Quantifying concordant genetic effects of de novo mutations on multiple disorders

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao  Is a corresponding author
  10. Qiongshi Lu  Is a corresponding author
  1. Tsinghua University, China
  2. Yale University, United States
  3. Washington University in St. Louis, United States
  4. Rockefeller University, United States
  5. University of Wisconsin-Madison, United States

Abstract

Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Hanmin Guo

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Lin Hou

    Center for Statistical Science, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Shi

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sheng Chih Jin

    Department of Genetics, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xue Zeng

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Boyang Li

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Richard Lifton

    Laboratory of Human Genetics and Genomics, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Martina Brueckner

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hongyu Zhao

    Yale University, New Haven, United States
    For correspondence
    Hongyu.Zhao@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Qiongshi Lu

    Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, United States
    For correspondence
    qlu@biostat.wisc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4514-0969

Funding

National Science Foundation of China (No. 12071243)

  • Lin Hou

Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01)

  • Lin Hou

Wisconsin Alumni Research Foundation

  • Qiongshi Lu

Waisman Center pilot grant program at University of Wisconsin-Madison

  • Qiongshi Lu

National Institutes of Health (No. R03HD100883 and R01GM134005)

  • Hongyu Zhao

National Science Foundation (DMS 1902903)

  • Hongyu Zhao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Young, University of California, Los Angeles, United States

Version history

  1. Preprint posted: June 14, 2021 (view preprint)
  2. Received: November 14, 2021
  3. Accepted: June 1, 2022
  4. Accepted Manuscript published: June 6, 2022 (version 1)
  5. Version of Record published: June 22, 2022 (version 2)

Copyright

© 2022, Guo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 886
    views
  • 189
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanmin Guo
  2. Lin Hou
  3. Yu Shi
  4. Sheng Chih Jin
  5. Xue Zeng
  6. Boyang Li
  7. Richard Lifton
  8. Martina Brueckner
  9. Hongyu Zhao
  10. Qiongshi Lu
(2022)
Quantifying concordant genetic effects of de novo mutations on multiple disorders
eLife 11:e75551.
https://doi.org/10.7554/eLife.75551

Share this article

https://doi.org/10.7554/eLife.75551

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.