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Abstract: Determining the forces that shape diversity in host-associated bacterial communities 
is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper under-
standing of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic 
mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse 
species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut 
mucosal interface, which is in more direct contact with host cells and the immune system. Several 
mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA 
transcript-based heritability estimates are positively correlated with cospeciation rate estimates. 
Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic 
intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrich-
ment of candidate genes associated with several human diseases, including inflammatory bowel 
disease, and functional categories including innate immunity and G-protein-coupled receptors. 
These results highlight key features of the genetic architecture of mammalian host-microbe interac-
tions and how they diverge as new species form.
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Introduction
The recent widespread recognition of the gut microbiome’s importance to host health and fitness 
represents a critical advancement of biomedicine. Host phenotypes affected by the gut microbiome 
are documented in humans (Ley et al., 2006; Turnbaugh et al., 2009; Lynch and Pedersen, 2016), 
laboratory animals (Bäckhed et  al., 2004; Turnbaugh et  al., 2008; Rolig et  al., 2015; Rosshart 
et al., 2017; Gould et al., 2018), and wild populations (Suzuki, 2017; Roth et al., 2019; Suzuki 
et al., 2020a; Hua et al., 2020), and include critical traits such as aiding digestion and energy uptake 
(Rowland et  al., 2018), and the development and regulation of the immune system (Davenport, 
2020).

Despite the importance of the gut microbiome, community composition varies significantly among 
host species, populations, and individuals (Benson et al., 2010; Yatsunenko et al., 2012; Brooks 
et al., 2016; Rehman et al., 2016; Amato et al., 2019). While a portion of this variation is expected 
to be selectively neutral, alterations of the gut microbiome are on the one hand linked to numerous 
human diseases (Carding et al., 2015; Lynch and Pedersen, 2016), including diabetes (Qin, 2012), 
inflammatory bowel disease (IBD) (Ott et al., 2004; Gevers et al., 2014), and mental disorders (Clapp 
et al., 2017). On the other hand, there is evidence that the gut microbiome can play an important 
role in adaptation on both recent (Hehemann et  al., 2010; Suzuki and Ley, 2020b) and ancient 
evolutionary timescales (Rausch et al., 2019). Collectively, these phenomena suggest that it would be 
evolutionarily advantageous for hosts to influence their microbiome.

An intriguing observation made in comparative microbiome research in the last decade is that the 
pattern of diversification among gut microbiomes appears to mirror host phylogeny (Ochman et al., 
2010). This phenomenon, coined ‘phylosymbiosis’ (Brucker and Bordenstein, 2012a; Brucker and 
Bordenstein, 2012b; Lim and Bordenstein, 2020), is documented in a number of diverse host taxa 
(Brooks et al., 2016) and also extends to the level of the phageome (Gogarten et al., 2021). Several 
non-mutually exclusive hypotheses are proposed to explain phylosymbiosis (Moran and Sloan, 2015). 
However, it is likely that vertical inheritance is important for at least a subset of taxa, as signatures 
of cospeciation/codiversification are present among numerous mammalian associated gut microbes 
(Moeller et al., 2016; Groussin et al., 2017; Moeller et al., 2019), which could also set the stage for 
potential coevolutionary processes. Importantly, experiments involving interspecific fecal microbiota 
transplants indeed provide evidence of host adaptation to their conspecific microbial communities 
(Brooks et al., 2016; Moeller et al., 2019). Furthermore, cospeciating taxa were observed to be 
significantly enriched among the bacterial species depleted in early onset IBD, an immune-related 
disorder, suggesting a greater evolved dependency on such taxa (Papa et al., 2012; Groussin et al., 

eLife digest The digestive system, particularly the large intestine, hosts many types of bacteria 
which together form the gut microbiome. The exact makeup of different bacterial species is specific 
to an individual, but microbiomes are often more similar between related individuals, and more gener-
ally, across related species. Whether this is because individuals share similar environments or similar 
genetic backgrounds remains unclear. These two factors can be disentangled by breeding different 
animal lineages – which have different genetic backgrounds while belonging to the same species – 
and then raising the progeny in the same environment.

To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting 
from breeding strains from multiple locations in a natural hybrid zone between different subspecies. 
The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of 
which were known to be associated with human diseases. Further analysis revealed 79 genes that 
were particularly interesting, as they were involved in recognition and communication with bacteria. 
These results show how the influence of the host genome on microbiome composition becomes more 
specialized as animals evolve.

Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this 
knowledge could be helpful to examine how these interactions contribute to the emergence of 
conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut 
bacteria.

https://doi.org/10.7554/eLife.75419
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2017). However, the nature of genetic changes involving host-microbe interactions that take place as 
new host species diverge remains underexplored.

House mice are an excellent model system for evolutionary microbiome research, as studies of 
both natural populations and laboratory experiments are possible (Suzuki, 2017; Suzuki et al., 2019). 
In particular, the house mouse species complex is composed of subspecies that hybridize in nature, 
enabling the potential early stages of codiversification to be studied. We previously analysed the gut 
microbiome across the Central European hybrid zone of Mus musculus musculus and Mus musculus 
domesticus (Wang et al., 2015), which share a common ancestor ~0.5 million years ago (Geraldes 
et al., 2008). Importantly, transgressive phenotypes (i.e. exceeding or falling short of parental values) 
among gut microbial traits as well as increased intestinal histopathology scores were common in 
hybrids, suggesting that the genetic basis of host control over microbes has diverged (Wang et al., 
2015). The same study performed an F2 cross between wild-derived inbred strains of M. m. domes-
ticus and M. m. musculus and identified 14 quantitative trait loci (QTL) influencing 29 microbial traits. 
However, like classical laboratory mice, these strains had a history of rederivation and reconstitution of 
their gut microbiome, thus leading to deviations from the native microbial populations found in nature 
(Rosshart et al., 2017; Org and Lusis, 2018), and the genomic intervals were too large to identify 
individual genes.

In this study, we employed a powerful genetic mapping approach using inbred lines directly derived 
from the M. m. musculus–M. m. domesticus hybrid zone, and further focus on the mucosa-associated 
microbiota due to its more direct interaction with host cells (Fukata and Arditi, 2013; Chu and 
Mazmanian, 2013), distinct functions compared to the luminal microbiota (Wang et al., 2010; Vaga 
et al., 2020), and greater dependence on host genetics (Spor et al., 2011; Linnenbrink et al., 2013). 
Previous mapping studies using hybrids raised in a laboratory environment showed that high mapping 
resolution is possible due to the hundreds of generations of natural admixture between parental 
genomes in the hybrid zone (Turner and Harr, 2014; Pallares et al., 2014; Škrabar et al., 2018). 
Accordingly, we here identify 428 loci contributing to variation in 120 taxa, whose narrow genomic 
intervals (median <2 Mb) enable many individual candidate genes and pathways to be pinpointed. We 
identify a high proportion of bacterial taxa with significant heritability estimates and find that bacterial 
phenotyping based on 16S rRNA transcript compared to gene copy-based profiling yields an even 
higher proportion. Furthermore, these heritability estimates also significantly positively correlate with 
cospeciation rate estimates, suggesting a more extensive host genetic architecture for cospeciating 
taxa. Finally, we identify numerous enriched functional pathways, whose role in host-microbe interac-
tions may be particularly important as new species form.

Results
Microbial community composition
To obtain microbial traits for genetic mapping in the G2 mapping population, we sequenced the 16S 
rRNA gene from caecal mucosa samples of 320 hybrid male mice based on DNA and RNA (cDNA), 
which reflect bacterial cell number and activity, respectively. After applying quality filtering and subsa-
mpling 10,000 reads per sample, we identified a total of 4684 amplicon sequence variants (ASVs). For 
further analyses, we established a ‘core microbiome’ (defined in Materials and methods), such that 
analyses were limited to those taxa common and abundant enough to reveal potential genetic signal. 
The core microbiome is composed of four phyla, five classes, five orders, 11 families, 27 genera, and 
90 ASVs for RNA, and four phyla, five classes, six orders, 12 families, 28 genera and 46 ASVs for DNA. 
A combined total of 98 unique ASVs belong to the core, of which 38 were shared between DNA and 
RNA (Figure 1—figure supplement 1). The most abundant genus in our core microbiome is Helico-
bacter (Figure 1—figure supplement 2B), consistent with a previous study of the wild hybrid M. m. 
musculus/M. m. domesticus mucosa-associated microbiome (Wang et al., 2015).

