 14.5–17 Hz) and the TMR index (dots represent individual datapoints).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Topography of the correlation between SW-locked phase-amplitude coupling difference and TMR Index.

https://doi.org/10.7554/eLife.73930
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14.5 and 16 Hz) from 0.55 to 1.05 s. The resulting scatter plot (Figure 8b) indicates that the stronger 
the phase-amplitude coupling during associated as compared to the unassociated stimulation inter-
vals, the higher the TMR index.

Discussion
In the present study, we examined the impact of auditory TMR on motor memory consolidation as well 
as the neurophysiological processes supporting reactivation during sleep. Our results demonstrate a 
TMR-induced behavioral advantage such that offline changes in performance were larger on the reac-
tivated as compared to the non-reactivated sequence. These behavioral results are in line with earlier 
motor learning studies showing improvement in performance after auditory (Schönauer et al., 2014; 
Antony et al., 2012; Cousins et al., 2016) or olfactory (Laventure et al., 2016) TMR during sleep. 
As opposed to earlier TMR research though, the current results suggest that TMR-induced consolida-
tion is not a protracted process that needs additional time and/or sleep to develop (Cairney et al., 
2018), as a behavioral advantage could already be observed immediately after the TMR episode. 
Also, in contrast to earlier work showing that TMR effects can be transient (Cousins et al., 2016), 
the current data indicate that the effect of TMR on motor performance was sustained overnight. It 
remains unclear whether these discrepancies are related to the nature of the task (e.g. declarative vs. 
motor), the sensory stimulus used for reactivation (words vs. sound) or the duration of the reactivation 
/ sleeping episode (nap vs. night). Nevertheless, our findings suggest that the TMR episode during a 
nap immediately following learning set the reactivated memory trace on a distinct yet parallel trajec-
tory as compared to the non-reactivated memory trace.

TMR effects were also observed at the brain level such that electrophysiological responses differed 
according to whether they were evoked by associated or unassociated cues. Specifically, the ampli-
tude of the negative component of the auditory ERP was higher for the sounds associated to the 
motor memory task as compared to the unassociated sounds. These results are in line with find-
ings from earlier associative learning studies performed during wakefulness showing that auditory 
cues evoke larger responses after conditioning (i.e. after they are associated to another stimulus) 
and that ERP amplitude is restored to pre-association levels after extinction (see Christoffersen and 
Schachtman, 2016 for a review). The current findings also extend prior observation of a modulation 
of auditory-TMR-evoked responses during sleep (Rudoy et al., 2009). This earlier study showed that 
auditory cues presented during post-learning sleep evoked larger ERPs when they were associated 
to items better remembered at subsequent recall as compared to cues associated to less remem-
bered items. Our findings not only concur with this post-hoc analysis, but also provide the first direct 
evidence of an ERP modulation based on the memory content of the cue during post-learning sleep. 
This difference in brain potentials during sleep might be seen as the neural signature of the plasticity 
processes that occurred during learning. Not exclusive to the previous speculation, such effects might 
also be attributed to the (re)processing of the memory trace during post-learning sleep. Importantly, 
one could argue that the difference in ERP amplitude observed in the present study might be due 
to familiarity effects, as the unassociated sound might have been perceived as novel as compared 
to the associated sound. We argue that this is unlikely as new or rare auditory stimuli usually present 
larger negative amplitudes as compared to old or frequent sounds during both sleep and wakefulness 
(e.g. FN 400 [Rugg and Curran, 2007; Paller et al., 2012]) for old/new paradigms during wake and 
mismatch negativity components for oddball paradigms during both wake and sleep (Näätänen et al., 
2007; Ruby et al., 2008). Instead, we propose that the auditory evoked brain responses observed 
in the current study reflect the (re)processing of the motor memory trace that was encoded during 
initial learning. It is worth noting that the negative peak of the potential evoked by the unassociated 
cues was not only lower (i.e. less negative) than for the associated cues but was also sometimes even 
absent on some channels (see Figure 3—figure supplement 1). These observations are partly in line 
with earlier research (Cairney et al., 2018) but contradict other findings. For example, Weigenand 
et al., 2016 as well as Schreiner and Rasch, 2015 observed significant negative responses evoked by 
control sounds or by sounds that were associated to later forgotten items. These discrepancies remain 
unclear but might in part be explained by methodological differences that are known to influence the 
amplitude of ERPs (e.g. sleep cycle stimulated, electrode(s) examined, number of stimulation repeti-
tions provided).

https://doi.org/10.7554/eLife.73930
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In addition to the modulation of auditory-evoked responses described above, the properties of 
the detected (spontaneous) SWs were influenced by sound presentation and sound condition. Specif-
ically, SW density was higher during sound presentation as compared to rest and the density and 
amplitude of the SWs were greater during intervals of associated – as compared to unassociated – 
cue stimulation. The effect of sound presentation on SW characteristics is in line with previous work 
showing sound-related entrainment of SW trains and increase in SW amplitude during sleep (Ngo 
et al., 2013a; Ngo et al., 2013b; Ngo et al., 2015; Ngo et al., 2019). More importantly, in line 
with the ERP results, our data show that the memory content of the cue modulated SW physiology 
above and beyond the mere effect of sound presentation. This is the first evidence, to the best of our 
knowledge, of a modulation of SW physiology based on the relevance of the sensory cues presented 
during sleep. We speculate that the processing of the memory content associated to the cue resulted 
in enhanced SW activity. Specifically, the greater amplitude of the SWs during associated sound inter-
vals might reflect neural synchronization (Carrier et al., 2011; Esser et al., 2007) known to promote 
sleep-dependent plasticity processes for example (Born and Wilhelm, 2012; Ngo et al., 2013b). We 
thus propose that the TMR-effect observed in this study might therefore be mediated by SWs likely 
in relation with spindle activity.

