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Abstract Neural activity in the auditory system synchronizes to sound rhythms, and brain–envi-
ronment synchronization is thought to be fundamental to successful auditory perception. Sound 
rhythms are often operationalized in terms of the sound’s amplitude envelope. We hypothesized 
that – especially for music – the envelope might not best capture the complex spectro-temporal fluc-
tuations that give rise to beat perception and synchronized neural activity. This study investigated (1) 
neural synchronization to different musical features, (2) tempo-dependence of neural synchroniza-
tion, and (3) dependence of synchronization on familiarity, enjoyment, and ease of beat perception. 
In this electroencephalography study, 37 human participants listened to tempo-modulated music 
(1–4 Hz). Independent of whether the analysis approach was based on temporal response func-
tions (TRFs) or reliable components analysis (RCA), the spectral flux of music – as opposed to the 
amplitude envelope – evoked strongest neural synchronization. Moreover, music with slower beat 
rates, high familiarity, and easy-to-perceive beats elicited the strongest neural response. Our results 
demonstrate the importance of spectro-temporal fluctuations in music for driving neural synchroni-
zation, and highlight its sensitivity to musical tempo, familiarity, and beat salience.

Editor's evaluation
This study investigated the neural tracking of music using novel methodology. The core finding was 
stronger neuronal entrainment to "spectral flux" rather than other more commonly tested features 
such as amplitude envelope. The study is methodologically sophisticated and provides novel insight 
on the neuronal mechanisms of music perception.

Introduction
Neural activity synchronizes to different types of rhythmic sounds, such as speech and music (Doelling 
and Poeppel, 2015; Nicolaou et al., 2017; Ding et al., 2017; Kösem et al., 2018) over a wide range 
of rates. In music, neural activity synchronizes with the beat, the most prominent isochronous pulse 
in music to which listeners sway their bodies or tap their feet (Tierney and Kraus, 2015; Nozaradan 
et al., 2012; Large and Snyder, 2009; Doelling and Poeppel, 2015). Listeners show a strong behav-
ioral preference for music with beat rates around 2 Hz (here, we use the term tempo to refer to the 
beat rate). The preference for 2 Hz coincides with the modal tempo of Western pop music (Moelants, 
2002) and the most prominent frequency of natural adult body movements (MacDougall and Moore, 
2005). Indeed, previous research showed that listeners perceive rhythmic sequences at beat rates 
around 1–2 Hz especially accurately when they are able to track the beat by moving their bodies (Zalta 
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et al., 2020). Despite the perceptual and motor evidence, studies looking at tempo-dependence of 
neural synchronization are scarce (Doelling and Poeppel, 2015; Nicolaou et al., 2017) and we are 
not aware of any human EEG study using naturalistic polyphonic musical stimuli that were manipu-
lated in the tempo domain.

In the current study, we aimed to test whether the preference for music with beat rates around 
2 Hz is reflected in the strength of neural synchronization by examining neural synchronization across a 
relatively wide and finely spaced range of musical tempi (1–4 Hz, corresponding to the neural δ band). 
In addition, a number of different musical, behavioral, and perceptual measures have been shown to 
modulate neural synchronization and influence music perception, including complexity, familiarity, 
repetition of the music, musical training of the listener, and attention to the stimulus (Kumagai et al., 
2018; Madsen et al., 2019; Doelling and Poeppel, 2015). Thus, we investigated the effects of enjoy-
ment, familiarity and the ease of beat perception on neural synchronization.

Most studies assessing neural synchronization to music have examined synchronization to either 
the stimulus amplitude envelope, which quantifies intensity fluctuations over time (Doelling and 
Poeppel, 2015; Kaneshiro et al., 2020; Wollman et al., 2020), or ‘higher order’ musical features 
such as surprise and expectation (Di Liberto et al., 2020). This mimics approaches used for studying 
neural synchronization to speech, where neural activity has been shown to synchronize with the ampli-
tude envelope (Peelle and Davis, 2012), which roughly corresponds to syllabic fluctuations (Doelling 
et al., 2014), as well as to ‘higher order’ semantic information (Broderick et al., 2019). Notably, most 
studies that have examined neural synchronization to musical rhythm have used simplified musical 
stimuli, such as MIDI melodies (Kumagai et al., 2018) and monophonic melodies (Di Liberto et al., 
2020), or rhythmic lines comprising clicks or sine tones (Nozaradan et al., 2012; Nozaradan et al., 
2011; Wollman et  al., 2020); only a few studies have focused on naturalistic, polyphonic music 
(Tierney and Kraus, 2015; Madsen et al., 2019; Kaneshiro et al., 2020; Doelling and Poeppel, 
2015). ‘Higher order’ musical features are difficult to compute for naturalistic music, which is typically 
polyphonic and has complex spectro-temporal properties (Zatorre et al., 2002). However, amplitude-
envelope synchronization is well documented: neural activity synchronizes to amplitude fluctuations 

eLife digest When we listen to a melody, the activity of our neurons synchronizes to the music: 
in fact, it is likely that the closer the match, the better we can perceive the piece. However, it remains 
unclear exactly which musical features our brain cells synchronize to. Previous studies, which have 
often used ‘simplified’ music, have highlighted that the amplitude envelope (how the intensity of 
the sounds changes over time) could be involved in this phenomenon, alongside factors such as 
musical training, attention, familiarity with the piece or even enjoyment. Whether differences in neural 
synchronization could explain why musical tastes vary between people is also still a matter of debate.

In their study, Weineck et al. aim to better understand what drives neuronal synchronization to 
music. A technique known as electroencephalography was used to record brain activity in 37 volun-
teers listening to instrumental music whose tempo ranged from 60 to 240 beats per minute. The 
tunes varied across an array of features such as familiarity, enjoyment and how easy the beat was to 
perceive. Two different approaches were then used to calculate neural synchronization, which yielded 
converging results.

The analyses revealed that three types of factors were associated with a strong neural synchroniza-
tion. First, amongst the various cadences, a tempo of 60-120 beats per minute elicited the strongest 
match with neuronal activity. Interestingly, this beat is commonly found in Western pop music, is 
usually preferred by listeners, and often matches spontaneous body rhythms such as walking pace. 
Second, synchronization was linked to variations in pitch and sound quality (known as ‘spectral flux’) 
rather than in the amplitude envelope. And finally, familiarity and perceived beat saliency – but not 
enjoyment or musical expertise – were connected to stronger synchronization.

These findings help to better understand how our brains allow us to perceive and connect with 
music. The work conducted by Weineck et al. should help other researchers to investigate this field; 
in particular, it shows how important it is to consider spectral flux rather than amplitude envelope in 
experiments that use actual music.

https://doi.org/10.7554/eLife.75515
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in music between 1 Hz and 8 Hz, and synchronization is especially strong for listeners with musical 
expertise (Doelling and Poeppel, 2015).

Because of the complex nature of natural polyphonic music, we hypothesized that amplitude 
envelope might not be the only or most dominant feature to which neural activity could synchronize 
(Müller, 2015). Thus, the current study investigated neural responses to different musical features 
that evolve over time and capture different aspects of the stimulus dynamics. Here, we use the term 
musical feature to refer to time-varying aspects of music that fluctuate on time scales corresponding 
roughly to the neural δ band, as opposed to elements of music such as key, harmony or syncopation. 
We examined amplitude envelope, the first derivative of the amplitude envelope (usually more sensi-
tive to sound onsets than the amplitude envelope), beat times, and spectral flux, which describes 
spectral changes of the signal on a frame-to-frame basis by computing the difference between the 
spectral vectors of subsequent frames (Müller, 2015). One potential advantage of spectral flux over 
the envelope or its derivative is that spectral flux is sensitive to rhythmic information that is commu-
nicated by changes in pitch even when they are not accompanied by changes in amplitude. Critically, 
temporal and spectral information jointly influence the perceived accent structure in music, which 
provides information about beat locations (Pfordresher, 2003; Ellis and Jones, 2009; Jones, 1993).

The current study investigated neural synchronization to natural music by using two different anal-
ysis approaches: Reliable Components Analysis (RCA) (Kaneshiro et al., 2020) and temporal response 
functions (TRFs) (Di Liberto et al., 2020). A theoretically important distinction here is whether neural 
synchronization observed using these techniques reflects phase-locked, unidirectional coupling 
between a stimulus rhythm and activity generated by a neural oscillator (Lakatos et al., 2019) versus 
the convolution of a stimulus with the neural activity evoked by that stimulus (Zuk et al., 2021). TRF 
analyses involve modeling neural activity as a linear convolution between a stimulus and relatively 
broad-band neural activity (e.g. 1–15 Hz or 1–30 Hz; Crosse et al., 2016; Crosse et al., 2021); as 
such, there is a natural tendency for papers applying TRFs to interpret neural synchronization through 
the lens of convolution (although there are plenty of exceptions to this e.g. Crosse et  al., 2015; 
Di Liberto et al., 2015). RCA-based analyses usually calculate correlation or coherence between a 
stimulus and relatively narrow-band activity, and in turn interpret neural synchronization as reflecting 
entrainment of a narrow-band neural oscillation to a stimulus rhythm (Doelling and Poeppel, 2015; 
Assaneo et  al., 2019). Ultimately, understanding under what circumstances and using what tech-
niques the neural synchronization we observe arises from either of these physiological mechanisms 
is an important scientific question (Doelling et al., 2019; Doelling and Assaneo, 2021; van Bree 
et al., 2022). However, doing so is not within the scope of the present study, and we prefer to remain 
agnostic to the potential generator of synchronized neural activity. Here, we refer to and discuss 
‘entrainment in the broad sense’ (Obleser and Kayser, 2019) without making assumptions about 
how neural synchronization arises, and we will moreover show that these two classes of analyses tech-
niques strongly agree with each other.

We aimed to answer four questions. (1) Does neural synchronization to natural music depend on 
tempo? (2) Which musical feature shows the strongest neural synchronization during natural music 
listening? (3) How compatible are RCA- and TRF-based methods at quantifying neural synchronization 
to natural music? (4) How do enjoyment, familiarity, and ease of beat perception affect neural synchro-
nization? To answer these research questions, we recorded electroencephalography (EEG) data while 
participants listened to instrumental music presented at different tempi (1–4 Hz). Strongest neural 
synchronization was observed in response to the spectral flux of music, for tempi between 1 and 2 Hz, 
to familiar songs, and to songs with an easy-to-perceive beat.

Results
Scalp EEG activity of 37 human participants was measured while they listened to instrumental segments 
of natural music from different genres (Appendix 1—table 1). Music segments were presented at thir-
teen parametrically varied tempi (1–4 Hz in 0.25 Hz steps; see Materials and methods). We assessed 
neural synchronization to four different musical features: amplitude envelope, first derivative of the 
amplitude envelope, beat times, and spectral flux. Neural synchronization was quantified using two 
different analysis pipelines and compared: (1) RCA combined with time- and frequency-domain anal-
yses (Kaneshiro et al., 2020), and (2) TRFs (Crosse et al., 2016). As different behavioral and percep-
tual measures have been shown to influence neural synchronization to music (Madsen et al., 2019; 

https://doi.org/10.7554/eLife.75515
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Cameron et al., 2019), we investigated the effects of enjoyment, familiarity, and the ease with which a 
beat was perceived (Figure 1A). To be able to use a large variety of musical stimuli on the group level, 
and to decrease any effects that may have arisen from individual stimuli occurring at certain tempi but 
not others, participants were divided into four subgroups that listened to different pools of stimuli (for 
more details please see Materials and methods). The subgroups’ stimulus pools overlapped, but the 
individual song stimuli were presented at different tempi for each subgroup.