Importantly, inspection of the taxonomic profiles of the mapping population confirms that key 
features of the native mouse microbiome were retained in our wild-derived lines, despite multiple 
generations of breeding in the laboratory. For example, the number, identity, and relative proportions 
of major bacterial orders are more similar to wild-caught mice than to rederived classical labora-
tory strains (Figure 1—figure supplement 2A – Order-level bar plot; Fig S4 from Rosshart et al., 
2017). This is consistent with a previous study which showed that microbiomes of wild-derived strains 

https://doi.org/10.7554/eLife.75419
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maintained their distinctiveness over 10 generations of breeding in the laboratory (Moeller et al., 
2018).

Heritability
Next, we estimated the narrow-sense heritability (h2) of bacterial traits using lme4QTL (Ziyatdinov 
et al., 2018). Of the 153 total core taxa, we identified 21 taxa for DNA and 30 taxa for RNA with 
significant heritability estimates (PRLRT<0.05, Restricted Likelihood Ratio test), with estimates ranging 
between 39 and 83% (Figure 1A–B and Supplementary file 1). The top values for bacterial abun-
dances are similar to heritability estimates for body weight (87%) and body length (67%). ASV97 
(genus Oscillibacter) followed by the genus Paraprevotella, and ASV7 (genus Paraprevotella) showed 
the highest heritability among DNA-based traits (80.8, 78.6, and 77.4%, respectively; Figure  1A), 
while ASV97 (genus Oscillibacter), followed by ASV36 (genus Oscillibacter), and ASV135 (unclassified 
order Bacteroidales) had the highest heritability among RNA-based traits (83.0, 80.2, and 79.3%, 
respectively; Figure 1B). The heritability estimates for DNA- and RNA-based measurements of the 
same taxa are significantly correlated (Spearman’s rho = 0.53, p=3.1 × 10–12, Figure 1—figure supple-
ment 3).

Next, we estimated the ‘chip’ heritability (CH), i.e., the percentage of phenotypic variance in bacte-
rial traits explained by genotyped SNPs (32,625 SNPs; Zhou et al., 2013). We find 23 DNA-based 
traits and 27 RNA-based traits with significant chip heritability estimates, ranging between 50.0 and 
15.9% (Figure 1A, B and Supplementary file 1).

We compared these heritability estimates to estimates from previous studies in other mammals 
(Supplementary file 1), including mice (O’Connor et al., 2014; Org et al., 2015), humans (Daven-
port et al., 2015; Goodrich et al., 2016; Turpin et al., 2016; Xu et al., 2020; Ishida et al., 2020; 
Hughes et al., 2020; Kurilshikov et al., 2021), pigs (Chen et al., 2018), and primates (Grieneisen 
et al., 2021). DNA-based heritability estimates are positively correlated with DNA-based heritability 
estimates from male mice (Spearman’s rho = 0.60, p=0.049, n=11; Org et al., 2015; Figure 1—figure 
supplement 5A) and with DNA-based heritability estimates from one human study (Spearman’s rho = 
0.38, p=0.049, n=28; Turpin et al., 2016; Figure 1—figure supplement 5B).

Heritability estimates are correlated with predicted cospeciation rates
In an important meta-analysis of the gut microbiome across diverse mammalian taxa, Groussin et al., 
2017 estimated cospeciation rates of individual bacterial taxa by measuring the congruence of host 
and bacteria phylogenetic trees relative to the number of host-swap events. We reasoned that taxa 
with higher cospeciation rates might also demonstrate higher heritability, as these more intimate 
evolutionary relationships would provide a greater opportunity for genetic aspects to evolve. Intrigu-
ingly, we observe a significant positive correlation for RNA-based traits (h2, p=0.037, Spearman’s rho 
= 0.47; CH, p=0.012, Spearman’s rho = 0.55; Figure 1D; Figure 1—figure supplement 4D), but not 
for DNA-based traits (h2, Spearman’s rho = −0.062, p=0.80; CH, Spearman’s rho = −0.091, p=0.70; 
Figure 1C; Figure 1—figure supplement 4C) for both narrow-sense heritability and chip heritability 
estimates. To evaluate whether these results may be confounded by taxon abundance, we further 
used a multiple linear regression model incorporating both taxon abundance and cospeciation rate. 
The overall regression model was not significant (R2=0.27, F(2,17)=3.202, p=0.067). Furthermore, the 
cospeciation rate significantly predicts the heritability estimate (p=0.022), while the median abun-
dance does not (p=0.92). Thus, heritability estimates and cospeciation rates are associated indepen-
dent of taxon abundance. These results support the notion that cospeciating taxa evolved a greater 
dependency on host genes, and further suggest that bacterial activity may better reflect the under-
lying biological interactions.

Genetic mapping of host loci determining microbiome composition
Next, we performed genome-wide association mapping of the relative abundances of core taxa, in 
addition to two alpha-diversity measures (Shannon and Chao1 indices), based on 32,625 SNPs. We 
used a linear mixed model including both additive and dominance terms in the model to enable the 
identification of underdominance and overdominance in this hybrid mapping population. We included 
mating pair and the genotype-based genomic relatedness matrix (GRM) as random effects to control 
for maternal effects and relatedness, respectively (see Materials and methods). While we found no 

https://doi.org/10.7554/eLife.75419
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Figure 1. Heritability estimates and their relationship to cospeciation rates. 
 (A–B) Lollipop chart showing the values of the chip heritability (dark red circles), narrow-sense heritability (green squares), PVE by the additive 
effect (blue triangles), and additive and dominance effect (yellow diamonds) of all significant single nucleotide polymorphisms (SNPs) within one 
taxon for DNA-based traits (A) and RNA-based traits (B) Only taxa with a non-zero narrow-sense heritability estimate are shown. Only the outline of 
non-significant heritability estimates (p<0.05, Restricted Likelihood Ratio test) are shown. Taxa without significant hits have no PVE reported. (C–
D) Relationship between the narrow-sense heritability estimates for the relative abundance of bacterial taxa and cospeciation rate for the same genus 
calculated by Groussin et al., 2017. DNA level (C), and RNA level (D). The blue line represents a linear regression fit to the data and the grey area the 
corresponding confidence interval. p-Values and the correlation coefficient are calculated using the Spearman’s correlation test. The text labels on the 
y-axis (A–B) and the text labels in panels (C-D) are coloured according to taxonomic level: amplicon sequence variants (ASV) in black, genus in purple, 
family in light blue, order in red, class in green, and phylum in yellow.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Selection of taxa for mGWAS analysis.

Figure supplement 2. Relative abundances of core taxa. 

Figure supplement 3. Correlation of single nucleotide polymorphisms (SNP)-based heritability estimates based on DNA (x-axis) or RNA (y-axis). 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.75419
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genome-wide significant associations for alpha diversity at either the DNA or RNA level (p>1.53 × 
10–6), a total of 1030 genome-wide significant associations were identified for individual taxa (p<1.53 
× 10–6, Supplementary file 2), of which 428 achieved study-wide significance (p<1.29 × 10–8). Apart 
from the X chromosome, all autosomal chromosomes contained study-wide significant associations 

Figure supplement 4. Relationship between the chip heritability estimates for the relative abundance of bacterial taxa and cospeciation rate for the 
same genus calculated by Groussin et al., 2017.

Figure supplement 5. Correlation between heritability estimates. 

Figure supplement 6. Overview of the intercross design.

Figure 1 continued
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Figure 2. Heatmap of significant host loci from association mapping of bacterial abundances. Karotype plot showing the number of significant loci 
found using a study-wide threshold, where (A) plots the significance intervals and (B) the significant single nucleotide polymorphisms (SNP) markers on 
the chromosomes. The position of the SNPs on panel (B) has been amplified by 0.5 Mb to visualise it. The position of the genes closest to SNPs with the 
lowest p-values (Tlr4, and Irak4 and Adamsts20) are indicated.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Manhattan plots for ASV184 (Dorea). 

Figure supplement 2. Number of significantly associated loci per bacterial taxon.

https://doi.org/10.7554/eLife.75419
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(Figure 2). Out of the 153 mapped taxa, 120 had at least one significant association (Table 1). For 
the remainder of our analyses, we focus on the results using the more stringent study-wide threshold, 
and combined significant SNPs within 10 Mb into significant regions (Supplementary file 3). The 
median size of significant regions is 1.91 Mb, which harbour a median of 14 protein-coding genes. On 
average, we observe five significant mouse genomic regions per bacterial taxon.