While the characteristics of spontaneous spindles (amplitude and frequency) were only modulated 
by sound presentation and not sound condition, the properties of sigma oscillations (i.e. its amplitude 
and its coupling with the SO phase) were differently affected by the cue type and related to the TMR-
induced behavioral advantage. The observation of a modulation of spindle characteristics irrespective 
of the sound condition suggests that spindle activity (in term of events) during reactivation is not 
related to motor memory processing per se. This stands in contrast with earlier reports of spindle-
mediated effect of TMR on the consolidation of both declarative (Cairney et al., 2018) and motor 
(Laventure et al., 2016; Cousins et al., 2016) memory tasks. It is worth noting, however, that this 
earlier work did not compare different stimulus conditions as in the present study. Nonetheless, this 
previous research demonstrated that reactivation was related to an increase in spindle features (ampli-
tude and frequency) that were linked to the TMR-induced motor performance advantage (Laventure 
et al., 2016).

Importantly, it is worth explicitly stating that our results do not rule out the involvement of spindle 
activity in TMR-related motor memory consolidation processes. Recent evidence has brought forward 
the idea that spindle event detection in general is less sensitive than the study of the sigma rhythm 
as a whole (Dimitrov et al., 2021). In line with these observations, our results show that sigma oscil-
lation properties – as opposed to spindle events – were modulated by the sound condition and that 
such modulation was related to the TMR-induced behavioral advantage. Specifically, higher coupling 
between sigma oscillation amplitude and the SO phase, for associated as compared to unassociated 
sounds, on the descending phase following the peak of the SW was correlated with the TMR index. 
To the best of our knowledge, this is the first time that the strength of the coupling between the SO 
phase and the amplitude of the sigma oscillations nested within the peak of the SW is directly related 
to a TMR-related behavioral advantage. Earlier studies comparing different age groups provided 
convincing, yet indirect, evidence that the precise temporal coordination of SO and sleep spindles 
represents a critical mechanism for sleep-dependent memory consolidation (Muehlroth et al., 2019; 
Helfrich et al., 2018). The timing reported in this earlier work is consistent with the current data 
showing increased SW-sigma coupling on the descending phase following the peak of the SW. Our 
results are also in line with previous frameworks proposing that sigma oscillation (Cairney et al., 2018) 
/ spindles (Antony et al., 2019) offer a privileged time window for relevant memories to be reinstated 
during sleep. Together with evidence that TMR boosted SW features, the current data suggest that 
both SWs and sigma oscillations play a critical role in the reactivation of motor memories.

In addition to the modulation of neurophysiological responses described above and triggered by 
the associated sounds, we report an intriguing pattern of brain results for the unassociated sounds. 
Specifically, the coupling between sigma amplitude and the SO phase was strengthened for unas-
sociated sounds just before the onset of the SW negative peak. Furthermore, we observed that the 
increase in sigma power nested in the trough of the auditory evoked potential for unassociated (as 
compared to associated) sounds was related to higher TMR-induced performance enhancement. It is 
tempting to speculate that sigma oscillations might prevent the processing of unassociated/irrelevant 
sounds during post-learning sleep which might in turn be reflected by a decrease in the amplitude 
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of the slow electrophysiological responses (i.e. smaller ERP and SWs) during non-associated sound 
intervals. We argue that sigma oscillations might play the role of a gatekeeper for the consolidation 
process and protect the motor memory trace against potential interfering effects induced by the 
unassociated sounds which might in turn potentiate the effect of TMR at the behavioral level. In order 
to further examine this possibility, we performed additional exploratory analyses testing for potential 
relationships between the SW-sigma coupling observed during unassociated stimulation intervals and 
slow electrophysiological responses (see Figure 6—figure supplement 3). Results showed a nega-
tive correlation between SW-sigma coupling and SW features such that higher coupling was related 
to lower SW amplitude and density during unassociated stimulation intervals. These results provide 
further support for the protective effect of sigma oscillations (nested in the trough of slow oscillations) 
against potential interfering effects induced by the unassociated sounds. These assumptions are also 
in line with a growing body of literature pointing towards a sensory gating role of spindle activity / 
sigma oscillations (Dang-Vu et al., 2011; Schabus et al., 2012) that might be critical to facilitate the 
memory consolidation process during sleep (Schreiner and Staudigl, 2020; Antony et al., 2019). 
Specifically, it has been proposed that a function of the thalamus is to suppress distraction and gate 
information processing via alpha/beta oscillations during wakefulness (Jensen and Mazaheri, 2010) 
and sigma oscillations during sleep (Chen et al., 2015). Further support for the gating hypothesis 
comes from observations of both increased arousal threshold as well as decreased amplitude of audi-
tory ERP when sounds are presented simultaneously to a spindle event (Yamadori, 1971; Cote et al., 
2000). Along the same lines, previous studies using simultaneous EEG-fMRI recordings showed that 
the BOLD responses in relation to sound processing are inconsistent or even absent when sounds 
occur during sleep spindles or before the negative peak of the SW (Dang-Vu et al., 2011; Schabus 
et al., 2012). The present data therefore suggest that the precise SO-sigma coordination does not 
only play a role in the reinstatement of relevant memories, but is also critical to prevent the processing 
of irrelevant information during post-learning sleep. These observations are remarkably in line with 
recent theoretical views putting forward the concept that temporally precise SO-spindle coupling 
might not convey only memory-specific information (Helfrich et al., 2021). It is argued that while 
synchronized states might trigger memory reactivation, the underlying neural activity might offer 
limited opportunities for information processing. Our data concur with this theory as they suggest 
that SO-sigma coupling, depending on its temporal characteristics, either prevents the processing of 
irrelevant information or supports memory reactivation during post-learning sleep.

