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Abstract A major goal in neuroscience is to elucidate the principles by which memories are 
stored in a neural network. Here, we have systematically studied how four types of associative 
memories (short- and long-term memories, each as positive and negative associations) are encoded 
within the compact neural network of Caenorhabditis elegans worms. Interestingly, sensory neurons 
were primarily involved in coding short-term, but not long-term, memories, and individual sensory 
neurons could be assigned to coding either the conditioned stimulus or the experience valence (or 
both). Moreover, when considering the collective activity of the sensory neurons, the specific training 
experiences could be decoded. Interneurons integrated the modulated sensory inputs and a simple 
linear combination model identified the experience-specific modulated communication routes. 
The widely distributed memory suggests that integrated network plasticity, rather than changes to 
individual neurons, underlies the fine behavioral plasticity. This comprehensive study reveals basic 
memory-coding principles and highlights the central roles of sensory neurons in memory formation.

Editor's evaluation
In this study, the authors established paradigms for appetitive and aversive short-term and long-
term olfactory learning. They then produced a large collection of activity recordings in a handful of 
sensory neurons and interneurons, produced a linear model to describe sensory-evoked interneuron 
activities, and observed changes in the activities caused by learning. Although more work is needed 
to explain how these activity patterns relate to behavior, the collection of data provides hypotheses 
for future studies on the function of the neurons implicated in the learning paradigms and provides 
useful references for similar studies in the field.

Introduction
Learning and memory processes are presumably universal in the animal kingdom, forming the basis 
for adaptive behavior. An intriguing form of these behavioral adaptations is known as associative 
learning, where a link between two unrelated cues is formed. The famous pavlovian dogs set a clas-
sical example: These dogs were trained to associate a sound stimulus (the conditioned stimulus, CS) 
with food (unconditioned stimulus, US). Consequently, the mere auditory cue prompted the dogs to 
salivate in expectation of their meal (Pavlov, 1910).

To synthesize an adaptive associative memory that elicits an adaptive response upon future encoun-
ters with the CS, both the CS and the US must be encoded in the neural system. Moreover, their 
encoding needs to be logically integrated such that the behavioral response will match the expected 
valence that the CS predicts (Josselyn and Tonegawa, 2020). Whether the CS was associated with a 
positive or negative experience, this valence remains associated with the CS.
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Animals have come up with different strategies for encoding associative memories. In flies, olfac-
tory associative learning is centralized in the mushroom body, where it is distributed among various 
neurons and synapses to code both the US valence and the CS odorant (Bilz et al., 2020; Roselli 
et al., 2021; Widmann et al., 2018). Mammalian brains are thought to encode associative memories 
in a decentralized fashion where interconnected areas, distributed across various areas of the brain, 
link up to encode memory traces. For example, associative fear memories are thought to be distrib-
uted among the amygdala that encodes the valence⁠, the hippocampus, which encodes the context, 
and the cortical neurons, which provide the specific sensory information (Josselyn and Tonegawa, 
2020).

In that respect, sensory neurons also proved to play important roles in the formation of associative 
memories. Their learning-induced neuroplasticity was observed across various sensory modalities (e.g. 
olfactory, gustatory, auditory, and visual), and is thought to confer improved detection and enhanced 
attention towards important cues encountered in the past (Åhs et al., 2013; McGann, 2015).

Extracting the principles by which memories are formed within neural networks requires first to 
identify the brain regions, and preferably, the individual coding neurons. To this end, Caenorhabditis 
elegans worms offer an appealing research system. Their compact nervous system consists of 302 
neurons, and a detailed blueprint of all the chemical and electrical connections is available (Cook 
et al., 2019; White et al., 1986; Witvliet et al., 2021). Moreover, the number and the identity of the 
neurons are invariant and individual neurons can be identified based on their position and anatomy 
across different individuals.

Though equipped with a small neural network, C. elegans can form both associative and non-
associative memories (Ardiel and Rankin, 2010; Loy et al., 2021; Sasakura and Mori, 2013). To 
form associative memories, worms are typically conditioned with a chemical (e.g. an odorant, salt, or 
low pH) or a mechanical stimulus in the presence or the absence of food, to form positive or negative 
associations, respectively (Adachi et al., 2010; Amano and Maruyama, 2011; Kauffman et al., 2010; 
Oda et al., 2011; Rankin, 2000; Torayama et al., 2007; Wen et al., 1997). Following successful 
conditioning, attraction to the conditioned stimulus is enhanced or reduced depending on whether 
the training paradigm includes food (positive training) or not (negative training), respectively. Just like 
in higher organisms, these memories can be classified into short- and long-term memories, where the 
former last for a couple of hours and the latter may persist for days (Amano and Maruyama, 2011; 
Kauffman et al., 2010).

Whole-brain functional imaging can be used to extract the individual neurons whose activity 
was modulated following memory formation. In C. elegans, advanced microscopy techniques allow 
imaging neural dynamics of the entire network with cellular resolution in both restrained and freely 
behaving animals (Hallinen et al., 2021; Kato et al., 2015; Nguyen et al., 2016; Schrödel et al., 
2013; Toyoshima et  al., 2020; Venkatachalam et  al., 2016; Yemini et  al., 2021). In particular, 
studying neuroplasticity with cellular resolution allows addressing intriguing questions that were hith-
erto considered mainly based on theoretical grounds. For example, how do individual sensory neurons 
code and integrate both the stimulus and the valence? How many neural resources are required 
to form an associative memory, and more fundamentally, are there general organizing principles by 
which associative memories are encoded within a neural network?

Here, we have systematically studied how the four types of associative memories (positive/nega-
tive associations, each formed as a short- or long-term memory) are encoded within the compact 
neural network of C. elegans. We found that short-term, but not long-term, memories are evident 
in the sensory layer of the animal. Moreover, individual sensory neurons code the CS and/or the US 
components of the memory in a distributed manner. This information is integrated by the downstream 
interneurons, which code both the short- and long-term memories. Given the distributed nature of the 
memory code, it is the combined modulated activity of all the involved neurons that gives rise to the 
adaptive behavioral response.

Results
Establishing four memory-formation paradigms using the same CS
We begin by establishing training paradigms that form robust traces of associative memories 
(Figure 1A). Building on existing protocols (Amano and Maruyama, 2011; Colbert and Bargmann, 

https://doi.org/10.7554/eLife.74434


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Pritz et al. eLife 2023;12:e74434. DOI: https://doi.org/10.7554/eLife.74434 � 3 of 30

Figure 1. Training paradigms that form robust associative memories. (A) Worms were trained to form each of the four types of associative memories: 
Short- and long-term memories (denoted along the horizontal axis), each trained using a positive or a negative unconditioned stimulus (US, vertical 
axis). Notably, the same conditioned stimulus, butanone (BUT), was used for all types of memory. STAP, short-term appetitive; LTAP, long-term 
appetitive; STAV, short-term aversive; LTAV, long-term aversive. In the LTAP training, seven rounds of 30 min starvation (no CS) and 30 min on food (+CS) 
were used. For LTAV training, two rounds of pairing starvation with BUT (each for five hours) were required. (B) A two-choice assay was used to quantify 
animals’ preference towards the conditioned stimulus BUT (against an alternative attractive choice, diacetyl). Scoring the number of worms reaching 
each of the choices provided the Choice Index (CI), which ranges from –1 (denoting complete aversion to the CS) to +1 (full attraction). Choice tests for 
positively- and negatively trained animals differed in concentrations and layout (Figure 1—figure supplement 1A) because of valence-specific effects 
on choice behavior (Figure 1—figure supplement 2). Learning indices (LIs), calculated based on these CIs, show the treatment-, stimulus-, and training- 
specific effects on the animals’ choice (Figure 1—figure supplement 3). (C) CI values as scored following the behavioral choice assays. Positively 
trained animals increased attraction while negatively trained animals reduced attraction towards BUT. (D) LIs calculated according to the equations 
provided in (B) on the data shown in (C). Significant stimulus- and training-specific LIs in all paradigms indicate experience-dependent modulation of 
behavior that is based on stimulus and valence. LIs were calculated by comparing experiments performed on the same day only (Figure 1—figure 
supplement 4 and Materials and methods). Experimental repeats (in C&D) were performed on different days and range between 4 and 21. Each 
experimental repeat is the average of three assay plates, each scoring 100-150 worms. Error bars indicate SEM. *p<0.05, **p<0.01, ***p<0.001 (one-
sample t-test, FDR corrected; significant differences from the zero LI values).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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1995; Kauffman et al., 2011), we trained C. elegans worms to form each of the four types of asso-
ciative memories: short-term aversive (STAV), short-term appetitive (STAP), long-term aversive (LTAV), 
and long-term appetitive (LTAP). Notably, we used the same CS (the odorant butanone, BUT) for all 
training paradigms. This allowed us to extract memory traces that are unique to the training paradigm 
and that are independent of the specific CS used.

To form positive (appetitive) or negative (aversive) associations, we exposed the worms to BUT in 
the presence or the absence of food, respectively. To form short-term memories, for which behav-
ioral changes last for up to 2 hr (Kauffman et al., 2010), we trained the worms for 1 hr or 90 min for 
appetitive or aversive conditioning, respectively, and assayed the animals within 30  min following 
the training period. For long-term memories, which typically last for 1–2 days (~10% of the worms’ 
lifespan), we used a repetitive-training protocol that lasted for ~12 hr and then assayed the animals 
14 hr post the training period (Figure 1A, see also Materials and methods for details). In parallel to 
the trained animals, we always included in the analysis two important control groups: mock-trained 
animals (animals that underwent training in the absence of the CS BUT) and naive animals, which were 
left untreated.

