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Archerfish number discrimination
Davide Potrich*, Mirko Zanon, Giorgio Vallortigara*

Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy

Abstract Debates have arisen as to whether non- human animals actually can learn abstract 
non- symbolic numerousness or whether they always rely on some continuous physical aspect of the 
stimuli, covarying with number. Here, we investigated archerfish (Toxotes jaculatrix) non- symbolic 
numerical discrimination with accurate control for covarying continuous physical stimulus attributes. 
Archerfish were trained to select one of two groups of black dots (Exp. 1: 3 vs 6 elements; Exp. 2: 2 
vs 3 elements); these were controlled for several combinations of physical variables (elements’ size, 
overall area, overall perimeter, density, and sparsity), ensuring that only numerical information was 
available. Generalization tests with novel numerical comparisons (2 vs 3, 5 vs 8, and 6 vs 9 in Exp. 1; 
3 vs 4, 3 vs 6 in Exp. 2) revealed choice for the largest or smallest numerical group according to the 
relative number that was rewarded at training. None of the continuous physical variables, including 
spatial frequency, were affecting archerfish performance. Results provide evidence that archerfish 
spontaneously use abstract relative numerical information for both small and large numbers when 
only numerical cues are available.

Editor's evaluation
This is a very informative and nicely controlled study on numerical competence in the archerfish.

Introduction
Non- symbolic numerical estimation is an important and well- studied cognitive ability that allows 
humans and other animals to interact successfully with their surroundings. The development of a 
‘sense of number’ is associated with fundamental biological needs that in many ecological contexts 
allow animals to estimate how many companions or enemies are around, or how much food is present 
in different patches – all important information to maximize fitness and reproductive success in the 
wild (Nieder, 2020).

Typically, in order to assess numerical abilities, animals are requested to discriminate between 
sets of visual stimuli differing in numerosity (review in Agrillo and Bisazza, 2014). This can be done 
using spontaneous attractive natural stimuli such as food or social companion, taking advantage of 
the animals’ natural and spontaneous tendency in some ecological contexts to ‘go for more’. Alter-
natively, operant conditioning procedures can be used that associate a particular set of stimuli with 
a reward. Extensive evidence supports the use of numerical information in non- human primates (e.g. 
Anderson et al., 2005; Beran et al., 2008; Beran and Beran, 2004; Cantlon and Brannon, 2007; 
Smith et al., 2003), as well as in other mammals (e.g. Abramson et al., 2013; Benson- Amram et al., 
2011; McComb et al., 1994; Perdue et al., 2012; Vonk and Beran, 2012; West and Young, 2002), 
in birds (e.g. Bogale et al., 2014; Ditz and Nieder, 2016; Garland et al., 2012; Pepperberg, 2006; 
Rugani et al., 2013; Scarf and Colombo, 2011), in amphibians (e.g. Krusche et al., 2010; Stancher 
et  al., 2015), in reptiles (e.g. Gazzola et  al., 2018; Miletto Petrazzini et  al., 2018), in fish (e.g. 
Gómez- Laplaza et al., 2018; Potrich et al., 2019; Stancher et al., 2013), and in arthropods (e.g. 
Dacke and Srinivasan, 2008; Gross et al., 2009; Nelson and Jackson, 2012; Rodríguez et al., 2015) 
(see for general reviews in vertebrates Nieder, 2020; Vallortigara, 2017; Bortot et al., 2021).
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Numerical discrimination seems to be supported by an ‘Approximate Number System’ (ANS, 
Butterworth, 1999; Nieder and Dehaene, 2009), which discriminative accuracy is ratio dependent 
in accordance with Weber’s law (as the ratio between two numerosity increases, the discrimination 
gets more difficult). Besides the ANS, an attentional working memory- based system has been claimed 
for by some authors as providing precise representation of small numbers (up to 3–4), the so- called 
‘Object Tracking System’ (OTS; Trick and Pylyshyn, 1994), though its generality for non- human 
animals is debated (discussion in Vallortigara, 2017; Vallortigara, 2014).

Studies investigating the neural basis of number representation revealed selectivity of neuronal 
response in some areas of the brain, such as the parietal and prefrontal cortex in humans (Kutter 
et al., 2018; Piazza et al., 2004) and in monkeys (Nieder et al., 2002; Nieder and Merten, 2007), 
the nidopallium caudolaterale in crows (Ditz and Nieder, 2016; Ditz and Nieder, 2015) and the most 
caudal dorsal- central part of the pallium in zebrafish (Messina et al., 2020; Messina et al., 2021a) 
(see also reviews in Lorenzi et al., 2021; Messina et al., 2021b), suggesting that common selective 
pressures led to convergent evolution of numerical representation in different species (Nieder, 2021; 
Vallortigara, 2021).

However, one issue in all these experiments is that animals are dealing with sets of physical 
elements, and thus numerical information is intrinsically melted with other non- numerical properties 
of the stimulus, such as the area, the density, the spatial frequency, or the elements’ arrangement 
(Leibovich et al., 2017). Recently, some debates have arisen concerning whether bees use abstract 
numerical information or rather rely on sensory properties of the stimulus for discrimination (Howard 
et al., 2018; MaBouDi et al., 2021).

Taking advantage of the fact that we recently developed a sophisticated script for the automatic 
generation of visual stimuli that can allow proper randomization and control of continuous phys-
ical variables in number sense experiments (Zanon et al., 2021), we decided to perform some very 
precisely controlled experiments to check whether fish do use number as abstract property.

