Rapid, reference-free human genotype imputation with denoising autoencoders

  1. Raquel Dias
  2. Doug Evans
  3. Shang-Fu Chen
  4. Kai-Yu Chen
  5. Salvatore Loguercio
  6. Leslie Chan
  7. Ali Torkamani  Is a corresponding author
  1. University of Florida, United States
  2. Scripps Research Institute, United States

Abstract

Genotype imputation is a foundational tool for population genetics. Standard statistical imputation approaches rely on the co-location of large whole-genome sequencing-based reference panels, powerful computing environments, and potentially sensitive genetic study data. This results in computational resource and privacy-risk barriers to access to cutting-edge imputation techniques. Moreover, the accuracy of current statistical approaches is known to degrade in regions of low and complex linkage disequilibrium. Artificial neural network-based imputation approaches may overcome these limitations by encoding complex genotype relationships in easily portable inference models. Here we demonstrate an autoencoder-based approach for genotype imputation, using a large, commonly used reference panel, and spanning the entirety of human chromosome 22. Our autoencoder-based genotype imputation strategy achieved superior imputation accuracy across the allele-frequency spectrum and across genomes of diverse ancestry, while delivering at least 4-fold faster inference run time relative to standard imputation tools.

Data availability

The data that support the findings of this study are available from dbGAP and European Genome-phenome Archive (EGA), but restrictions apply to the availability of these data, which were used under ethics approval for the current study, and so are not openly available to the public. The computational pipeline for autoencoder training and validation is available at https://github.com/TorkamaniLab/Imputation_Autoencoder/tree/master/autoencoder_tuning_pipeline. The python script for calculating imputation accuracy is available at https://github.com/TorkamaniLab/imputation_accuracy_calculator. Instructions on how to access the unique information on the parameters and hyperparameters of each one of the 256 autoencoders is shared through our source code repository at https://github.com/TorkamaniLab/imputator_inference. We also shared the pre-trained autoencoders and instructions on how to use them for imputation at https://github.com/TorkamaniLab/imputator_inference.Imputation data format. The imputation results are exported in variant calling format (VCF) containing the imputed genotypes and imputation quality scores in the form of class probabilities for each one of the three possible genotypes (homozygous reference, heterozygous, and homozygous alternate allele). The probabilities can be used for quality control of the imputation results.

The following previously published data sets were used

Article and author information

Author details

  1. Raquel Dias

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Doug Evans

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shang-Fu Chen

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kai-Yu Chen

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Salvatore Loguercio

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Leslie Chan

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ali Torkamani

    Scripps Research Translational Institute, Scripps Research Institute, La Jolla, United States
    For correspondence
    atorkama@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0232-8053

Funding

National Institutes of Health (R01HG010881)

  • Raquel Dias
  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Salvatore Loguercio
  • Ali Torkamani

National Institutes of Health (KL2TR002552)

  • Raquel Dias

National Institutes of Health (U24TR002306)

  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Ali Torkamani

National Institutes of Health (UL1TR002550)

  • Doug Evans
  • Shang-Fu Chen
  • Kai-Yu Chen
  • Ali Torkamani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Dias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,337
    views
  • 276
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raquel Dias
  2. Doug Evans
  3. Shang-Fu Chen
  4. Kai-Yu Chen
  5. Salvatore Loguercio
  6. Leslie Chan
  7. Ali Torkamani
(2022)
Rapid, reference-free human genotype imputation with denoising autoencoders
eLife 11:e75600.
https://doi.org/10.7554/eLife.75600

Share this article

https://doi.org/10.7554/eLife.75600

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalio Reyes, Arthur D Lander, Marcos Nahmad
    Research Article

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between

    1. Computational and Systems Biology
    2. Neuroscience
    Sebastian Quiroz Monnens, Casper Peters ... Bernhard Englitz
    Research Advance

    Animal behaviour alternates between stochastic exploration and goal-directed actions, which are generated by the underlying neural dynamics. Previously, we demonstrated that the compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this representation by extending to a combined stochastic-dynamical representation to account for both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal weights on the hidden units, representing neural assemblies, for both simulated and experimental data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms of generalization error and achieves a more accurate representation of the moments in time. Lastly, we demonstrate that we can identify the original time-scale of assembly dynamics by estimating multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valuable tool for capturing the combined stochastic and time-predictive dynamics of large-scale data sets.