To verify that these training paradigms form robust memory traces, we analyzed the attraction 
of trained animals to BUT, the CS (Figure 1B). For this, we used a standard two-choice assay, where 
worms were free to choose between the CS and an alternative attractant, diacetyl (DA). Based on 
the worms’ distribution after 1 hr, we calculated the Choice Index (CI) which provides a quantitative 
measure for the animals’ preference towards the CS over the alternative (Figure 1B and Figure 1—
figure supplement 1A).

Following training, positively- and negatively trained animals shifted their preferences towards 
the CS in a concentration-dependent manner (Figure 1—figure supplement 2): Aversively trained 
animals decreased attraction towards the CS at lower concentrations, while the attraction of positively 
trained animals increased only at higher concentrations of the CS BUT (Figure 1—figure supplement 
2). Thus, for chemotaxis assays, we used a 10-1 BUT concentration for positively trained animals, and a 
10-3 concentration for the negatively trained animals (Figure 1—figure supplement 1A).

Worms trained to form positive associations were significantly more attracted to BUT than mock-
trained or naive animals (Figure  1C). Similarly, worms trained to form negative associations were 
significantly less attracted to BUT when compared to mock-trained or naive animals (Figure 1C). These 
behavioral changes were evident in both short- and long-term training paradigms. Similar results were 
also obtained when assaying with ethanol, which was used to dilute BUT, instead of DA as the alter-
native choice (Figure 1—figure supplement 1B).

We next quantified the explicit effects of the CS (BUT) and the US valence (starvation/appetitive 
experiences) on the behavioral output. For this, we used the CI values to compute the Learning Index 
(LI), which reflects the difference between the CI of the different experimental groups within a training 
paradigm (Figure 1B and Methods). The treatment itself (US, CImock - CInaive) led to negligible changes 
in the choices (Figure 1D). By contrast, significant changes in the choice, of both training-specific 
(CItrained - CInaive) and stimulus-specific (CS, CItrained - CImock), were observed across all training paradigms, 
indicating that the modulated behavior was due to the presence of the CS (BUT) (Figure 1—figure 
supplements 2–4). Furthermore, the change in the choice corresponded to the valence of the expe-
rience: appetitively trained animals increased their choice of BUT, while aversively trained animals 
decreased their choice (Figure 1D). Thus, the change in choice behavior was dependent on both the 
stimulus and the valence of the experience.

Taken together, using the same CS (BUT), the four types of associative memories could be robustly 
formed: positive (appetitive) experiences which increased attraction towards BUT, and negative (star-
vation) experiences which decreased this attraction. Both positive and negative associations were 
successfully formed for short- and long-term periods.

Figure supplement 1. Behavioral choice assays using ethanol as the alternative choice reproduced the results obtained using diacetyl.

Figure supplement 2. Appetitive and aversive training paradigms shift the preference to butanone.

Figure supplement 3. Inferring memory components by comparing different experimental groups.

Figure supplement 4. The behavioral choice assays are subject to high day-to-day variability and a same-day difference analysis reduced this variation.

Figure 1 continued

https://doi.org/10.7554/eLife.74434
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Figure 2. A comprehensive functional analysis of the chemosensory system including key interneurons. (A) A comprehensive systematic analysis of 
neural dynamics in naive, trained, and mock-trained animals across all four training paradigms (STAP, STAV, LTAP, LTAV). Neural dynamics were measured 
following exposure to (ON) or removal of (OFF) the conditioned stimulus butanone. Shown are the mean activities of the chemosensory neurons. 
The color bar indicates fluorescence normalized by the ground state of the neuron (see Methods for details). Statistical analysis suggested that at 
the population-level, activities of AWCW and AWCS correspond to AWCON and AWCOFF, respectively (see Figure 2—figure supplement 3A–D for a 
detailed analysis). (B) Mean activity of the RIA and AIA interneurons. Activities were extracted from the neurites. For RIA, we analyzed activity within the 
dorsal and the ventral regions of the neurite (see also Figure 2—figure supplement 1C and D and Materials and methods). Due to large amplitude 
differences between interneurons, the color bar indicates fluorescence normalized by the maximal fluorescence (ΔF/Fmax). nr, nerve ring; nrD/V, dorsal/
ventral sides of the nerve ring; In both panels, presented are the means of 9–17 animals per each experimental group (column), resulting in a coverage 
of 2-17 traces per neuron (median=13). Only neurons with at least six traces were analyzed.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Identifying the individual chemosensory neurons in the pan-chemosensory reporter strain.

Figure supplement 2. Interneurons anatomy and the region of extracted activity.

Figure supplement 3. Discriminating between the two bilateral AWC neurons.

Figure supplement 4. Discriminating between the URX and CEPD neurons: Butanone removal elicits responses in the URX neurons, but not in the 
CEPD neurons.

Figure supplement 5. Neural activities of naive animals.

https://doi.org/10.7554/eLife.74434
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A comprehensive functional analysis of the chemosensory system 
following memory formation
We systematically analyzed neuroplasticity of the sensory system, naturally focusing on the chemo-
sensory neurons (Figure 2—figure supplement 1) as well as on two of the main downstream inter-
neurons AIA and RIA (Figure 2 and Figure 2—figure supplement 2A and B). The AIA neuron is 
directly and richly innervated by chemosensory neurons, and hence, forms a hub in processing 
sensory output (Witvliet et al., 2021). RIA integrates sensory signals with the head position, thereby 
affecting choice of locomotion directionality (Hendricks et al., 2012; Hendricks and Zhang, 2013; 
Ouellette et al., 2018). We measured neural activity for all the four training paradigms (Figure 1A), 
including the matched mock-trained control groups and naive animals. For this, we used several 
reporter strains, each expressing GCaMP in either a set or in individual types of neurons (see Mate-
rials and methods). We restrained the animals in a microfluidic device (Chronis et al., 2007) and 
allowed them to habituate to the imaging conditions before using a fast-scanning confocal system to 
image dynamics from individual neurons during exposure and removal of the CS butanone (Figure 2). 
Neural identities were unambiguously extracted using available anatomic maps (Durbin, 1987; 
White et al., 1986) and by comparing to reporter strains with known neural identities (Figure 2—
figure supplements 3 and 4).

Short-term memories are evident in the sensory- and the inter-neurons, 
while long-term memories are evident primarily in the interneurons
Previous studies showed that the chemosensory neuron AWCON responds to BUT already at the naive 
state of the animals (Kato et al., 2014; Larsch et al., 2013). We found that additional chemosensory 
neurons participate in encoding BUT in naive animals, namely, AWA, ASH, AWB, ASJ, URX, as well 
as the interneurons AIA and RIA (Figure 2 and Figure 2—figure supplement 5). However, neurons 
that participate in memory coding presumably show modulated response activities following training. 
To extract these neurons, we calculated the difference in the mean amplitude response between all 
possible pairwise comparisons of the various experimental groups, namely, naive, trained, and mock- 
trained animals, for each of the four training paradigms (Figure 3A–B).

For example, while the AWCW neuron (identified as AWCON, see Figure 2—figure supplement 
3) shows mild innate responses to BUT in naive and mock-trained animals, its response activity 
was significantly heightened following short-term appetitive (STAP) and short-term aversive (STAV) 
training paradigms (Figure  3C–F). Since the sole difference between the trained and the corre-
sponding mock-trained animals was the presence of the CS (BUT) during the training period, the 
differential activity suggests that the AWCW neuron may be coding the stimulus component of the 
memory. No significant differences were observed in the responses of the AWCW neuron when 
comparing STAP and STAV-trained animals, further strengthening the possibility that this neuron 
codes the stimulus rather than the valence component of the memory. A similar change in AWCON 
neural activity was also observed by Cho and colleagues (Cho et al., 2016). Interestingly, this training-
associated increased activity depended on intact neurotransmission (Figure 3—figure supplement 
1), suggesting that network activity, rather than cell-autonomous processes, underlie the response 
plasticity in the AWCON neuron.

In addition to AWCON, the neurons AWCOFF, ASH, and ASK also showed significant modulated 
responses (Figure 3A and Figure 3—figure supplements 2 and 3). Most striking, the changes in 
neural responses were observed predominantly for the short-term training paradigms, while only 
minor negligible changes were detected following long-term training paradigms (compare the two 
rightmost sectors in Figure 3A).

In contrast to sensory neurons, interneurons showed marked changes in their responses following 
training in both short- and long-term paradigms (Figure 3B and Figure 3—figure supplements 4 
and 5). For example, we observed significant increased activity in the ventral compartment of the 
RIA neurons as well as in the AIA neurites following training in the long-term negative paradigm 
(Figure 3—figure supplement 4).

Together, these results indicate that sensory responses to the CS were primarily modulated 
following formation of short-term, rather than long-term, memories. Moreover, this training-induced 
plasticity was distributed across various chemosensory- and inter- neurons.

https://doi.org/10.7554/eLife.74434
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Figure 3. The activity of sensory neurons is predominantly modulated following short-term training paradigms, while the activity of interneurons is 
modulated following both short- and long-term training paradigms. (A–B) Differences in the mean maximal amplitudes of neural activities across the 
different experimental groups. Differences between pairwise groups are denoted by the Δ in the header. (A) Chemosensory neurons. (B) Interneurons 
with nr(D/V) meaning neurite (Dorsal/Ventral). The leftmost sector denoted all possible comparisons that provide the different coding measures. For 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.74434
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Sensory neurons code both the stimulus and the unconditioned 
stimulus in short-term memories
The systematic functional analysis revealed small, though significant, differences in neural responses 
(Figures 2–3). This is in contrast to the differences observed in behavioral outputs that showed a 
strong experience-dependent shift in preference towards the CS when presented with an alternative 
choice (Figure  1 and Figure  1—figure supplement 1B). Thus, to better resolve potential neural 
differences in encoding aversive and appetitive memories, we mimicked the conditions set during 
the behavioral assays and imaged neural responses using DA as the alternative choice to the CS BUT. 
We repeated the comprehensive functional imaging experiments, this time focusing on the short-
term training paradigms in which the chemosensory neurons showed extensive modulated activities 
(Figure 4A–B and Figure 4—figure supplement 1). Strikingly, a systematic analysis of naive, trained, 
and mock-trained animals following positive and negative training paradigms revealed significant 
activity changes in most of the chemosensory neurons (Figure 4A–B and Figure 4—figure supple-
ments 2 and 3). In particular, three neurons (AWA, ASER, and AWCON) stood out with marked differ-
ences in their activity (Figure 4B–J and Figure 4—figure supplement 4A–F).