In conclusion, our results depict a complex organization of the different physiological processes 
supporting motor memory consolidation during post-learning sleep. While associated sounds 
appeared to boost SW features and SO-sigma coupling at the peak of the SW, unassociated sounds 
predominantly modulated the properties of the sigma oscillations at the trough of the slow oscillation. 
Our findings suggest a dual role of sigma oscillations whereby, depending on their temporal coordi-
nation with SWs, they either protect memories against irrelevant material processing or promote the 
reactivation of relevant motor memories; two processes that critically contribute to the motor memory 
consolidation process.

Materials and methods
This study was pre-registered in the Open Science Framework (https://osf.io/). Our pre-registration 
document outlined our hypotheses and intended analysis plan as well as the statistical models used 
to test our a priori hypotheses (available at https://osf.io/y48wq). Whenever an analysis presented 
in the current paper was not pre-registered, it is referred to as exploratory. Additionally, to increase 
transparency, any deviation from the pre-registration is marked with a (#) symbol and listed in Supple-
mentary file 3 together with a justification for the change.

Participants
Young healthy volunteers were recruited by local advertisements to participate in the present study. 
Participants gave written informed consent before participating in this research protocol, approved by 
the local Ethics Committee (B322201525025) and conducted according to the declaration of World 
Medical Association, 2013. The participants received a monetary compensation for their time and 
effort. Inclusion criteria were: (1) left- or right-handed# (see point #1 of Supplementary file 3); (2) no 
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previous extensive training with a musical instrument or as a professional typist, (3) free of medical, 
neurological, psychological, or psychiatric conditions, including depression and anxiety as assessed 
by the Beck’s Depression (Beck et al., 1996) and Anxiety (Beck et al., 1988) Inventories, (4) no indi-
cations of abnormal sleep, as assessed by the Pittsburgh Sleep Quality Index (Buysse et al., 1989); 
(5) not considered extreme morning or evening types, as quantified with the Horne & Ostberg chro-
notype questionnaire (Horne and Ostberg, 1976); and, (6) free of psychoactive or sleep-affecting 
medications. None of the participants were shift-workers or took trans-meridian trips in the 3 months 
prior to participation.

The sample size was determined with a power analysis performed through the G*Power software 
(Faul et al., 2007) and based on the paper of Cousins et al., 2016 which reports, to our knowledge, the 
closest paradigm to the present one in the motor memory domain (see details in the pre-registration). 
Sample size was estimated to 24 participants. Thirty-four participants took part in the study to reach 
this estimated sample size after participant exclusion. As per our pre-registration, participants were 

Table 1. Participant characteristics and sleep characteristics leading up to the experimental session 
and vigilance assessments at time of testing.

N 24 (12 females)

Age (yrs) 21.9 ranging from 18 to 27

Edinburgh Handedness (Oldfield, 1971) 78.6 [57.1–100]

Epworth Sleepiness Scale (Hoddes et al., 1972) 7 [5.9–8.1]

Beck Depression Scale (Beck et al., 1996) 1.5 [0.9–2.2]

Beck Anxiety Scale (Beck et al., 1988) 1.8 [1.1–2.4]

PSQI (Buysse et al., 1989) 3 [2.2–3.8]

Chronoscore (CRQ)(51) 48.8 [45.6–51.9]

Sleep durationa

Mean across the 3 nights (minutes)

Night 1 481.5 [461.5–501.5]

Night 2 488.2 [471.2–505.2]

Night 3 502 [482.1–521.8]

St. Mary’s questionnaire on Night 3 quality

Quality 4.7 [4.3–5.1]

Duration (minutes) 443.5 [423.3–463.8]

Psychomotor Vigilance Taskb

Pre-nap 300.2ms [289.7–310.6]

Post-nap 297.5ms [288.9–306]

Post-night 294.7ms [285.1–304.2]

One-way rmANOVA results F(2,46)=1.47; P-value = 0.24

Stanford sleepiness score

Pre-nap Session 2.4 [2.1–2.7]

Post-nap Session 2.7 [2.3–3.1]

Post-night Session 2.3 [1.9–2.7]

One-way rmANOVA results F(2,46)=1.69; P-value = 0.2

Notes. Values are means [lower and upper limit of the 95% Confidence Interval - CI]. PSQI = Pittsburgh 
Sleep Quality Index; CRQ = Circadian Rhythm Questionnaire. REM: Rapid Eye Movement. a Sleep duration 
was computed as the mean across the actigraphy data and the sleep diary for the three nights before the 
experimental day. b Median of reaction times computed across the 100 trials of each session.

https://doi.org/10.7554/eLife.73930
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excluded if their sleep duration during the experimental nap was insufficient to provide at least 50 
stimulations per condition (after EEG data cleansing). This cut-off aimed at providing enough events 
to reach sufficient signal-to-noise ratio for electrophysiological analyses. Ten participants did not reach 
this criterion; accordingly, 24 participants (12 females) completed the experimental protocol and were 
included in the analyses (see participants’ characteristics in Table 1).