We selected archerfish (Toxotes jaculatrix) for our study. These fish are well known for their partic-
ular hunting strategy, which consists of spitting at preys above the water surface with a precise jet of 
water thrown with the mouth. This attacking repertoire makes it very easy to train them to hit targets 
using operant conditioning (see e.g. Newport and Schuster, 2020).

Still, to date, no studies in archerfish have explicitly investigated abstract numerical abilities. 
Leibovich- Raveh et al., 2021 showed that when archerfish make magnitude- related decisions, their 
choice is influenced by the non- numerical variables that positively correlate with numerosity; for 
instance, when exposed to two groups of dots differing in number and continuous physical informa-
tion, archerfish spontaneously selected the group containing the larger non- numerical magnitudes 
and smaller numerosity, switching to the larger numerical set when positively correlated with all the 
non- numerical magnitudes.

Related to magnitude discrimination, archerfish also proved to be able to associate different 
geometric shapes with different food quantities (Karoubi et al., 2017); this would support the exis-
tence of a system dealing with magnitudes, although a specific role of numerical information remains 
unclear.

In our study, archerfish were trained to select one of two arrays, involving either a small and a 
large numerosity (Exp. 1: 3 vs 6 elements) or small numerosities only (Exp. 2: 2 vs 3 elements). After 
reaching a learning criterion, archerfish were tested with novel numerical comparison (2 vs 3, 5 vs 
8, and 6 vs 9 in Exp. 1; 3 vs 4, 3 vs 6 in Exp. 2) to check whether the rule they used in the training 
phase was based on a relative judgement (select the ‘largest’ or ‘smallest’ group) or on an absolute 
judgement (select a specific number of items). The numerosities used were justified by the aim to 
investigate how fish deal with discriminating numbers that could be supported by the ANS (large 
numbers, >4) and the OTS (small numbers, ≤4). Previous studies showing the use of relative rules in 
fish employed only large numerosities (Miletto Petrazzini et al., 2016; Miletto Petrazzini et al., 
2015), leaving open the question whether the same rule would be engaged even with compari-
sons among small numbers. All of the different continuous physical variables such as radius, total 
area, total perimeter, convex- hull, and inter- distance were carefully controlled for and alternately 
balanced across trials, ensuring that the animals could not rely on them to perform their judgement 
(Figure 1; see also Methods section for a detailed explanation of the randomization and experi-
mental protocol). Furthermore, a statistical analysis was run for a posteriori evaluation of whether 
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any of these variables influence the archerfish responses, confirming that they were not used as a cue 
for numerical evaluation.

Results
Experiment 1
Eight archerfish were trained to discriminate between two groups of black dots in a 3 vs 6 numerical 
comparison; four fish were trained to select the number 3, while the other four were rewarded with 
the number 6. Learning curves for each individual animal are reported in Figure 2. No difference has 
been found in the number of trials needed to reach the learning criterion between the group trained 
with three elements (mean ± standard error of the mean [SEM] = 451.25 ± 106.77) and the group 
trained with six elements (mean ± SEM = 413.25 ± 73.14) (independent samples t- test: t(6) = 0.294, 
p = 0.779).

When the learning criterion was reached (at least 75% of correct choices for two consecutive 
sessions), an analysis focused on evaluating whether archerfish' performance was influenced by 
the different non- numerical control conditions (i.e. overall area, overall perimeter, elements radius, 
elements’ convex- hull, and inter- distance) was performed (see Figure 2—figure supplement 1 for 
individual fish’ performance in each control condition). Choices in the last two sessions (over crite-
rion) were analyzed using a ‘generalized linear mixed model’ (GLMM, see Methods section). Three 
fixed effects (type of training – 3 dots, 6 dots; type of geometrical control – radius fixed, overall area 
controlled, overall perimeter controlled; type of spatial disposition control – inter- distance controlled, 
convex- hull controlled) and one random intercept effect (fish ID) were considered; the independent 
variable was the choice for the reinforced numerosity. Analysis of the random effect showed not to 

Figure 1. Schematic representation of the non- numerical physical controls applied to the stimuli in each session.

https://doi.org/10.7554/eLife.74057
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affect the model (random intercept variance of the best fit: 1.14 × 10−12). No significant differences 
were found between effects of groups, nor group interactions, suggesting to adopt the simplest 
model considering the choices with no contribution from any effect. The best model final estimate 
(logarithmic odds ratio) was 1.510 ± 0.097, corresponding to 0.82 in natural units (fraction of choices) 
as confirmed by a binomial test (probability of success: 81.9%, p < 0.001, 95% confidence intervals 
(CIs): 78.9–84.6). The corresponding Cohen’s g (see Methods section) was 0.32, indicating a large 
effect size.

Once the learning criterion was reached, all the fish performed three different tests.
Test 1: This test was the main discriminator to understand whether at training fish represented 

numerosity as relative or absolute. Fish trained to select the smallest number 3 at training (i.e. the 
smallest set in the 3 vs 6) were presented at test with a novel discrimination 2 vs 3, while fish trained 
to select the number 6 at training (i.e. largest set in the 3 vs 6) were tested with a 6 vs 9 condition. The 
use of ‘relative’ information (go for the smallest or largest) should lead the fish to choose the novel 
numerosity at test, while the use of ‘absolute’ information would reflect in the choice of the stimulus 
with the same number of elements as at training.