In naive and mock-trained animals, the AWA neurons strongly responded upon switching from 
DA to BUT (Figure 4B–D). However, in trained animals (positive and negative), the AWA neurons 
showed no responses, suggesting that these changes code the stimulus component. When switching 
back from BUT to DA, the AWA neurons in trained animals were activated. This activation was signifi-
cantly stronger in STAV-trained than in STAP-trained animals (Figure 4—figure supplement 4D–F), 
suggesting differences between aversive and appetitive encoding as well. Repeating these experi-
ments in an additional AWA reporter strain similarly showed stimulus and valence specific modula-
tions, although the response dynamics differed from the one observed in the pan-sensory reporter 
strain (Figure 4—figure supplements 4 and 5).

The ASER neuron displayed marked activity responses in naive animals upon the switch from DA 
to BUT. This response was completely lost in STAP-trained and all mock-trained animals, but not in 
STAV-trained animals (Figure 4E–G). This suggests that the ASER neuron may be coding the stimulus 
component of the memory as well as the positive (US+) and the negative (US-) experiences of the 
training paradigms. Activity changes in the AWCON neurons were hallmarked by a large increase in all 

example, US + compares the positively mock-trained animals to naive animals to yield the coding specific of the positive unconditioned stimulus. TR, 
treatment-specific coding; SL, short- vs long- term. The middle and the rightmost sectors denote short-term and long-term specific differences including 
the valence (VAL) and the conditioned stimulus (CS) specific coding or the short and long-term memory, respectively. Black or white rectangles denote 
exposure or removal of butanone (BUT), respectively. Note that for sensory neurons (A) higher amplitude differences are observed predominantly in 
short-term paradigms. In interneurons (B), high amplitude differences are observed for both short- and long-term training paradigms. Colorbar denotes 
the difference in the maximal amplitude of the two neural responses. Rectangles marked with a border line are significant differences: Gray * p<0.05, 
Black ** p<0.01. (C–E) The sensory neuron AWCW shows a significant differential activity following formation of short-term memories. Analysis suggests 
that the AWCW population activity corresponds to the one of AWCON (Figure 2—figure supplement 3A–D). (C) Heat maps of individual neurons 
(=animals) denoting neural activities in each of the four training paradigms. The vertical white line at t=0 denotes the time of BUT removal. (D) Mean 
activities, based on data from C. The different colors denote the experimental group in each of the four paradigms. The shaded gray background 
indicates BUT exposure, and shaded area around the mean activity indicates standard error of the mean. (E) Integrated activity during the first 10 s 
following BUT removal (based on the dynamics shown in C, n=7-15). Black vertical lines denote the mean of summed activity, and the dots present the 
individuals. *p<0.05, **p<0.01, ***p<0.001 (t-test, FDR corrected for multiple comparisons). (F) Two examples of mean AWCW responses comparing 
different experimental groups. Green, Short-term appetitive (STAP); Red, Short-term aversive (STAV); Gray, appetitively mock-trained animals. 
Comparing response dynamics of STAP and the associated mock controls reveals a significant difference (denoted on the left side). This difference 
marks a stimulus-specific component of the memory. In contrast, the difference between STAP and STAV is negligible (shown as a blue box on the right), 
suggesting that the AWCON neuron does not code the valence component of the memory. The boxes’ color code matches the different colors shown in 
panel A. The three dynamic curves shown here are taken from panel D to highlight the groups being compared.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The gained responses in AWCON following short-term appetitive training require intact synaptic transmission.

Figure supplement 2. The sensory neurons whose activity responses were modulated following short-term, but not long-term, training paradigms.

Figure supplement 3. Individual activity traces of chemosensory neurons in naive and mock-controlled animals.

Figure supplement 4. Interneurons exhibited modulated activities following both short- and long-term training paradigms.

Figure supplement 5. Individual activity traces of interneurons in naive and mock-controlled animals.

Figure 3 continued

https://doi.org/10.7554/eLife.74434
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Figure 4. Short-term training broadly modulates activity of the sensory neurons. (A) Differences in the mean maximal amplitudes of neural activities 
across the different experimental groups. Differences between pairwise groups (denoted by the Δ in the header) denote the different coding-specific 
measures. Rectangles marked with a border line denote significant differences: Light gray * p<0.05, dark gray ** p<0.01, Black ***p<0.001. (B–J) The 
sensory neurons, AWA (B-D, n=9–16 animals), ASER (E-G, n=8-10 animals), AWCON (H-J, n=9-16 animals, see Figure 2—figure supplement 3E–L), 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.74434
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treated groups (when compared to the naive group), which is indicative of coding both the aversive 
and appetitive US (Figure  4H–J, Figure  2—figure supplement 3E–H). Activity changes of other 
sensory neurons were more subtle: for example, ASI, AWB, and ASJ neurons appeared to be related 
to the differences between aversive and appetitive experience (Figure 4—figure supplements 2 and 
3).

In some paradigms, the AWA and ASER neurons exhibited marked variability in their responses 
(Figure 4—figure supplement 6A–B). For example, the ASER neuron responded in only ~50% of the 
naive or STAV-trained animals. This bi-modal distribution was observed when considering both trial-
to-trial and animal-to-animal responses (in the following, the term ‘trial’ refers to individual BUT/DA 
exchanges, where animals underwent six cycles of such trials (exchanges), Figure 4—figure supple-
ment 6A). Interestingly, this variability decreased following training (e.g. STAP and the associated 
mock group) as most animals (or trials) showed homogeneous responses. Other neurons did not show 
a marked animal-to-animal variability (Figure 4—figure supplement 6D–G).

As multiple chemosensory neurons changed activity following training in each of the paradigms, 
we next asked how many neurons need to be considered to accurately describe each of the training-
associated states such that their combined activity can distinguish between these training paradigms. 
We trained several classifiers (including k-means, random-forest, and a neural net) on a fraction of the 
data, after which we tested the model accuracy on the remaining data (see Materials and methods). All 
classifiers provided similar results (Figure 4L–M and Figure 4—figure supplement 7E and F): When 
considering single neurons only, classification accuracy (measured as F1 scores) was rather low for all 
sensory neurons (up to 50%), though the scores were significantly higher than randomly expected 
(Figure 4K and Figure 4—figure supplement 7). When considering sets of sensory neurons, the 
decoding of the underlying training paradigm was better the more neurons were added to the model. 
Combining activities of all chemosensory neurons together resulted in 90% decoding efficiency, irre-
spective of the classification algorithm used (Figure 4L–M and Figure 4—figure supplement 7E–F).

These results demonstrate that the different training paradigms induce fine changes in a large frac-
tion of the sensory neurons, suggesting that short-term memories are widely distributed across the 
chemosensory system, where each neuron may code the CS and/or the positive/negative experiences 
of the training paradigm.

show significant differential activities following the formation of short-term memories. Heat maps (B, E, H) denote activities of individual neurons in 
each of the training paradigms, and vertical white lines at t=0 denote the time of stimulus exchange BUT/DA. Line plots (C, F, I) show mean activity 
with SEM (shaded color). The different colors denote the trained animals in a given paradigm. Blue, naive animals; Gray, mock-trained animals. Shaded 
gray rectangles indicate butanone exposure. Dotted lines in panel I (AWCON) denote the maximal amplitude of aversively and appetitively trained 
animals. Dots in group-scatter graphs (D, G, J) represent the summed neuronal activity post the stimulus switch; black lines denote the population 
mean. *p<0.05, **p<0.01, ***p<0.001 (t-test, FDR corrected). (K) Classification accuracy of the different training conditions when considering response 
dynamics of individual neurons. Shown are the macro F1 scores following using a random forest classifier. Blue line denotes the score of a random 
classification, indicating that when considering single neurons, the accuracy is better than randomly expected. Dash line indicates an F1 score of 50%. 
Error bars indicate standard deviation from a cross validation. ***p<0.001 (t-test against random F1 score, FDR corrected). (L) Classification accuracy 
of the different training conditions when considering a growing number of neurons to be included in the model (indicated by the horizontal arrow). 
Continuous purple line denotes the real data; dashed black line is when using a scrambled data where neuronal responses were randomly assigned 
to various training paradigms. Shaded area around the lines indicates standard deviation from cross-validation. (M) Line-normalized confusion matrix 
for the data. When including activity from all sensory neurons, the classification efficiency exceeds 90%. Scores of true positives, positioned along the 
diagonal, range from 81% to 97%.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A comprehensive functional analysis of the chemosensory system and key interneurons following training in short-term 
paradigms.

Figure supplement 2. Chemosensory neurons showing modulated activities following short-term training paradigms.

Figure supplement 3. Individual activity traces of chemosensory neurons in naive and mock-controlled animals.

Figure supplement 4. The two AWA reporter lines differ in their response kinetics but carry the same memory-coding logic.

Figure supplement 5. The WT and the pan-chemosensory reporter strain show similar behavioral outputs following training.

Figure supplement 6. ASER and AWA neurons show high animal-to-animal variability.

Figure supplement 7. Activity of sensory neurons can be used to identify the training conditions by classification algorithms.