General design
This study employed a within-participant design (Figure 1). Participants were first invited, in the early 
afternoon, for a habituation nap during which they completed a 90-min nap monitored with polysom-
nography (PSG, see below for details). Approximately 1 week later, participants returned to complete 
the experimental protocol. Each participant followed a constant sleep/wake schedule (according to 
their own rhythm +/-1 hr) for the 3 days before the experiment. Compliance was assessed with sleep 
diaries and wrist actigraphy (ActiGraph wGT3X-BT, Pensacola, FL). Sleep quality and quantity for the 
night preceding the experimental visit was assessed with the St. Mary’s sleep questionnaire (Ellis 
et al., 1981; see Table 1 for results about sleep data before the experimental session). During the 
first experimental day, participants were trained on two motor sequences simultaneously (pre-nap 
session: between 12 pm-1:30 pm). During learning, each of these two sequences was associated to a 
particular sound. Only one of these two sounds was presented during the subsequent nap episode, 
corresponding to the associated sound linked to the reactivated sequence. At the behavioral level, 
the control condition consisted of the non-reactivated sequence (i.e. a sequence that was associated 
to a sound during learning but the sound was not presented during the subsequent nap interval). For 
electrophysiological analyses, a new, unassociated, sound (i.e. a sound to which participants were 
not exposed during the learning episode) was presented during the post-learning sleep, serving as 
a control condition. The nap occurred between 1:30 pm and 3 pm and was monitored with PSG. 
Sleep data were monitored online by an experimenter in order to send auditory stimulations during 
NREM2-3 stages. Performance on the reactivated and non-reactivated sequences was tested 30 min 
after the end of the nap to allow sleep inertia to dissipate (post-nap session: 2 pm-5:30 pm) and 
on day 2 after a night of sleep (not monitored with PSG) spent at home (post-night session: 8:30 
am-11:30 am). At the beginning of each behavioral session, vigilance was measured objectively and 
subjectively using the Psychomotor Vigilance Task (Dinges and Powell, 1985) and Stanford Sleep-
iness Scale (Hoddes et al., 1972), respectively (see Table 1). Finally, general motor execution was 
tested at the beginning of the pre-nap session and at the end of the post-night session.

This design allowed to assess the specific impact of TMR on consolidation at the behavioral level, 
with the comparison between the changes in performance of the reactivated and non-reactivated 
sequences assessed during the post-nap and post-night sessions; and at the electrophysiological 
level, with the comparison between the neurophysiological responses to the reactivated associated 
sound vs. the unassociated sound that did not carry mnemonic information.

Stimuli and tasks
All tasks were performed on a laptop computer (Dell Latitude 5,490 run under Microsoft Windows 
10 Enterprise) and were implemented in Matlab (Math Works Inc, Natick, MA, USA) Psychophysics 
Toolbox version 3 (Kleiner, 2007). Participants sat comfortably in front of the computer screen with 
the keyboard on their knees. This configuration allowed the participants to focus their gaze on the 
screen and not to look at their hands/movements. Distance between participants and the screen was 
approximately 70 cm but was self-selected by the participants based on comfort. The sound presen-
tation was conducted using ER3C air tube insert earphones (Etymotic Research).

Acoustic stimulation
Three different 100 ms sounds were randomly assigned to the three conditions (reactivated/associ-
ated, not-reactivated, and unassociated), for each participant. The three synthesized sounds consisted 
of a tonal harmonic complex created by summing a sinusoidal wave with a fundamental frequency of 
543 Hz and 11 harmonics with linearly decreasing amplitude (i.e. the amplitude of successive harmonics 
is multiplied by values spaced evenly between 1 and 0.1); white noise band-passed between 100 and 
1000 Hz and a tonal harmonic complex created with a fundamental frequency of 1480 Hz and 11 
harmonics with linearly increasing amplitude (i.e. the amplitude of successive harmonics is multiplied 
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by values spaced evenly between 0.1 and 1). A 10 ms linear ramp was applied to the onset and offset 
of the sound files so as to avoid earphone clicks. At the start of the experiment, auditory detection 
thresholds were determined by the participants themselves using a transformed 1-down 1-up proce-
dure (Levitt, 1971; Leek, 2001) separately for each of the three sounds. Subsequently, the sound 
pressure level was set to 1000% of the individual auditory threshold during the tasks and 140% for 
auditory stimulation during sleep, thus limiting the risk of awakening during the nap (Sterpenich 
et al., 2014). Before the start of the nap episode, participants were instructed that they may or may 
not receive auditory stimulations during the nap.

Motor task
A bimanual serial reaction time task (Nissen and Bullemer, 1987) (SRTT) was used to probe motor 
learning and memory consolidation processes. During this task, eight squares were horizontally 
presented on the screen meridian, each corresponding to one of the eight keys on the specialized 
keyboard and to one of the 8 fingers (no thumbs). The color of the outline of the squares alternated 
between red and green, indicating rest and practice blocks, respectively. During the practice blocks, 
participants had to press as quickly as possible the key corresponding to the location of a green 
filled square that appeared on the screen. After a response, the next square changed to green with a 
response-to-stimulus interval of 0 ms. After 64 presses, the practice block automatically turned into a 
rest block and the outline of the squares changed from green to red. The rest interval was 15 s.