Test 2: The second test aimed to clarify the role of the incorrect (i.e. unrewarded) training stimulus 
and its relevance for the fish. When fish are trained to select the numerosity 3, thus avoiding number 
6, once presented with the new comparison 6 vs 9 (or vice versa 2 vs 3, if trained to select 6), do they 
choose the group according to the relative information even if it coincides with the absolute numer-
osity to avoid at training?

Figure 2. Learning curve of Experiment 1: lines graph show the percentage of correct choices for each archerfish in a 3 vs 6 training, grouped by 
numerosity rewarded (three or six dots). Learning criterion (blue dotted line) was reached after two consecutive sessions ≥75%. The red dotted line refers 
to chance level.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Performance data for each non- numerical control condition at training in Experiment 1.

https://doi.org/10.7554/eLife.74057
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Test 3: In the last test, fish behaviour was observed in a comparison involving novel numerosi-
ties never experienced during the training, that is, 5 vs 8. This allowed observing whether archerfish 
applied a relative representation (go for the ‘smallest’ or ‘largest’) or if the choice was at the chance 
level, since no absolute numerical information experienced at training was present here.

Results at tests for Experiment 1 are reported in Figure  3 (see also Figure  3—figure supple-
ment 1 for individual fish’ performance in each control condition). Choices for the relative numer-
osity were analyzed using a GLMM (see Methods section). Four fixed effects (type of training – 3 
dots, 6 dots; type of test – 2 vs 3, 5 vs 8, and 6 vs 9; type of geometrical control – radius fixed, 
overall area controlled, overall perimeter controlled; type of spatial disposition control – inter- distance 
controlled, convex- hull controlled) and one random intercept effect (fish ID) were considered. Analysis 
of the random effect showed not to affect the model (random intercept variance of the best fit: 4 × 
10−14), and no significant differences were found between effects of groups, nor group interactions, 
suggesting to adopt the simplest model considering the choices with no contribution from any effect. 
Only a trend for the contribution of the type of geometrical control was observed, driven by a non- 
significant difference between the ‘radius fixed’ and ‘overall area controlled’ conditions (post hoc non- 
parametric tests adjusted with Tukey method: p = 0.063). Within this trend, every single condition was 
statistically significant by chance level in the direction of the relative choice (log odds ratio estimates: 
0.90 ± 0.13 for radius; 1.47 ± 0.21 for overall area; 1.03 ± 0.19 for overall perimeter), as confirmed 
by exact binomial tests for each different group (‘radius’ estimate in natural units: 0.71, probability of 
success: 71.2%, p < 0.001, 95% CI: 65.6–76.3; ‘overall area’ estimate in natural units: 0.81, probability 
of success: 81.3%, p < 0.001, 95% CI: 79.3–87.3; ‘overall perimeter’ in natural units: 0.74, probability 

Figure 3. Percentage of choice for the larger/smaller set (mean ± standard error of the mean [SEM]) in the comparison tests for the two groups trained 
to select the smaller (3) or larger (6) set. Coloured dots represent the individual performance for each fish.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Individual performance data for each non- numerical control condition at test in Experiment 1.

https://doi.org/10.7554/eLife.74057
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of success: 73.6%, p < 0.001, 95% CI: 65.6–80.6. The corresponding Cohen’s g (see Methods section) 
was, respectively, 0.21 – medium effect size – for ‘radius’, 0.31 – large effect size – for ‘overall area’, 
and 0.24 – medium effect size – for ‘overall perimeter’).

Considering the previous discussion, a binomial test shrinking all the data together was performed 
to investigate the final findings: fish showed an overall strong significant preference for the relative 
numerosity (probability of success: 74.3%, p < 0.001, 95% CI: 70.5–77.8, Cohen’s g = 0.24 medium 
effect size).

The result obtained in Experiment 1 showed that archerfish, when trained to select one of two 
simultaneously displayed groups of dots with different numerosities (i.e. 3 vs 6 dots), use a relative 
numerical rule to perform novel numerical comparisons. These results confirm findings in other fish 
species such as angelfish (Miletto Petrazzini et  al., 2016) and guppy (Miletto Petrazzini et  al., 
2015), but they are different from those obtained in bees which showed instead a preference for 
the absolute number (Bortot et al., 2019). An important difference between fish and bees studies 
is related to the numerical comparison used: respectively, large numbers (>4 elements) for fish and 
small numbers (≤4 elements) with bees. This might engage different systems (as reported in Introduc-
tion section), explaining the discrepancy. The training discrimination used in Experiment 1 involved 
two numbers (3 vs 6) that belong to the hypothesized ‘small’ and ‘large’ systems, respectively. This is 
different than in previous fish studies which employed only large numerosities; thus, it remains to be 
tested how fish would deal when trained with small numerosities only. In principle, the presence of 
a large number in the comparison in Experiment 1 may be enough to lead the archerfish to follow a 
relative rule. If trained with a numerical discrimination involving only small numbers, would the animals 

Figure 4. Learning curves of Experiment 2: the lines show the percentage of correct choices for each archerfish in a 2 vs 3 training. Learning criterion 
(blue dotted line) was reached after two consecutive sessions ≥75%. The red dotted line refers to chance level.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Performance data for each non- numerical control condition at training in Experiment 2.

https://doi.org/10.7554/eLife.74057
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still use a relative numerosity judgement or would they turn to absolute judgement? This was tested 
in Experiment 2.

Experiment 2
Four subjects were trained to select the largest number in a 2 vs 3 comparison (i.e. the number 3). Fish 
judgement was then observed in two tests (i.e. 3 vs 4 and 3 vs 6) involving a comparison between the 
previously trained numerosity (3) and a novel numerosity (4 or 6).