Figure 4 continued

https://doi.org/10.7554/eLife.74434
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The modulated activity in the sensory neurons propagates to the 
interneurons
We next asked how these fine modulated activities are reflected in the downstream interneurons. The 
chemosensory neurons are presynaptic to several key interneurons, including AIY, AIA, and RIA (Cook 
et al., 2019; White et al., 1986; Witvliet et al., 2021). In particular, the AIY neurons are key imme-
diate postsynaptic targets of the AWA, ASE, and AWC neurons that showed marked modulated activ-
ities following training. We therefore repeated the short-term training paradigms in strains expressing 
GCaMP in these interneurons (see Materials and methods). Activity profiles of these interneurons 
were extracted from their neurites since the soma activity remained largely static (Figure 5—figure 
supplement 1), consistent with previous reports (Chalasani et  al., 2010; Hendricks and Zhang, 

Figure 5. Training-induced modulated activity of the interneurons. (A–D) AWA and AIY activities measured simultaneously from the same animal. 
Note the similarity between the mean activities of the AWA (A) and AIY (C) neurons in trained animals (n = 13-19 animals). (E–F) AIA activities across all 
training paradigms. (E) Individual traces of trained animals (top) and mean activities (bottom). AIA Activity was significantly reduced following positive-
associated training only (n = 6-18 animals). (G–H) Sensory-evoked component of the time-derivative of the neural activity Hendricks et al., 2012; Jin 
et al., 2016 of RIA across all training paradigms. RIA Activity was significantly increased following negatively associated training only (n=12-16 animals). 
(A, C, E, G) Heatmaps show responses of single neurons. Line graphs show the mean activity. Colors denote the training paradigm. Shaded areas in 
the line plots indicate presence of the CS butanone. (B, D, F, H) Integrated activity during the first 10 s following stimulus exchange. Black horizontal 
lines denote the mean of summed activity, and the dots present the means of each individual trials. Significance is according to the bar color: *p<0.05, 
**p<0.01, ***p<0.001 (t-test, FDR corrected).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Stimulus-induced calcium dynamics is observed in the neurites of AIA and AIY, but not in the cell soma.

Figure supplement 2. The individual activity traces and the mean activities of RIA and AIY interneurons in all training paradigms.

Figure supplement 3. Activities in the AVA and AVE neurons were not modulated following training in the different paradigms.

https://doi.org/10.7554/eLife.74434
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2013; Itskovits et al., 2018). Of note, for the AIY interneuron, we used a line expressing GCaMP in 
both the AIY and the AWA neurons, allowing simultaneous recordings of these two neurons from the 
same animal (Itskovits et al., 2018).

Neural responses in the AIY neurons largely recapitulated the responses observed in the AWA 
neurons (Figure 5A–D and Figure 5—figure supplement 2M–P). This suggests that the AIY neurons, 
similarly to the AWA neurons, might encode the stimulus component of the memory. The activity in 
the AIA neurons was significantly increased in positive mock-control animals while naive and positively 
trained animals responded similarly, indicating that AIA neurons are probably sensitive to the treat-
ment itself (US+) rather than to the stimulus (Figure 5E–F and Figure 5—figure supplement 1E–H). 
A similar tendency was observed in the aversive training paradigm.

To describe the sensory-evoked responses in the RIA neurons, we followed previous reports and 
considered the derivative form of the activity (Hendricks et al., 2012; Jin et al., 2016). This sensory-
evoked component was significantly increased following aversive experiences only, where the trained 
animals gained neural responses whereas naive and mock-trained animals showed minimal activity 
(Figure 5G–H and Figure 5—figure supplement 2I–L). These results suggest that the RIA neurons 
show stimulus-specific activity modulation in aversive conditions.

We also studied activity changes in two major command neurons, AVE and AVA, that are positioned 
downstream to the aforementioned interneurons, and whose activity instructs a backward motion 
(Gray et al., 2005; Piggott et al., 2011). These neurons exhibited mostly baseline-level activity shifts 
that were unrelated to the switches between BUT and DA (Figure 5—figure supplement 3).

The activity of interneurons can be explained by a linear combination 
of the sensory neuron’s activities
Measuring dynamics of AWA and AIY neurons simultaneously from the same animal revealed a surpris-
ingly low correlation between the two synaptic partners. In fact, only ~4–44% of the variance in AIY 
could be explained by the AWA activity across the different training conditions (Figure 6—figure 
supplement 1D–E). This suggests that additional neurons contribute to the overall dynamics of AIY, 
and possibly of other interneurons as well.

To study how the modulated activity of the sensory neurons impacts the activity of the interneu-
rons, we considered a simple mathematical model where interneuron dynamics is dictated by a linear 
combination of the sensory neuron activities. For this, we averaged activities of each odor trial for each 
of the sensory neurons across all animals in the different paradigms (Figure 6—figure supplement 
1I), and used a multivariate regression analysis to extract the weights that would best fit the activity 
of the AIY neurons (see Materials and methods). As expected, the more sensory neurons added to 
the model, the better was the overall prediction of the AIY activity (Figure 6A and D). When consid-
ering the combined activity of five sensory neurons types (namely, AWA, AWC, ASE, AWB, and ASG), 
up to 88% of the variance in the AIY neurons activity could be explained (Figure 6A–D). However, 
this improved accuracy was detected for the naive and the aversively trained animals (Figure 6A, 
pink arrows), while no improvement (compared to when considering AWA alone) was detected for 
the positively trained animals and the associated mock controls. This lack of improvement suggests 
that ASER, AWC, ASG, and AWB neurons contribute more to encoding the aversive experiences, 
while the AWA neurons were the prime contributors to the downstream AIY activity in appetitive 
experiences (Figure 6C and D). Overall, the highest portion of variance that explains AIY activity was 
obtained in the mock-trained animals, suggesting that the US experience alone may dominate the 
sensory-to-AIY input weights. This is particularly evident for the appetitive conditioning where the 
presence of food alone yielded a better fit to AIY activity than the training regime consisting of food 
and BUT combined. Model evaluation using F-statistics and cross validations indicated that different 
combinations of sensory neurons should be used to best explain the AIY activity in each of the training 
paradigms (Figure 6—figure supplement 1H). Together, these analyses indicate specific and distinct 
synaptic routes between the chemosensory neurons and the postsynaptic AIY interneuron are modu-
lated in a paradigm-specific manner (Figure 6E).

Sensory neurons and interneurons jointly code short-term memory
The analyses above indicated that neural activities were significantly modified in an experience-
dependent manner. We next asked whether these combined changes provide a unique coding scheme 

https://doi.org/10.7554/eLife.74434
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Figure 6. Activity of AIY interneurons can be described as a linear combination of the sensory neurons’ activities. (A–C) A multivariate regression 
analysis was used to explain AIY activity based on a linear combination of the sensory neurons activity. (A) A multivariate regression model of average 
AIY activities (color coded by the training condition) based on activities of either AWA alone (broken blue line) or the combination of 5 neuron types 
(AWA, AWC, ASE, ASG and AWB, black line). Dynamics shown are during 15 s after the diacetyl-to-butanone switch. Pink arrows indicate where the 
addition of more neurons to the model improved the fit to the AIY activity. (B) Activity scatter plots of the different sensory neurons vs AIY across all 
training paradigms. (C) Regression coefficients of the sensory neurons. R2 denotes the coefficient of determination. Asterisks denote the significance 
of regression coefficients in contributing to the linear combination. Note that the correlation coefficients for AWA strongly vary between conditions: 
green (pink) arrows indicate large (small) coefficients and hence strong (weak) effects on AIY activity. Error bars indicate confidence intervals. *p<0.05, 
**p<0.01, ***p<0.001 (t-test p-values for coefficients from regression statistics). (D) Gradual addition of sensory neurons to the linear combination model 
increased the variance explained in AIY Activity as reflected by the higher R2 scores (line plot in top panel). In Naive and in STAV, AWA alone explained 
very little of the AIY activity variance (dotted red frame) and adding more neurons increased the R2 scores. Appetitive conditions show a shallower 
increase in R2 since AWA alone explains more than half of the activity variance observed in AIY (dotted cyan frame). Note that the overall adjusted R2 
does not deviate from R2, indicating that overall the model excluded insignificant regressors. (E) Summary of the sensory-to-AIY communication routes 
(chemical and electrical Choi et al., 2020) that are modulated by experience. Colors indicate in which memory type they are modulated, and arrow’s 
thickness indicates relative synaptic strength (White et al., 1986; Witvliet et al., 2021).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Synaptic communication routes between sensory neurons and the AIY interneurons change in an experience-dependent manner.

https://doi.org/10.7554/eLife.74434
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for each of the memory components that jointly code the training paradigms. For this, we considered 
the changes in the activity dynamics of individual neurons across the different paradigms by calcu-
lating the difference in the neural activity between the training groups. For instance, subtracting the 
mean activity of aversively mock-trained animals from the mean activity of aversively trained animals, 
provides a measure for how much the CS changed the activity of that particular neuron (Figure 1—
figure supplement 3 and Figure 7—figure supplement 1A). We calculated these activity differences 
for each of the six trials across all neurons to generate an activity delta matrix (see Materials and 
methods and Figure 7—figure supplement 1B).