The order in which the squares were filled green (and thus the order of the key presses) either 
followed a sequential or pseudo-random pattern. In the sequential SRTT, that is assessing motor 
sequence learning, participants were trained simultaneously on two different eight-element sequences 
(sequence A: 1 6 3 5 4 8 2 7; sequence B: 7 2 6 4 5 1 8 3, in which 1 through 8 are the left pinky to the 
right pinky fingers respectively). Participants were explicitly told that the stimuli (and thus the finger 
presses) would follow two different repeating patterns composed of eight elements each, but were 
not told any further information. During each practice block, four repetitions of a specific sequence 
(e.g. sequence A) were performed, each separated by a 1 sec-interval. Then, after a 2 sec-interval, 
the four repetitions of the other sequence started (e.g. sequence B). The order of the two sequences 
was randomized within each block of practice. Each motor sequence was associated to a different 
tone that consisted of a single 100 ms auditory cue (see above). The auditory cue was presented 
before the beginning of each sequence repetition, that is before the first key press of the sequence 
that was to be performed. Accordingly, one single tone was associated to an eight-element sequence 
of finger movements. Participants were instructed to learn the sequence-sound association during 
task practice. The associations between sound-sequence (sounds 1, 2 and 3; sequence A, sequence 
B, and control sound presented during nap) and sequence-condition (sequences A and B; conditions 
reactivated and not-reactivated) were randomized, thus creating 12 different possible combinations 
of randomized variables. Each participant was pseudo-randomly assigned to one of these combina-
tions, such that there were two participants per combination. For the random SRTT, the order of the 
eight keys was shuffled for each eight-element repetition and thus the number of each key press was 
constant across all random and sequential blocks. For both variants of the task, the participants were 
instructed to focus on both speed and accuracy.

For the pre-nap session, participants first completed 4 blocks of the random SRTT to assess general 
motor execution. Participants subsequently completed the sequential SRTT, which consisted of 16 
blocks of training followed by 4 blocks of post-training test taking place after a 5 min break. This 
allowed the assessment of end of training performance after the further dissipation of physical and 
mental fatigue (Pan and Rickard, 2015). For the post-nap session, only 4 blocks of the sequential 
SRTT were completed to avoid extensive task practice before the final overnight retest. For the post-
night session, 16 blocks of the sequential SRTT were performed, followed by 4 blocks of the random 
SRTT.

Between the training and test runs as well as after the post-night session, participants completed 
a generation task that aimed at testing explicit knowledge of the sequences as well as the strength of 
the association between the sequences and their corresponding auditory cues. During the generation 
task, participants were presented with the auditory cues specific to the learned sequences and were 
instructed to self-generate the corresponding motor sequences. Participants completed 4 consec-
utive attempts for each cue / sequence pair. The order of the pairs was randomized. Accuracy was 
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emphasized during this task. A trial was classified as ‘correct’ if the key pressed by the participant 
was in the correct ordinal position with respect to the sequence acoustically cued. The percentage of 
correct ordinal positions was computed per sequence and per attempt. The generation accuracy per 
sequence was computed by averaging across attempts for each time point separately (pre-nap and 
post-night sessions). We tested whether generation accuracy of the reactivated sequence during the 
pre-nap generation task was correlated (Pearson’s correlation) to the TMR index. Results showed that 
there was no significant correlation between generation accuracy and the TMR index (r=0.25, t=1.22, 
df = 22, p-value = 0.24).

Polysomnography and targeted memory reactivation protocol
Both habituation and experimental naps were monitored with a digital sleep recorder (V-Amp, Brain 
Products, Gilching, Germany; bandwidth: DC to Nyquist frequency) and were digitized at a sampling 
rate of 1000 Hz (except for one participant (500 Hz) due to experimental error). Standard electroen-
cephalographic (EEG) recordings were made from Fz, C3, Cz, C4, Pz, Oz, A1, and A2 according to 
the international 10–20 system (note that Fz, Pz and Oz were omitted during the habituation nap). A2 
was used as the recording reference and A1 as a supplemental individual EEG channel. An electrode 
placed on the middle of the forehead was used as the recording ground. Bipolar vertical and hori-
zontal eye movements (electrooculogram: EOG) were recorded from electrodes placed above and 
below the right eye and on the outer canthus of both eyes, respectively. Bipolar submental electro-
myogram (EMG) recordings were made from the chin. Electrical noise was filtered using a 50  Hz notch. 
Impedance was kept below 5 kΩ for all electrodes. During the experimental nap, PSG recordings were 
monitored by a researcher in order to detect NREM2-3 sleep based on the most recent sleep scoring 
guidelines from the American Academy of Sleep Medicine (Berry, 2018). To do so, PSG recordings 
were displayed online using 30-second-long epochs with EEG and EOG data filtered from 0.5 to 30 Hz 
and EMG data filtered between 20 and 200 Hz. When NREM2-3 sleep stages were reached, auditory 
cues were sent. The auditory stimulation was presented in a blocked design (Figure 1B). Namely, each 
type of auditory cue (associated or unassociated) was sent during 3-min-long stimulation intervals 
with an inter-stimulus interval of 5 s. The stimulation was stopped manually when the experimenter 
detected REM sleep, NREM1 or wakefulness. Intervals of stimulation for each sound were separated 
by a 1 min silent period (rest intervals).