Musical features
We examined neural synchronization to the time courses of four different musical features (Figure 1B). 
First, we quantified energy fluctuations over time as the gammatone-filtered amplitude envelope 
(we report analyses on the full-band envelope in Figure 2—figure supplement 1 and Figure 3—
figure supplement 1). Second, we computed the half-wave-rectified first derivative of the ampli-
tude envelope, which is typically considered to be sensitive to the presence of onsets in the stimulus 
(Bello et al., 2005). Third, a percussionist drummed along with the musical segments to define beat 
times, which were here treated in a binary manner. Fourth, a spectral novelty function, referred to as 
spectral flux (Müller, 2015), was computed to capture changes in frequency content (as opposed to 
amplitude fluctuations) over time. In contrast to the first derivative, the spectral flux is better able 
to identify note onsets that are characterized by changes in spectral content (pitch or timbre), even 
if the energy level remains the same. To ensure that each musical feature possessed acoustic cues 
to the stimulation-tempo manipulation, we computed a fast Fourier transform (FFT) on the musical-
feature time courses separately for each stimulation-tempo condition; the mean amplitude spectra 
are plotted in Figure 1C.

Overall, amplitude peaks were observed at the intended stimulation tempo and at the harmonic 
rates for all stimulus features.

In order to assess the degree to which the different musical features might have been redundant, 
we calculated mutual information (MI) for all possible pairwise feature combinations and compared 
MI values to surrogate distributions calculated separately for each feature pair (Figure 1D and E). 
MI quantifies the amount of information gained about one random variable by observing a second 
variable (Cover and Thomas, 2005). MI values were analyzed using separate three-way ANOVAs (MI 
data vs. MI surrogate ×Tempo × Subgroup) for each musical feature.

Spectral flux shared significant information with all other musical features; significant MI (relative to 
surrogate) was found between amplitude envelope and spectral flux (F(1,102)=24.68, pFDR = 1.01e-5, 
η2=0.18), derivative and spectral flux (F(1,102)=82.3, pFDR = 1.92e-13, η2=0.45) and beat times and 
spectral flux (F(1,102)=23.05, pFDR = 1.3e-5, η2=0.13). This demonstrates that spectral flux captures 
information from all three other musical features, and as such, we expected that spectral flux would 
be associated with strongest neural synchronization. Unsurprisingly, there was also significant shared 
information between the amplitude envelope and first derivative (F(1,102)=14.11, pFDR = 4.67e-4, 
η2=0.09); other comparisons: (Fenv-beat(1,102)=8.44, pFDR = 0.006, η2=0.07; Fder-beat(1,102)=6.06, pFDR = 
0.016, η2=0.05).

There was a main effect of Tempo on MI shared between the amplitude envelope and derivative 
(F(12,91)=4, pFDR = 2e-4, η2=0.32) and the spectral flux and beat times (F(12,91)=5.48, pFDR = 4.35e-6, 
η2=0.37) (Figure 1—figure supplement 1). This is likely due to the presence of slightly different 
songs in the different tempo conditions, as the effect of tempo on MI was unsystematic for both 
feature pairs (see Materials and methods and Appendix 1—table 1). MI for the remaining feature 
pairs did not differ significantly across tempi.

No significant differences in MI were observed between subgroups, despite the subgroups 
hearing slightly different pools of musical stimuli: (Fenv-der(3,100)=0.71, pFDR = 0.94, η2=0.01; Fenv-

beat(3,100)=2.63, pFDR = 0.33, η2=0.07; Fenv-spec(3,100)=0.3, pFDR = 0.94, η2=0.01; Fder-beat(3,100)=0.43, 
pFDR = 0.94, η2=0.01; Fder-spec(3,100)=0.46, pFDR = 0.94, η2=0.01; Fbeat-spec(3,100)=0.13, pFDR = 0.94, 
η2=0.002).

Neural synchronization was strongest in response to slow music
Neural synchronization to music was investigated using two converging analysis pipelines based on 
(1) RCA followed by time- (stimulus-response correlation, SRCorr) and frequency- (stimulus-response 
coherence, SRCoh) domain analysis and (2) TRFs.

https://doi.org/10.7554/eLife.75515
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Figure 1. Experimental design and musical features. (A) Schematic of the experimental procedure. Each trial consisted of the presentation of one 
music segment, during which participants were instructed to listen attentively without moving. After a 1 s silence, the last 5.5 s of the music segment 
was repeated while participants tapped their finger along with the beat. At the end of each trial, participants rated their enjoyment and familiarity 
of the music segment, as well as the ease with which they were able to tap to the beat (Translated English example in Figure: “How much did you 
like the song?” rated from “not at all” to “very much”). (B) Exemplary traces of the four musical features of one music segment. (C) Z-scored mean 
amplitude spectrum of all 4 musical features. Light orange dashed boxes highlight when the FFT Frequency corresponds to the stimulation tempo 
or first harmonic. (D) Mutual information (MI) for all possible feature combinations (green) compared to a surrogate distribution (yellow, three-way 
ANOVA, *pFDR <0.001, rest: pFDR <0.05). Boxplots indicate the median, the 25th and 75th percentiles (n=52). (E) MI scores between all possible feature 
combinations (*pFDR <0.001, rest: pFDR <0.05).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for visualizing and analyzing the musical features.

Figure supplement 1. Shared Mutual Information (MI) between musical features across tempo conditions.

Figure supplement 2. Tempo manipulations of original music segments.

https://doi.org/10.7554/eLife.75515
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First, an RCA-based analysis approach was used to assess tempo effects on neural synchronization 
to music (Figure 2, Figure 2—figure supplement 1). RCA involves estimating a spatial filter that 
maximizes correlation across data sets from multiple participants (for more details see Materials and 
methods) (Kaneshiro et al., 2020; Parra et al., 2018). The resulting time course data from a single 
reliable component can then be assessed in terms of its correlation in the time domain (SRCorr) or 
coherence in the frequency domain (SRCoh) with different musical feature time courses. Our analyses 
focused on the first reliable component, which exhibited an auditory topography (Figure  2A). To 
control for inherent tempo-dependent effects that could influence our results (such as higher power 
or variance at lower frequencies, that is 1/f), SRCorr and SRCoh values were normalized by a surro-
gate distribution. This way the temporal alignment between the stimulus and neural time course was 
destroyed, but the spectrotemporal composition of each signal was preserved. The surrogate distri-
bution was obtained by randomly circularly shifting the neural time course in relation to the musical 
features per tempo condition and stimulation subgroup for 50 iterations (Zuk et al., 2021). Subse-
quently, the ‘raw’ SRCorr or SRCoh values were z-scored by subtracting the mean and dividing by the 
standard deviation of the surrogate distribution.

The resulting z-scored SRCorrs were significantly tempo-dependent for the amplitude envelope 
and the spectral flux (repeated-measure ANOVAs with Greenhouse-Geiser correction where required: 
Fenv(12,429)=2.5, pGG = 0.015, η2=0.07; Fder(12,429)=1.67, p=0.07, η2=0.05; Fbeat(12,429)=0.94, 
p=0.5, η2=0.03; Fspec(12,429)=2.92, pGG = 6.88e-4, η2=0.08). Highest correlations were found at 
slower tempi (~1–2 Hz).

No significant differences were observed across subgroups (Fenv(3,30)=1.13, pFDR=0.55, η2=0.1; 
Fder(3,30)=0.72, pFDR = 0.55, η2=0.07; Fbeat(3,30)=0.85, pFDR = 0.55, η2=0.08; Fspec(3,30)=0.9, pFDR = 
0.55, η2=0.08). The results for the z-scored SRCorr were qualitatively similar to the ‘raw’ SRCorr with 
biggest differences for the beat feature.

In the frequency domain, z-scored SRCoh (Figure 2D–G) showed clear peaks at the stimulation 
tempo and harmonics. Overall, SRCoh was stronger at the first harmonic of the stimulation tempo 
than at the stimulation tempo itself, regardless of the musical feature (Figure  2I, paired-sample 
t-test, envelope: t(12)=-5.16, pFDR = 0.001, re = 0.73; derivative: t(12)=-5.11, pFDR = 0.001, re = 0.72; 
beat: t(12)=-4.13, pFDR = 0.004, re = 0.64; spectral flux: t(12)=-3.3, pFDR = 0.01, re = 0.56). The stimuli 
themselves mostly also contained highest FFT amplitudes at the first harmonic (Figure 2J, envelope: 
t(12)=-6.81, pFDR = 5.23e-5, re=0.81; derivative: t(12)=-6.88, pFDR = 5.23e-5, re = 0.81; spectral flux: 
t(12)=-8.04, pFDR = 2.98e-5, re = 0.85), apart from the beat onsets (beat: t(12)=6.27, pFDR = 8.56–5. re 
= 0.79).

For evaluating tempo-dependent effects, we averaged z-scored SRCoh across the stimulation 
tempo and first harmonic and submitted the average z-SRCoh values to repeated-measure ANOVAs 
for each musical feature. Z-SRCoh was highest for slow music, but this tempo dependence was only 
significant for the spectral flux and beat onsets (Fenv(12,429)=1.31, p=0.21, η2=0.04; Fder(12,429)=1.71, 
p=0.06, η2=0.05; Fbeat(12,429)=2.07, pGG = 0.04, η2=0.06; Fspec(12,429)=2.82, pGG = 0.006, η2=0.08). 
No significant differences for the SRCoh were observed across subgroups (Fenv(3,30)=0.93, pFDR=0.58, 
η2=0.09; Fder(3,30)=3.07, pFDR = 0.17, η2=0.24; Fbeat(3,30)=2.26, pFDR = 0.2, η2=0.18; Fspec(3,30)=0.29, 
pFDR = 0.83, η2=0.03). Individual data examples of the SRCorr and SRCoh can be found in Figure 2—
figure supplement 2.

Second, TRFs were calculated for each stimulation tempo. A TRF-based approach is a linear-system 
identification technique that serves as a filter describing the mapping of stimulus features onto the 
neural response (forward model) (Crosse et al., 2016). Using linear convolution and ridge regression 
to avoid overfitting, the TRF was computed based on mapping each musical feature to ‘training’ EEG 
data. Using a leave-one-trial-out approach, the EEG response for the left-out trial was predicted based 
on the TRF and the stimulus feature of the same trial. The predicted EEG data were then correlated 
with the actual, unseen EEG data (we refer to this correlation value throughout as TRF correlation). We 
analyzed the two outputs of the TRF analysis: the filter at different time lags, which typically resembles 
evoked potentials, and the TRF correlations (Figure 3, Figure 3—figure supplement 1).