All fish reached the learning criterion, showing an ability to discriminate between the two numbers 
(trials to criterion ± SEM = 506.5 ± 97.8; Figure 4).

Choices during the last two sessions (over criterion) were analyzed using a GLMM (see also 
Figure 4—figure supplement 1 for individual fish’ performance in each control condition). Two fixed 
effects (type of geometrical control – radius fixed, overall area controlled, overall perimeter controlled; 
type of spatial disposition control – inter- distance controlled, convex- hull controlled) and one random 
intercept effect (fish ID) were considered; the independent variable was the choice for the reinforced 
numerosity. Analysis of the random effect showed not to affect the model (zero variance for the 
random intercept of the best fit). No significant differences were found between effects of groups, nor 
group interactions, suggesting to adopt the simplest model (i.e. considering the fish’ choices with no 
contribution from any effects). The best model final estimate (logarithmic odds ratio) was 1.12 ± 0.12, 
corresponding to 0.75 in natural units (fraction of choices) as confirmed by a binomial test (probability 
of success: 75.5%, p < 0.001, 95% CIs: 70.8–79.8, Cohen’s g = 0.25 large effect size).

Results at test are reported in Figure 5 (see Figure 5—figure supplement 1 for individual fish’ 
performance in each control condition). A GLMM model with three fixed effects (type of test – 3 vs 4, 

Figure 5. Percentage of choice for the larger set (mean ± standard error of the mean [SEM]) in the comparison test set of Experiment 2. Coloured dots 
represent the individual performance for each fish.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Individual performance data for each non- numerical control condition at test in Experiment 1.

https://doi.org/10.7554/eLife.74057
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3 vs 6; type of geometrical control – radius fixed, overall area controlled, overall perimeter controlled; 
type of spatial disposition control – inter- distance controlled, convex- hull controlled) and one random 
intercept effect (fish ID) showed no random effect of fish (zero variance of random intercept for the 
best fit), neither significant differences between groups and groups’ interactions, suggesting to adopt 
the simplest model (i.e. considering the fish’ choices with no contribution from any effects).

The best model final estimate (logarithmic odds ratio) was 0.84 ± 0.16, corresponding to 0.70 
in natural units, as confirmed by a binomial test (probability of success: 69.8%, p < 0.001, 95% CIs: 
62.7–76.2, Cohen’s g = 0.2 medium effect size).

In Experiment 2, archerfish showed to be able to discriminate between two different numer-
ical groups of dots within the small numerical range. At test, fish preferred the novel numerosity 
to the familiar three items, in both 3 vs 4 and 3 vs 6 comparisons, confirming the use of a relative 
rather than absolute numerical rule. This evidence does not match with findings in bees, tested in 
the same numerical conditions, suggesting that the spontaneous engagement of relative/absolute 
rule to extract numerical information may be guided by different ecological pressures experienced 
by different species in their phylogenetic history. The spontaneous use of relative rules, when only 
numerical cues are available, suggests that among fish, it is more important to learn a general rule 
that is applicable to novel comparisons. It cannot be excluded that this strategy is adopted because it 
could be less demanding as to memory load than an absolute judgement strategy.

Considering the results of Experiments 1 and 2, it is apparent that archerfish can easily discriminate 
between small and large numerosity using the same rules, providing evidence in favour of a unique 
system underlying numerical discrimination as found in other fish species (Stancher et  al., 2013; 
Potrich et al., 2015).

Accuracy is not influenced by non-numerical magnitudes
The control of non- numerical magnitudes applied to our stimuli considers all the possible combina-
tions associating the geometry and the spatial disposition of the numerical dots’ array. Given that 
it is empirically impossible to control for all these physical factors at once, as a consequence, when 
some are balanced, others may be free to covary congruently with numerosity (i.e. as the numerosity 
increases, the non- numerical information increases as well). A previous study led by Leibovich- Raveh 
et al. in archerfish (Leibovich- Raveh et al., 2021) aimed to study whether the spontaneous choice 
for two numerically different groups of dots was influenced by how many physical variables were 
positively correlating with numerosity. By manipulating the geometry and spatial disposition of the 
elements, several stimuli with different congruity levels were created, ranging from 1 to 5 (i.e. from 
congruity level 1: only one physical variable was correlating positively with numerosity, to congruity 
level 5: all the five physical variables considered in the study were positively correlating with numerical 
information). The results showed that archerfish’ choice for the largest or smallest numerosity in the 
study by Leibovich- Raveh and colleagues was indeed influenced by the non- numerical variables that 
positively correlated with numerosity. Using a similar approach, we checked whether the archerfish’ 
performance accuracy in detecting one of the two numerical sets correlated with the number of non- 
numerical information that were positively covarying with numerosity.

Table 1. Schematic representation of the levels of congruity for each control condition (reported in 
the table rows) applied in the study; the columns represent the different variables that could covary 
with numerosity (C: congruent with number, IC: incongruent with number).

Control 
condition Overall area Overall perimeter Convex- hull (CH) Inter- distance (ID) Congruency level

Perimeter – CH IC = = C 1a

Perimeter – ID IC = C = 1b

Area – CH = C = C 2a

Area – ID = C C = 2b

Radius fixed – CH C C = C 3a

Radius fixed – ID C C C = 3b

https://doi.org/10.7554/eLife.74057
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Analyzing the characteristics of our stimuli, the levels of congruity (i.e. the number of physical 
factors positively correlating with numerosity) ranged from 1 to 3, depending on the different stimuli 
configurations (see Table 1).