Analysis
Statistical tests were performed with the open-source software (R Development Core Team, 2020; 
RStudio Team, 2020) and considered significant for p<0.05. When necessary, corrections for multiple 
comparisons was conducted with the False Discovery Rate (Benjamini and Hochberg, 1995) (FDR) 
procedure within each family of hypothesis tests (see details for each analysis below). Greenhouse-
Geisser corrections was applied in the event of the violation of sphericity. Wilcoxon signed-rank tests 
were used when the Shapiro-Wilk test indicated non-normal distribution# (see point #6 of Supplemen-
tary file 3). F, t and V (or W) statistics and corrected p-values were therefore reported for ANOVAs, 
Student and Wilcoxon tests, respectively. Effect sizes are reported for significant comparisons using 
Cohen’s d for Student t-tests, r for Wilcoxon signed-rank test and η² for rmANOVAs using G*power 
(Faul et al., 2007). For correlation analyses, Spearman# test (see point #6 of Supplementary file 3) 
was used and S as well as corrected p-values were reported. Nonparametric CBP tests (Maris and 
Oostenveld, 2007) implemented in fieldtrip toolbox (Oostenveld et al., 2011) were used for high 
dimensional time and time-frequency data analyses (e.g. ERP, TF, and PAC analyses). CBP tests are 
composed of two subsequent tests. The first calculates paired t-tests (for contrast analyses) between 
conditions for each time points (or time-frequency points), which are then thresholded at a chosen 
p-value which sets the conservativeness of the test (reported as ‘cluster threshold’). Significant clus-
ters are defined as showing a continuum of significant time (or time-frequency) points. Subsequently, 
the procedure is repeated 500 times on shuffled data in which the condition assignment within each 
individual is permuted randomly. On each permutation, the maximum t-value is retained, yielding a 
distribution of 500 t-values (for contrast analyses). Finally, this distribution is used as a reference to 
determine whether the statistical value (t in case of contrast analyses) of each cluster, as calculated on 
the real assignment of the conditions, is likely to come from the same probability distribution (p-value 
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>0.05) or rather differs significantly from this random perturbation probability distribution (p-value 
<0.05). For CBP contrast analyses, Cohen’s d is reported while rho is reported for CBP correlations.

Behavior
Preprocessing
Motor performance on both the random and sequential SRTT was measured in terms of speed (correct 
response time (RT) in ms) and accuracy (% correct responses) for each block of practice. Note that RTs 
from individual correct trials were excluded from the analyses if they were greater than 3 standard 
deviations above or below the participant’s mean correct response time for that block (1.73% in total). 
Consistent with our pre-registration, our primary analyses were performed on speed.

The offline changes in performance on the sequential SRTT were computed as the relative change 
in speed between the pre-nap session (namely the 3 last blocks of practice#, see results and point #2 
of Supplementary file 3 for details) and the post-nap session (4 blocks of practice) and the post-night 
session (4 first blocks of practice) separately for the reactivated and the non-reactivated sequences. 
A positive offline change in performance therefore reflects an increase of absolute performance from 
the pre-nap test to the post-nap or post-night tests. Additionally, we computed a TMR index, to be 
used in brain-behavior correlation analyses, which consisted of the difference in offline changes in 
performance - averaged across time points - between the reactivated and non-reactivated sequences. 
A positive TMR index reflects higher offline changes in performance for the reactivated as compared 
to the non-reactivated sequence.

Statistical analyses
We first assessed whether performance (speed and accuracy) significantly differs between condi-
tions during initial training. To do so, two two-way rmANOVAs with Condition (reactivated vs. non-
reactivated) and Block (1st rmANOVA on the 16 blocks of the pre-nap training and 2nd rmANOVA 
on the 4 blocks of the pre-nap test) as within-subject factors were performed on the sequential SSRT 
performance. Similar analyses testing for baseline differences between sequences A and B irrespec-
tive of the reactivation condition were performed. The results of these control analyses are presented 
in Figure 2—figure supplement 2. We then tested whether offline changes in performance on the 
sequential SRTT differed between reactivation conditions after a nap and night of sleep. This was 
done with a rmANOVA with Time-point (post-nap vs. post-night) and Condition (reactivated vs. non-
reactivated) as within-subject factors on the offline changes in performance. Finally, to highlight that 
improvement in movement speed was specific to the learned sequences as opposed to general 
improvement of motor execution, we computed the overall performance change for both the sequen-
tial SRTT (first 4 blocks of pre-nap raining vs. 4 last blocks of post-night training collapsed across 
reactivated and non-reactivated sequences) and the pseudo-random version of the SRTT (4 blocks 
pre-nap session vs. 4 blocks post-night session). Two-tailed paired Student t-test revealed that overall 
performance changes in performance were significantly higher for the sequential SRTT as compared 
to the random SRTT (t=21.69, df = 23, p-value <2.2e-16; Cohen’s d=4.43). Thus, the RT decrease 
reported on the sequential SRTT in the result section reflect motor sequence learning rather than a 
mere improvement in motor execution.

Electroencephalography
Offline sleep scoring
A certified sleep technologist blind to the stimulation periods completed the sleep stage scoring 
offline according to criteria defined in Iber and Iber, 2007 using the software SleepWorks (version 
9.1.0 Build 3042, Natus Medical Incorporated, Ontario, Canada). Data were visually scored in 30 s 
epochs and band pass filters were applied between 0.3 and 35 Hz for EEG signals, 0.3 and 30 Hz 
for EOG, and 10 and 100 Hz for EMG. A 50 Hz notch filter was also used (see Table 1 for details of 
extraction from scored data).

Preprocessing
EEG data preprocessing was carried out using functions supplied by the fieldtrip toolbox (Oostenveld 
et al., 2011). Specifically, data were cleaned by manually screening each 30-s epoch. Data segments 
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contaminated with muscular activity or eye movements were excluded. Data were filtered between 
0.1 and 30 Hz.