Of the significant loci with estimated interval sizes, we find 69 intervals (16.1%) that are smaller than 
1 Mb (Supplementary file 4). The smallest interval is only 231 bases and associated with the RNA-
based abundance of an unclassified genus belonging to Deltaproteobacteria. It is situated in an intron 
of the C3 gene, a complement component playing a central role in the activation of the complement 
system, which modulates inflammation and contributes to antimicrobial activity (Ricklin et al., 2016).

The significant genomic regions and SNPs are displayed in Figure 2A and B, respectively. Individual 
SNPs were associated with up to 14 taxa, and significant intervals with up to 30 taxa. The SNPs with 
the lowest p-values were associated with the genus Dorea and two ASVs belonging to Dorea (ASV184 
and ASV293; Figure 2—figure supplement 1). At the RNA level this involves two loci: mm10-chr4: 
67.07 Mb, where the peak SNP is 13 kb downstream of the closest gene Tlr4 (UNC7414459, p=2.31 × 
10–69, additive p=4.48 × 10–118, dominance p=1.37 × 10–111; Figure 2; Figure 2—figure supplement 1), 
and mm10-chr15: 94.4 Mb, where the peak SNP is found within the Adamts20 gene (UNC26145702, 
p=4.51 × 10–65, additive p=1.87 × 10–113, dominance p=1.56 × 10–105; Figure  2; Figure  2—figure 
supplement 1). Interestingly, the Irak4 gene, whose protein product is rapidly recruited after TLR4 
activation, is also located 181  kb upstream of Adamts20. The five taxa displaying the most asso-
ciations were ASV19 (Bacteroides), Dorea, ASV36 (Oscillibacter), ASV35 (Bacteroides), and ASV98 
(unclassified Lachnospiraceae) (Figure 2—figure supplement 2).

Ancestry, dominance, and effect sizes
A total of 398 significant SNPs were ancestry informative between M. m. musculus and M. m. domes-
ticus (i.e. represent fixed differences between subspecies). To gain further insight into the genetic 
architecture of microbial trait abundances, we estimated the degree of dominance at each significant 

Table 1. Overview of mapping statistics.
Loci with a P-value below the study-wide threshold (P<1.29 × 10–8) are considered significant. 
‘Significant loci total P’ are the loci having a significant P-value from the total model (additive and 
dominance effect), ‘Significant loci additive P’ have a significant additive effect, and ‘Significant loci 
dominance P’ have a significant dominance effect.

DNA RNA Total

Mapped taxa 101 142 153

Taxa with significant loci 65 93 120

Median interval size (Mb) 1.32 2.5 1.91

Total significant SNPs 316 596 782

Total significant loci 443 746 1184

Unique significant loci 172 305 428

Significant loci total P 83 144 204

Significant loci additive P 144 244 351

Significant loci dominance P 88 171 230

Median significant loci per trait 5 5 8

Median unique significant loci per trait 3 3 4

Median unique significant SNPs per locus 2 2 2

Median number of genes per locus 32 54 43

Median protein coding genes per locus 11 17 14

SNPs: single nucleotide polymorphisms.

https://doi.org/10.7554/eLife.75419
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locus using the d/a ratio (Falconer, 1996), where alleles with strictly recessive, additive, and dominant 
effects have d/a values of –1, 0, and 1, respectively. As half of the SNPs were not ancestry informative 
(Figure 3A), it was not possible to consistently have a associated with one parent/subspecies, hence 
we report d/|a| such that it can be interpreted with respect to bacterial abundance. For the vast 
majority of loci (83.79%), the allele associated with higher abundance is recessive or partially recessive 
(–1.25<d/|a|<–0.75; Figure 3B). On the basis of the arbitrary cutoffs, we used to classify dominance, 
only a small proportion of alleles are underdominant (0.23%; d/|a|<–1.25). However, for one-third of 
the significant SNPs, the heterozygotes display transgressive phenotypes, i.e., mean abundances that 
are either significantly lower (31% of SNPs) or higher (2% of SNPs) than those of both homozygous 
genotypes. Interestingly, the domesticus allele was associated with higher bacterial abundance in two-
thirds of this subset (33.9 vs. 16.5% musculus allele; Figure 3A).

Next, we estimated phenotypic effect sizes by calculating the percent variance explained (PVE) 
by the peak SNP of each significant region. Peak SNPs explain between 3 and 64% of the variance 
in bacterial abundance, with a median effect size of 9.3% (Figure 3C). The combined PVE by the 
additive effects of all significant markers for each taxon ranged from 0.000018 to 41.6%, with an 
average of 12% (Figure 1A–B). As expected, the combined additive effects of significant loci are 
typically much lower than the h2, which is the upper bound as it represents the total additive genetic 
effect. Interestingly, there are several taxa for which the PVE by additive and dominance effects of all 
significant SNPs exceeds h2 (e.g. genus Odoribacter and ASV234 [unclassified Ruminococcaceae] for 
RNA-based traits), indicating there are strong dominance effects. For example, Odoribacter has two 
significant regions which show overdominance, and ASV234 has seven significant regions which show 
underdominance.
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Functional annotation of candidate genes
Our mapping procedure involves testing for associations between a given microbial trait and a single 
SNP marker. However, the true genetic architecture is likely more complex. For example, multiple 
interacting genes in a common host regulatory pathway could influence a given taxonomic group 
and/or function, the latter of which could also be distributed among unrelated taxa (i.e. functional 
redundancy). Thus, in order to reveal potential higher-level biological phenomena among the identi-
fied loci, we performed pathway analysis to identify interactions and functional categories enriched 
among the genes in significant intervals. We used STRING (Szklarczyk et al., 2019) to calculate a 
protein-protein interaction (PPI) network of 925 protein-coding genes nearest to significant SNPs 
(upstream and/or downstream). A total of 768 genes were represented in the STRING database, and 
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Figure 4. High confidence protein-protein interaction (PPI) network of genes closest to single nucleotide polymorphisms (SNPs) significantly associated 
with bacterial abundances. Network clusters are annotated using STRING’s functional enrichment (Doncheva et al., 2019). Nodes represent proteins 
and edges their respective interactions. Only edges with an interaction score higher than 0.9 are retained. The width of the edge line expresses the 
interaction score calculated by STRING. The colour of the nodes describes the expression of the protein in the intestine where yellow is not expressed 
and purple is highly expressed.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Protein-protein interaction (PPI) network of hub genes of the 'nearest gene' network. 

Figure supplement 2. Genes belonging to overrepresented KEGG pathways within the host genes closest to significant single nucleotide 
polymorphisms (SNPs) from association analysis.

Figure supplement 3. Enriched KEGG pathways. 

Figure supplement 4. Enriched human diseases among genes closest to significant single nucleotide polymorphisms (SNPs) from association analysis.

https://doi.org/10.7554/eLife.75419
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the maximal network is highly significant (STRING PPI enrichment p-value: 2.15×10–14) displaying 668 
nodes connected by 1797 edges and an average node degree of 4.68. After retaining only the edges 
with the highest confidence (interaction score >0.9), this results in one large network with 233 nodes, 
692 edges and ten smaller networks (Figure 4).

Next, we functionally annotated clusters using STRING’s functional enrichment plugin. The genes 
of the largest cluster are part of the G-protein-coupled receptor (GPCR) ligand binding pathway. 
GPCRs are the largest receptor superfamily and also the largest class of drug targets (Sriram and 
Insel, 2018). We then calculated the top ten hub proteins from the network based on Maximal Clique 
Centrality (MCC) algorithm with CytoHubba to predict important nodes that can function as ‘master 
switches’ (Figure 4—figure supplement 1). The top ten proteins contributing to the PPI network 
were GNG12, MCHR1, NMUR2, PROK2, OXTR, XCR1, TACR3, CHRM3, PTGFR, and C3, which are all 
involved in the GPCR signalling pathway.

Furthermore, we performed enrichment analysis on the 925 genes nearest to significant SNPs 
using the clusterprofiler R package. We found 14 KEGG pathways to be overrepresented: circadian 
entrainment, oxytocin signalling pathway, axon guidance, calcium signalling, cAMP signalling, cortisol 
synthesis and secretion, cushing syndrome, gastric acid secretion, glutamatergic synapse, mucin type 
O-glycan biosynthesis, inflammatory mediator regulation of TRP channels, PD-L1 expression and the 
PD-1 checkpoint pathway in cancer, tight junction, and the Wnt signalling pathway (Supplementary 
file 5, Figure 4—figure supplement 2 and Figure 4—figure supplement 3). Finally, genes involved 
in five human diseases are enriched, among them mental disorders (Figure 4—figure supplement 4).