To evaluate the influence of different congruency levels on the fish’ choice, an analysis was 
performed fitting a GLMM with the levels of congruency as fixed factor. The results (reported in 
Figure 6) proved that no correlation was present between the levels of congruity and the choices for 
the larger/smaller numerosity, both for Experiments 1 and 2 (differences between groups, given by a 
post hoc analysis with Tukey correction showed p values >0.05; see Figure 6—source data 1). This 
evidence suggests again that fish accuracy was not influenced by non- numerical variables, confirming 
that the relative rule adopted was mainly driven by the numerical cue. At first sight, this result could 
seem discordant from what established by Leibovich et al., who found that the increasing number of 
variables influenced archerfish performance. However, in our study, archerfish were trained to select 
the stimuli with specific numerosity, while in the Leibovich- Raveh’s study, fish were observed in a 

Figure 6. The graphs report the choices for the larger numerosity depending on the different levels of congruency: graphs are reported both for the 
training phase (mean data of the last two sessions when the criterion was reached) and the test phase, for both Experiments 1 and 2. In Experiment 1, 
data are grouped by training condition (circles for fish trained with three dots, triangles for fish trained with six dots). Coloured points represent single 
fish performance with standard error bars (i.e. data are mediated over trials with the same congruency level, per each fish), while black points represent 
the overall mean (i.e. data are mediated over all the trials with the same congruency level). Red dotted lines represent chance levels.

The online version of this article includes the following source data for figure 6:

Source data 1. Comparisons between different levels of congruity (p values of post hoc analysis with Tukey correction) and 95% confidence intervals for 
each level.

https://doi.org/10.7554/eLife.74057
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spontaneous choice task always rewarded, irrespective of the chosen stimulus. Taken together, these 
pieces of evidence might suggest that magnitude information matter and are particularly salient to 
archerfish, but they do not interfere when numerical rules are specifically engaged.

Numerosity and spatial frequency
The stimuli used in our experiments were visual collections of black dots differing in numerosity. As 
described in Methods section, for each numerical comparison, the physical properties of each array 
were equalized for the geometry (radius, area, and perimeter) and spatial disposition (inter- distance 
and convex- hull; see Figure 1). Since we are dealing with images, each figure could also be described 
in terms of spatial frequency. Spatial frequency can be thought of as the number of repeating elements 
in a pattern per unit distance, and it is mathematically described by the Fourier transform theory. No 
control was applied to the spatial frequency of our stimuli. Thus, in order to check whether spatial 
frequency could influence archerfish choice, we calculated its variation across all different numerosities 
and control conditions (see Methods section). Within each numerical test comparison, different spatial 
frequencies were found (see Figure 7). The different constraints applied to the stimuli (control of the 
area, perimeter, or elements radius) showed to differently influence the spatial frequency between the 
two numerosities. In detail, when the elements’ radius was fixed between the two numerical arrays, 
the total power of the spatial frequency was higher in the smaller group than in the larger one, while 
the opposite was found in the groups in which the overall perimeter was balanced (total power higher 
in the more numerous group). Interestingly, this trend was maintained in all the numerical comparisons 
used, irrespective of the number of elements to be compared.

To investigate the influence of spatial frequency in the numerical task, we analyzed whether a 
correlation between the performance accuracy and the spatial frequency was apparent, for all possible 
control configurations (see Methods section). Results are reported in Figure 7, showing no correla-
tions between any comparison (test 2 vs 3: r(4) = −0.17, p = 0.83; test 3 vs 4: r(4) = 0.15, p = 0.77; 
test 3 vs 6: r(4) = −0.35, p = 0.50; test 5 vs 8: r(4) = −0.08, p = 0.88; test 6 vs 9: r(4) = −0.42, p = 0.41).

These data strongly suggest that the spatial frequency was not influencing archerfish performance 
in the numerical task.

Discussion
Overall, our results showed that when trained to select a specific group of elements between two 
numerical arrays, archerfish spontaneously generalize at test to novel numerical comparison according 
to a relative numerical rule (select the largest/smallest) rather than an absolute numerical rule (select 
the specific number of items). These findings are in agreement with previous results from other fish 
species and humans (Miletto Petrazzini et al., 2016; Miletto Petrazzini et al., 2015), while differing 
with respect to bees (Bortot et al., 2019).

Interestingly, archerfish use a general relative judgement even when trained to discriminate between 
numerosities that belong to different systems, namely ‘OTS’ for small numerosities (≤4 elements) and 
‘ANS’ for large numerosities (>4 elements; for a review see Hyde, 2011). In Experiment 1, archerfish 
were trained with a 3 vs 6 contrast and then observed in test conditions with a 2 vs 3, 6 vs 9, and 5 
vs 8 comparison. In all these tests, archerfish showed to spontaneously use a general relative rule. 
In Experiment 2, subjects’ performance was observed in a numerical discrimination involving only 
small numerosities (i.e. 2 vs 3) at training. Once again, at test, fish followed the relative rule, selecting 
the largest group in the test comparisons 3 vs 4 and 3 vs 6, thus ignoring the absolute number of 
elements (i.e. 3). Since previous findings in vertebrate species showed the use of relative numerosity 
judgements only in comparative assessments for large numerosities (>4) (Miletto Petrazzini et al., 
2016; Miletto Petrazzini et al., 2015); here, we provide evidence that the same rule is engaged even 
when comparisons involve both small and large numerosities together (Experiment 1) as well as small 
numerosities only (Experiment 2). Moreover, the latter condition offers us, for the first time, a direct 
comparison with evidence in invertebrates (tested only with small numbers) (Bortot et al., 2019).

