Thymic macrophages consist of two populations with distinct localization and origin

  1. Tyng-An Zhou
  2. Hsuan-Po Hsu
  3. Yueh-Hua Tu
  4. Hui-Kuei Cheng
  5. Chih-Yu Lin
  6. Nien-Jung Chen
  7. Jin-Wu Tsai
  8. Ellen A Robey
  9. Hsuan-Cheng Huang
  10. Chia-Lin Hsu
  11. Ivan L Dzhagalov  Is a corresponding author
  1. National Yang Ming Chiao Tung University, Taiwan
  2. Academia Sinica, Taiwan
  3. University of California, Berkeley, United States

Abstract

Tissue-resident macrophages are essential to protect from pathogen invasion and maintain organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and defined their expression signature. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor SpiC with these cells. Single-cell RNA sequencing showed that the macrophages in the adult thymus are composed of two populations distinguished by the expression of Timd4 and Cx3cr1. Remarkably, Timd4+ cells were located in the cortex, while Cx3cr1+ macrophages were restricted to the medulla and the cortico-medullary junction. Using shield chimeras, transplantation of embryonic thymuses, and genetic fate mapping, we found that the two populations have distinct origins. Timd4+ thymic macrophages are of embryonic origin, while Cx3cr1+ macrophages are derived from adult hematopoietic stem cells. Aging has a profound effect on the macrophages in the thymus. Timd4+ cells underwent gradual attrition, while Cx3cr1+ cells slowly accumulated with age and, in older mice, were the dominant macrophage population in the thymus. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.

Data availability

The RNA Sequencing data of thymic macrophages and thymic dendritic cells are available at NCBI Gene Expression Omnibus (GEO) as part of GSE122108 and at www.immgen.org. The single cell RNA sequencing data is deposited at NCBI GEO under accession number GSE185460. The source data underlying Fig. 1G and H, Fig. 3B, D, and G, Fig. 5C, F, and I, Fig. 6B, E, G, and I, Fig. 7B, C, D, and G, Fig. 8B, D, E, and F, Fig. 1S4, Fig. 2S1, Fig. 2S2, Fig. 2S3, Fig. 5S1, and Fig. 5S2 are provided in the Source Data files. All other data supporting the findings of this study are available within the article.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tyng-An Zhou

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4031-4947
  2. Hsuan-Po Hsu

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yueh-Hua Tu

    Institute of Information Science, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui-Kuei Cheng

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Chih-Yu Lin

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Nien-Jung Chen

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Jin-Wu Tsai

    Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Ellen A Robey

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3630-5266
  9. Hsuan-Cheng Huang

    Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  10. Chia-Lin Hsu

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  11. Ivan L Dzhagalov

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    For correspondence
    ivan.dzhagalov@nycu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9209-4582

Funding

Ministry of Science and Technology, Taiwan (107-2320-B-010 -016 -MY3)

  • Ivan L Dzhagalov

Ministry of Science and Technology, Taiwan (110-2320-B-A49A-521 -)

  • Ivan L Dzhagalov

Ministry of Science and Technology, Taiwan (111-2320-B-A49 -031 -MY3)

  • Ivan L Dzhagalov

Yen Tjing Ling Medical Foundation (CI-111-6)

  • Ivan L Dzhagalov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Institutional Animal Care and Use Committee (IACUC) of National Yang Ming Chiao Tung University (animal protocols #1070506, and 1090301). All surgery was performed under Ketamine + Xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    views
  • 376
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyng-An Zhou
  2. Hsuan-Po Hsu
  3. Yueh-Hua Tu
  4. Hui-Kuei Cheng
  5. Chih-Yu Lin
  6. Nien-Jung Chen
  7. Jin-Wu Tsai
  8. Ellen A Robey
  9. Hsuan-Cheng Huang
  10. Chia-Lin Hsu
  11. Ivan L Dzhagalov
(2022)
Thymic macrophages consist of two populations with distinct localization and origin
eLife 11:e75148.
https://doi.org/10.7554/eLife.75148

Share this article

https://doi.org/10.7554/eLife.75148

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Leif Benner, Savannah Muron ... Brian Oliver
    Research Article

    Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.