Again, strongest neural synchronization (here quantified as Pearson correlation coefficient between 
the predicted and actual EEG data) was observed for slower music (Figure 3A). After z-scoring the 
TRF correlations with respect to the surrogate distributions, as described for the SRcorr and SRcoh 
measures, repeated-measures ANOVAs showed that significant effects of Tempo were observed for all 

https://doi.org/10.7554/eLife.75515
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Figure 2. Stimulus–response correlation and stimulus–response coherence are tempo dependent for all musical features. (A) Projected topography of 
the first reliable component (RC1). (B) Average SRCorr of the aligned neural response and surrogate distribution (grey) across tempi for each musical 
feature (left) and the z-scored SRCorr based on a surrogate distribution (right) (± SEM; shaded area). Highest correlations were found at slow tempi 
(repeated-measure ANOVA, Greenhouse-Geiser correction where applicable). The slopes of regression models were used to compare the tempo-
specificity between musical features. (C) Mean SRCorr across musical features. Highest correlations were found in response to spectral flux with 
significant differences between all possible feature combinations, pFDR <0.001, except between the envelope or derivative and beat onsets, pFDR <0.01 
(n=34, repeated-measure ANOVA, Tukey’s test, median, 25th and 75th percentiles). Z-scored SRCoh in response to the (D) amplitude envelope, (E) first 
derivative, (F) beat onsets and (G) spectral flux. Each panel depicts the SRCoh as colorplot (left) and the pooled SRCoh values at the stimulation tempo 
and first harmonic (right, n=34, median, 25th and 75th percentile). (H) Same as (C) for the SRCoh with significant differences between all possible feature 
combinations (pFDR <0.001) apart between the envelope and beat onsets. Coherence values were averaged over the stimulus tempo and first harmonic. 
(I) Mean differences of SRCoh values at the stimulation tempo and first harmonic (n=34, negative values: higher SRCoh at harmonic, positive values: 
higher SRCoh at stimulation tempo, paired-sample t-test, pFDR <0.05). (J) Same as (I) based on the FFT amplitudes (pFDR <0.001).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure 2 continued on next page

https://doi.org/10.7554/eLife.75515


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Weineck et al. eLife 2022;11:e75515. DOI: https://doi.org/10.7554/eLife.75515 � 8 of 28

Source data 1. Source data for the RCA-based measures stimulus-response correlation (SRCorr) and stimulus-response coherence (SRCoh).

Source data 2. Output of the RCA-based analysis of the first two stimulation subgroups (based on Kaneshiro et al., 2020).

Source data 3. Output of the RCA-based analysis of the last two stimulation subgroups (based on Kaneshiro et al., 2020).

Figure supplement 1. SRCorr and SRCoh in response to the full-band amplitude envelope and derivative.

Figure supplement 2. Individual data examples for the SRCorr and SRCoh.

Figure 2 continued

Figure 3. TRFs are tempo dependent. (A) Mean TRF (± SEM) correlations as a function of stimulation tempo per stimulus feature (p-values next to the 
legend correspond to a repeated-measure ANOVA across tempi for every musical feature and the p-value below to the slope comparison of a linear 
regression model). TRF correlations were highest for spectral flux and combined musical features for slow tempi. The TRF correlations were z-scored 
based on a surrogate distribution (right panel). (B) Violin plots of the TRF correlations across musical features. Boxplots illustrate the median, 25th and 
75th percentiles (n=34). Significant pairwise musical feature comparisons were calculated using a repeated-measure ANOVA with follow-up Tukey’s 
test, *pFDR <0.001. (C) Top panel: Topographies of the TRF correlations and TRF time lags (0–400ms) in response to the amplitude envelope. Each line 
depicts one stimulation tempo (13 tempi between 1 Hz, blue and 4 Hz, green). Lower panel: Colormap of the normalized TRF weights of the envelope in 
the same time window across stimulation tempi. (D) Same as (C) for the first derivative, (E) beat onsets and (F) spectral flux. Cluster-based permutation 
testing was used to identify significant tempo-specific time windows (red dashed box, p<0.05). Inset: Mean TRF weights in response to the spectral flux 
for time lags between 102 and 211ms (n=34, median, 25th and 75th percentile).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data of the TRF correlations and weights.

Figure supplement 1. TRFs in response to the full-band amplitude envelope and first derivative show similar patterns as the gammatone filtered 
musical features.

Figure supplement 2. Corrected TRF weights of the spectral flux after removing the effects of the other musical features.

Figure supplement 3. No differences in TRFs correlations between more vs. less modulated music.

https://doi.org/10.7554/eLife.75515
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musical features with z-TRF correlations being strongest at slower tempi (~1–2 Hz) (Fenv(12,429)=2.47, 
p=0.004, η2=0.07; Fder(12,429)=1.84, pGG = 0.04, η2=0.05; Fbeat(12,429)=3.81, pGG = 3.18e-4, 
η2=0.11; Fspec(12,429)=12.87, pGG = 3.87e-13, η2=0.29).

The original tempi of the music segments prior to being tempo manipulated fell mostly into the 
range spanning 1.25–2.5 Hz (Figure 1—figure supplement 2A). Thus, music that was presented at 
stimulation tempi in this range were shifted to a smaller degree than music presented at tempi outside 
of this range, and music presented at slow tempi tended to be shifted to a smaller degree than music 
presented at fast tempi (Figure 1—figure supplement 2B,C). Thus, we conducted a control analysis 
to show that there was no significant effect on z-TRF correlations of how much music stimuli were 
tempo shifted (2.25 Hz: F(2,96)=0.45, P=0.43; 1.5 Hz: F(2,24)=0.49, p=0.49; Figure 3—figure supple-
ment 3; for more details see Materials and methods).

Spectral flux drives strongest neural synchronization
As natural music is a complex, multi-layered auditory stimulus, we sought to explore neural synchro-
nization to different musical features and to identify the stimulus feature or features that would drive 
strongest neural synchronization. Regardless of the dependent measure (RCA-SRCorr, RCA-SRCoh, 
TRF correlation), strongest neural synchronization was found in response to spectral flux (Figures 2C, 
H and 3B). In particular, significant differences (as quantified with a repeated-measure ANOVA 
followed by Tukey’s test) were observed between the spectral flux and all other musical features based 
on z-scored SRCorr (FSRCorr(3,132)=39.27, pGG = 1.2e-16, η2=0.55), z-SRCoh (FSRCoh(3,132)=26.27, pGG = 
1.72e-12, η2=0.45) and z-TRF correlations (FTRF(4,165)=30.09, pGG = 1.21e-13, η2=0.48).

As the TRF approach offers the possibility of running a multivariate analysis, all musical features 
were combined and the resulting z-scored TRF correlations were compared to the single-feature TRF 
correlations (Figure 3B). Although there was a significant increase in z-TRF correlations in comparison 
to the amplitude envelope (repeated-measure ANOVA with follow-up Tukey’s test, pFDR = 1.66e-08), 
first derivative (pFDR = 1.66e-8), and beat onsets (pFDR = 1.66e-8), the spectral flux alone showed an 
advantage over the multi-featured TRF (pFDR = 6.74e-8). Next, we ran a multivariate TRF analysis 
combining amplitude envelope, first derivative, and beat onsets, and then subtracted the predicted 
EEG data from the actual EEG data (Figure 3—figure supplement 2). We calculated a TRF forward 
model using spectral flux to predict the EEG data residualized with respect to the multivariate predictor 
combining the remaining musical features. The resulting TRF weights were qualitatively similar to the 
model with spectral flux as the only predictor of the neural response. Thus, taking all stimulus features 
together is not a better descriptor of the neural response than the spectral flux alone, indicating 
together with the MI results from Figure 1 that spectral flux is a more complete representation of the 
rhythmic structure of the music than the other musical features.

To test how strongly modulated TRF correlations were by tempo for each musical feature, a linear 
regression was fitted to single-participant z-TRF correlations as a function of tempo, and the slopes 
were compared across musical features (Figure 3A). Linear slopes were significantly higher for spec-
tral flux and the multivariate model compared to the remaining three musical features (repeated-
measure ANOVA with follow-up Tukey’s test, envelope-spectral flux: pFDR = 2.8e-6; envelope – all: pFDR 
= 2.88e-4; derivative-spectral flux: pFDR = 7.47e-8; derivative – all: pFDR = 2.8e-6; beat-spectral flux: pFDR 
= 2.47e-8; beat – all: pFDR = 2.09e-5; spectral flux – all: pFDR = 0.01). The results for z-SRCorr were qual-
itatively similar except for the comparison between the envelope and spectral flux (envelope-spectral 
flux: pFDR = 0.12; derivative-spectral flux: pFDR = 0.04; beat-spectral flux: pFDR = 6e-4; Figure 2B).

Finally, we also examined the time courses of TRF weights (Figure 3C–F) for time lags between 
0 and 400ms, and how they depended on tempo. Cluster-based permutation testing (1,000 repeti-
tions) was used to identify time windows in which TRF weights differed across tempi for each musical 
feature (see Materials and methods for more details). Significant effects of tempo on TRF weights 
were observed for spectral flux between 102–211ms (p=0.01; Figure 3F). The tempo specificity was 
observable in the amplitudes of the TRF weights, which were largest for slower music (Figure 3F). 
The TRFs for the amplitude envelope and first derivative demonstrated similar patterns to each other, 
with strong deflections in time windows consistent with a canonical auditory P1–N1–P2 complex, but 
did not differ significantly between stimulation tempi (Figure 3C–D). Similarly, the full-band (Hilbert) 
amplitude envelope and the corresponding first derivative (Figure 3—figure supplement 1) displayed 
tempo-specific effects at time lags of 250–400ms (envelope, p=0.01) and 281–400ms (derivative, 

https://doi.org/10.7554/eLife.75515
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p=0.02). Visual inspection suggested that TRF differences for these musical features were related to 
latency, as opposed to amplitude (Figure 3—figure supplement 1E-F,I-J). Therefore, we identified 
the latencies of the TRF-weight time courses within the time window of P3 and fitted a piece-wise 
linear regression to those mean latency values per musical feature (Figure 3—figure supplement 1G, 
K). In particular, TRF latency in the P3 time window decreased over the stimulation tempo conditions 
from 1 to 2.5 Hz and from 2.75 to 4 Hz for both stimulus features (derivative: T1-2.5Hz=-1.08, p=0.33, 
R2=0.03; T2.75-4Hz=-2.2, p=0.09, R2=0.43), but this was only significant for the envelope (T1-2.5Hz=-6.1, 
p=0.002, R2=0.86; T2.75-4Hz=-5.66, p=0.005, R2=0.86).

Results of TRF and SRCorr/SRCoh converge
So far, we demonstrated that both RCA- and TRF-based measures of neural synchronization led to 
similar results at the group level, and reveal strongest neural synchronization to spectral flux and at 
slow tempi. Next, we wanted to quantify the relationship between the SRCorr/SRCoh and TRF correla-
tions across individuals (Figure 4, Figure 4—figure supplement 1). This could have implications for 
the interpretation of studies focusing only on one method. To test this relationship, we predicted 
TRF correlations from SRCorr or SRCoh values (fixed effect) in separate linear mixed-effects models 
with Participant and Tempo as random effects (grouping variables). For all further analyses, we used 
the ‘raw’ (non-z-scored) values for all dependent measures, as they yielded in the previous analysis 
(Figures 2 and 3) qualitatively similar results to the z-scored values. Each musical feature was modeled 
independently.

