Thymic macrophages consist of two populations with distinct localization and origin

  1. Tyng-An Zhou
  2. Hsuan-Po Hsu
  3. Yueh-Hua Tu
  4. Hui-Kuei Cheng
  5. Chih-Yu Lin
  6. Nien-Jung Chen
  7. Jin-Wu Tsai
  8. Ellen A Robey
  9. Hsuan-Cheng Huang
  10. Chia-Lin Hsu
  11. Ivan L Dzhagalov  Is a corresponding author
  1. National Yang Ming Chiao Tung University, Taiwan
  2. Academia Sinica, Taiwan
  3. University of California, Berkeley, United States

Abstract

Tissue-resident macrophages are essential to protect from pathogen invasion and maintain organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and defined their expression signature. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor SpiC with these cells. Single-cell RNA sequencing showed that the macrophages in the adult thymus are composed of two populations distinguished by the expression of Timd4 and Cx3cr1. Remarkably, Timd4+ cells were located in the cortex, while Cx3cr1+ macrophages were restricted to the medulla and the cortico-medullary junction. Using shield chimeras, transplantation of embryonic thymuses, and genetic fate mapping, we found that the two populations have distinct origins. Timd4+ thymic macrophages are of embryonic origin, while Cx3cr1+ macrophages are derived from adult hematopoietic stem cells. Aging has a profound effect on the macrophages in the thymus. Timd4+ cells underwent gradual attrition, while Cx3cr1+ cells slowly accumulated with age and, in older mice, were the dominant macrophage population in the thymus. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.

Data availability

The RNA Sequencing data of thymic macrophages and thymic dendritic cells are available at NCBI Gene Expression Omnibus (GEO) as part of GSE122108 and at www.immgen.org. The single cell RNA sequencing data is deposited at NCBI GEO under accession number GSE185460. The source data underlying Fig. 1G and H, Fig. 3B, D, and G, Fig. 5C, F, and I, Fig. 6B, E, G, and I, Fig. 7B, C, D, and G, Fig. 8B, D, E, and F, Fig. 1S4, Fig. 2S1, Fig. 2S2, Fig. 2S3, Fig. 5S1, and Fig. 5S2 are provided in the Source Data files. All other data supporting the findings of this study are available within the article.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Tyng-An Zhou

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4031-4947
  2. Hsuan-Po Hsu

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yueh-Hua Tu

    Institute of Information Science, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hui-Kuei Cheng

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Chih-Yu Lin

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Nien-Jung Chen

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Jin-Wu Tsai

    Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  8. Ellen A Robey

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3630-5266
  9. Hsuan-Cheng Huang

    Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  10. Chia-Lin Hsu

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  11. Ivan L Dzhagalov

    Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
    For correspondence
    ivan.dzhagalov@nycu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9209-4582

Funding

Ministry of Science and Technology, Taiwan (107-2320-B-010 -016 -MY3)

  • Ivan L Dzhagalov

Ministry of Science and Technology, Taiwan (110-2320-B-A49A-521 -)

  • Ivan L Dzhagalov

Ministry of Science and Technology, Taiwan (111-2320-B-A49 -031 -MY3)

  • Ivan L Dzhagalov

Yen Tjing Ling Medical Foundation (CI-111-6)

  • Ivan L Dzhagalov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Institutional Animal Care and Use Committee (IACUC) of National Yang Ming Chiao Tung University (animal protocols #1070506, and 1090301). All surgery was performed under Ketamine + Xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,448
    views
  • 370
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tyng-An Zhou
  2. Hsuan-Po Hsu
  3. Yueh-Hua Tu
  4. Hui-Kuei Cheng
  5. Chih-Yu Lin
  6. Nien-Jung Chen
  7. Jin-Wu Tsai
  8. Ellen A Robey
  9. Hsuan-Cheng Huang
  10. Chia-Lin Hsu
  11. Ivan L Dzhagalov
(2022)
Thymic macrophages consist of two populations with distinct localization and origin
eLife 11:e75148.
https://doi.org/10.7554/eLife.75148

Share this article

https://doi.org/10.7554/eLife.75148

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Roger Huerlimann, Natacha Roux ... Timothy Ravasi
    Research Article

    Most teleost fishes exhibit a biphasic life history with a larval oceanic phase that is transformed into morphologically and physiologically different demersal, benthic, or pelagic juveniles. This process of transformation is characterized by a myriad of hormone-induced changes, during the often abrupt transition between larval and juvenile phases called metamorphosis. Thyroid hormones (TH) are known to be instrumental in triggering and coordinating this transformation but other hormonal systems such as corticoids, might be also involved as it is the case in amphibians. In order to investigate the potential involvement of these two hormonal pathways in marine fish post-embryonic development, we used the Malabar grouper (Epinephelus malabaricus) as a model system. We assembled a chromosome-scale genome sequence and conducted a transcriptomic analysis of nine larval developmental stages. We studied the expression patterns of genes involved in TH and corticoid pathways, as well as four biological processes known to be regulated by TH in other teleost species: ossification, pigmentation, visual perception, and metabolism. Surprisingly, we observed an activation of many of the same pathways involved in metamorphosis also at an early stage of the larval development, suggesting an additional implication of these pathways in the formation of early larval features. Overall, our data brings new evidence to the controversial interplay between corticoids and thyroid hormones during metamorphosis as well as, surprisingly, during the early larval development. Further experiments will be needed to investigate the precise role of both pathways during these two distinct periods and whether an early activation of both corticoid and TH pathways occurs in other teleost species.

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.