Taken together, our results support the hypothesis of a unique system for representing numeros-
ities in archerfish, working both for small and large numbers, obeying the ANS. Evidence from other 
fish species supports this claim (Stancher et al., 2013; Potrich et al., 2015).

https://doi.org/10.7554/eLife.74057
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Figure 7. The histograms (on the left) show the spatial frequency (total power) for each numerical comparison 
among the different control groups (non- numerical variables control). The different constraints applied to the 
stimuli (control of the area, perimeter, or elements radius) showed to influence the spatial frequency between the 
two compared numerosities. The regression lines (on the right) show the correlation between fish’ performance 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.74057


 Research article      Neuroscience

Potrich et al. eLife 2022;11:e74057. DOI: https://doi.org/10.7554/eLife.74057  12 of 20

The reason for which archerfish primarily rely on the relative information of numerical groups may 
have ecological reasons, being more adaptive in a natural environment that constantly require numer-
ical/quantity judgement. Selecting the largest social group of companions or the largest food patch 
are easy rules that can be more efficient than using an absolute rule. Moreover, the use of relative 
information may be less cognitively expensive (in terms of memory load) than the absolute one, since 
it does not require storing the information about the precise number of elements: the discrimination 
could work on a simple relative comparison between magnitudes, guided by the ratio between the 
two. Nevertheless, the engagement of relative rules requires a good level of abstraction and the 
creation of a general rule to be applied to (Pepperberg and Brezinsky, 1991).

In fish, the use of an absolute rule may not be as convenient as the relative one, given that in most 
ecological contests there is no specific optimal amount of food, partners or companions. However, 
this seems not to be the case for species such as bees, which showed instead a spontaneous use 
of absolute numerical information, suggesting that this rule may be more informative and useful in 
their ecological environment. Similar evidence has been found in spiders, that, in a natural predatory 
strategy context, settle their attack based on the specific number of conspecifics at the nest (Nelson 
and Jackson, 2012).

Note, however, that the spontaneous use of a relative or absolute rule does not imply that animals 
are unable to use both. Vertebrates can be trained to learn a specific number of items in a set if forced 
to do it (Cantlon and Brannon, 2007; Miletto Petrazzini et al., 2015; Pepperberg, 1994; Smirnova 
et al., 2000). Similarly, bees can be trained to the numerical concepts of ‘greater than’ or ‘smaller 
than’ (Howard et al., 2018). The spontaneous engagement of one of the two criteria is therefore 
justified probably by a combination of natural constraints and/or less cognitive demand motivations 
that better fit for the individuals’ fitness in their particular niches of adaptation. Note that, despite 
our study provides direct evidence of archerfish’s ability to learn abstract numerical rules, this does 
not directly imply that number is spontaneously used in an ecological environment. Here, fish were 
guided to use numerical cues since it was the only variable systematically reinforced. In more ecolog-
ical settings, continuous variables highly correlate with numerosity, with a consequent difficulty to 
understand on which type of information archerfish spontaneously primarily rely on and whether this 
could push fish to use absolute or relative magnitudes.

Lastly, with respect to the main question of our paper, the results showed that archerfish are 
capable of abstract numerical discrimination, not influenced by other continuous physical variables. 
We tested archerfish with numerical arrays well controlled for all the possible non- numerical variables 
(e.g. total area, perimeter, inter- distance, density, and convex- hull). Note that previous studies in fish 
that have attempted to control for non- numerical variables during the learning process were mainly 
focused on the overall elements’ area, the elements’ density, and convex- hull (see e.g. Agrillo et al., 
2012; Bisazza et al., 2014; DeLong et al., 2017). In our study, all the geometrical constraints were 
controlled. These non- numerical cues did not correlate with the animals’ performance accuracy (as 
demonstrated by the statistical analyses), ensuring that the discrimination made by the animals was 
based on purely numerical information.

Moreover, for the first time in fish, we focused our attention on analyzing spatial frequency of the 
stimuli used, showing that this variable does not influence archerfish performance. The total power 
of the spatial frequency has been described in the literature to positively increase with numerosity 
(MaBouDi et al., 2021); however, in our stimuli, the different geometrical constraints showed that it 
could be reversed as well. Moreover, elements’ area and perimeter seem to play a crucial role in the 
distribution of the spatial frequencies’ energy with respect to the elements disposition (inter- distance 
and sparsity). All our analyses suggested that the amplitude component of the spatial frequency was 
not influencing archerfish numerical evaluation during our experiments, providing useful information 
for further detailed investigations on the contribution of such variable in fish cognition.

Note, however, that in all studies carried out so far (including our own analysis), the focus was on 
the amplitude of the spatial frequency as the main component, which provides information on the 

accuracy (choice for the relative numerosity) and the spatial frequency (total power index between the two total 
power values), for all numerical comparisons. The coloured shapes (dots, triangles and squares) correspond to 
each specific control condition.

Figure 7 continued

https://doi.org/10.7554/eLife.74057
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alternation rate of different elements in the image. It is likely that a more specific role on computa-
tion of numerosity is played by the spatial frequency phase component (related to elements’ spatial 
coherence and distribution) which directly relates to figure- ground segregation and unity formation.

In conclusion, our results provide clear evidence that under conditions of strict control of contin-
uous physical variables, archerfish can encode an abstract concept of number to support relative 
numerical judgement for both small and large numerosities.