For all four musical features, SRCorr significantly predicted TRF correlations (tenv(440) = 9.77, 
βenv=0.53, pFDR <1e-15, R2=0.51; tder(440) = 8.09, βder=0.46, pFDR = 5.77e-14, R2=0.28; tbeat(440) = 12.12, 
βbeat=0.67, pFDR <1e-15, R2=0.61; tspec(440) = 12.49, βspec=0.56, pFDR = 1e-15, R2=0.76). The strongest 
correlations between neural synchronization measures were found for the beat onsets and spectral 
flux of music (Figure 4C and D).

Figure 4. Significant relationships between SRCorr and TRF correlations for all musical features. (A) Linear-mixed effects models of the SRCorr (predictor 
variable) and TRF correlations (response variable) in response to the amplitude envelope. Each dot represents the mean correlation of one participant 
(n=34) at one stimulation tempo (n=13) (=grouping variables; blue, 1 Hz-green, 4 Hz). Violin plots illustrate fixed effects coefficients (β). (B)-(D) same as 
(A) for the first derivative, beat onsets and spectral flux. For all musical features, the fixed effects were significant.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for comparing the results of the TRF and RCA-based measures.

Figure supplement 1. Significant relationships between SRCoh and TRF correlations for all musical features at the stimulation tempo and first 
harmonic.

https://doi.org/10.7554/eLife.75515
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In the frequency domain, we examined the SRCoh values at the stimulation tempo and first 
harmonic separately (Figure 4—figure supplement 1). SRCoh values at both the intended stimulation 
tempo and the first harmonic significantly predicted TRF correlations for all musical features. For all 
musical features, the first harmonic was a better predictor of TRF correlations than the intended stim-
ulation tempo except for the beat onsets (intended tempo: tenv(440) = 4.78, βenv=0.17, pFDR = 3.15e-6, 
R2=0.34; tder(440) = 3.06, βder=0.1, pFDR = 0.002, R2=0.13; tbeat(440) = 8.12, βbeat=0.28, pFDR = 1.95e-14, 
R2=0.5; tspec(440) = 3.42, βspec=0.09, pFDR = 7.9e-4, R2=0.64; first harmonic: tenv(440) = 6.17, βenv=0.09, 
pFDR = 3.07e-9, R2=0.33; tder(440) = 4.98, βder=0.09, pFDR = 1.43e-6, R2=0.16; tbeat(440) = 8.79, βbeat=0.2, 
pFDR <1e-15, R2=0.51; tspec(440) = 6.87, βspec=0.09, pFDR = 5.82e-11, R2=0.64). Overall, these results 
suggest that, despite their analytical differences as well as common differences in interpretation, TRF 
and RCA–SRCorr/RCA-SRCoh seem to pick up on similar features of the neural response, but may 
potentially strengthen each other’s explanatory power when used together.

Familiar songs and songs with an easy-to-tap beat drive strongest 
neural synchronization
Next, we tested whether neural synchronization to music depended on (1) how much the song was 
enjoyed, (2) the familiarity of the song, and (3) how easy it was to tap the beat of the song; each of 
these characteristics was rated on a scale ranging between –100 and +100. We hypothesized that 

Figure 5. TRF correlations are highest in response to familiar songs. (A) Normalized (to the maximum value per rating/participant), averaged behavioral 
ratings of enjoyment, familiarity and easiness to tap to the beat (± SEM). No significant differences across tempo conditions were observed (repeated-
measure ANOVA with Greenhouse-Geiser correction). (B) Mean TRF correlations topography across all ratings (based on the analysis of 15 trials with 
highest and lowest ratings per behavioral measure). (C) Violin plots of TRF correlations comparing low vs. highly enjoyed, low vs. highly familiar, and 
subjectively difficult vs. easy beat trials. Strongest TRF correlations were found in response to familiar music and music with an easy-to-perceive beat 
(n=34, paired-sample t-test, *pFDR <0.05). Boxplots indicate median, 25th and 75th percentile. (D) Mean TRFs (± SEM) for time lags between 0–400ms of 
more and less enjoyable music songs. (E)-(F) Same as (D) for trials with low vs. high familiarity and difficult vs. easy beat ratings.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data of the behavioral ratings and TRF correlations.

Figure supplement 1. Significant differences of FFT amplitudes at stimulus-relevant frequencies between differently rated trials.

Figure supplement 2. Musical training did not have an effect on TRF correlations regardless of the musical feature.

Figure supplement 3. Music tapping rate across participants.

https://doi.org/10.7554/eLife.75515
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difficulty to perceive and tap to the beat in particular would be associated with weaker neural synchro-
nization. Ratings on all three dimensions are shown in Figure 5A. To evaluate the effects of tempo 
on the individuals’ ratings, separate repeated-measure ANOVAs were conducted for each behav-
ioral rating. All behavioral ratings were unaffected by tempo (enjoyment: F(12,429)=0.58, p=0.85, 
η2=0.02; familiarity: F(12,429)=1.44, pGG = 0.18, η2=0.04; ease of beat tapping: F(12,429)=1.62, 
P=0.08, η2=0.05).

To assess the effects of familiarity, enjoyment, and beat-tapping ease on neural synchronization, 
TRFs in response to spectral flux were calculated for the 15 trials with the highest and the 15 trials 
with the lowest ratings per participant per behavioral rating (Figure 5B–F). TRF correlations were 
not significantly different for less enjoyed compared to more enjoyed music (paired-sample t-test, 
t(33)=1.91, pFDR = 0.06, re = 0.36; Figure 5C). In contrast, significantly higher TRF correlations were 
observed for familiar vs. unfamiliar songs (t(33)=-2.57, pFDR = 0.03, re = 0.46), and for songs with an 
easier-to-perceive beat (t(33)=-2.43, pFDR = 0.03, re = 0.44). These results were reflected in the TRFs 
at time lags between 0 and 400ms (Figure 5D–F). We wanted to test whether these TRF differences 
may have been attributable to acoustic features, such as the beat salience of the musical stimuli, which 
could have an effect on both behavioral ratings and TRFs. Thus, we computed single-trial FFTs on 
the spectral flux of the 15 highest vs. lowest rated trials (Figure 5—figure supplement 1). Pairwise 
comparisons revealed higher stimulus-related FFT peaks for more enjoyed music (t-test, t(33)=-2.79, 
pFDR = 0.01, re = 0.49), less familiar music (t(33)=2.73, pFDR = 0.01, re = 0.49) and easier-to-perceive 
beats (t(33)=-3.33, pFDR = 0.01, re = 0.56).

Next, we wanted to entertain the possibility that musical expertise could modulate neural synchro-
nization to music (Doelling and Poeppel, 2015). We used the Goldsmith’s Musical Sophistication Index 
(Gold-MSI) to quantify musical ‘sophistication’ (referring not only to the years of musical training, but 
also e. g. musical engagement or self-reported perceptual abilities Müllensiefen et al., 2014), which 
we then correlated with neural synchronization. No significant correlations were observed between 
musical sophistication and TRF correlations (Pearson correlation, envelope: R=−0.21, pFDR = 0.32; 
derivative: R=−0.24, pFDR = 0.31; beats: R=−0.04, pFDR = 0.81; spectral flux: R=−0.34, pFDR = 0.2; 
Figure 5—figure supplement 2).

Discussion
We investigated neural synchronization to naturalistic, polyphonic music presented at different tempi. 
The music stimuli varied along a number of dimensions in idiosyncratic ways, including the familiarity 
and enjoyment of the music, and the ease with which the beat was perceived. The current study 
demonstrates that neural synchronization is strongest to (1) music with beat rates between 1 and 2 Hz, 
(2) spectral flux of music, and (3) familiar music and music with an easy-to-perceive beat. In addition, 
(4) analysis approaches based on TRF and RCA revealed converging results.

Neural synchronization was strongest to music with beat rates in the 
1–2 Hz range
Strongest neural synchronization was found in response to stimulation tempi between 1 and 2 Hz in 
terms of SRCorr (Figure 2B), TRF correlations (Figure 3A), and TRF weights (Figure 3C–F). Moreover, 
we observed a behavioral preference to tap to the beat in this frequency range, as the group prefer-
ence for music tapping was at 1.55 Hz (Figure 5—figure supplement 3). Previous studies have shown 
a preference to listen to music with beat rates around 2 Hz (Bauer et al., 2015), which is moreover 
the modal beat rate in Western pop music (Moelants, 2002) and the rate at which the modulation 
spectrum of natural music peaks (Ding et al., 2017). Even in nonmusical contexts, spontaneous adult 
human locomotion is characterized by strong energy around 2 Hz (MacDougall and Moore, 2005). 
Moreover, when asked to rhythmically move their bodies at a comfortable rate, adults will sponta-
neously move at rates around 2 Hz (McAuley et al., 2006) regardless whether they use their hands or 
feet (Rose et al., 2020). Thus, there is a tight link between preferred rates of human body movement 
and preferred rates for the music we make and listen to that was moreover reflected in our neural 
data. This is perhaps not surprising, as musical rhythm perception activates motor areas of the brain, 
such as the basal ganglia and supplementary motor area (Grahn and Brett, 2007), and is further asso-
ciated with increased auditory–motor functional connectivity (Chen et al., 2008). In turn, involving the 
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motor system in rhythm perception tasks improves temporal acuity (Morillon et al., 2014), but only 
for beat rates in the 1–2 Hz range (Zalta et al., 2020).

The tempo range within which we observed strongest synchronization partially coincides with the 
original tempo range of the music stimuli (Figure 1—figure supplement 2). A control analysis revealed 
that the amount of tempo manipulation (difference between original music tempo and tempo at 
which the music segment was presented to the participant) did not affect TRF correlations. Thus, we 
interpret our data as reflecting a neural preference for specific musical tempi rather than an effect 
of naturalness or the amount that we had to tempo shift the stimuli. However, since our experiment 
was not designed to answer this question, we were only able to conduct this analysis for two tempi, 
2.25 Hz and 1.5 Hz (Figure 3—figure supplement 3), and thus are not able to rule out the influence 
of the magnitude of tempo manipulation on other tempo conditions.

In the frequency domain, SRCoh was strongest at the stimulation tempo and its harmonics 
(Figure 2D–G,I). In fact, highest coherence was observed at the first harmonic and not at the stimula-
tion tempo itself (Figure 2I). This replicates previous work that also showed higher coherence (Kane-
shiro et al., 2020) and spectral amplitude (Tierney and Kraus, 2015) at the first harmonic than at the 
musical beat rate. There are several potential reasons for this finding. One reason could be that the 
stimulation tempo that we defined for each musical stimulus was based on beat rate, but natural music 
can be subdivided into smaller units (e.g. notes) that can occur at faster time scales. A recent MEG 
study demonstrated inter-trial phase coherence for note rates up to 8 Hz (Doelling and Poeppel, 
2015). Hence, the neural responses to the music stimuli in the current experiment were likely synchro-
nized to not only the beat rate, but also faster elements such as notes. In line with this hypothesis, FFTs 
conducted on the stimulus features themselves showed higher amplitudes at the first harmonic than 
the stimulation tempo for all musical features except the beat onsets (Figure 2J). Moreover, there are 
other explanations for higher coherence at the first harmonic than at the beat rate. For example, the 
low-frequency beat-rate neural responses fall into a steeper part of the 1 /f slope, and as such may 
simply suffer from worse signal-to-noise ratio than their harmonics.