Finally, due to the observation of a significant enrichment of cospeciating taxa among the bacterial 
species depleted in early onset IBD (Groussin et al., 2017) and the evidence that IBD is especially 
associated with a dysbiosis in mucosa-associated communities (Yang et  al., 2020a; Daniel et  al., 
2021), we specifically examined possible overrepresentation of genes involved in IBD (Khan et al., 
2021) among the 925 genes neighbouring significant SNPs. We found 14 out of the 289 IBD genes, 
which was significantly more than expected by chance (10,000 times permuted mean: 2.7, simulated 
p=00001, Fisher’s exact test; Supplementary file 6). Interestingly, SNPs in 5 out of the 14 genes are 
associated with ASVs belonging to the genus Oscillibacter, a cospeciating taxon known to decrease 
during the active state of IBD (Metwaly et al., 2020).

Comparison of significant loci to published gut microbiome mapping 
studies
Host loci that appear in multiple independent studies are more likely to represent true positive asso-
ciations and/or less dependent on environmental perturbations. We therefore compiled a list of 648 
unique confidence intervals of significant associations with gut bacterial taxa from seven previous 
mouse QTL studies (Benson et al., 2010; McKnite et al., 2012; Leamy et al., 2014; Wang et al., 
2015; Org et al., 2015; Snijders et al., 2016; Kemis et al., 2019) and compared this list to our signif-
icance intervals for bacterial taxa at both the DNA and RNA level (341 intervals). Regions larger than 
10 Mb were removed from all studies. We found 441 overlapping intervals, which is significantly more 
than expected by chance (10,000 times permuted mean: 372.8, simulated p=0.005, Fisher’s exact 
test, see Materials and methods). Several of our smaller significant loci overlapped with larger loci 
from previous studies and removing this redundancy left 190 significant loci with a median interval size 
of 0.83 Mb (Figure 5). The most frequently identified locus is located on chromosome 2 169–171 Mb 
where protein coding genes Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, Pfdn4, 4930470P17Rik, and 
Dok5 are situated.

Additionally, we collected genes within genome-wide significant regions reported in seven human 
microbiome GWAS (mGWAS) (Bonder et al., 2016; Turpin et al., 2016; Goodrich et al., 2016; Wang 
et al., 2016; Hughes et al., 2020; Rühlemann et al., 2021; Kurilshikov et al., 2021). However, no 
significant overrepresentation of genes was found within our significance intervals (p=0.16, Fisher’s 
exact test), nor within our list of genes closest to a significant SNP (p=0.62, Fisher’s exact test).

Proteins differentially expressed in germ-free vs. conventional mice
To further validate our results, we compared the list of genes contained within intervals of our study to a 
list of differentially expressed proteins between germ-free and conventionally raised mice (Mills et al., 
2020). This comparison was made based on the general expectation that if a host gene influences 

https://doi.org/10.7554/eLife.75419
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microbial abundance, its own expression would be more likely to change according to differences in 
the microbiome. Thus, we examined the intersection between genes identified in our study and the 
proteins identified as highly associated (|π|>1) with the colonisation state of the colon and the small 
intestine (Mills et al., 2020). Out of the 373 overexpressed or underexpressed proteins according to 
colonisation status, we find 194 of their coding genes to be among our significant loci, of which 17 
are the closest genes to a significant marker (Iyd, Nln, Slc26a3, Slc3a1, Myom2, Nebl, Tent5a, Fxr1, 
Cbr3, Chrodc1, Nucb2, Arhgef10l, Sucla2, Enpep, Prkcq, Aacs, and Cox7c). This is significantly more 
than expected by chance (simulated p=0.016, 10,000 permutations, Fisher’s exact test). Furthermore, 
analysing the PPI with STRING results in a significant network (STRING PPI enrichment <i>P-value = 
1.73 × 10–14, and average node degree 2.4, Figure 5—figure supplement 1), with Cyp2c65, Cyp2c55, 
Cyp2b10, Gpx2, Cth, Eif3k, Eif1, Sucla2, and Rpl17 identified as hub genes (Figure 5—figure supple-
ment 2).

Subsequently, we merged the information from Mills et al., 2020 and the seven previous QTL 
mapping studies discussed above to further narrow down the most promising candidate genes, and 
found 30 genes overlapping with our study. Of these 30 genes, six are the closest gene to a significant 
SNP. These genes are myomesine 2 (Myom2), solute carrier family 3 member 1 (Slc3a1), solute carrier 
family 26 member 3 (Slc26a3), nebulette (Nebl), carbonyl reductase 3 (Cbr3), and acetoacetyl-coA 
synthetase (Aacs).
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Figure 5. Significant loci in this study previously found in quantitative trait loci (QTL) studies of the mouse gut microbiome. 
 The genes present in two repeatedly identified regions are depicted in boxes.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Protein-protein interaction (PPI) network of overlapping differentially expressed proteins according to colonization status. 

Figure supplement 2. Protein-protein interaction network of hub genes of 'differentially expressed according to colonization status'-network. 
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Candidate genes influencing bacterial abundance
To compile a comprehensive set of promising candidate genes, we combined results from network 
analysis, overlap with previous mouse QTL studies, and differential expression in GF vs conventional 
mice (see Materials and methods 'Curation of candidate genes’ and ). Next, we used STRING to 
construct a PPI network with this curated gene set, which is highly significant (STRING PPI enrich-
ment <i>P-value < 1.0 × 10–16, average node degree = 4.85). We identified genes with the highest 
connectivity and most supporting information (original network see Figure 6—figure supplement 
1), resulting in a final set of 79 candidate genes (Figure 6 and Supplementary file 7). The G-protein, 
GNG12 and the complement component 3 C3, are the proteins with the most edges in the network 
(30 and 25, respectively), followed by MCHR1, CXCL12, and NMUR2 with each 18 edges. Of these 
79 highly connected genes, 35 are associated with bacteria that are either cospeciating (cospecia-
tion rate >0.5; Groussin et al., 2017) and/or have high heritability (>0.5) suggesting a functionally 
important role for these bacterial taxa.

Discussion
Understanding the forces that shape variation in host-associated bacterial communities within 
host species is key to understanding the evolution and maintenance of meta-organisms. Although 
numerous studies in mice and humans demonstrate that host genetics influences gut microbiota 
composition (McKnite et al., 2012; Leamy et al., 2014; Goodrich et al., 2014; Org et al., 2015; 
Davenport et al., 2015; Wang et al., 2016; Bonder et al., 2016; Goodrich et al., 2016; Kemis et al., 
2019; Suzuki et al., 2019; Ishida et al., 2020; Hughes et al., 2020; Rühlemann et al., 2021), our 
study is unique in a number of important ways. First, the unique genetic resource of mice collected 
from a naturally occurring hybrid zone together with their native microbes yielded extremely high 
mapping resolution and the possibility to uncover ongoing evolutionary processes in nature. Second, 
our study is the first to perform genetic mapping of 16S rRNA transcripts in the gut environment, 
which was previously shown to be superior to DNA-based profiling in a genetic mapping study of the 
skin microbiota (Belheouane et al., 2017). Third, our study is one of the only to specifically examine 
the mucosa-associated community. It was previously reasoned that the mucosal environment may 
better reflect host genetic variation (Spor et al., 2011), and evidence for this hypothesis exists in 
nature (Linnenbrink et  al., 2013). Finally, by cross-referencing our results with previous mapping 
studies and recently available proteomic data from germ-free versus conventional mice, we curated a 
more reliable list of candidate genes and pathways. Taken together, these results provide unique and 
unprecedented insight into the genetic basis for host-microbe interactions (Supplementary file 1).

Importantly, by using wild-derived hybrid inbred strains to generate our mapping population, we 
gained insight into the evolutionary association between hosts and their microbiota at the transition 
from within species variation to between species divergence. Genetic relatedness in our mapping 
population significantly correlates with microbiome similarity, supporting a basis for codiversification at 
the early stages of speciation. A substantial proportion of microbial taxa are heritable, and heritability 
is correlated with cospeciation rates. This suggests that (i) vertical transmission could enable greater 
host adaptation to bacteria and/or (ii) the greater number of host genes associated with cospeciating 
taxa could indicate a greater dependency on the host, such that survival outside a specific host is 
reduced, making horizontal transmission less likely.