Next, we performed a principal component analysis (PCA) on this difference matrix. Interestingly, 
the first two components of the PCA already generated distinct clusters, each cluster representing 
an experience component (Figure 7A). For example, both CS components (bluish colors, denoted 
by the difference between trained and the corresponding mock-trained animals, Figure 1—figure 
supplement 3) are clearly distinct from the US components (green/red colors, denoted by the 

Figure 7. PC analysis reveals unique population codes for each of the training paradigms. (A–B) PCA scatter plot 
of the different experience components (Figure 1—figure supplement 3) as calculated based on the differences 
in neural activities: US+, appetitive unconditioned stimulus; US- aversive unconditioned stimulus; CS(AP) 
conditioned stimulus calculated from appetitive regime; CS(AV) conditioned stimulus calculated from the aversive 
regime. VAL(M) valence calculated from the mock-trained groups; VAL(T) valence calculated from the trained 
groups. (A) PCA when considering sensory neurons only. (B) PCA when combining sensory and interneurons. 
Note the better separation of clusters when interneurons are included in the analysis. (C) Map of activity changes 
associated with the various experience components. Blue arrows represent changes following butanone (BUT) 
exposure. Brown arrows reflect changes following exposure to diacetyl. Note some neurons (i.e. AWC) are 
OFF-type responders that react to stimulus withdrawal. Consequently, while the response change was recorded 
during DA presentation, the neuron is responding to BUT withdrawal. Shaded areas in the arrowhead indicate the 
standard deviation between trials.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. PC analysis reveals the encoding neurons in each of the training paradigms.

https://doi.org/10.7554/eLife.74434
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activity difference between naive and mock-trained animals). Furthermore, even within the expe-
rience components, each condition is distinctly clustered. For example, the valence components, 
calculated by the differences within the corresponding trained and mock-trained groups (e.g. 
STAPT - STAVT and STAPM - STAVM), are grouped nearby, yet form two distinct clusters (yellow/
brown colors, Figure 7A). When incorporating the data of the interneurons (AIY, AIA, and RIA), 
the separation between the clusters becomes even more prominent (Figure 7B). These findings 
suggest that individual experiences distinctly modulate the combined activity of the sensory and 
the interneurons.

The applied training regime is not the sole source for variation in neural activities. For example, 
differing network states (Gordus et  al., 2015) and additional sensory inputs may significantly 
contribute to the overall modulated activity. To eliminate such plausible factors and to focus on the 
training-associated changes only, we reconstructed the original data based on the principal compo-
nents 1, 2, 3 and 5, which best represented the experience components and their associated loads 
(see Materials and methods, Figure 7B and Figure 7—figure supplement 1D). We then plotted the 
reconstructed changes in the neural activities as arrows, where the length of the arrow represents 
the mean magnitude of the change associated with each of the experience components (Figure 7C). 
Notably, since this PCA-based method filters much of the variation in the data that is not associated 
with the experience components of the training paradigms, it provides a conservative, and presum-
ably more accurate, representation for the role of neurons in each of the training paradigms.

It is evident that coding each of the memory components is distributed among several sensory 
neurons, where a few of them (e.g., AWCON) are broadly used to code most of these experience 
components. In addition, starvation itself, denoted by the US- experience component, involves activity 
modulation of multiple neurons. The changes in the activity of the interneurons showed marked vari-
ability, more than that observed in the sensory neurons (Figure 5). As a result, their activities were 
mostly filtered out following the PCA analysis and data reconstruction (see Methods and Figure 7—
figure supplement 1C–N). Thus, the contribution of the interneurons to the overall neural represen-
tation is presumably underestimated. Together, these analyses show that experience components are 
distributed across various neurons that collectively form a unique population code for each of the 
training paradigms.

Short-term training paradigms modulate the directionality of animals 
during chemotaxis towards the CS
The comprehensive analysis of neural activities showed that training modulates response dynamics 
of sensory- and inter- neurons (Figures  2–7), which in turn modulates animal preference towards 
the training stimulus (Figure 1). We therefore asked what are the fine training-induced locomotion 
changes that may underlie the modulated preference towards the CS (BUT). To understand the effects 
of training paradigms on specific locomotion parameters, animals were imaged when choosing 
between BUT and DA in conditions similar to the choice tests (Figure  1) and the neural imaging 
analyses (Figures 3–6). A multi-animal tracking system was used (Itskovits et al., 2017) to extract key 
locomotion parameters, namely, animal’s speed, reversal frequency, and directionality (angle) towards 
the CS target (Figure 8A–B).

Positively trained animals were significantly more directed towards the CS target, while the nega-
tively trained animals were the least directed towards the target (each paradigm compared to its 
naive and matched mock-trained animals, Figure 8C–D). Notably, animals that underwent aversive 
training with BUT showed a high deviation angle with low variance towards the alternative choice DA 
(Figure 8C, arrow), suggesting that the negative training increased aversion from BUT, and concomi-
tantly, enhanced attraction to DA. Animal’s speed and reversal frequency showed mild though signif-
icant changes (Figure 8E–H). To test the contribution of these changes to the overall behavior, we 
simulated animal chemotaxis based on experimental locomotion parameters (Figure 8I–N, and see 
Figure 8—figure supplement 1 for explanation). These simulations indicated that animal direction-
ality (the deviation angle from the target) accounted for most of the behavioral changes, while the 
contribution of the speed and the reversal frequency to the overall change in the locomotive behavior 
was negligible (Figure 8—figure supplement 1). These analyses suggest that training mainly affected 
animals’ directionality features: more directed following positive training and less directed following 
an aversive training.

https://doi.org/10.7554/eLife.74434
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Figure 8. Short-term learning paradigms modulated the directionality towards the CS, but not the speed nor the 
reversal frequency. (A) A layout of the choice experiments for the appetitive and the aversive short-term training 
paradigms. Note the different concentrations of the CS butanone (BUT) used in each case. + sign marks the 
starting position of the worms at the beginning of the assay. Scale is in cm. (B) The directionality of the animal 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.74434
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Discussion
Ample studies demonstrated associative (conditioning) learning in C. elegans (Ardiel and Rankin, 
2010; Cho et al., 2016; Kauffman et al., 2010; Loy et al., 2021; Oda et al., 2011; Sasakura and 
Mori, 2013). In this study, we systematically mapped each of the four types of associative memories 
(short- and long-term memories, each encoded using positive and negative associations) onto the 
compact neural network of C. elegans. By using the same CS (BUT) in all training paradigms, we were 
able to extract the individual neurons that code either the CS, the US (positive or negative), or both.

Of note, short- and long-term memories can also be categorized based on the involvement of 
transcriptional and translational processes: While classical short-term memories do not depend on 
such processes, long-term memories do (Asok et al., 2019). Indeed, long-term memories were shown 
to depend on crh-1 (a CREB homolog) and transcriptional changes (Freytag et al., 2017; Kauffman 
et al., 2010; Lakhina et al., 2015)⁠. However, short-term aversive conditioning with butanone was also 
shown to depend on RNAi and transcriptional changes (Juang et al., 2013). Thus, while the under-
lying molecular mechanisms may be paradigm or species specific (Cho et al., 2016), in this study, 
we classified the training paradigms into short and long-term memories based on the time period 
these memories were behaviorally persistent (e.g. modulated attraction to the conditioned stimulus, 
Figure 1 and Figure 8).

Sensory neurons’ activities code short-term memories while 
interneurons code both short- and long-term memories
Our findings indicated that short-term, but not long-term, memories were mostly evident in changes 
of the sensory neurons’ soma activities (Figure 9A–B). These short-term memories inflicted substan-
tial changes in the stimulus response dynamics of multiple sensory neurons (Figures  2–4 and 
Figure 9C–D). It is possible that the limited sensory neuroplasticity observed in long-term memo-
ries was due to the specific training conditions used herein, for example, the specific use of BUT 
as the CS and the training durations. Indeed, when using isoamyl alcohol as the CS, and coupling 
this odornat with a long-term aversive training, a mild modulated activity was observed in both the 

trajectory towards the BUT target is given by the deviation angle, the angle between the animal’s directionality 
vector and the target. Deviation angles approaching zero mean a motion directed towards the target, and 180 
degrees is directionality opposite from the target. (C) Plots of the deviation angle as a function of the distance 
from the target BUT (See panel A). STAP-trained animals make significantly smaller deviation angles than mock-
trained and naive animals. In contrast, STAV-trained animals show significantly higher deviation angles than 
associated mock and naive controls. Note that the relative effect size is larger in aversive than appetitive animals 
and that animals migrate towards DA (arrow). The dotted horizontal line denotes 90 degrees. (D) Mean deviation 
angle in the proximal region (1.2-3.5 cm from the target, marked by gray area in C). (E) Plots of the speed as a 
function of the distance from the target BUT. (F) Mean speed angle in the proximal region (1.2-3.5 cm from the 
target, marked by gray area in E). (G) Plots of the reversal frequencies as a function of the distance from the target 
BUT. The units are given as reversals per centimeter worm track at the distance from the endpoint specified by the 
x-axis. (H) Mean reversal frequencies in the proximal region (1.2-3.5 cm from the target, marked by gray area in G). 
In C-H, shown are five independent experiments, each consisting of ~100 animals. Shaded areas around the plots 
indicate SEM. *p<0.05, **p<0.01, ***p<0.001 (rank-sum test, FDR corrected). (I–N) Simulations of choice behavior 
that test the contribution of each of the locomotion components to the behavioral output. Plots show the fraction 
of animals reaching the target over time. Each plot shows accumulation of simulated naive and trained animals by 
sampling locomotion parameters based on the measured data. Hybrid animals were simulated by sampling two 
of the parameters from the naive group and the relevant parameter from the trained group. Arrows indicate the 
magnitude of the effect between naive and hybrid simulated animals. See also Figure 8—figure supplement 1. (I, 
L) Sampling reversals from the STAV (I) or the STAP (L) trained group, while speed and directionality were sampled 
from the naive animals. Changes related to reversals are negligible (see arrows). (J, M) Sampling speed from the 
STAV (J) or the STAP (M) trained group, while reversals and directionality were sampled from the naive animals. 
Changes related to speed are negligible (see arrows). (K, N) Sampling deviation angle from the STAV (K) or the 
STAP (N) trained group, while speed and reversals were sampled from the naive animals. Changes related to 
directionality account for most of the difference between naive and trained groups (see arrows).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Simulations of choice behavior based on measured locomotion parameters.