Event-related analyses
Event-related data analyses (i.e. auditory-evoked potentials and oscillatory activity) were performed 
with the fieldtrip toolbox (Oostenveld et  al., 2011) with down sampled data (100  Hz). Auditory-
evoked responses were obtained by segmenting the data into epochs time-locked to auditory cue 
onset (from –1 to 3 s relative to auditory cue onset after correction for onset-trigger lags) separately 
for the associated and unassociated auditory cues and averaged across all trials# (see point #3 of 
Supplementary file 3) in each condition separately. During cleaning, 1.03% [95% CI: 0.49–1.58] of the 
trials with stimuli sent during NREM2-3 stages were discarded. The remaining number of artifact-free 
trials was not significantly different between the two stimulation conditions (associated vs. unassoci-
ated, t=–0.5888, df = 23, p-value = 0.5617).

For event-related potentials (ERPs) analyses, individual ERPs computed on each channel were base-
line corrected by subtracting mean amplitude from –0.3 to –0.1 s relative to cue onset. As our low-
density EEG montage did not allow to perform fine topographical analyses, ERP data were averaged 
across all 6 EEG channels (but see Figure 3—figure supplement 1 and Figure 3—figure supplement 
3 where channel level data are presented) data. In a first step, we used CBP approaches on ERP data 
computed across conditions to identify specific time windows during which significant brain activity 
was evoked by the auditory stimulation (i.e. where ERPs were significantly greater than zero). Results 
showed that across condition ERP was significantly different from zero between 0.44 and 0.63 sec at 
the trough (alpha threshold = 0.025, cluster p-value = 0.044; Cohen’s d=–0.56; see Figure 3—figure 
supplement 2). In a second step, ERP amplitude was then averaged within this specific time-window 
for the two conditions separately and compared using one-tailed paired Wilcoxon signed-rank test# 
(see point #6 of Supplementary file 3) with the hypothesis that ERP absolute amplitude at the trough 
is greater following the associated cues as compared to unassociated cues.

To analyze oscillatory activity, we computed Time-Frequency Representations (TFRs) of the power 
spectra per experimental condition and per channel. To this end, we used an adaptive sliding time 
window of five cycles length per frequency (Δt=5 /f; 20 ms step size), and estimated power using the 
Hanning taper/FFT approach between 5 and 30 Hz# (see point #4 of Supplementary file 3). Individual 
TFRs were converted into baseline relative change of power (baseline from –0.3 to –0.1 s relative to 
cue onset), thus highlighting power modulation following the auditory cues. All six EEG channels were 
then averaged (but see Figure 7—figure supplement 1 for channel level data). To identify significant 
evoked power modulation, TFR locked to auditory cues were compared between conditions using a 
CBP test between 5 and 30 Hz and from 0 to 2.5 sec relative to cue onset.

Sleep-event detection
Preprocessed cleaned data were down-sampled to 500 Hz and were transferred to the python envi-
ronment. Slow waves and spindles were detected automatically in NREM2-3 sleep epochs on all the 
channels, by using algorithms implemented in the YASA open-source Python toolbox (Vallat, 2020; 
Vallat and Walker, 2021). Concerning the SW detection, the algorithm used is a custom adaptation 
of Massimini et al., 2004 and Carrier et al., 2011. Specifically, data were filtered between 0.3 and 
2 Hz with a FIR filter using a 0.2 Hz transition resulting in a –6 dB points at 0.2 and 2.1 Hz. Then all the 
negative peaks with an amplitude between –40 and –200 μV and the positive peaks with an amplitude 
comprised between 10–150 μV are detected in the filtered signal. After sorting identified negative 
peaks with subsequent positive peaks, a set of logical thresholds are applied to identify the true slow 
waves: (1) duration of the negative peak between 0.3 and 1.5 sec; (2) duration of the positive peak 
between 0.1 and 1 sec; (3) amplitude of the negative peak between 40 and 300 µV; (4) amplitude of 
the positive peak between 10 and 200 µV and (5) PTP amplitude between 75 and 500 µV. Concerning 
spindle detection, the algorithm is inspired from the A7 algorithm described in Lacourse et al., 2019. 
Specifically, the relative power in the spindle frequency band (12–16 Hz) with respect to the total 
power in the broad-band frequency (1–30  Hz) is estimated based on Short-Time Fourier Transforms 
with 2-s windows and a 200ms overlap. Next, the algorithm uses a 300ms window with a step size 
of 100 ms to compute the moving root mean squared (RMS) of the filtered EEG data in the sigma 
band. A moving correlation between the broadband signal (1–30  Hz) and the EEG signal filtered in 
the spindle band is then computed. Sleep spindles are detected when the three following thresholds 
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are reached simultaneously:(1) the relative power in the sigma band (with respect to total power) is 
above 0.2 (2) the moving RMS crosses the RMSmean +1.5 RMSSD threshold and (3) the moving correla-
tion described is above 0.65. Additionally, detected spindles shorter than 0.5  s or longer than 2  s 
were discarded. Spindles occurring in different channels within 500ms of each other were assumed to 
reflect the same spindle. In these cases, the spindles are merged together.