By performing 16S rRNA gene profiling at both the DNA and RNA level, we found that 14% (DNA 
based) to 20% (RNA based) of bacterial taxa have significant heritability estimates, with values up to 
83%. The proportion of heritable taxa and maximum value of heritability estimates are consistent with 
previous studies in humans and mice ( O’Connor et al., 2014; Org et al., 2015; Hughes et al., 2020). 
Several factors of our study design likely contribute to high heritability values for some taxa. First, 
mice were raised in a controlled common environment, and heritability estimates in other mammals 
were shown to be contingent on the environment (Grieneisen et  al., 2021). Second, bacterial 
communities were sampled from cecal tissue (mucosa) instead of lumen/faeces (Linnenbrink et al., 
2013). Third, genetic variation in our mapping population was higher than in typical mapping studies 
due to subspecies differences. Finally, not all studies discriminate between narrow-sense heritability 
estimates and chip heritability estimates. Chip heritability represents only the variance explained by 
genotyped SNPs, thus estimates are lower than narrow-sense heritability estimates, which include 

https://doi.org/10.7554/eLife.75419
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Figure 6. Network of host candidate genes influencing bacterial traits using STRING (https://string-db.org). The nodes represent proteins and are 
coloured according to a selection of enriched GO terms and pathways: G-protein coupled receptor (GPCR) signalling (red), regulation of the immune 
system process (blue), response to nutrient levels (light green), fatty acid metabolic process (pink), glucose homeostasis (purple), response to antibiotic 
(orange), regulation of feeding behaviour (yellow), positive regulation of insulin secretion (dark green), circadian entrainment (brown), and response to 
vitamin D (turquoise). The colour of the edges represents the interaction type: known interactions from curated databases (turquoise) or experimentally 

Figure 6 continued on next page
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all additive genetic effects (Zhou et al., 2013). Chip heritability is particularly useful for phenotype 
prediction, for example, in the context of animal breeding and human disease, whereas narrow-sense 
heritability is useful for understanding genetic influence more broadly.

Notably, heritability estimates for RNA-based traits are significantly correlated with previously 
reported cospeciation rates in mammals (Groussin et al., 2017). This pattern, as well as the higher 
proportion of heritable taxa for RNA-based traits, suggest that host genetic effects are more strongly 
reflected by bacterial activity than cell number.

We found a total of 172 and 305 unique significant loci for DNA-based and RNA-based bacte-
rial abundance, respectively, passing the conservative study-wide significance threshold. Taxa had 
a median of four significant loci, suggesting a complex and polygenic genetic architecture affecting 
bacterial abundances. We identify a higher number of loci in comparison to previous QTL and GWAS 
studies in mice (Benson et al., 2010; McKnite et al., 2012; Leamy et al., 2014; Wang et al., 2015; 
Org et  al., 2015; Snijders et  al., 2016; Kemis et  al., 2019), which may be due to a number of 
factors. The parental strains of our study were never subjected to rederivation and subsequent recon-
stitution of their microbiota, and natural mouse gut microbiota are more variable than the artificial 
microbiota of laboratory strains (Kohl and Dearing, 2014; Weldon et al., 2015; Suzuki, 2017; Ross-
hart et  al., 2017). Furthermore, as noted above, our mapping population harbours both within-
subspecies and between-subspecies genetic variation. We crossed incipient species sharing a common 
ancestor ~0.5 million years ago, hence we may also capture the effects of mutations that fixed rapidly 
between subspecies due to strong selection, which are typically not variable within species (Walsh 
and Lynch, 1998; Barton and Keightley, 2002).

Importantly, our results also help to describe general features of the genetic architecture of bacte-
rial taxon activity. For the majority of loci, the allele associated with lower relative abundance of the 
bacterial taxon was (partially) dominant. This suggests there is strong purifying selection against a 
high abundance of any particular taxon, which may help ensure high alpha diversity. For several bacte-
rial taxa, the PVE by additive and dominance effects of significant SNPs exceeds the narrow-sense 
heritability, and the heterozygotes of one-third of significant SNPs displayed transgressive pheno-
types. This is consistent with previous studies of hybrids (Turner et al., 2012; Turner and Harr, 2014; 
Wang et al., 2015), for example, wild-caught hybrids showed broadly transgressive gut microbiome 
phenotypes. This pattern can be explained by overdominance or underdominance, or by epistasis 
(Rieseberg et al., 1999). A curious observation is that domesticus alleles are associated with higher 
relative bacterial abundances twice as often as musculus alleles (Figure 3A). Although the biological 
explanation for this pattern is not discernible from our current results, future work incorporating quan-
titative profiling of bacterial load in hybrid and unadmixed musculus and domesticus individuals may 
help explain this phenomenon.

Notably, many loci significantly associated with bacterial abundance in this study were implicated in 
previous studies (Figure 5). For example, chromosome 2 169–171 Mb is associated with ASV23 (Eisen-
bergiella), Eisenbergiella and ASV32 (unclassified Lachnospiraceae) in this study, and overlaps with 
significant loci from three previous studies (Leamy et al., 2014; Snijders et al., 2016; Kemis et al., 
2019). This region contains eight protein-coding genes: Gm11011, Znf217, Tshz2, Bcas1, Cyp24a1, 
Pfdn4, 4930470P17Rik, and Dok5. Another hotspot is on chromosome 5 101–103  Mb. This locus 
is significantly associated with four taxa in this study (Prevotellaceae, Paraprevotella, ASV7 genus 
Paraprevotella and Acetatifactor) and overlaps with associations for Clostridiales, Clostridiaceae, 
Lachnospiraceae, and Deferribacteriaceae (Snijders et al., 2016). Protein-coding genes in this region 
are: Nkx6-1, Cds1, Wdfy3, Arhgap24, and Mapk10. As previous studies were based on rederived 
mouse strains, identifying significant overlap in the identification of host loci suggests that some of 
the same genes and/or mechanisms influencing major members of gut microbial communities are 
conserved even in the face of community ‘reset’ in the context of rederivation. The identity of the taxa 
is however not always the same, which suggests that functional redundancy may contribute to these 

determined (pink); predicted interactions from gene neighbourhood (green), gene fusions (red), gene co-occurrence (blue); other interactions from text-
mining (light green), coexpression (black), and protein homology (purple).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Protein protein interaction (PPI) network of 304 filtered candidate genes.

Figure 6 continued

https://doi.org/10.7554/eLife.75419
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observations, if, for example, several bacterial taxa fulfill the same function within the gut microbiome 
(Moya and Ferrer, 2016; Tian et al., 2020).

A limitation of the current and previous genetic studies is that the phenotypes used for mapping 
are based on relative abundance rather than absolute, quantitative estimates. Specifically, an increase 
in a given taxon’s abundance will necessarily lead to a decrease in abundance among all other taxa, 
which can lead to a number of potential biases (Kathagen et al., 2017; Barlow et al., 2020). Thus, 
future studies incorporating absolute abundance estimates may improve the detection of host-
microbe interactions.

Nevertheless, our results do display overlap with studies based on other independent methods, 
such as a list of proteins differentially expressed in the intestine of germ-free mice compared to 
conventionally raised mice (Mills et al., 2020). Furthermore, by analysing the functions of the genes 
closest to significant SNPs, we found that 12 of the 14 significantly enriched KEGG pathways were 
shown to be related to interactions with bacteria (Fonken et al., 2010 Thaiss et al., 2014; Neumann 
et al., 2014; Thaiss et al., 2015a; Thaiss et al., 2015b; Castoldi, 2015; Erdman and Poutahidis, 
2016; Thaiss et al., 2016; Deaver et al., 2018; Wu et al., 2018; Peng et al., 2020; Nagpal et al., 
2020; Hollander and Kaunitz, 2019; Supplementary file 5).