Figure 8 continued
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AWCOFF and the ASH chemosensory neurons (Eliezer et al., 2019). Moreover, sensory neurons may 
still be coding long-term memories via modulation of the synaptic output and which is not reflected 
by soma calcium activity (Oda et al., 2011). Indeed, sleep is required for modulating the synatic struc-
ture between the AWC and the AIY neurons to sustain the long-term memory (Chandra et al., 2022). 

The limited involvement of sensory neurons’ activities in coding long-term associative memories 
may hint at an intriguing principle for coding memories in a compact neural network: Plasticity in the 
sensory neurons is likely to modulate sensory responses to various cues, possibly affecting innate 
behavioral outputs. For short-term memories, the modulated behavior will be brief, but for long-
term memories, the impact on behavior will be long-lasting. Thus, for long-term memories, it may 
be advantageous to ‘clear’ information stored within sensory neurons and to relegate this informa-
tion to the deeper layers of the network. This way, animals would quickly resume innate responses. 
The relegation of long-term memories to deeper layers can be viewed as analogous to the transfer 
process taking place in mammalian brains, where hippocampal short-term memories are moved for 

Figure 9. Illustration of the sensory- and the inter- neurons participating in coding the different memory types. (A) Multiple chemosensory neurons 
respond to butanone (BUT). All these chemosensory neurons innervate the AIA interneuron while only a few innervate the AIY interneurons. Arrows 
indicate chemical synapses and resistor symbols indicate gap junctions (White et al., 1986; Witvliet et al., 2021). (B) Long-term memory is evident 
in the interneurons and probably associated synapses (violet) rather than in the chemosensory neurons. (C) Highlighted in blue are the neurons 
participating in coding the stimulus component of short-term memories. (D) Highlighted in red/green are the neurons participating in coding the 
valence component of short-term memories. The fraction of the red/green color indicates the estimated impact of the memory on neural activity. Note 
that we denote AWC neurons as not coding valence because in our BUT-only experiments and in studies of others (Cho et al., 2016) AWC neurons 
showed no differences between aversive and appetitive conditions. In B-D, the size of the shapes (triangle or hexagon) indicates the estimated impact 
of the memory on neural activity.

https://doi.org/10.7554/eLife.74434
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long-term storage in cortical areas (Rothschild, 2019). In addition, resetting the sensory neuron’s 
response dynamics may mitigate the limited sensory resources as more neurons may become avail-
able for coding new short-lived memories. Overall, the extensive sensory plasticity revealed herein is 
consistent with the idea that such plasticity may have evolved to increase animals’ fitness by improving 
detection and enhancing attention towards salient stimuli (McGann, 2015).

Interneurons showed modulated activity following the formation of both short and long-term 
training paradigms, though activity changes following long-term experiences were more prominent 
(Figure 3A, B, and Figure 9B–D). Indeed, interneurons were previously shown to participate in coding 
both short- and long-term memories (Jin et al., 2016; Oda et al., 2011). Analogous roles of sensory 
and interneurons in coding short and long-term memories were observed in the salt conditioning 
paradigm. At least three chemosensory neuron types are required for the formation and retrieval 
of salt learning (Jang et al., 2019; Watteyne et al., 2020). While short aversive salt conditioning 
modulated responses of the salt-sensing neuron ASER (Oda et  al., 2011), long-term positive salt 
conditioning did not (Sato et al., 2021). However, the activity of the downstream interneuron AIB was 
modulated following the positive long-term conditioning (Sato et al., 2021).

Memory components are widely distributed across the sensory- and 
the inter-neurons
Activities of sensory neurons were broadly modulated by short-term experiences (Figure  4A and 
Figure 7C). The widely distributed changes in the chemosensory layer suggest that the sensory neurons 
encode the experience as a population code. Considering modulation of individual neurons only 
precludes accurate distinction between the training paradigms. But when considering all the chemo-
sensory inputs, the underlying experience could be decoded with sufficient accuracy (Figure 4K–M), 
further highlighting the notion that the experience code is distributed among the sensory neurons.
Within the distributed code of the experience components (Figure 7A and B), the PC-based analysis 
revealed how activity changes of individual neurons contributed to encoding the CS, the US, or both 
(Figure 7C and Figure 9C–D).

Assigning valence-coding neurons was somewhat limited due to the procedural differences 
in aversive and appetitive training paradigms. This was particularly evident when training for the 
long-term paradigms which involved several key procedural differences. Nevertheless, the proce-
dural differences between positive and negative training in the short-term paradigms were minimal 
(see Materials and methods), so valence-coding neurons could be extracted with higher certainty. 
These analyses indicated that the ASJ and ASI neurons may be the strongest candidates for coding 
valence (Figure 4A, Figure 7C, Figure 4—figure supplement 2A–C, M–R and V–W). Indeed, the 
ASI neurons were shown to integrate information regarding food availability (Gallagher et al., 2013; 
Hapiak et al., 2013).

The observed activity changes were generally consistent with the experience logic (positive or 
negative). For instance, in aversively trained animals, switching from DA to BUT leads to ASER acti-
vation (Figure 4E–G), an activation that triggers a reversal behavior (Appleby, 2012; Suzuki et al., 
2008) which prevents the animals from moving towards BUT. Changes in other neurons were harder to 
reconcile. For example, in both negatively and positively trained animals, activity in the AWA neurons 
was strongly reduced in response to BUT (Figure 4B–D). Thus, it is presumably the combined modu-
lated activity of all sensory neurons that is being integrated into the downstream interneuron layer to 
express the adaptive behavioral responses.

The distribution of memory components among multiple neurons may evolve as an organizing 
principle in memory formation and storage. In flies, olfactory memories are encoded using a distrib-
uted code within the mushroom body (Bilz et al., 2020), and in mammalian brains, it is assumed that 
engram cells, the set of memory-storing neurons, are also widely distributed in the brain Josselyn and 
Tonegawa, 2020: the valence component in the amygdala (Liu et al., 2012), and the stimulus-specific 
information in sensory cortices (Jones et  al., 2008; Morris et  al., 1998; Ohl and Scheich, 2005; 
Sacco and Sacchetti, 2010).

https://doi.org/10.7554/eLife.74434
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Changes in AWCON responses are concentration-specific and depend on 
intact neural transmission
The AWCON neuron shows training-induced plasticity that is strongly dependent on the specific concen-
trations of the CS (BUT). For example, when stimulating the trained animals with low concentrations 
of the CS, both the CS and the US were coded by the AWCON neuron. Exposure to a ten-fold higher 
concentration of the CS suggested that the AWCON neuron coded the CS only (compare Figure 3D 
and Figure 4H). The strong dependence of the AWCON responses on the specific concentrations of 
the CS was also evident in a previous study where responses were observed only when stimulating 
the animals with the trained concentration, and regardless of the positive or the negative associating 
experience (Cho et al., 2016).

Furthermore, Cho et  al., 2016 demonstrated that in butanone conditioning, the AWC sensory 
neuron coded the sensory history of the animal, while the downstream AIA interneuron coded the 
associative component of the memory. This sensory history is analogous to our observation made with 
BUT only in which the AWCON neuron codes strictly the CS, irrespective of the positive or the negative 
association.

The training-induced modulated activity of the AWCON neuron appears to be non cell-autonomous, 
since this plasticity was not observed in mutant animals, defective in neural transmission (Figure 2—
figure supplement 3). This suggests that a network activity is required for recruiting a population of 
neurons for storing the memory.

The modulated activity of the AIY interneuron can be explained by the 
combined activity of the sensory neurons
Population coding requires integration of the coding sensory neurons into downstream neurons, such 
as the AIY interneuron. A regression analysis revealed that AIY activity can be explained via a simple 
linear combination of the sensory neurons (Figure 6). This analysis provided a quantitative measure for 
the relative contribution of the sensory neurons to the overall activity of the AIY neurons. These rela-
tive contributions uniquely changed in an experience-dependent manner, suggesting that the identity 
and the specific modulation of neural communication routes dictate each of the specific memory 
types. For example, the AWA neurons contributed the most to the modulated activity of AIY neurons 
in the appetitive paradigms, while AWC, ASER, ASG, and AWB neurons dominated in dictating AIY 
activity in naive animals and following aversive training (Figure 6E). In that respect, the AWA neurons 
are associated with attractive stimuli (Bargmann et al., 1993), while the sensory neurons required for 
aversive conditioning are mostly associated with reversals and avoidance (Gray et al., 2005; Suzuki 
et al., 2008; Troemel et al., 1997).

Notably, the aim of the linear combination model was to identify modulated synaptic communi-
cation routes. The computed regression coefficients, which denote a change in the communication 
routes, are not a direct measure of the underlying synaptic weights. This is due to the limitations in 
data acquisition (i.e. frame rate, kinetics of GCaMP, and number of available data points, etc.) and 
the fact that we measure calcium levels which are only correlates of neural potential. Furthermore, 
the modulated communication routes may include, in addition to the classical chemical synapses, also 
electrical gap junctions that were demonstrated to be imperative to form memories in C. elegans 
(Choi et al., 2020). Nonetheless, the model reliably revealed specific communication routes (chemical 
and electrical synapses combined) that changed in an experience-dependent manner.