SWs and spindles were detected in the stimulation intervals of both associated and unassociated 
sounds. One participant did not show any SW during the unassociated cue stimulation intervals and 
the minimal required number of SWs was not reached to perform the PAC in another participant. The 
two participants were thus excluded from the analyses on detected SWs. No spindles were detected 
during the associated cue stimulation intervals for another participant who was therefore excluded 
from the spindle analyses. With respect to the detected SWs, we extracted for each participant, each 
condition and channel, the mean PTP amplitude (µV) of SWs# (see point #3 of Supplementary file 3) 
as well as their density (number of SWs per total time in minutes spent in stimulation or rest intervals). 
These characteristics were then averaged across channels. Concerning the spindles, we extracted for 
each participant, condition and channel, spindle density (i.e. the number of spindles per total time in 
minutes spent in stimulation or rest intervals). Spindle amplitude (computed as the PTP amplitude (µV) 
in the sigma-filtered data) and frequency were also extracted for exploratory analyses. These different 
dependent variables were then averaged across channels and were compared using a one-tailed 
paired Student t-test (SW PTP and spindle Frequency) or Wilcoxon signed-rank (SW density, spindle 
density and amplitude) test# (see point #6 of Supplementary file 3) with the hypothesis that the asso-
ciated, as compared to unassociated, stimulation intervals would exhibit higher values.

Furthermore, we performed exploratory analyses including the SWs and the spindles detected 
during rest intervals (i.e. NREM 2–3 epochs without auditory stimulation). In the case of SWs, we 
compared these values with those obtained for the associated stimulation intervals and the unasso-
ciated stimulation intervals using two two-tailed Student t-tests or Wilcoxon signed-rank tests (rest 
vs. associated stimulation intervals and rest vs. unassociated stimulation intervals). In the case of spin-
dles, as spindle characteristics did not differ between stimulation conditions (see results), they were 
collapsed across stimulation conditions and compared to rest intervals using two-tailed Student t-tests 
or Wilcoxon signed-rank tests. Correction for multiple comparisons was performed using the FDR 
approach (Benjamini and Hochberg, 1995).

Phase-amplitude coupling
In order to perform coupling analyses, preprocessed cleaned data were first down-sampled to 500 Hz. 
Based on the low spatial resolution of our montage that did not allow fine topographical analyses 
and in order to increase the signal to noise ratio to enhance the quality of the phase estimation that 
is particularly sensitive to noise (Gross et  al., 2013), we opted to average the data across chan-
nels (but see Figure 6—figure supplement 2 and Figure 8—figure supplement 1 for channel level 
data). Coupling analyses were then performed using the Event-Related Phase-Amplitude Coupling 
(ERPAC) method proposed by Voytek et al., 2013 and implemented in the TensorPac to support 
multi-dimensional arrays (Combrisson et al., 2020). This method allows to compute the ERPAC at 
each time point of the analysis window (Lachaux et al., 1999) and is therefore optimal to preserve 
the time dimension. Specifically, the instantaneous phases of the slow oscillation (0.5–2 Hz) and the 
envelopes of amplitudes of the signal between 7 and 30 Hz# (see point # 4 of Supplementary file 3) 
were first calculated by Hilbert transform around the trials of interest (i.e. from –0.5 to 2.5 s around 
the auditory cue onset and from –1 to 2 s around the negative peak of the SWs). For each time point 
in the analysis window (i.e. every 2 ms), the circular-linear correlation of phase and amplitude values 
were computed across trials. This analysis therefore tested whether trial-by-trial differences in slow 
oscillation phase explained a significant amount of the inter-trial variability in signal amplitude in the 
analyzed time window. The PAC factor output therefore represents the corresponding correlation 
coefficient. ERPAC was computed separately for the two sound conditions and compared using CBP 
test. Additionally, we performed exploratory analyses in which ERPAC (computed relative to the nega-
tive peak of the SWs as described above) was extracted from rest intervals. We compared rest ERPAC 
to ERPAC derived from both the associated and unassociated stimulation intervals using CBP proce-
dures and corrected for two comparisons using the FDR. The preferred phase (PP), which reflects 
whether the amplitude of the signal in a given frequency band is modulated by the phase of the signal 
in another band, was also computed using tensorPac (Combrisson et al., 2020) open-source Python 
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toolbox. Based on our a priori hypotheses, these analyses focused on the amplitude of the signal in 
the sigma band and the phase of the SO. The amplitude was binned according to phase slices. The 
preferred phase is given by the phase bin at which the amplitude is maximum. The PP statistical anal-
yses were performed using the CircStat toolbox (Berens, 2009) implementing Rayleigh test for non-
uniformity and Watson-Williams multi-sample test for equal means# (see point #5 of Supplementary 
file 3). Similar as above, PP was also extracted from rest intervals for exploratory analyses in which 
rest PP was compared to the PP derived from the two different stimulation intervals using Watson test 
for circular data.

Correlational analyses
Following our pre-registration, we performed correlation analyses between the TMR index and the 
following EEG-derived data: (1) The difference between the densities of SWs detected during the 
associated and unassociated cue stimulation intervals using one-sided Spearman# correlations (point 
#6 of Supplementary file 3); (2) The difference between the densities of spindles detected during 
the associated and unassociated cue stimulation intervals using one-sided Spearman# correlations ; 
(3) The relative change between the amplitude of the negative peak of the ERP# (point #3 of Supple-
mentary file 3-3) following the associated and unassociated auditory cues using one-sided Spearman# 
correlations ; (4) The difference in auditory-locked sigma band power (0–2.5 sec relative to cue onset 
and from 12 to 16  Hz) between the associated and unassociated auditory cues using CBP tests# 
(point #7 of Supplementary file 3); and (5) The difference between SO phase and sigma oscillation 
amplitude (12–16 Hz) coupling strength during the associated and unassociated stimulation intervals 
in relation to the cue onset and to the SW event using CBP approaches# (point #6 of Supplementary 
file 3). For all one-sided tests, we predicted that the TMR index would be positively correlated with 
the EEG-derived metrics.
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