To improve the robustness of our results, we combined multiple lines of evidence to priori-
tise candidates, resulting in a network of 79 genes (Supplementary file 7). At the centre of this 
network is a set of 22 proteins involved in G-protein coupled receptor signalling (Figure 6, red 
nodes). MCHR1, NMUR2, and TACR3 (Figure 6, yellow) are known to regulate feeding behaviour 
(Saito et al., 1999; Cardoso et al., 2012; Smith et al., 2019), and CHRM3 to control digestion 
(Gautam et al., 2006; Tanahashi et al., 2009). Gut microbes can produce GPCR agonists to elicit 
host cellular responses (Cohen et al., 2017; Colosimo et al., 2019; Chen et al., 2019; Pandey 
et al., 2019). Thus, GPCRs may be key modulators of communication between the gut microbiota 
and host. Another interesting group of genes are those responding to nutrient levels (Bmp7, Cd40, 
Aacs, Gclc, Nmur2, Cyp24a1, Adcyap1, Serpinc1, and Wnt11) (Sethi and Vidal-Puig, 2008; Peier 
et al., 2009; Townsend et al., 2012; Yi and Bishop, 2015; Shi and Tu, 2015; Toderici et al., 2016; 
Yasuda et al., 2021; Gastelum et al., 2021), as gut microbiota affect host nutrient uptake (Chung 
et  al., 2018). In addition, CYP24A1, BMP7, and CD40 respond to vitamin D. Previous studies 
identified vitamin D/the vitamin D receptor to play a role in modulating the gut microbiota (Wang 
et al., 2016; Malaguarnera, 2020; Yang et al., 2020b; Singh et al., 2020), and CD40 is known to 
induce a vitamin D dependent antimicrobial response through IFN-γ activation (Klug-Micu et al., 
2013).

Another important category of candidate genes are those involved in immunity. Our most signif-
icant SNP was situated downstream of the Tlr4 gene and was associated with the genus Dorea and 
several Dorea species. Dorea is a known short chain fatty acid producer (Taras, 2002; Reichardt 
et al., 2018) and interacts with tight junction proteins Claudin-2 and Occludin (Alhasson et al., 2017). 
Tlr4 is a member of the Toll-like receptor family, and has been linked with obesity, inflammation, and 
changes in the gut microbiota (Velloso et al., 2015). These combined results reflect an important role 
for Dorea in fatty acid harvesting and intestinal barrier integrity, both of which could act systemically 
to activate TLR4 and to promote metabolic inflammation (Cani et al., 2008; Delzenne et al., 2011; 
Nicholson et al., 2012). Moreover, the SNP with the second lowest p-value was associated with the 
same taxa and situated 181 kb upstream of Irak4. IRAK4 is rapidly recruited after TLR4 activation to 
enable downstream activation of the NFκB immune pathway. Irak4 has previously been associated 
with a change in bacterial abundance using inbred mice (McKnite et al., 2012; Org et al., 2015).

Finally, we identified notable links between candidate genes and five human diseases (mental disor-
ders, blood pressure finding, systemic arterial pressure, substance-related disorders, and atrial septal 
deficits; Figure 4—figure supplement 4). The connection to mental disorders is intriguing as involve-
ment of the gut microbiota is suspected (Kelly et al., 2015; Foster et al., 2017; Cox and Weiner, 
2018; Chen et al., 2019; Sarkar et al., 2020; Parker et al., 2020; Flux and Lowry, 2020). Taken 
together with our finding of an enriched set of GPCRs, this highlights the importance of host-microbial 
interplay along the gut-brain axis. Moreover, we also identify a significant overrepresentation of IBD 
genes (Khan et al., 2021) among the 925 genes nearest to significant SNPs (Supplementary file 6). 
Interestingly, SNPs in 5 out of 14 genes are associated with ASVs belonging to the genus Oscillibacter, 
a highly cospeciating taxon known to decrease during the active state of IBD (Metwaly et al., 2020).

https://doi.org/10.7554/eLife.75419
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In summary, our study provides a number of novel insights into the importance of host genetic 
variation in shaping the gut microbiome, in particular for cospeciating bacterial taxa. These find-
ings provide an exciting foundation for future studies of the precise mechanisms underlying host-gut 
microbiota interactions in the mammalian gut and should encourage future genetic mapping studies 
that extend analyses to the functional metagenomic sequence level.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

strain, strain background 
(Mus musculus musculus-Mus 
musculus-domesticus, males) (HZ)A-(HZ)H This paper  �

Second generation wild-derived inter-
crossed hybrid mouse line, Mus musculus 
musculus-Mus musculus domesticus 
originating from four breeding stocks 
captured in the wild hybrid zone around 
Freising, Germany.

biological sample (Mus 
musculus) Cecum tissue (mucosa) This paper  �

Collected and stored in RNAlater 
overnight. After RNAlater removal tissue 
was stored in –20°C

biological sample (Mus 
musculus) Ear clips This paper  �  For genotyping

commercial assay or kit Allprep DNA/RNA 96-well Qiagen (Hilden, Germany) Cat. No.: 80,284 DNA/RNA extraction

commercial assay or kit Lysing matrix E MP Biomedical (Eschwege, Germany) SKU:116914050-CF Lysing

commercial assay or kit
High-capacity cDNA 
Reverse Transcription Kit Applied Biosystems (Darmstadt, Germany) Cat. No.: 368,814 cDNA transcription

sequence-based reagent 27 F https://doi.org/10.1016/j.ijmm.2016.03.004 PCR primers Forward primer V1-V2 hypervariable region

sequence-based reagent 338 R https://doi.org/10.1016/j.ijmm.2016.03.004 PCR primers Reverse primer V1-V2 hypervariable region

software, algorithm DADA2 https://doi.org/10.1038/nmeth.3869  �  16S rRNA gene processing

software, algorithm phyloseq https://doi.org/10.1371/journal.pone.0061217  �  16S rRNA gene analysis

commercial assay or kit
DNAeasy Blood and Tissue 
96-well Qiagen (Hilden, Germany) Cat. No.: 69,504 DNA extraction ear clips for genotyping

Other GigaMUGA Neogen, Lincoln, NE  �
Illumina Infinium II array containing 
141,090 SNP probes

software, algorithm plink 1.9 https://doi.org/10.1186/s13742-015-0047-8  �  Quality control genotypes

software, algorithm GEMMA (v 0.98.1) https://doi.org/10.1038/ng.2310  �  Genetic relatedness matrix

software, algorithm lme4QTL https://doi.org/10.1186/s12859-018-2057-x  �  SNP-based heritability, GWAS

software, algorithm exactLRT (RLRsim, v 3.1–6) Scheipl et al., 2008  �  Significance heritability estimates

software, algorithm ​inv.​logit (Gtools, v 3.9.2) Grieneisen et al., 2021  �  Inverse logistic transformation

software, algorithm matSpDlite
Nyholt, 2019; https://doi.org/10.1038/sj.hdy.​
6800717  �  Study-wide significance threshold

software, algorithm biomaRt (mm10) Durinck et al., 2009 Gene annotation

software, algorithm
r.squaredGLMM (MuMIn, 
v 1.37.17) Kamil, 2020 Percentage of variance explained

software, algorithm

locateVariants 
(VariansAnnotation, v 
1.34.0) https://doi.org/10.1093/bioinformatics/btu168 Nearest gene

software, algorithm STRING (v 11) https://doi.org/10.1093/nar/gky1131 Protein-protein interaction networks

software, algorithm Cytoscape (v 3.8.2) https://doi.org/10.1101/gr.1239303  �  Network analysis and visualisation

https://doi.org/10.7554/eLife.75419
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https://doi.org/10.1016/j.ijmm.2016.03.004
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

software, algorithm MCODE https://doi.org/10.1186/1471-2105-4-2  �
Cytoscape plugin for identifying network 
clusters

software, algorithm stringApp https://doi.org/10.1021/acs.jproteome.8b00702  �  Cytoscape plugin for functional annotation

software, algorithm clusterprofiler (v 3.16.1) https://doi.org/10.1089/omi.2011.0118  �  Enrichment analysis

software, algorithm poverlap Pedersen and Brown, 2013  �
To determine significant overlap between 
studies

software, algorithm R (v 3.5.3) https://www.R-project.org/  �   �

 Continued

Intercross design
We generated a mapping population using partially inbred strains derived from mice captured in 
the M. musculus–M. m. domesticus hybrid zone around Freising, Germany, in 2008 (Turner et al., 
2012). Originally, four breeding stocks were derived from 8 to 9 ancestors captured from one (FS, 
HA, TU) or two sampling sites (HO), and maintained with four breeding pairs per generation using the 
HAN-rotation out-breeding scheme (Rapp, 1972). Eight inbred lines (two per breeding stock) were 
generated by brother/sister mating of the 8th generation lab-bred mice. We set up the cross when 
lines were at the 5th–9th generation of brother-sister meeting, with inbreeding coefficients of >82%.