Regardless of the reason, since frequency-domain analyses separate the neural response into 
individual frequency-specific peaks, it is easy to interpret neural synchronization (SRCoh) or stimulus 
spectral amplitude at the beat rate and the note rate – or at the beat rate and its harmonics – as inde-
pendent (Keitel et al., 2021). However, music is characterized by a nested, hierarchical rhythmic struc-
ture, and it is unlikely that neural synchronization at different metrical levels goes on independently 
and in parallel. One potential advantage of TRF-based analyses is that they operate on relatively 
wide-band data compared to Fourier-based approaches, and as such are more likely to preserve 
nested neural activity and perhaps less likely to lead to over- or misinterpretation of frequency-specific 
effects.

Neural synchronization is driven by spectral flux
Neural synchronization was strongest in response to the spectral flux of music, regardless whether 
the analysis was based on TRFs or RCA. Similar to studies using speech stimuli, music studies typically 
use the amplitude envelope of the sound to characterize the stimulus rhythm (Vanden Bosch der 
Nederlanden et al., 2020; Kumagai et al., 2018; Doelling and Poeppel, 2015; Decruy et al., 2019; 
Reetzke et  al., 2021). Although speech and music share features such as amplitude fluctuations 
over time and hierarchical grouping (Patel, 2003), there are differences in their spectro-temporal 
composition that make spectral information especially important for music perception. For example, 
while successful speech recognition requires 4–8 spectral channels, successful recognition of musical 
melodies requires at least 16 spectral channels (Shannon, 2005) – the flipside of this is that music is 
more difficult than speech to understand based only on amplitude-envelope information. Moreover, 
increasing spectral complexity of a music stimulus enhances neural synchronization (Wollman et al., 
2020). Previous work on joint accent structure indicates that spectral information is an important 
contributor to beat perception (Ellis and Jones, 2009; Pfordresher, 2003). Thus, it was our hypoth-
esis in designing the current study that a feature that incorporates spectral changes over time, as 
opposed to amplitude differences only, would better capture how neural activity entrains to musical 
rhythm.

Using TRF analysis, we found that not only was neural synchronization to spectral flux stronger than 
to any other musical feature, it was also stronger than the response to a multivariate predictor that 
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combined all musical features. For this reason, we calculated the shared information (MI) between 
each pair of musical features, and found that spectral flux shared significant information with all 
other musical features (Figure 1). Hence, spectral flux seems to capture information contained in, for 
example, the amplitude envelope, but also to contain unique information about rhythmic structure 
that cannot be gleaned from the other acoustic features (Figure 3).

One hurdle to performing any analysis of the coupling between neural activity and a stimulus time 
course is knowing ahead of time the feature or set of features that will well characterize the stimulus 
on a particular time scale given the nature of the research question. Indeed, there is no necessity that 
the feature that best drives neural synchronization will be the most obvious or prominent stimulus 
feature. Here, we treated feature comparison as an empirical question (Di Liberto et al., 2015), and 
found that spectral flux is a better predictor of neural activity than the amplitude envelope of music. 
Beyond this comparison though, the issue of feature selection also has important implications for 
comparisons of neural synchronization across, for example, different modalities.

For example, a recent study found that neuronal activity synchronizes less strongly to music than 
to speech Zuk et al., 2021; notably this paper focused on the amplitude envelope to characterize the 
rhythms of both stimulus types. However, our results show that neural synchronization is especially 
strong to the spectral content of music, and that spectral flux may be a better measure for capturing 
musical dynamics than the amplitude envelope (Müller, 2015). Imagine listening to a melody played 
in a glissando fashion on a violin. There might never be a clear onset that would be represented by 
the amplitude envelope – all of the rhythmic structure is communicated by spectral changes. Indeed, 
many automated tools for extracting the beat in music used in the musical information retrieval (MIR) 
literature rely on spectral flux information (Olivera et al., 2010). Also in the context of body move-
ment, spectral flux has been associated with the type and temporal acuity of synchronization between 
the body and music at the beat rate (Burger et al., 2018) to a greater extent than other acoustic 
characterizations of musical rhythmic structure. As such, we found that spectral flux synchronized brain 
activity better than the amplitude envelope.

Neural synchronization was strongest to familiar songs and songs with 
an easy beat
We found that the strength of neural synchronization depended on the familiarity of music and the 
ease with which a beat could be perceived (Figure 5). This is in line with previous studies showing 
stronger neural synchronization to familiar music (Madsen et al., 2019) and familiar sung utterances 
(Vanden Bosch der Nederlanden et al., 2022). Moreover, stronger synchronization for musicians than 
for nonmusicians has been interpreted as reflecting musicians’ stronger expectations about musical 
structure. On the surface, these findings might appear to contradict work showing stronger responses 
to music that violated expectations in some way (Kaneshiro et al., 2020; Di Liberto et al., 2020). 
However, we believe these findings are compatible: familiar music would give rise to stronger expec-
tations and stronger neural synchronization, and stronger expectations would give rise to stronger 
‘prediction error’ when violated. In the current study, the musical stimuli never contained violations of 
any expectations, and so we observed stronger neural synchronization to familiar compared to unfa-
miliar music. There was also higher neural synchronization to music with subjectively ‘easy-to-tap-to’ 
beats. Overall, we interpret our results as indicating that stronger neural synchronization is evoked in 
response to music that is more predictable: familiar music and with easy-to-track beat structure.

Musical training did not affect the degree of neural synchronization in response to tempo-modulated 
music (Figure 5—figure supplement 2). This contrasts with previous music research showing that 
musicians’ neural activity was entrained more strongly by music than non-musicians’ (Madsen et al., 
2019; Doelling and Poeppel, 2015; Di Liberto et al., 2020). There are several possible reasons for 
this discrepancy. One is that most studies that have observed differences between musicians and 
nonmusicians focused on classical music (Doelling and Poeppel, 2015; Madsen et  al., 2019; Di 
Liberto et  al., 2020), whereas we incorporated music stimuli with different instruments and from 
different genres (e.g. Rock, Pop, Techno, Western, Hip Hop, or Jazz). We suspect that musicians 
are more likely to be familiar with, in particular, classical music, and as we have shown that famil-
iarity with the individual piece increases neural synchronization, these studies may have inadvertently 
confounded musical training with familiarity. Another potential reason for the lack of effects of musical 
training on neural synchronization in the current study could originate from the choice of utilizing 

https://doi.org/10.7554/eLife.75515


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Weineck et al. eLife 2022;11:e75515. DOI: https://doi.org/10.7554/eLife.75515 � 15 of 28

acoustic audio descriptors as opposed to ‘higher order’ musical features. However, ‘higher order’ 
features such as surprise or entropy that have been shown to be influenced by musical expertise (Di 
Liberto et al., 2020) are difficult to compute for natural, polyphonic music.

TRF- and RCA-based measures show converging results
RCA and TRF approaches share their ability to characterize neural responses to single-trial, ongoing, 
naturalistic stimuli. As such, both techniques afford something that is challenging or impossible to 
accomplish with ‘classic’ ERP analysis. However, we made use of two techniques in parallel in order 
to leverage their unique advantages. RCA allows for frequency-domain analysis such as SRCoh, which 
can be useful for identifying neural synchronization specifically at the beat rate, for example. The 
frequency-specificity could serve as an advantage of the SRCoh over the TRF measures, where an EEG 
broadband signal was used. However, the RCA-based approaches Kaneshiro et al., 2020 have been 
criticized because of their potential susceptibility to autocorrelation, which is argued to be minimized 
in the TRF approach (Zuk et al., 2021), which uses ridge regression to dampen fast oscillatory compo-
nents (Crosse et al., 2021). However, by minimizing the effects of auto-correlation one concern could 
be that this could remove neural oscillations of interest as well. TRFs also offer a univariate and multi-
variate analysis approach that allowed us to show that adding other musical features to the model did 
not improve the correspondence to the neural data over and above spectral flux alone.

Despite their differences, we found strong correspondence between the dependent variables from 
the two types of analyses. Specifically, TRF correlations were strongly correlated with stimulation-
tempo SRCoh, and this correlation was higher than for SRCoh at the first harmonic of the stimula-
tion tempo for the amplitude envelope, derivative and beat onsets (Figure 4—figure supplement 
1). Thus, despite being computed on a relatively broad range of frequencies, the TRF seems to be 
correlated with frequency-specific measures at the stimulation tempo. The strong correspondence 
between the two analysis approaches has implications for how users interpret their results. Although 
certainly not universally true, we have noticed a tendency for TRF users to interpret their results in 
terms of a convolution of an impulse response with a stimulus, whereas users of stimulus–response 
correlation or coherence tend to speak of entrainment of ongoing neural oscillations. The current 
results demonstrate that the two approaches produce similar results, even though the logic behind 
the techniques differs. Thus, whatever the underlying neural mechanism, using one or the other does 
not necessarily allow us privileged access to a specific mechanism.

Conclusions
This study presented new insights into neural synchronization to natural music. We compared neural 
synchronization to different musical features and showed strongest neural responses to the spectral 
flux. This has important implications for research on neural synchronization to music, which has so far 
often quantified stimulus rhythm with what we would argue is a subpar acoustic feature – the ampli-
tude envelope. Moreover, our findings demonstrate that neural synchronization is strongest for slower 
beat rates, and for predictable stimuli, namely familiar music with an easy-to-perceive beat.

Materials and methods
Participants
Thirty-seven participants completed the study (26 female, 11 male, mean age = 25.7 years, SD = 
4.33 years, age range = 19–36 years). Target sample size for this was estimated using G*Power3, 
assuming 80% power for a significant medium-sized effect. We estimate a target sample size of 24 
(+4) for within-participant condition comparisons and 32 (+4) for correlations, and defaulted to the 
larger value since this experiment was designed to investigate both types of effects. The values in 
parentheses were padding to allow for discarding ~15% of the recorded data. The datasets of three 
participants were discarded because of large artefacts in the EEG signal (see section EEG data Prepro-
cessing), technical problems or for not following the experimental instructions. The behavioral and 
neural data of the remaining 34 participants were included in the analysis.

Prior to the EEG experiment, all participants filled out an online survey about their demographic 
and musical background using LimeSurvey (LimeSurvey GmbH, Hamburg, Germany, http://www.lime-
survey.org). All participants self-identified as German speakers. Most participants self-reported normal 
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hearing (seven participants reported occasional ringing in one or both ears). Thirty-four participants 
were right- and three were left-handed. Musical expertise was assessed using the Goldsmith Music 
Sophistication Index (Gold-MSI; Müllensiefen et al., 2014). Participants received financial compen-
sation for participating (Online: 2.50 €, EEG: 7€ per 30 min). All participants signed the informed 
consent before starting the experiment. The study was approved by the Ethics Council of the Max 
Planck Society Ethics Council in compliance with the Declaration of Helsinki (Application No: 2019_04).

