Quantifying concordant genetic effects of de novo mutations on multiple disorders

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao  Is a corresponding author
  10. Qiongshi Lu  Is a corresponding author
  1. Tsinghua University, China
  2. Yale University, United States
  3. Washington University in St. Louis, United States
  4. Rockefeller University, United States
  5. University of Wisconsin-Madison, United States

Abstract

Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Hanmin Guo

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lin Hou

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Shi

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheng Chih Jin

    Department of Genetics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Zeng

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyang Li

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Lifton

    Laboratory of Human Genetics and Genomics, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martina Brueckner

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongyu Zhao

    Yale University, New Haven, United States
    For correspondence
    Hongyu.Zhao@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiongshi Lu

    Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    qlu@biostat.wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4514-0969

Funding

National Science Foundation of China (No. 12071243)

  • Lin Hou

Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01)

  • Lin Hou

Wisconsin Alumni Research Foundation

  • Qiongshi Lu

Waisman Center pilot grant program at University of Wisconsin-Madison

  • Qiongshi Lu

National Institutes of Health (No. R03HD100883 and R01GM134005)

  • Hongyu Zhao

National Science Foundation (DMS 1902903)

  • Hongyu Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Young, University of California, Los Angeles, United States

Version history

  1. Preprint posted: June 14, 2021 (view preprint)
  2. Received: November 14, 2021
  3. Accepted: June 1, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 22, 2022 (version 2)

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 876
    views
  • 188
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao
  10. Qiongshi Lu
(2022)
Quantifying concordant genetic effects of de novo mutations on multiple disorders
eLife 11:e75551.
https://doi.org/10.7554/eLife.75551

Share this article

https://doi.org/10.7554/eLife.75551

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.