We used power calculations to estimate the optimal cross design and sample size needed. We first 
set up eight G1 crosses, each with one predominantly domesticus line (FS, HO – hybrid index <50%; 
see below) and one predominantly musculus line (HA, TU – hybrid index >50%); each line was repre-
sented as a dam in one cross and sire in another (Figure 1—figure supplement 6). One line, FS5, 
had a higher hybrid index than expected, suggesting there was a misidentification during breeding 
(see genotyping below). Next, we set up G2 crosses in eight combinations (sub-crosses), such that 
each G2 individual has one grandparent from each of the initial four breeding stocks. We included 
40 males from each sub-cross in the mapping population resulting in a total of 320 mice. Mice were 
kept together with male littermates until moved to single cages 1 week prior to sacrifice.

This study was performed according to approved animal protocols and institutional guidelines 
of the Max Planck Institute. Mice were maintained and handled in accordance with FELASA guide-
lines and German animal welfare law (Tierschutzgesetz § 11, permit from Veterinäramt Kreis Plön: 
1401–144/PLÖ–004697).

Sample collection
Mice were kept in the same room and caged together with littermates after weaning before being 
separated into single cages 1 week prior to dissection (to minimize effects of social dominance 
on fertility traits for a related study). Mice were sacrificed at 91±5 days by CO2 asphyxiation. We 
recorded body weight, body length and tail length, and collected ear tissue for genotyping. The 
caecum was removed and gently separated from its contents through bisection and immersion in 
RNAlater (Thermo Fisher Scientific, Schwerte, Germany). After overnight storage in RNAlater at 4°C, 
the RNAlater was removed and tissue stored at –20°C.

DNA extraction and sequencing
We simultaneously extracted DNA and RNA from caecum tissue samples using Qiagen (Hilden, 
Germany) Allprep DNA/RNA 96-well kits. All samples were extracted together in the same extraction 
round and hence timepoint. We followed the manufacturer’s protocol, with the addition of an initial 
bead beating step using Lysing matrix E tubes (MP Biomedical, Eschwege) to increase cell lysis. We 
used caecum tissue because host genetics has a greater influence on the microbiota at this mucosal 
site than on the lumen contents (Linnenbrink et al., 2013). We performed reverse transcription of 
RNA with high-capacity cDNA transcription kits from Applied Biosystems (Darmstadt, Germany). We 
amplified the V1–V2 hypervariable region of the 16S rRNA gene using barcoded primers (27F-338R) 
with fused MiSeq adapters and heterogeneity spacers following the description in Rausch et  al., 
2016 and sequenced amplicons with 250bp paired-reads on the Illumina MiSeq platform. Individual 
sequencing libraries were prepared in parallel for all DNA and RNA samples, respectively, resulting 

https://doi.org/10.7554/eLife.75419
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1089/omi.2011.0118
https://www.R-project.org/
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in one MiSeq library each. Accordingly, all individual 16S rRNA gene profiles within a given DNA- or 
RNA-based mapping analysis were generated by a single sequencing run. Thus, only direct compari-
sons between DNA- and RNA-based traits could be possibly confounded by sequencing run, and all 
analyses were performed independently for these two categories.

16S rRNA gene analysis
We assigned sequences to samples by exact matches of MID (multiplex identifier, 10 nt) sequences 
processed 16S rRNA sequences using the DADA2 pipeline, implemented in the DADA2 R package, 
version 1.16.0 (Callahan et al., 2016). Processing of the raw reads with DADA2 was performed sepa-
rately for the DNA- and RNA-based libraries. Briefly, raw sequences were trimmed and quality filtered 
with the maximum two ‘expected errors’ allowed in a read, paired sequences were merged, ASVs 
were inferred, and chimeras removed. The two libraries were merged and another round of chimera 
removal was performed. We classified taxonomy using the Ribosomal Database Project (RDP) training 
set 16 (Cole et al., 2014). Classifications with low confidence at the genus level (<0.8) were grouped 
in the arbitrary taxon ‘unclassified_group’. For all downstream analyses, we rarefied samples to 10,000 
reads each. Due to the quality filtering, we have phenotyping data for 286 individuals on DNA level, 
and 320 G2 individuals on RNA level.

We used the phyloseq R package (version 1.32.0) to estimate alpha diversity using the Shannon 
index and Chao1 index, and beta diversity using Bray-Curtis distance (McMurdie and Holmes, 2013). 
We defined core microbiomes at the DNA- and RNA-level, including taxa present in >25% of the 
samples and with median abundance of non-zero values > 0.2% for ASV and genus; and >0.5% for 
family, order, class, and phylum.

Genotyping
We extracted genomic DNA from ear samples using DNAeasy Blood and Tissue 96 well kits (Qiagen, 
Hilden, Germany), according to the manufacturer’s protocol. We sent DNA samples from 26 G0 mice 
and 320 G2 mice to GeneSeek (Neogen, Lincoln, NE) for genotyping using the Giga Mouse Universal 
Genotyping Array (GigaMUGA; Morgan et al., 2015), an Illumina Infinium II array containing 141,090 
SNP probes. We quality-filtered genotype data using plink 1.9 (Chang et al., 2015); we removed 
individuals with call rates < 90% and SNPs that were: not bi-allelic, missing in > 10% individuals, with 
minor allele frequency < 5%, or Hardy-Weinberg equilibrium exact test <i>P-values < 1e-10. A total 
of 64,103 SNPs and all but one G2 individual were retained. Prior to mapping, we LD-filtered SNPs 
with r2 > 0.9 using a window of 5 SNPs and a step size of 1 SNP. We retain 32,625 SNPs for mapping.

Hybrid index calculation
For each G0 and G2 mouse, we estimated a hybrid index – defined as the percentage of M. m. 
musculus ancestry. We identified ancestry-informative SNP markers by comparing GigaMUGA data 
from ten individuals each from two wild-derived outbred stocks of M. m. musculus (Kazakhstan and 
Czech Republic) and two of M. m. domesticus (Germany and France) maintained at the Max Planck 
Institute for Evolutionary Biology (L.M. Turner and B. Payseur, unpublished data). We classified SNPs 
as ancestry informative if they had a minimum of 10 calls per subspecies, the major allele differed 
between musculus and domesticus, and the allele frequency difference between subspecies was >0.3. 
A total of 48,361 quality-filtered SNPs from the G0/G2 genotype data were informative, including 
8775 SNPs with fixed differences between subspecies samples.

Estimation of relatedness among individuals
We computed a centred and a standardised relatedness matrix using the 32,625 filtered SNPs with 
GEMMA (v 0.98.1; Zhou and Stephens, 2012). The centred relatedness matrix was calculated with 
the formula:

	﻿‍
Centered GRM = 1

p

p∑
i=1

(
xi − 1nx̄i

) (
xi − 1nx̄i

)T

‍�

The standardised relatedness matrix was calculated with the formula:

https://doi.org/10.7554/eLife.75419
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	﻿‍
Standardized GRM = 1
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where X denotes the n×p matrix of genotypes, ‍xi‍ as its ith column representing the genotypes of 
ith SNP, ‍̄xi‍ as the sample mean and ‍1n‍ as a n×1 vector of 1’s, and ‍vxi‍ as the sample variance of ith SNP.

Heritability of microbial abundances
We calculated heritabilities for bacterial abundances using linear mixed models implemented in the 
lme4qtl R package (version 0.2.2; Ziyatdinov et al., 2018). We included mating pair nested within the 
subcross identifier (Figure 1—figure supplement 6) as random effects to control for maternal effects 
and population structure, respectively. The narrow-sense heritability (h2) is expressed as:

	﻿‍
h2 = σ2

g
σ2

g +σ2
m+σ2

s +σ2
e ‍�

where σg
2 is the genetic variance estimated by the centred GRM, σm

2 variance of the mating pair 
component, σs

2 the variance due to the subcross identifier, and σe
2 the variance due to residual envi-

ronmental factors.
We also estimated CH using the method from Zhou et al., 2013, which estimates the variance 

explained by genotyped SNPs. CH is estimated using the standardised GRM.
We determined significance of the heritability estimates using exact restricted likelihood ratio 

tests, following Supplementary Note 3 in Ziyatdinov et al., 2018, using the exactRLRT() function of 
the R package RLRsim (version 3.1–6; Scheipl et al., 2008). Correlation with cospeciation rates was 
calculated for taxa shared between studies using the Spearman’s correlation test.

Genome-wide association mapping
Prior to mapping, we inverse logistic transformed bacterial abundances using the ​inv.​logit function 
from the R package gtools (version 3.9.2; Grieneisen et al., 2021).