Stimuli
The stimulus set started from 39 instrumental versions of musical pieces from different genres, 
including techno, rock, blues, and hip-hop. The musical pieces were available in a *.wav format on 
Qobuz Downloadstore (https://www.qobuz.com/de-de/shop). Each musical piece was segmented 
manually using Audacity (Version 2.3.3, Audacity Team, https://www.audacityteam.org) at musical 
phrase boundaries (e.g. between chorus and verse), leading to a pool of 93 musical segments with 
varying lengths between 14.4 and 38 s. We did not use the beat count from any publicly available 
beat-tracking softwares, because they did not track beats reliably across genres. Due to the first 
Covid-19 lockdown, we assessed the original tempo of each musical segment using an online method. 
Eight tappers, including the authors, listened to and tapped to each segment on their computer 
keyboard for a minimum of 17 taps; the tempo was recorded using an online BPM estimation tool 
(https://www.all8.com/tools/bpm.htm). In order to select stimuli with unambiguous strong beats that 
are easy to tap to, we excluded 21 segments due to high variability in tapped metrical levels (if more 
than 2 tappers tapped different from the others) or bad sound quality.

The remaining 72 segments were then tempo-manipulated using a custom-written MAX patch 
(Max 8.1.0, Cycling ’74, San Francisco, CA, USA). Each segment was shifted to tempi between 1 and 
4 Hz in steps of 0.25 Hz. All musical stimuli were generated using the MAX patch, even if the original 
tempo coincided with the stimulation tempo. Subsequently, the authors screened all of the tempo-
shifted music and eliminated versions where the tempo manipulation led to acoustic distortions, made 
individual notes indistinguishable, or excessively repetitive. Overall, 703 music stimuli with durations 
of 8.3–56.6 s remained. All stimuli had a sampling rate of 44,100 Hz, were converted from stereo to 
mono, linearly ramped with 500  ms fade-in and fade-out and root-mean-square normalized using 
Matlab (R2018a; The MathWorks, Natick, MA, USA). A full overview of the stimulus segments, the 
original tempi and the modulated tempo range can be found in the Appendix (Appendix 1—table 1, 
Figure 1—figure supplement 2).

Each participant was assigned to one of four pseudo-randomly generated stimulus lists. Each list 
comprised 4–4.6 min of musical stimulation per tempo condition (Kaneshiro et al., 2020), resulting in 
7–17 different musical segments per tempo and a total of 159–162 segments (trials) per participant. 
Each segment was repeated only once per tempo but was allowed to occur up to three times at 
different tempi within one experimental session (tempo difference between two presentations of the 
same segment was 0.5 Hz minimum). The presentation order of the musical segments was randomly 
generated for each participant prior to the experiment. The music stimuli were played at 50 dB sensa-
tion level (SL), based on individual hearing thresholds that were determined using the method of limits 
(Leek, 2001).

Experimental design
After attaching the EEG electrodes and seating the participant in an acoustically and electrically 
shielded booth, the participant was asked to follow the instructions on the computer screen (BenQ 
Monitor XL2420Z, 144 Hz, 24”, 1920 × 1080, Windows 7 Pro (64-bit)). The auditory and visual stimulus 
presentation was achieved using custom-written Matlab scripts using Psychtoolbox (PTB-3, Brainard, 
1997) in Matlab (R2017a; The MathWorks, Natick, MA, USA). Upon publication the Source Code for 
stimulus presentation can be found on the projects OSF repository (Weineck et al., 2022).

The overall experimental flow for each participant can be found in Figure 1A. First, each participant 
conducted a self-paced spontaneous motor tempo task (SMT; Fraisse, 1982), which is a commonly 
used technique to assess individual’s preferred tapping rate (Rimoldi, 1951, Mcauley, 2010). To 
obtain SMT, each participant tapped for thirty seconds (3 repetitions) at a comfortable rate with a 
finger on the table close to a contact microphone (Oyster S/P 1605, Schaller GmbH, Postbauer-Heng, 
Germany). Second, we estimated individual’s hearing threshold using the method of limits. All sounds 
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in this study were delivered by a Fireface soundcard (RME Fireface UCX Audiointerface, Audio AG, 
Haimhausen, Germany) via on-ear headphones (Beyerdynamics DT-770 Pro, Beyerdynamic GmbH & 
Co. KG, Heilbronn, Germany). After a short three-trial training, the main task was performed. The 
music stimuli in the main task were grouped into eight blocks with approximately 20 trials per block 
and the possibility to take a break in between.

Each trial comprised two parts: attentive listening (music stimulation without movement) and 
tapping (music stimulation +finger tapping; Figure 1A). During attentive listening, one music stimulus 
was presented (8.3–56.6 s) while the participant looked at a fixation cross on the screen; the partici-
pant was instructed to mentally locate the beat without moving. Tapping began after a 1 s interval; the 
last 5.5 s of the previously listened musical segment were repeated, and participants were instructed 
to tap a finger to the beat of the musical segment (as indicated by the replacement of the fixation 
cross by a hand on the computer screen). Note that 5.5 s of tapping data is not sufficient to conduct 
standard analyses of sensorimotor synchronization; rather, our goal was to confirm that the partici-
pants tapped at the intended beat rate based on our tempo manipulation. After each trial, partici-
pants were asked to rate the segment based on enjoyment/pleasure, familiarity and ease of tapping 
to the beat with the computer mouse on a visual analogue scale ranging from –100 to +100. At the 
end of the experiment, the participant performed the SMT task again for three repetitions.

EEG data acquisition
EEG data were acquired using BrainVision Recorder (v.1.21.0303, Brain Products GmbH, Gilching, 
Germany) and a Brain Products actiCap system with 32 active electrodes attached to an elastic cap 
based on the international 10–20 location system (actiCAP 64Ch Standard-2 Layout Ch1-32, Brain 
Products GmbH, Gilching, Germany). The signal was referenced to the FCz electrode and grounded 
at the AFz position. Electrode impedances were kept below 10 kOhm. The brain activity was acquired 
using a sampling rate of 1000 Hz via a BrainAmp DC amplifier (BrainAmp ExG, Brain Products GmbH, 
Gilching, Germany). To ensure correct timing between the recorded EEG data and the auditory stim-
ulation, a TTL trigger pulse over a parallel port was sent at the onset and offset of each musical 
segment and the stimulus envelope was recorded to an additional channel using a StimTrak (StimTrak, 
Brain Products GmbH, Gilching, Germany).

Data analysis
Behavioral data
Tapping data were processed offline with a custom-written Matlab script. To extract the taps, the *.wav 
files were imported and downsampled (from 44.1 kHz to 2205 Hz). The threshold for extracting the 
taps was adjusted for each trial manually (SMT and music tapping) and trials with irregular tap inter-
vals were rejected. The SMT results were not analyzed as part of this study and will not be discussed 
further. For the music tapping, only trials with at least three taps (two intervals) were included for 
further analysis. Five participants were excluded from the music tapping analysis due to irregular and 
inconsistent taps within a trial (if >40% of the trials were excluded).

On each trial, participants were asked to rate the musical segments based on enjoyment/pleasure, 
familiarity and ease to tap to the beat. The rating scores were normalized to the maximum abso-
lute rating per participant and per category. For the group analysis the mean and standard error of 
the mean (SEM) were calculated. For assessing the effects of each subjective dimension on neural 
synchronization, the 15 trials with the highest and lowest ratings (regardless of the tempo) per partic-
ipant were further analyzed (see EEG – Temporal Response Function).

Audio analysis
We assessed neural synchronization to four different musical features (Figure 1B–C). Note that the 
term ‘musical feature’ is used to describe time-varying features of music that operate on a similar 
time-scale as neural synchronization as opposed to the classical musical elements such as syncopation 
or harmony; (1) Amplitude envelope – gammatone filtered amplitude envelope in the main manu-
script and absolute value of the full-band Hilbert envelope in the figure supplement; the gammatone 
filterbank consisted of 128 channels linearly spaced between 60 and 6000 Hz. (2) Half-wave rectified, 
first derivative of the amplitude envelope, which detects energy changes over time and is typically 
more sensitive to onsets (Daube et al., 2019; Di Liberto et al., 2020). (3) Binary-coded beat onsets 
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(0=no beat; 1=beat); a professionally trained percussionist tapped with a wooden drumstick on a MIDI 
drum pad to the beat of each musical segment at the original tempo (three trials per piece). After 
latency correction, the final beat times were taken as the average of the two takes with the smallest 
difference (Harrison and Müllensiefen, 2018). (4) Spectral novelty (‘spectral flux’) (Müller, 2015) was 
computed using a custom-written Python script (Python 3.6, Spyder 4.2.0) using the packages numpy 
and librosa. For computing the spectral flux of each sound, the spectrogram across frequencies of 
consecutive frames (frame length = 344 samples) was compared. The calculation of the spectral flux 
is based on the logarithmic amplitude spectrogram that results in a 1D vector (spectral information 
fluctuating over time). All stimulus features were z-scored and downsampled to 128 Hz for computing 
the stimulus-brain synchrony. To account for slightly different numbers of samples between stimulus 
features, they were cut to have matching sample sizes.

To validate that each musical feature contained acoustic cues to our tempo manipulation, we 
conducted a discrete Fourier transform using a Hamming window on each musical segment (resulting 
frequency resolution of 0.0025 Hz), averaged and z-scored the amplitude spectra per tempo and per 
musical feature (Figure 1C).

To assess how much information the different musical features share, a mutual information (MI) 
score was computed between each pair of musical features (Figure 1D). MI (in bits) is a time-sensitive 
measure that quantifies the reduction of uncertainty for one variable after observing a second vari-
able (Cover and Thomas, 2005). MI was computed using quickMI from the Neuroscience Information 
Theory Toolbox with 4 bins, no delay, and a p-value cut-off of 0.001 (Timme and Lapish, 2018). For 
each stimulus feature, all trials were concatenated in the same order for each tempo condition and 
stimulation subgroup (Time x 13 Tempi x 4 Subgroups). MI values for pairs of musical features were 
compared to surrogate datasets in which one musical feature was time reversed (Figure  1D). To 
statistically assess the shared information between musical features, a three-way ANOVA test was 
performed (with first factor: data-surrogate comparison; second factor: tempo and third factor: stim-
ulation subgroup).

EEG data preprocessing
Unless stated otherwise, all EEG data were analyzed offline using custom-written Matlab code (R2019b; 
The MathWorks, Natick, MA, USA) combined with the Fieldtrip toolbox (Oostenveld et al., 2011). 
The continuous EEG data were bandpass filtered between 0.5 and 30 Hz (Butterworth filter), re-ref-
erenced to the average reference, downsampled to 500 Hz, and epoched between 1 s after stimulus 
onset (to remove onset responses to the start of the music stimulus) until the end of the initial musical 
segment presentation (attentive listening part of the trial). Single trials and channels containing large 
artefacts were removed based on an initial visual inspection. Missing channels were interpolated 
based on neighbouring channels with a maximum distance of 3 (ft_prepare_neighbours). Subse-
quently, Independent Component Analysis (ICA) was applied to remove artefacts and eye movements 
semi-automatically. After transforming the data back from component to electrode space, electrodes 
that exceeded 4 standard deviations of the mean squared data for at least 10% of the recording time 
were excluded. If bad electrodes were identified, pre-processing for that recording was repeated after 
removing the identified electrode (Kaneshiro et al., 2020). For the RCA analysis, if an electrode was 
identified for which 10% of the trial data exceeded a threshold of mean +2 standard deviations of 
the single-trial, single-electrode mean squared amplitude, the electrode data of the entire trial was 
replaced by NaNs. Next, noisy transients of the single-trial, single-electrode recordings were rejected. 
Therefore, data points were replaced by NaNs when the data points exceeded a threshold of two 
standard deviations of the single-trial, single-electrode mean squared amplitude. This procedure was 
repeated four times to ensure that all artefacts were removed (Kaneshiro et al., 2020). For the TRF 
analysis, which does not operate on NaNs, noisy transients were replaced by estimates using shape-
preserving piecewise cubic spline interpolation or by the interpolation of neighbouring channels for 
single-trial bad electrodes.

