Quantifying concordant genetic effects of de novo mutations on multiple disorders

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao  Is a corresponding author
  10. Qiongshi Lu  Is a corresponding author
  1. Tsinghua University, China
  2. Yale University, United States
  3. Washington University in St. Louis, United States
  4. Rockefeller University, United States
  5. University of Wisconsin-Madison, United States

Abstract

Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Hanmin Guo

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lin Hou

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Shi

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheng Chih Jin

    Department of Genetics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Zeng

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyang Li

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Lifton

    Laboratory of Human Genetics and Genomics, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martina Brueckner

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongyu Zhao

    Yale University, New Haven, United States
    For correspondence
    Hongyu.Zhao@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiongshi Lu

    Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    qlu@biostat.wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4514-0969

Funding

National Science Foundation of China (No. 12071243)

  • Lin Hou

Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01)

  • Lin Hou

Wisconsin Alumni Research Foundation

  • Qiongshi Lu

Waisman Center pilot grant program at University of Wisconsin-Madison

  • Qiongshi Lu

National Institutes of Health (No. R03HD100883 and R01GM134005)

  • Hongyu Zhao

National Science Foundation (DMS 1902903)

  • Hongyu Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 972
    views
  • 197
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao
  10. Qiongshi Lu
(2022)
Quantifying concordant genetic effects of de novo mutations on multiple disorders
eLife 11:e75551.
https://doi.org/10.7554/eLife.75551

Share this article

https://doi.org/10.7554/eLife.75551

Further reading

    1. Genetics and Genomics
    Sugith Badugu, Kshitiza Mohan Dhyani ... Kalappa Muniyappa
    Research Article

    Recent studies have shown that, in human cancer cells, the tetrameric Shieldin complex (comprising REV7, SHLD1, SHLD2, and SHLD3) facilitates non-homologous end-joining (NHEJ) while blocking homologous recombination (HR). Surprisingly, several eukaryotic species lack SHLD1, SHLD2, and SHLD3 orthologs, suggesting that Rev7 may leverage an alternative mechanism to regulate the double-strand break (DSB) repair pathway choice. Exploring this hypothesis, we discovered that Saccharomyces cerevisiae Rev7 physically interacts with the Mre11–Rad50–Xrs2 (MRX) subunits, impedes G-quadruplex DNA synergized HU-induced toxicity, and facilitates NHEJ, while antagonizing HR. Notably, we reveal that a 42-amino acid C-terminal fragment of Rev7 binds to the subunits of MRX complex, protects rev7∆ cells from G-quadruplex DNA-HU-induced toxicity, and promotes NHEJ by blocking HR. By comparison, the N-terminal HORMA domain, a conserved protein–protein interaction module, was dispensable. We further show that the full-length Rev7 impedes Mre11 nuclease and Rad50’s ATPase activities without affecting the latter’s ATP-binding ability. Combined, these results provide unanticipated insights into the functional interaction between the MRX subunits and Rev7 and highlight a previously unrecognized mechanism by which Rev7 facilitates DSB repair via NHEJ, and attenuation of HR, by blocking Mre11 nuclease and Rad50’s ATPase activities in S. cerevisiae.

    1. Genetics and Genomics
    Thomas E Forman, Marcin P Sajek ... Katherine A Fantauzzo
    Research Article

    Signaling through the platelet-derived growth factor receptor alpha (PDGFRα) plays a critical role in craniofacial development. Phosphatidylinositol 3-kinase (PI3K)/Akt is the primary effector of PDGFRα signaling during mouse skeletal development. We previously demonstrated that Akt phosphorylates the RNA-binding protein serine/arginine-rich splicing factor 3 (Srsf3) downstream of PI3K-mediated PDGFRα signaling in mouse embryonic palatal mesenchyme (MEPM) cells, leading to its nuclear translocation. We further showed that ablation of Srsf3 in the murine neural crest lineage results in severe midline facial clefting and widespread alternative RNA splicing (AS) changes. Here, we demonstrated via enhanced UV-crosslinking and immunoprecipitation of MEPM cells that PDGF-AA stimulation leads to preferential binding of Srsf3 to exons and loss of binding to canonical Srsf3 CA-rich motifs. Through the analysis of complementary RNA-seq data, we showed that Srsf3 activity results in the preferential inclusion of exons with increased GC content and lower intron to exon length ratio. We found that Srsf3 activity downstream of PDGFRα signaling leads to retention of the receptor in early endosomes and increases in downstream PI3K-mediated Akt signaling. Taken together, our findings reveal that growth factor-mediated phosphorylation of an RNA-binding protein underlies gene expression regulation necessary for mammalian craniofacial development.