We performed association mapping in the R package lme4qtl (version 0.2.2; Ziyatdinov et al., 
2018) with the following linear mixed model:

	﻿‍ yi = µ + aiXa
ij + diXd

ij + Wu + e‍�

where ‍yi‍ is the phenotypic value of the jth individual; μ is the mean, ‍X
a
ij‍ the additive and ‍X

d
ij‍ the 

dominance genotypic index values coded as for individual j at locus i. a and d indicate fixed addi-
tive and dominance effects, W indicates random effects mating pair and centred kinship matrix, plus 
residual error e. For mapping, we used the centred GRM as the SNP effect size does not depend on 
its minor allele frequency. Moreover, the centred GRM typically provides better control for population 
structure in lower organisms and both GRMs perform equally in humans (Zhou and Stephens, 2012).

We estimated additive and dominance effects separately because we expected to observe under-
dominance and overdominance in our hybrid mapping population, as well as additive effects, and 
aimed to estimate their relative importance. To model the additive effect (i.e. 1/2 distance between 
homozygous means), genotypes at each locus, i, were assigned additive index values (‍Xa‍ ∈ 1, 0,–1) 
for AA, AB, BB, respectively, with A indicating the major allele and B the minor allele. To model domi-
nance effects (i.e. heterozygote mean – midpoint of homozygote means), genotypes were assigned 
dominance index values (‍Xd‍ ∈ 0, 1) for homozygotes and heterozygotes, respectively.

We included mating pair as a random effect to account for maternal effects and cage effects, 
as male litter mates are kept together in a cage after weaning. We included kinship coefficient as a 
random effect in the model to account for population and family structure. To avoid proximal contam-
ination, we used a leave-one-chromosome-out approach, that is, when testing each single-SNP asso-
ciation we used a relatedness matrix omitting markers from the same chromosome (Parker et al., 
2014). Hence, for testing SNPs on each chromosome, we calculated a centred relatedness matrix 
using SNPs from all other chromosomes with GEMMA (v0.98.1; Zhou and Stephens, 2012). We calcu-
lated p-values for single-SNP associations by comparing the full model to a null model excluding fixed 
effects. Code for performing the mapping is available at https://github.com/sdoms/mapping_scripts 
(copy archived at swh:1:rev:d085e7782e9ac85e264fc6b70a5058a53fd7e9fe, Doms, 2022).

https://doi.org/10.7554/eLife.75419
https://github.com/sdoms/mapping_scripts
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The chi-squared test statistics needed for the calculation of the genomic inflation factors were 
computed from the p-values assuming one degree of freedom. The genomic inflation factor was 
defined as the median of the observed chi-squared test statistic divided by the expected median of 
the corresponding chi-squared distribution, and was computed for each trait separately. For traits with 
a genomic inflation factor (λGC) above the proposed threshold of 1.05, we applied genomic control 
by dividing the chi-squared test statistic with λGC (Devlin and Roeder, 1999).

We evaluated significance of SNP-trait associations using two thresholds; first, we used a genome-
wide threshold for each trait, where we corrected for multiple testing across markers using the Bonfer-
roni method (Abdi, 2007). Second, as bacteria interact with each other within the gut as members 
of a community, bacterial abundances are non-independent, so we calculated a study-wide threshold 
dividing the genome-wide threshold by the number of effective taxa included. We used matSpDlite 
(Nyholt, 2019; Li and Ji, 2005; Qin et al., 2020) to estimate the number of effective bacterial taxa 
based on eigenvalue variance.

To estimate the genomic interval represented by each significant LD-filtered SNP, we report signif-
icant regions defined by the most distant flanking SNPs in the full pre-LD-filtered genotype dataset 
showing r2 >0.9 with each significant SNP. We combined significant regions less than 10 Mb apart into 
a single region. Genes situated in significant regions were retrieved using biomaRt (Durinck et al., 
2009) and the mm10 mouse genome.

Percentage of variance explained
We estimated the percentage of variance explained by the lead SNP using a linear mixed model with 
the additive and dominance genotypes of the lead SNP included as a fixed effect and mating pair and 
kinship matrix as random effects in lme4QTL (Ziyatdinov et al., 2018). We used the r.squaredGLMM 
function from the MuMIn R package (v 1.37.17; Kamil, 2020) to calculate the marginal R_GLMM², 
which represents the variance explained by the fixed effects (i.e. the genotype effect). The total vari-
ance explained by all significant SNPs was calculated similarly with the exception of including all 
significant SNPs as fixed effects instead of only the lead SNP. This was performed using the additive 
genotypes only and both the additive and the dominance genotypes.

Dominance analyses
We classified dominance for SNPs with significant associations on the basis of the d/a ratio (Falconer, 
1996) where d is the dominance effect, a the additive effect. As the expected value under purely 
additive effects is 0. As our mapping population is a multiparental-line cross, and not all SNPs were 
ancestry-informative with respect to musculus/domesticus, the sign of a effects is defined by the 
major allele within our mapping population, which lacks clear biological interpretation. To provide 
more meaningful values, we report d/|a|, such that a value of 1=complete dominance of the allele 
associated with higher bacterial abundance, and a value of –1=complete dominance of the allele asso-
ciated with lower bacterial abundance. Values above 1 or below –1 indicate over/underdominance. 
We classified effects of significant regions the following arbitrary d/|a| ranges to classify dominance 
of significant regions (Burke et al., 2002; Miller et al., 2014): underdominant < −1.25, high abun-
dance allele recessive between –1.25 and –0.75, partially recessive between –0.75 and –0.25, additive 
between –0.25 and 0.25, partially dominant between 0.25 and 0.75, dominant 0.75 and 1.25, and 
overdominant > 1.25.

Gene ontology and network analysis
The nearest genes upstream and downstream of the significant SNPs were identified using the locat-
eVariants() function from the VariantAnnotation R package (version 1.34.0; Obenchain et al., 2014) 
using the default parameters. A maximum of two genes per locus were included (one upstream, and 
one downstream of a given SNP).

To investigate functions and interactions of candidate genes, we calculated a PPI network with 
STRING version 11 (Szklarczyk et al., 2019), on the basis of a list of the closest genes to all SNPs 
with significant trait associations. We included network edges with an interaction score >0.9, based 
on evidence from fusion, neighbourhood, co-occurrence, experimental, text-mining, database, and 
coexpression. We exported this network to Cytoscape v 3.8.2 (Shannon et al., 2003) for identification 

https://doi.org/10.7554/eLife.75419
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of highly interconnected regions using the MCODE Cytoscape plugin (Bader and Hogue, 2003), and 
functional annotation of clusters using the stringApp Cytoscape plugin (Doncheva et al., 2019).

We identified over represented KEGG pathways and human diseases using the clusterprofiler R 
package (version 3.16.1; Yu et  al., 2012). p-values were corrected for multiple testing using the 
Benjamini-Hochberg method. Pathways and diseases with an adjusted p-value < 0.05 were consid-
ered overrepresented.

Calculating overlap with other studies and overrepresentation of IBD 
genes
To test for significant overlap with loci identified in previous mapping studies and for overrepresen-
tation of IBD genes, we used the tool poverlap (Pedersen and Brown, 2013) to compare observed 
overlap to random expectations based on 10,000 permutations of significant regions. Regio`ping 
regions using the locateVariants() function from the VariantAnnotation R package (version 1.34.0; 
Obenchain et al., 2014).

Candidate gene curation
From the total set of 11,618 genes situated within significant regions, we identified a set of high-
confidence genes, which met one or more of the following criteria: (1) hub genes or nearest neigh-
bours in the ‘closest gene network’ (Figure 4, Figure 4—figure supplement 1), (2) genes in regions 
overlapping with QTL from previous mouse studies (Figure  5), (3) genes differentially expressed 
between germ-free and conventional mice (Figure 5—figure supplement 1 and Figure 5—figure 
supplement 2; Mills et al., 2020). After filtering, the resulting set of 309 genes were given as input 
into STRING (Szklarczyk et al., 2019) to construct a PPI network (304/309 genes were represented 
in the database; Figure 6—figure supplement 1). Finally, we selected one top candidate gene per 
significant region on the basis of network properties (degree and number of nodes) and/or fitting the 
most of the above-mentioned criteria. In case of a tie, the gene with the highest intestinal expression 
score (source: STRING) is chosen. Nodes without any edges were removed.
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