Next, the data were restructured to match the requirements of the RCA or TRF (see sections EEG – 
Temporal Response Function and EEG – Reliable Component Analysis), downsampled to 128 Hz and 
z-scored. If necessary, the neural data were cut to match the exact sample duration of the stimulus 
feature per trial. For the RCA analysis approach, the trials in each tempo condition were concate-
nated resulting in a time-by-electrode matrix (Time x 32 Electrodes; with Time varying across tempo 
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condition). Subsequently the data of participants in the same subgroup were pooled together in a 
time-by-electrode-by-participant matrix (Time x 32 Electrodes x 9 or 10 Participants depending on 
the subgroup). In contrast to the RCA, for the TRF analysis, trials in the same stimulation condition 
were not concatenated in time, but grouped into cell arrays per participant according to the stimulus 
condition (Tempo x Trials x Electrodes x Time).

EEG – reliable component analysis
To reduce data dimensionality and enhance the signal-to-noise ratio, we performed RCA (reliable 
components analysis, also correlated components analysis) (Dmochowski et  al., 2012). RCA is 
designed to capture the maximum correlation between datasets of different participants by combining 
electrodes linearly into a vector space. One important feature of this technique is that it maximizes the 
correlation between electrodes across participants (which differentiates it from the similar canonical 
correlation analysis) (Madsen et al., 2019). Using the rcaRun Matlab function (Dmochowski et al., 
2012; Kaneshiro et al., 2020), the time-by-electrode matrix was transformed to a time-by-component 
matrix with the maximum across-trial correlation in the first reliable component (RC1), followed by 
components with correlation values in descending order. For each RCA calculation, for each tempo 
condition and subgroup, the first three RCs were retained, together with forward-model projections 
for visualizing the scalp topographies. The next analysis steps in the time and frequency-domain were 
conducted on the maximally correlated RC1 component.

To examine the correlation between the neural signal and stimulus over time, the stimulus-response 
correlation (SRCorr) was calculated for every musical feature. This analysis procedure was adopted 
from Kaneshiro et al., 2020. In brief, every stimulus feature was concatenated in time with trials of 
the same tempo condition and subgroup to match the neural component-by-time matrix. The stim-
ulus features were temporally filtered to account for the stimulus–brain time lag, and the stimulus 
features and neural time-courses were correlated. To create a temporal filter, every stimulus feature 
was transformed into a Toeplitz matrix, where every column repeats the stimulus-feature time course, 
shifted by one sample up to a maximum shift of 1 s, plus an additional intercept column. The Moore-
Penrose pseudoinverse of the Toeplitz matrix and temporal filter was used to calculate the SRCorr. To 
report the SRCorr, the mean (± SEM) correlation coefficient across tempo conditions for every stimulus 
feature was calculated. For comparing tempo-specificity between musical features, a linear regression 
was fit to SRCorr values (and TRF correlations) as a function of tempo for every participant and for 
every musical feature (using fitlm). We compared the resulting slopes across musical features with a 
one-way ANOVA.

Stimulus-response coherence (SRCoh) is a measure that quantifies the consistency of phase and 
amplitude of two signals in a specific frequency band and ranges from 0 (no coherence) to 1 (perfect 
coherence) (Srinivasan et al., 2007). Here, the magnitude-squared coherence between different stim-
ulus features and neural data was computed using the function mscohere with a Hamming window 
of 5 s and 50% overlap, resulting in a frequency range 0–64 Hz with a 0.125 Hz resolution. As strong 
coherence was found at the stimulation tempo and the first harmonic, the SRCoh values of each 
frequency vector were compared between musical features.

In order to control for any frequency-specific differences in the overall power of the neural data 
that could have led to artificially inflated observed neural synchronization at lower frequencies, the 
SRCorr and SRCoh values were z-scored based on a surrogate distribution (Zuk et al., 2021). Each 
surrogate distribution was generated by shifting the neural time course by a random amount relative 
to the musical feature time courses, keeping the time courses of the neural data and musical features 
intact. For each of 50 iterations, a surrogate distribution was created for each stimulation subgroup 
and tempo condition. The z-scoring was calculated by subtracting the mean and dividing by the stan-
dard deviation of the surrogate distribution.

EEG – temporal response function
The TRF is a modeling technique, which computes a filter that optimally describes the relationship 
between the brain response and stimulus features (Ding and Simon, 2012; Crosse et al., 2016). 
Via linear convolution, the filter delineates how the stimulus features map onto the neural response 
(forward model), using ridge regression to avoid overfitting (range of lambda values: 10-6 - 106). All 
computations of the TRF used the Matlab toolbox “The multivariate Temporal Response Function 
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(mTRF) Toolbox” (Crosse et al., 2016). The TRF was calculated in a leave-one-out cross-validation 
manner for all trials per stimulation tempo; this procedure was repeated for each musical feature 
separately, and additionally for all musical features together in a multivariate model (using mTRF-
crossval and mTRFtrain) using time lags 0–400ms (Di Liberto et al., 2020). For the multivariate 
TRF approach, the stimulus features were combined by replacing the single time-lag vector by 
several time-lag vectors for every musical feature (Time x 4 musical features at different time lags). 
Using mTRFpredict, the neural time course of the left-out trial was predicted based on the time 
course of the corresponding musical feature of that trial. The quality of the predicted neural data 
was assessed by computing Pearson correlations between the predicted and actual EEG data 
separately for each electrode (TRF correlations). We averaged over the seven to eight electrodes 
with the highest TRF correlations that also corresponded to a canonical auditory topography. To 
quantify differences in the TRFs, the mean TRF correlation across stimulation tempo and/or musical 
feature was calculated per participant. The TRF weights across time lags were Fisher-z-scored 
(Figure 3C–F; Crosse et al., 2016). Analogous to the SRCorr and SRCoh, the TRF correlations 
were z-scored based on subtracting the mean and dividing the standard deviation of a surrogate 
distribution which was generated by shifting the neural data randomly relative to the musical 
features during the training and prediction of the TRF for 50 iterations per participant and stimu-
lation tempo.

We tested the effects of more vs. less modulated music segments on the neural response by 
comparing TRF correlations within a stimulation tempo condition (Figure 3—figure supplement 3). 
Therefore, we took up to three trials per participant within the 2.25 Hz stimulation tempo condition 
where the original tempo ranged between (2.01–2.35 Hz) and compared them to up to three trials 
where the original tempo was slower (1.25–1.5 Hz). The same analysis was repeated in the 1.5 Hz 
stimulation tempo condition (original tempo ~1.25–1.6 Hz vs. originally faster music at ~2.1–2.5 Hz).

The assessment of TRF weights across time lags was accomplished by using a clustering approach 
for each musical feature and comparing significant data clusters to clusters from a random distri-
bution (Figure  3C–F). To extract significant time windows in which the TRF weights were able to 
differentiate the different tempo conditions, a one-way ANOVA was performed at each time point. 
Clusters (consecutive time windows) were identified if the p-value was below a significance level of 
0.01 and the size and F-statistic of those clusters were retained. Next, the clusters were compared to 
a surrogate dataset, which followed the same procedure, but had the labels of the tempo conditions 
randomly shuffled before entering it to the ANOVA. This step was repeated 1000 times (permutation 
testing). At the end, the significance of clusters was evaluated by subtracting the proportion of times 
the summed F-values of each clusters exceeded the summed F-values of the surrogate clusters from 1. 
A p-value below 0.05 was considered significant (Figure 3G). This approach yielded significant regions 
for the full-band (Hilbert) envelope and derivative (Figure 3—figure supplement 1). As these clus-
ters did not show differences across amplitudes but rather in time, a latency analysis was conducted. 
Therefore, local minima around the grand average minimum or maximum within the significant time 
lag window were identified for every participant/tempo condition and the latencies retained. As there 
was no significant correlation between latencies and tempo conditions, the stimulation tempi were 
split upon visual inspection into two groups (1–2.5 Hz and 2.75–4 Hz). Subsequently, a piecewise linear 
regression was fitted to the data and the R2 and p-values calculated (Figure 3—figure supplement 1). 

In order to test whether spectral flux predicted the neural signal over and above the information it 
shared with the amplitude envelope, first derivative and beat onsets, we calculated TRFs for spectral 
flux after ‘partialing out’ their effects (Figure 3—figure supplement 2). This was achieved by first 
calculating TRF predictions based on a multivariate model comprising the amplitude envelope, deri-
vate and beat onsets, and second, subtracting those predictions from the ‘actual’ EEG data and using 
the residual EEG data to compute a spectral flux model.

TRFs were evaluated based on participant ratings of enjoyment, familiarity, and ease to tap to the 
beat. Two TRFs were calculated per participant based on the 15 highest and 15 lowest ratings on 
each measure (ignoring tempo condition and subgroup), and the TRF correlations and time lags were 
compared between the two groups of trials (Figure 5). Significant differences between the groups 
were evaluated based on paired-sample t-tests.
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The effect of musical sophistication was analyzed by computing the Pearson correlation coeffi-
cients between the maximum TRF correlation across tempi per participant and the general musical 
sophistication (Gold-MSI) per participant (Figure 5—figure supplement 2).

EEG – comparison of TRF and RCA measures
The relationship between the TRF analysis approach and the SRCorr was calculated using a linear-
mixed effects model (using fitlme). Participant and tempo were random (grouping) effects; SRCorr the 
fixed (predictor) effect and TRF correlations the response variable. To examine the underlying model 
assumption, the residuals of the linear-mixed effects model were plotted and checked for consistency. 
The best predictors of the random effects and the fixed-effects coefficients (beta) were computed for 
every musical feature and illustrated as violin plot (Figure 4).

Statistical analysis
For each analysis, we assessed the overall difference between multiple subgroups using a one-way 
ANOVA. To test for significant differences across tempo conditions and musical features (TRF Correla-
tion, SRCorr and SRCoh), repeated-measure ANOVAs were conducted coupled to Tukey’s test and 
Greenhouse-Geiser correction was applied when the assumption of sphericity was violated (as calcu-
lated with the Mauchly’s test). As effect size measures, we report partial η2 for repeated-measures 
ANOVAs and requivalent for paired sample t-test (Rosenthal and Rubin, 2003). Where applicable, the 
p-values were corrected using the False Discovery Rate (FDR).
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Appendix 1

Appendix 1—table 1. Overview over the music stimuli. 

Parameters of stimulus creation for all 72 musical stimulus segments. The columns indicate 1. the 
stimulus number, 2. title of the musical piece, 3. the Artist of each musical piece, 4. the CD each 
piece was taken from (available at Qobuz Downloadstore), 5. timestamp of the music segment onset 
relative to the start of the recording [​min.​sec,​ms], 6. duration of the music segment [sec] relative to 
the start of the music segment, 7. original tempo of excerpt [BPM; beats per minute] based on the 
taps of the authors and their colleagues and 8. frequency range [Hz] of the tempo-modulation (in 
0.25 Hz steps) for each music piece.