Materials and methods
Subjects and rearing conditions
Sixteen adult archerfish, T. jaculatrix (fish size ranged between 8 and 10 cm in length) were provided 
by a local commercial supplier (‘Acquario G di Segatta Stefano’, Trento, Italy). A group of fish (N = 8) 
took part in Experiment 1, while a second group (N = 4) took part in Experiment 2. Fish were randomly 
assigned to the two training conditions. The other four animals were excluded because they did not 
show any consistent motivation in hitting the screen, failing to get through the different steps of the 
pre- training phase (see ‘General procedure’ paragraph). All fish were housed in large aquariums (100 
× 40 × 40 cm) in groups of 10 individuals. Prior to the experiment, each archerfish was moved into 
individual aquaria (40 × 30 × 50 cm) filled with freshwater maintained at 25°C and enriched with gravel 
and a shelter. Water quality was kept by suitable filters (Sera fil 60). The system was illuminated under 
a 10:14 light/dark cycle (Sylvania luxline plus F36W/840 cool white). Fish were fed with food pellets 
(Hikari cichlid gold baby pellet).

Figure 8. Experimental setup. 
 (a) Schematic representation of the experimental apparatus. (b) Bottom view of the tank from the camera placed below the tank’s pavement.

https://doi.org/10.7554/eLife.74057
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Apparatus
Both the apparatus and the training method 
were set up based on previous studies conducted 
with archerfish on visual discrimination tasks (i.e. 
Karoubi et  al., 2017; Newport et  al., 2013; 
Ben- Tov et  al., 2015). Each experimental tank 
consisted of a rectangular aquarium with a monitor 
screen located above it (20″, DELL 2009Wt), held 
at 30 cm from the water level (Figure 8a). Each 
tank was surrounded by white opaque panels to 
ensure that the fish was not distracted by external 
cues. Each tank was raised 8  cm off the table 
thanks to lateral supports, allowing the posi-
tioning of a video camera under the centre of the 
pavement’s tank to record a bottom view of the 
fish and the screen (see Videos 1 and 2 examples 
in the supplement materials).

Stimuli
The stimuli presented in the training phase 
consisted of groups of black dots confined into a 
black outline circle (6 cm diameter). The dots size 
was ranging between 3 and 12 mm, and the visual 
angle was in the range 0.43° and 1.72°, which has 

been proven to be well perceived by archerfish (Ben- Simon et al., 2012). In every trial, a couple of 
stimuli was simultaneously presented in the centre of the screen (horizontally aligned to the shortest 
monitor’s side, see Figure 8b). All the stimuli were created using the software GeNEsIS (Zanon et al., 
2021), a Matlab program that allows to create numerical collections of stimuli controlled for several 
non- numerical magnitudes. Given that it is mathematically impossible to balance all the non- numerical 
magnitudes simultaneously in two different numerical groups (e.g. when the convex- hull of the stimuli 
increases, the density decreases and vice versa; similarly, when the overall area of two sets of elements 
with different numerousness is balanced, their overall perimeter differ, etc.), different sets of stimuli 
were created for each numerosity, controlling for some visual physical property; all the possible prop-
erties were covered across the different sets during a session (see Figure  1 for a view of all the 
combinations applied in a session and Table 1 to see the variables balanced and not balanced in each 
condition). Doing so, even some physical variables were not controlled in one specific condition (e.g. 
when the overall area of the two sets was balanced, their overall perimeter differ; when the convex- 

hull of the stimuli increases, the density decreases, 
and vice versa), the use of different randomized 
control conditions allowed us not to make any of 
the physical variables systematically reliable and 
rewarded. Pictures from each set were randomly 
presented, making the numerical information the 
only reliable cue to differentiate the two stimuli 
across all the various trials.

General procedure
Pre-training phase
Before starting the experiment, fish underwent 
a pre- training phase in which they were grad-
ually habituated to spit (hit with a jet of water) 
at the training stimulus on the screen. This was 
accomplished throughout a shaping procedure to 
facilitate the task. The silhouette of an insect was 
initially presented, inducing the fish reaction to 

Video 1. Video example of a subject performing a 2 vs 
3 discrimination during the training phase (Experiment 
2; three dots stimulus is rewarded). The video camera 
records a bottom view of the fish and the screen.

https://elifesciences.org/articles/74057/figures#video1

Video 2. Video example of a subject performing a 3 vs 
6 discrimination during the training phase (Experiment 
1; three dots stimulus is rewarded). The video camera 
records a lateral view of the fish and the screen.

https://elifesciences.org/articles/74057/figures#video2

https://doi.org/10.7554/eLife.74057
https://elifesciences.org/articles/74057/figures#video1
https://elifesciences.org/articles/74057/figures#video2
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spit at the prey; once hit, fish were rewarded with a food pellet. The insect was gradually replaced by 
a black dot and finally with the effective training stimulus. Once the fish accomplished all these stages, 
the training phase was initiated. As mentioned above, four animals did not achieve this phase, due to 
the fact that animals were rarely interested in hitting at the screen (mostly motivated when the insect 
silhouette was presented but not with images depicting a dot). After 10 consecutive sessions with the 
aforementioned passive behavior, animals were excluded from the study.