Short-term memories modulate the animals’ directionality towards the 
conditioned stimulus
Behavioral assays following short-term training revealed that positively trained animals were more 
directed towards the CS, while negatively trained animals were significantly less directed (Figure 8C–D). 
Interestingly, aversive training also inflicted significant changes in sensory-specific responses of the 
RIA neurons (Figure 5G and H). As the RIA neurons dictate animals’ head position (Hendricks et al., 
2012; Hendricks and Zhang, 2013; Ouellette et al., 2018), their modulated dynamics may explain 
the changes observed in movement directionality. Indeed, RIA neurons were shown to participate in 
formation and forgetting of aversive experiences, suggesting that past experiences may be converged 
onto RIA interneurons to shape behavioral outputs (Jin et al., 2016; Liu et al., 2022). As the animals’ 
reversal frequency and speed were not modulated (and no changes in AVA and AVE activity patterns 

https://doi.org/10.7554/eLife.74434
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were observed either), RIA is a possible candidate that could underlie the observed change in direc-
tionality. However, it is impossible to tell whether animals changed directionality due to RIA-induced 
head swing bias, or alternatively, due to reorientation mediated by command neurons (e.g. AVA, AVE) 
since we tracked animals as center mass points. Also, activity changes in RIA neurons were signif-
icant though small, thus raising the question whether these changes are large enough to mediate 
the observed trained phenotype. Moreover, additional interneurons that control turning rates (e.g. 
AIB, AIZ, and RIM) and speed (e.g. RIB, SIA, and RMG) may also play roles in these memory-induced 
behavioral modulations (Garrity et al., 2010; Iino and Yoshida, 2009; Lee et al., 2019; Li et al., 
2014; Wakabayashi et al., 2004). In fact, some of these neurons had been shown to participate in 
either memory formation (AIB & RIM) or memory retrieval (AIY & RIA) (Jin et al., 2016). Thus, addi-
tional experiments are required to support the functional role of RIA plasticity in shaping the learning-
dependent behavioral outputs.

As memories are encoded in a distributed manner, it is presumably the integrative activity of many 
neurons that gives rise to the altered choice of directionality. As such, the impact of a single neurons' 
activity on locomotion might be limited. The need to consider the integrated response of all neurons 
was also evident from analyses of freely behaving animals, where a population code, rather than the 
activity of individual neurons, was shown to be a better descriptor of locomotion (Hallinen et al., 
2021).

In summary, the systematic cellular-resolution analysis presented herein revealed basic principles 
for how associative memories are encoded in a compact neural network. These principles may extend 
to memory formation processes taking place in higher organisms with more complex nervous systems.

Table 1. Worm strains used in this study.

Designation
Phenotype/
Purpose Genotype/Expression (Source/Ref)

N2 WT N2 wild-type (CGC)

Pgcy-37::YX2.60 URX reporter line [Pgcy-37::YX2.60] Gross et al., 2014

PS6250 CEPD reporter line Ex[Pdat-1::GCaMP3] Zaslaver et al., 2015

PS6374 AWCON reporter line Ex[Pstr-2::GCaMP3] Zaslaver et al., 2015

PS6253
AWCOFF reporter 
line Ex[Psrsx-3::GCaMP3] Zaslaver et al., 2015

PS6498
AWCOFF and AWCON 
reporter line

Ex[Pstr-2::ChR2-cherry,Pstr-2::GCaMP3,srsx-3::GCaMP3; pha-1 
rescue; lite-1 bkg]

ZAS96
AWCON reporter 
line in unc-13 bkg Ex[Pstr-2::GCaMP3] in unc-13(e51) - This study

ZAS76
AWCON reporter 
line in unc-31 bkg Ex[Pstr-2::GCaMP3] in unc-31(e928) - This study

ZAS280
Sensory neurons 
reporter line

azrIs347[Posm-6::GCaMP3,Posm-6::NLS-mCherry-2xNLS  + PHA-1] 
Iwanir et al., 2019

ZAS323

Sensory and 
command neuron 
reporter line

azrIs347[Posm-6::GCaMP3,Posm-6::NLS-mCherry-2xNLS  + PHA-1] 
x goeIs5[Pnmr-1::SL1::GCaMP3.35::SL2::unc-54 3’UTR +unc-119(+)], 
crossing of ZAS280 x HBR191, Schwarz and Bringmann, 2013

PS6510 RIA reporter line Ex[Pglr-3::GCaMP; pha-1 rescue] - This study

ZAS256 AIY reporter line
Ex[Pgpa-6::GCaMP3, Pmod-1::GCaMP3; Ppha-1::PHA-1]; pha-1; 
lite-1 Itskovits et al., 2018

CX16561 AIA reporter line
[Pgcy28d::GCaMP D381Y coel::dsRed, Podr-
7::Chrimson::SL2::mCherry,Pelt-2::mCherry 2] Larsch et al., 2015

HBR191
command neurons 
reporter

Int[nmr-1p::SL1::GCaMP3.35::SL2::unc-54 3'UTR +UNC-119(+)] 
Schwarz and Bringmann, 2013

https://doi.org/10.7554/eLife.74434
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Materials and methods
Worm cultures
Animals were grown at 20  °C on 9  cm nematode growth medium plates, seeded with 500  µL of 
confluent OP 50 bacterial suspension. For culturing and experiments, eggs were collected by 
dissolving the animals using standard bleaching protocols. The eggs were seeded at a density of 
1000–1200 per plate. For training in short-term paradigms, bleaching and seeding were conducted 
3 days before the experiment. Animals undergoing long-term training were seeded 48 hr before initi-
ation of the training.

Worm strains
For functional imaging, worm strains driving the expression of calcium reporters in neurons of interest 
were used (Table 1). N2 wild-type worms were used for behavioral assays.

Training procedures
To induce olfactory associative memories, BUT was presented to the animals in combination with food 
(appetitive, positive conditioning) or in the absence of food (starvation, aversive conditioning). Asso-
ciated mock-trained control groups underwent the same treatment without BUT presentation. Naive 
control animals were of the same age but not treated at all.

Short-term appetitive training
Animals were washed three times in M9 and then starved for one hour in 1 mL of M9 in a 15 mL centri-
fuge tube with an open lid. Worms were then trained on high-food NGM plates (seeded with 500 µL 
of confluent OP 50 culture) in the presence of 20x5 µL droplets of 10% (v/v in DDW) BUT applied to 
the inside face of the plate lid. The mock-trained group received 20x5 µL droplets of DDW. Training 
duration was 1 h (modified after Kauffman et al., 2010⁠).

Short-term aversive training
As previously described (Bargmann et al., 1993; Colbert and Bargmann, 1995), worms were washed 
three times in an M9 buffer and transferred onto chemotaxis plates (1.7% (w/v) Agar, 25 mM KH2PO4, 
1 mM CaCl2, 1 mM MgSO4, pH 6.0, no food). The trained group was incubated for 90 min with 20x5 µL 
droplets of 10% (v/v in DDW) BUT, while the mock-trained group was incubated with an equivalent 
amount of DDW. Note that short-term paradigms differed by overall incubation time, plates used for 
incubation and one transfer step.

Long-term appetitive training
This training consisted of seven cycles in which BUT was paired with food, as described in Kauffman 
et al., 2010. Each repetition consisted of a 30-min starvation in M9 buffer and a 30-min food-BUT 
pairings, except for the first cycle, in which starvation lasted 1 hr. In contrast to all other training 
regimes, 5x2 µL droplets of 10% (v/v) were used in long-term appetitive training since initial calibra-
tion assays showed that higher levels of BUT led to an aversive choice behavior. Animals were imaged 
14 hr post-training.

Long-term aversive training
Worms were washed three times in an M9 buffer and transferred to chemotaxis plates. The trained 
group was starved with 20x5 µL droplets of 10% (v/v) BUT on the lid for 10 hr, with one exchange of 
the BUT droplets after 5 hr. The mock-trained groups were starved in the presence of DDW droplets. 
Animals were imaged 14 hr post-training.

Behavioral assays
Worms were washed three times with a chemotaxis buffer, and 100–200 animals were transferred 
onto the center point of a chemotaxis plate, 3.5 cm from the target endpoints. Four-pole and 2-pole 
layouts were used as depicted in Figure  1—figure supplement 1A. Endpoints were loaded with 
BUT (BUT dissolved either in water or EtOH) or the alternative choice (DA in water or pure ethanol, 
see Figure  1—figure supplement 1A). Note that different concentrations of BUT were used for 

https://doi.org/10.7554/eLife.74434
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animals with appetitive and aversive training because of the valence-specific shift in choice behavior 
(Figure 1—figure supplement 2). Positively trained animals were tested with 10-fold diluted BUT (10–

1) and negatively trained animals were tested with 1000-fold diluted BUT (10–3). Worms were immobi-
lized once reaching the endpoints by applying 1 µL of 1 M NaN3 to those endpoint regions. Animals 
in each region were subsequently scored to provide the choice index. Learning index was calculated 
based on these choice indices as a measure of learning-induced behavioral changes (Kauffman et al., 
2011).

To obtain locomotion parameters during chemotaxis, worms were imaged using a Micropublisher 5 
RTV CCD camera (QImaging, Canada) equipped with a ZOOM 7000 Navitar macro objective (Navitar, 
New York, USA). Animal tracks were extracted using a multi-worm tracker (Itskovits et al., 2017)⁠, 
from which we quantified deviation angles, speed, and reversal frequencies. To control for BUT evap-
oration and to ensure behavioral consistency, only the first 10 min of the movies were analyzed. To 
provide higher accuracy of local deviation angles and speed, tracks were segmented into 24-frames 
segments. The deviation angle is defined as the angle between the vector pointing from the animal 
towards the endpoint and the average vector of the worm track segment (Figure 9B). Due to the use 
of the center-mass-tracking, reversals were defined as any perceptible form of backward movement 
(Gray et al., 2005).

Calcium imaging and data analyses
In preparation for live imaging, animals were starved for 20 min on empty NGM plates. For imaging 
multiple neurons, worms were also paralyzed using 10  mM levamisole dissolved in chemotaxis 
medium. The worms were then loaded into the microfluidic ‘olfactory chip’ (Chronis et al., 2007) and 
allowed to habituate for 10 min.