No. Title Artist CD
Start 
[min]

Duration 
[sec] Tempo [BPM/Hz] Range [Hz]

1
Abba 
Medley Super Troopers

Instrumental 
Pop Hits 7.30,71 22,99 136.09 / 2.27 1.5–3.75

2
Abba 
Medley Super Troopers

Instrumental 
Pop Hits 8.59,57 21,69 135.92 / 2.27 1.75–4

3 All is Alive Francesco P.
Instrumental 
Hits, Vol.1 1.22,85 21,41 128.27 / 2.14 1.5–4

4 All is Alive Francesco P.
Instrumental 
Hits, Vol.1 2.06,72 21,62 127.98 / 2.13 1.5–4

5 Apache The Shadows

Rock Story 
"Instrumental 
Versions" 0.39,59 14,78 135.22 / 2.25 1.75–4

6 Apache The Shadows

Rock Story 
"Instrumental 
Versions" 0.54,25 21,60 133.86 / 2.23 1.75–4

7 La Bikina
Rubén Fuentes 
Gasson Bachata 0.47,49 14,99 124.83 / 2.08 1.75–4

8 Bulldog The Ventures

Rock Story 
"Instrumental 
Versions" 0.06,15 18,13 151.33 / 2.52 2–4

9
Careless 
Whisper Mads Haaber

Instrumental 
Pop Hits 2.41,93 25,50 76.93 / 1.28 1–2.75

10 Cocaine
Corben 
Cassavette

Instrumental 
Pop Hits 1.39,29 25,74 105.13 / 1.75 1.5–4

11 Dark Place Beataddictz
Street Beatz, 
Vol.2 0.20,83 22,22 92.13 / 1.54 1–3.75

12 F.B. I. The Shadows

Rock Story 
"Instrumental 
Versions" 0.20,59 15,31 140.05 / 2.33 1.25–4

13 Five Trips Tr3ntatr3 Giri
Instrumental 
Hits, Vol.1 1.48,79 16,48 123.24 / 2.05 1.5–4

14 Guybo Eddie Cochran

Rock Story 
"Instrumental 
Versions" 0.18,99 16,28 110.00 / 1.83 1.5–3

15

Gypsy Salsa, 
Cha Cha 
Beat

Corp Latino 
Dance Group Hot Latin Dance 1.57,06 24,26 100.04 / 1.67 1.5–3

16
Highway 
Riderz Beataddictz

Street Beatz, 
Vol.2 0.19,61 30,30 97.13 / 1.62 1–4

17 In Go Chuck Berry

Rock Story 
"Instrumental 
Versions" 0.26,10 24,00 116.30 / 1.94 1.5–4
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No. Title Artist CD
Start 
[min]

Duration 
[sec] Tempo [BPM/Hz] Range [Hz]

18 Oh by Jingo! Chet Atkins

Rock Story 
"Instrumental 
Versions" 0.07,47 23,59 120.55 / 2.01 1–3.5

19 Keep It 1,000 Beataddictz
Street Beatz, 
Vol.2 1.13,87 25,10 78.06 / 1.30 1–3

20 The Last Day Beataddictz
Street Beatz, 
Vol.2 1.27,40 22,52 88.13 / 1.47 1–2.5

21
For the Last 
Time Beataddictz

Street Beatz, 
Vol.2 1.16,88 26,21 74.86 / 1.25 1–3.25

22 Lights Out Beataddictz
Street Beatz, 
Vol.2 0.32,12 21,60 89.12 / 1.49 1.25–3.5

23 I like Francesco P.
Instrumental 
Hits, Vol.1 1.34,19 27,95 112.13 / 1.87 1.25–3.75

24 Dark Line Alex Cundari
Instrumental 
Hits, Vol.1 0.37,81 19,75 106.08 / 1.77 1.25–3

25 Live Forever
The 
Wonderwalls

Instrumental 
Pop Hits 1.16,28 22,61 90.11 / 1.50 1.5–3.75

26

Lucy in the 
Sky with 
Diamonds

Ricardo 
Caliente

Instrumental 
Pop Hits 2.43,55 23,93 81.11 / 1.35 1–3.5

27 Monalisa Ken Laszlo
Instrumental 
Hits, Vol.1 1.13,37 29,79 129.97 / 2.17 1.5–4

28 Monalisa Ken Laszlo
Instrumental 
Hits, Vol.1 2.13,01 28,80 130.02 / 2.17 1.5–4

29

Can't 
Fight the 
Moonlight Jon Carran

Instrumental 
Pop Hits 1.10,02 18,56 97.95 / 1.63 1.5–3.75

30
Muy 
Tranquilo Gramatik Muy Tranquilo 2.05,1 26,59 90.04 / 1.50 1–3.25

31 No Mercy Beataddictz
Street Beatz, 
Vol.2 0.12,15 26,41 76.11 / 1.27 1–3.5

32 I'm A Pusha Beataddictz
Street Beatz, 
Vol.2 0.11,07 22,60 85.15 / 1.42 1–3.25

33
Rockin' the 
Blues Away

Tiny Grimes 
Quintet

Rock Story 
"Instrumental 
Versions" 0.05,61 20,84 141.05 / 2.35 1.5–4

34
The Rocking 
Guitar Ini Kamoze

Rock Story 
"Instrumental 
Versions" 0.17,39 16,21 118.66 / 1.98 1.5–3.25

35
Country 
Rodeo Song Marco Rinaldo

Country 
Instrumental Mix 1.46,35 27,70 112.94 / 1.88 1.5–3.75

36
I Shot the 
Sheriff

Corben 
Cassavette

Instrumental 
Pop Hits 0.19,52 25,54 94.12 / 1.57 1.25–4

37
Sing Sing 
Sing

Benny 
Goodman Sing Sing Sing 0.18,23 36,01 108.68 / 1.81 1.5–3

38 Si Una Vez Pete Astudillo Bachata 0.46,54 16,95 124.54 / 2.08 1.5–3

39
I'm Still 
Standing

Ricardo 
Caliente

Instrumental 
Pop Hits 0.39,14 21,72 86.04 / 1.43 1.25–2.75
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No. Title Artist CD
Start 
[min]

Duration 
[sec] Tempo [BPM/Hz] Range [Hz]

40
Streets On 
Fire Beataddictz

Street Beatz, 
Vol.2 0.23,33 24,99 81.16 / 1.35 1–3.75

41 Tequila The Champs

Rock Story 
"Instrumental 
Versions" 1.02,85 21,45 89.40 / 1.49 1–3

42 Vegas Dream Vegas Project
Instrumental 
Hits, Vol.1 1.13,73 22,73 128.08 / 2.13 1.5–3.25

43 I Can't Wait Alex Cundari
Instrumental 
Hits, Vol.1 0.23,73 24,08 83.59 / 1.39 1–2.5

44 Who Dat Beataddictz
Street Beatz, 
Vol.2 1.15,58 24,50 87.10 / 1.45 1–3.25

45
Abba 
Medley Super Troopers

Instrumental 
Pop Hits 0.28,38 27,05 136.09 / 2.27 1.25–4

46
Abba 
Medley Super Troopers

Instrumental 
Pop Hits 5.09,89 21,71 136.09 / 2.27 1–3

47
Abba 
Medley Super Troopers

Instrumental 
Pop Hits 6.03,59 20,64 136.09 / 2.27 1.5–4

48 La Bikina
Rubén Fuentes 
Gasson Bachata 1.18,31 46,00 124.83 / 2.08 1.75–4

49 Bulldog The Ventures

Rock Story 
"Instrumental 
Versions" 0.44,98 19,20 151.33 / 2.52 2–4

50 Bulldog The Ventures

Rock Story 
"Instrumental 
Versions" 1.21,25 38,85 151.33 / 2.52 2–4

51
Careless 
Whisper Mads Haaber

Instrumental 
Pop Hits 3.09,44 24,41 76.93 / 1.28 1–2.75

52 Dark Place Beataddictz
Street Beatz, 
Vol.2 1.45,73 35,10 92.13 / 1.54 1–3.75

53 F.B. I. The Shadows

Rock Story 
"Instrumental 
Versions" 0.37,30 20,91 140.05 / 2.33 1.5–4

54 Guybo Eddie Cochran

Rock Story 
"Instrumental 
Versions" 0.36,31 17,53 110.00 / 1.83 1.5–3

55
Highway 
Riderz Beataddictz

Street Beatz, 
Vol.2 0.59,19 20,40 97.13 / 1.62 1–4

56 In Go Chuck Berry

Rock Story 
"Instrumental 
Versions" 0.48,42 26,80 116.30 / 1.94 1.5–4

57 Oh by Jingo! Chet Atkins

Rock Story 
"Instrumental 
Versions" 0.40,89 23,00 120.55 / 2.01 1.25–3.5

58 Live Forever
The 
Wonderwalls

Instrumental 
Pop Hits 1.41,02 34,00 90.11 / 1.50 1.25–3.5

59 Live Forever
The 
Wonderwalls

Instrumental 
Pop Hits 3.35,72 25,80 90.11 / 1.50 1.25–3.5

60

Lucy in the 
Sky with 
Diamonds

Ricardo 
Caliente

Instrumental 
Pop Hits 3.06,40 23,00 81.11 / 1.35 1–3.5
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No. Title Artist CD
Start 
[min]

Duration 
[sec] Tempo [BPM/Hz] Range [Hz]

61

Can't 
Fight the 
Moonlight Jon Carran

Instrumental 
Pop Hits 1.42,26 21,82 97.95 / 1.63 1.5–3.75

62 No Mercy Beataddictz
Street Beatz, 
Vol.2 0.50,16 26,74 76.11 / 1.27 1–3.5

63 No Mercy Beataddictz
Street Beatz, 
Vol.2 2.33,53 26,41 76.11 / 1.27 1–3.5

64
Rockin' the 
Blues Away

Tiny Grimes 
Quintet

Rock Story 
"Instrumental 
Versions" 0.47,65 25,50 141.05 / 2.35 1.5–4

65
Rockin' the 
Blues Away

Tiny Grimes 
Quintet

Rock Story 
"Instrumental 
Versions" 1.12,78 36,07 141.05 / 2.35 1.5–4

66
The Rocking 
Guitar Ini Kamoze

Rock Story 
"Instrumental 
Versions" 0.33,58 15,08 118.66 / 1.98 1.5–3.25

67
Country 
Rodeo Song Marco Rinaldo

Country 
Instrumental Mix 2.13,99 24,03 112.94 / 1.88 1.5–3.75

68
Sing Sing 
Sing

Benny 
Goodman Sing Sing Sing 1.08,65 18,87 108.68 / 1.81 1.5–3

69
Sing Sing 
Sing

Benny 
Goodman Sing Sing Sing 2.46,03 36,29 108.68 / 1.81 1.5–3

70 Si Una Vez Pete Astudillo Bachata 1.03,70 29,27 124.54 / 2.08 1.5–3

71
Streets on 
fire Beataddictz

Street Beatz, 
Vol.2 2.00,63 38,00 81.16 / 1.35 1–3.75

72 I Can't Wait Alex Cundari
Instrumental 
Hits, Vol.1 1.10,71 34,48 83.59 / 1.39 1–2.5
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