The mycobacterial ImuA'-ImuB-DnaE2 mutasome: composition and recruitment in live cells

  1. Sophia Gessner
  2. Zela Alexandria-Mae Martin
  3. Michael Anton Reiche
  4. Joana A Santos
  5. Ryan Dinkele
  6. Atondaho Ramudzuli
  7. Neeraj Dhar
  8. Timothy J de Wet
  9. Saber Anoosheh
  10. Dirk M Lang
  11. Jesse Arron
  12. Teng Leong Chew
  13. Jennifer Herrmann
  14. Rolf Müller
  15. John D McKinney
  16. Roger Woodgate
  17. Valerie Mizrahi
  18. Česlovas Venclovas
  19. Meindert Hugo Lamers
  20. Digby F Warner  Is a corresponding author
  1. University of Cape Town, South Africa
  2. Howard Hughes Medical Institute, United States
  3. Leiden University Medical Center, Netherlands
  4. University of Saskatchewan, Canada
  5. Umeå University, Sweden
  6. Helmholtz Institute for Pharmaceutical Research Saarland, Germany
  7. Swiss Federal Institute of Technology in Lausanne, Switzerland
  8. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  9. Vilnius University, Lithuania

Abstract

A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in Mycobacterium tuberculosis during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA′ and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an imuBAAAAGG mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.

Data availability

Source data for all figures contained in the manuscript and SI have been deposited in Dryad; see https://datadryad.org/stash/share/fjhwiXFEIIM5-6liMtXIQn0Ehq4NIKZ3690FiR8lWyI.

The following data sets were generated

Article and author information

Author details

  1. Sophia Gessner

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  2. Zela Alexandria-Mae Martin

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Anton Reiche

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joana A Santos

    Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan Dinkele

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  6. Atondaho Ramudzuli

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  7. Neeraj Dhar

    Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5887-8137
  8. Timothy J de Wet

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3978-5322
  9. Saber Anoosheh

    Department of Chemistry, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk M Lang

    Department of Human Biology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  11. Jesse Arron

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Teng Leong Chew

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jennifer Herrmann

    Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Rolf Müller

    Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1042-5665
  15. John D McKinney

    School of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0557-3479
  16. Roger Woodgate

    Laboratory of Genomic Integrity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5581-4616
  17. Valerie Mizrahi

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4824-9115
  18. Česlovas Venclovas

    Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
    Competing interests
    The authors declare that no competing interests exist.
  19. Meindert Hugo Lamers

    Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4205-1338
  20. Digby F Warner

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    For correspondence
    digby.warner@uct.ac.za
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4146-0930

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (U01HD085531)

  • Roger Woodgate
  • Digby F Warner

Norges Forskningsråd (261669)

  • Digby F Warner

South African Medical Research Council (SHIP and Extramural Unit)

  • Valerie Mizrahi
  • Digby F Warner

National Research Foundation

  • Valerie Mizrahi
  • Digby F Warner

Howard Hughes Medical Institute (Senior International Research Scholars)

  • Valerie Mizrahi

Leids Universitair Medisch Centrum (LUMC Fellowship)

  • Meindert Hugo Lamers

National Research Foundation (104683)

  • Michael Anton Reiche

David and Elaine Potter Foundation (PhD Fellowship)

  • Zela Alexandria-Mae Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,003
    views
  • 165
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophia Gessner
  2. Zela Alexandria-Mae Martin
  3. Michael Anton Reiche
  4. Joana A Santos
  5. Ryan Dinkele
  6. Atondaho Ramudzuli
  7. Neeraj Dhar
  8. Timothy J de Wet
  9. Saber Anoosheh
  10. Dirk M Lang
  11. Jesse Arron
  12. Teng Leong Chew
  13. Jennifer Herrmann
  14. Rolf Müller
  15. John D McKinney
  16. Roger Woodgate
  17. Valerie Mizrahi
  18. Česlovas Venclovas
  19. Meindert Hugo Lamers
  20. Digby F Warner
(2023)
The mycobacterial ImuA'-ImuB-DnaE2 mutasome: composition and recruitment in live cells
eLife 12:e75628.
https://doi.org/10.7554/eLife.75628

Share this article

https://doi.org/10.7554/eLife.75628

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.