Training phase
Fish were trained to spit at the correct target presented on the monitor above the tank. The stimuli 
to discriminate consisted of two groups of dots with different numerosity. Every trial started with the 
appearance of a blinking black square (1.6 cm, three blinks of 100 ms) at the centre of the screen to 
catch the fish’s attention towards the screen. Then, the two training stimuli were displayed one next 
to the other (distance 7 cm) on the two sides of the monitor. Only one of the two numerosities was 
rewarded with a food pellet when hit, while the choice for the incorrect stimulus caused the stop of 
the trial, which in every case, in absence of choice, was stopped after 5 min. At the end of each trial, 
the screen was cleaned from the water drops and a new trial started.

In the first training session only, a corrective method was applied: the stimuli remained on the 
screen until the subject selected the correct target, even if the incorrect stimulus was hit, allowing the 
fish to correct its choice.

Fish were trained with daily sessions of 48 trials, in which continuous physical variables were 
controlled and changed according to the scheme reported in Figure 1, and the position of the target 
stimulus on the screen (right–left) was randomized. In detail, on the total of 48 randomized trials, the 
control conditions were organized as follows: 12 trials for each condition ‘radius fixed – inter- distance’ 
and ‘radius fixed – convex- hull’; 6 trials for each condition ‘area – inter- distance’, ‘area – convex- hull’, 
‘perimeter – inter- distance’, and ‘perimeter – convex- hull’. In this way, half of the trials had the same 
individual size for each dot (radius fixed conditions), allowing us to control that the fish would not 
pay attention to the smaller or larger elements in size. Note that this is a salient cue, quite always 
appearing when the area and perimeter are balanced (since more/less numerous sets will naturally 
present the smallest/largest dots’ extension, respectively). With our randomization approach, if such a 
cue would be relevant to fish, it should result in a final performance at chance level in the ‘radius fixed’ 
conditions, but not in the others (‘area’ and ‘perimeter’). As a consequence, a significant difference 
among control conditions would emerge. Similar considerations can be made for the other controlled 
variables.

Fish generally responded 70–100% of the trials. The learning phase was considered completed 
when the fish reached a learning criterion of at least 75% of correct choices for two consecutive days 
(binomial test: p < 0.01), allowing the fish to take part in the test phase.

Test phase
Generally, each test condition consisted of the presentation of a couple of stimuli with a novel numer-
ical comparison, aiming to see if the target numerosity learned in the training phase was represented 
as a relative or an absolute numerical information. Each test was composed of 24 probe trials not 
rewarded, divided into three testing days of 8 randomized trials containing all the control conditions 
(2 trials for each condition ‘radius fixed – inter- distance’ and ‘radius fixed – convex- hull’; one trial for 
each condition ‘area – inter- distance’, ‘area – convex- hull’, ‘perimeter – inter- distance’, and ‘perimeter 
– convex- hull’). In each test session, the eight test trials were shuffled and interspersed with rewarded 
recall training trials (32 recall in total) to maintain the fish motivation high during the whole test dura-
tion. The order of the tests was randomized among the fish to exclude that the performance could 
be influenced by their order. At the end of each test, the fish underwent a complete daily session of 
retraining to further exclude potential interference among the tests.

Statistical analyses and data analysis
Data were analyzed using R software (R- 4.1.0). In Experiment 1, an independent t- test was used 
to compare the number of trials to reach the criterion between the two groups at training. For the 
last two training trials (over criterion) and at test, choices for the relative numerosity were analyzed 
using a GLMM fit by maximum likelihood (Laplace Approximation), binomial GLMM with a logit link. 

https://doi.org/10.7554/eLife.74057
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The best model was selected after a back elimination procedure, removing interactions and factors 
iteratively, and comparing the different models based on AIC and BIC information criteria. A final 
binomial test was used to compare the distribution of the choices for the relative and absolute numer-
osities when no factors were significantly contributing to the results. Log odds ratios from the best 
fits were reported as GLMM estimates with their errors and converted in natural scales to give a more 
straightforward interpretation of the effect size (which for our binomial distributions corresponds to 
the sample proportion). 95% CIs were also reported for a cleaner interpretation of the final results. 
Moreover, following Cohen, 2013, the chance proportion of 0.5 was subtracted to our binomial 
sample proportion to obtain a final Cohen’s g effect size (interpretable as: <0.05 negligible, 0.1–0.15 
small, 0.2–0.25 medium, >0.25 large). To obtain an estimate of the spatial frequency, we adopted an 
approach already performed in other studies (MaBouDi et al., 2021; Adriano et al., 2021; Felisatti 
et al., 2020): the fast Fourier transform of our images was calculated, a radial average of the signal 
amplitude in the frequency domain was performed, and lastly, all the frequency contributions of its 
power spectrum were summed up. In this way, a value related to the total energy of each frequency 
component inside a given image is obtained.

To investigate the influence of spatial frequency in the numerical task, we analyzed whether a 
correlation between the performance accuracy (choice for the relative numerosity) and the spatial 
frequency (normalized total power difference between the two compared numerosities) was apparent 
for all possible control configurations. To compare two numerosities we reported a normalized differ-
ence (total power index) between the two total power values (difference between the total power 
of the biggest numerosity and the smallest, divided by their sum). All the frequency calculations 
were performed with a custom script in Matlab (https://github.com/MirkoZanon/GeNEsIS; Zanon, 
2021 copy archived at swh:1:rev:e2c1e1a12e033ffe2aa623b2ebb3f97fb5ea26a8), while the statistical 
comparisons were calculated in R. For each of them, a Pearson’s correlation coefficient was calculated 
comparing the choice for the relative numerosity and the normalized difference between numerosities 
(as explained above).
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