Neural responses to BUT (Figures 2 and 3) were recorded for 90  s: 30  s after the initiation of 
imaging, animals were presented with 33.5 mM BUT (diluted in chemotaxis medium, 3x10–3 dilution 
factor), and then imaged for an additional 60 s. After the animals were acclimated to the presence of 
BUT for 5 min, we re-initiated imaging, and after 30 s of imaging we switched the stimulus (BUT) off, 
and continued imaging for an additional 60 s. For imaging neurites of single interneurons, worms were 
not paralyzed. The stimulus exchange interval was 20 s and responses were recorded for 3 min without 
interruption (Figure 2B). Each BUT presentation/removal is referred to as a ‘trial’.

To record responses to alternating BUT (3.35 mM, 3x10–4 dilution factor) and DA (11.6 μM, 10–6 dilu-
tion factor) in Figures 4 and 5, animals were exposed to one minute of DA followed by six exchanges 
of BUT/DA, each step lasting 30 s. The exchange of BUT and DA was meant to mimic the conditions 
that the animals encountered during the two-choice assay. Note that in Figures 4–7, the BUT/DA 
exchanges are referred to as trials.

A Nikon A1R+confocal laser scanning microscope (Nikon, Japan) equipped with a 40x1.15 NA 
water immersion objective was used for fast live imaging. Z-series of the head region of the animal 
were recorded at 0.9–2 volumes per second. Individual z-stacks were scanned at 0.4–0.8 µm intervals 
(sampling rate 2–5 Hz) in the sensory-reporter lines (ZAS280 and ZAS323). Single sensory neurons 
were imaged with an IX 83 epifluorescence microscope (Olympus, Japan) and a 40x0.95 NA objective. 
The image acquisition was controlled by μManager (Edelstein et al., 2010).

To identify individual neurons in multi-neuron z-stack time series, neuronal somas were segmented 
using a Gaussian fitting and a tracking algorithm (Toyoshima et al., 2016) targeting nuclear mCherry 
tags. GCaMP intensities in target neurons were extracted from segmented neurons by a custom-
built analysis pipeline (Pritz, 2022, GitHub) in Matlab (Mathworks, USA) reading voxels within a 70% 
radius of the initial segmentation radius. Image stacks from neurites were projected by summing all 
images using imageJ. Projected micrographs were analyzed using custom imageJ and Matlab scripts 
utilizing Fiji’s trackMate plugin (Tinevez et al., 2017)⁠. Since data were acquired with varying frame 
rates, neuronal activation plots were linearly interpolated to the highest frame rate in the dataset (2 Hz 
sampling rate for neurons read at the soma and 3 Hz (Figure 5) and 5 Hz (Figure 2B) for the neurite 
datasets).

Neural activation levels in sensory neurons were normalized by their ground state (F/FG), unless 
stated otherwise. In short recordings during BUT exposure (Figures 2 and 3), the ground state was 
extracted from the last 10 frames of the imaging after the neuron resumed its pre-exposure ground 
state. For interneurons, a 10-frame ground state was visually identified due to possible spontaneous 
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activity (Figure  2B). For longer recordings in 
BUT/DA exchange experiments (Figures  4 and 
5), the ground state was determined as the mean 
of intensity values lower than the 10% percent-
quantile after smoothing activation vector by a 
20-frame kernel size. Automatic and visual deter-
mination of ground states were found to be in 
good agreement.

Identification of individual neurons
Individual neurons within the pan-sensory reporter 
strain (Posm-6::GCaMP, ZAS280) were unambigu-
ously identified using custom-built Matlab 3D visu-
alization tools based on available anatomic maps 
(Durbin, 1987; White et al., 1986). Identification 
of AWCON, AWCOFF, and URX neurons was verified 
by comparing to activity profiles of these neurons 
as imaged from reporter strains with known cell 
identities (see Figure  2—figure supplements 3 
and 4). Signals from the AFD neurons were too 
dim to provide reliable measurements, and hence, 
were discarded from all analyses.

Statistical analysis
Hypothesis testing of neuronal activation and 
behavior was carried out using MatLab and 
Python. For statistical comparisons, intensities 
following stimulus exchange were summed. Only 
neuronal intensity measurements within a 95% 
confidence interval were used for statistics. Inte-
gration times were neuron-specific since neuronal 
dynamics strongly varied among neurons. Data 
were tested for normal distribution by Shapiro-
Wilk test (small sample number) or Kolmogorov-
Smirnov test (larger sample number). ANOVA 
or ANOVA on ranks followed by pairwise comparisons based on t-tests or Wilcoxon rank-sum test/
signed rank test, depending on the underlying distribution, were used to test for differences. Multiple 
comparisons were adjusted using false discovery rates (pFDR Storey, 2002). For comparing neuronal 
activation between the different learning paradigms within the BUT-exposure dataset, neurons with 
reliable activity responses were included in the analysis (namely, AWA, ASH, AWCON, AWCOFF, AWB, 
ASJ, ASI, ASK, RIAnrD, RIAnrV, RIAnrS, and AIA). Other neurons (ASE, ADL, ASG, and ADF) were 
excluded because of insufficient reads or cross-read artifacts. For each of these neurons, twelve pair-
wise comparisons of activity post-stimulus exchange were conducted as stated in Table 2, yielding 
324 comparisons in total.

For comparing neuronal activation within the BUT/DA exchange dataset, 16 neuron classes were 
included (AWA, AWCON, AWCOFF, AWB, ASER, ASEL, ASJ, ASK, URX, ASH, ASI, AIY, AIA, RIAnrD/nrV/
nrS, AVA, and AVE) applying the first eight comparisons in Table 2 yielding 248 comparisons. Signifi-
cant experience-dependent changes in choice behavior were detected by one-sample t-tests (paired 
test) against zero.

Analyzing variability in sensory neuron responses
Neural activities in sensory neurons were categorized into ‘responding’ and ‘non-responding’ groups 
by applying a neuron-specific activity threshold. For the trial-to-trial variability, the neural activity had 
to cross the threshold once to be categorized as ‘responding’. For animal-to-animal variability, the 
neural activity had to cross the threshold twice during the six consecutive trials (BUT/DA exchanges).

Table 2. pairwise comparisons of the different 
training conditions.

Comparisons design

Group 1 Group 2

STAP-T STAV-T

STAPM STAVM

STAP-T STAP-M

STAV-T STAV-M

STAPM NAIVE

STAVM NAIVE

STAP-T NAIVE

STAV-T NAIVE

STAPT LTAP-T

STAVT LTAV-T

LTAP-T LTAV-T

LTAPM LTAVM

LTAP-T LTAP-M

LTAV-T LTAV-M

LTAP-T NAIVE

LTAV-T NAIVE

LTAP-M NAIVE

LTAV-M NAIVE

STAP = Short-term appetitive. STAV = Short-term 
aversive. LTAP = Long-term appetitive, LTAV, Long-
term aversive. T = Trained. M = Mock.

https://doi.org/10.7554/eLife.74434
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Classification of memory conditions
Single or concatenated neural activities were binned into a 20-frame kernel and subsequently z-nor-
malized. To perform classification based on trials, activities of all neurons for each animal and trial 
were concatenated and 60% of the data was used to train the algorithms, while the remaining 40% 
of the data was used to test the classification algorithms. To perform classification based on splitting 
trials within individuals, trials of each neuron were random-sampled into test and training, and then 
averaged to obtain one vector per animal as shown in Figure 4—figure supplement 7A. When cross-
validating the results after splitting the data into training and test data based on animal repeats, we 
obtained similar results, although with higher classification error. Thus, classification accuracy could 
benefit from adding more animals per training group (see ‘between individuals’, Figure 4—figure 
supplement 7F). Classifications were performed using the scikit-learn package in Python using, if not 
stated otherwise, k-means nearest-neighbor based on distance to the next two data points. Random 
forest classification consisted of 500 trees and a neural net (MLPC) consisted of 2 layers, with 50 and 
100 neurons each. The average macro F1 score out of 10 rounds of cross-validation has been used to 
measure the performance of the classification procedures on the tested data.

Regression analysis
AWA activities in a 15 s interval following stimulus exchange were regressed against AIY activity in the 
corresponding time interval using ordinary least squares (OLS) method to explain AIY activity by AWA 
activity within the same animal. As Generalized Least Squares with autoregressive models produced a 
less accurate fit, we used a simple OLS model to fit regression coefficients. To explain AIY activities by 
activities of sensory neurons, we used a multivariate regression model based on normalized activities 
within the 15 s following stimulus exchange. For the multivariate model, all neuronal activities were 
averaged across animals for each trial to make activities originating from different reporter strains 
comparable (Figure 6—figure supplement 1I). The resulting six averaged vectors for each neuron 
were used as inputs for the multivariate OLS models. Models were cross-validated for overfitting using 
a 50/50 data split and the variation of regression coefficient values across the different conditions was 
verified (see Figure 6—figure supplement 1F and G). Multivariate regression analysis could not be 
extended to AIA and RIA neurons because there were too many input neurons (regressors) opposed 
to too few data points.

PCA-based filtering of activity deltas
Neural activities were averaged across individuals for each trial. Activity deltas of averaged activi-
ties (see Figure 1—figure supplement 3) were calculated for the CS, US, and valence differences. 
All activity deltas for each comparison and trial were aligned in a single vector and subjected to 
PCA. Using the PC scores and loads from principal components 1, 2, 3, and 5 (out of 35 principal 
components), we reconstructed the original activity deltas while filtering out 39.1% of the unrelated 
variance (Figure 7C, see Figure 7—figure supplement 1A–C). The filtered activity deltas were then 
summed and normalized by the mean amplitude of the neuron (contributions of neurons with higher 
response amplitudes are weighted more). The mean of the six trials for each neuron was used to 
indicate increase or decrease in the activity, and the standard deviation to provide an estimate of the 
variance (Figure 7C). To validate the method, we simulated the data and subjected it to PCA-based 
filtering (Figure 7—figure supplement 1E–M), allowing us to differentiate between significant and 
insignificant changes using k-means-based thresholding of the activity changes (Figure  7—figure 
supplement 1N).
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