The mycobacterial ImuA'-ImuB-DnaE2 mutasome: composition and recruitment in live cells

  1. Sophia Gessner
  2. Zela Alexandria-Mae Martin
  3. Michael Anton Reiche
  4. Joana A Santos
  5. Ryan Dinkele
  6. Atondaho Ramudzuli
  7. Neeraj Dhar
  8. Timothy J de Wet
  9. Saber Anoosheh
  10. Dirk M Lang
  11. Jesse Arron
  12. Teng Leong Chew
  13. Jennifer Herrmann
  14. Rolf Müller
  15. John D McKinney
  16. Roger Woodgate
  17. Valerie Mizrahi
  18. Česlovas Venclovas
  19. Meindert Hugo Lamers
  20. Digby F Warner  Is a corresponding author
  1. University of Cape Town, South Africa
  2. Howard Hughes Medical Institute, United States
  3. Leiden University Medical Center, Netherlands
  4. University of Saskatchewan, Canada
  5. Umeå University, Sweden
  6. Helmholtz Institute for Pharmaceutical Research Saarland, Germany
  7. Swiss Federal Institute of Technology in Lausanne, Switzerland
  8. Eunice Kennedy Shriver National Institute of Child Health and Human Development, United States
  9. Vilnius University, Lithuania

Abstract

A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in Mycobacterium tuberculosis during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA′ and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III β subunit (β clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an imuBAAAAGG mutant containing a disrupted β clamp-binding motif abolishes ImuB-β clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this β clamp-binding antibiotic collapses pre-formed ImuB-β clamp complexes. These observations establish the essentiality of the ImuB-β clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.

Data availability

Source data for all figures contained in the manuscript and SI have been deposited in Dryad; see https://datadryad.org/stash/share/fjhwiXFEIIM5-6liMtXIQn0Ehq4NIKZ3690FiR8lWyI.

The following data sets were generated

Article and author information

Author details

  1. Sophia Gessner

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  2. Zela Alexandria-Mae Martin

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Anton Reiche

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joana A Santos

    Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Ryan Dinkele

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  6. Atondaho Ramudzuli

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  7. Neeraj Dhar

    Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5887-8137
  8. Timothy J de Wet

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3978-5322
  9. Saber Anoosheh

    Department of Chemistry, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk M Lang

    Department of Human Biology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  11. Jesse Arron

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Teng Leong Chew

    Advanced Imaging Center, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jennifer Herrmann

    Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Rolf Müller

    Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1042-5665
  15. John D McKinney

    School of Life Sciences, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0557-3479
  16. Roger Woodgate

    Laboratory of Genomic Integrity, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5581-4616
  17. Valerie Mizrahi

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4824-9115
  18. Česlovas Venclovas

    Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
    Competing interests
    The authors declare that no competing interests exist.
  19. Meindert Hugo Lamers

    Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4205-1338
  20. Digby F Warner

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    For correspondence
    digby.warner@uct.ac.za
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4146-0930

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (U01HD085531)

  • Roger Woodgate
  • Digby F Warner

Norges Forskningsråd (261669)

  • Digby F Warner

South African Medical Research Council (SHIP and Extramural Unit)

  • Valerie Mizrahi
  • Digby F Warner

National Research Foundation

  • Valerie Mizrahi
  • Digby F Warner

Howard Hughes Medical Institute (Senior International Research Scholars)

  • Valerie Mizrahi

Leids Universitair Medisch Centrum (LUMC Fellowship)

  • Meindert Hugo Lamers

National Research Foundation (104683)

  • Michael Anton Reiche

David and Elaine Potter Foundation (PhD Fellowship)

  • Zela Alexandria-Mae Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 895
    views
  • 154
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophia Gessner
  2. Zela Alexandria-Mae Martin
  3. Michael Anton Reiche
  4. Joana A Santos
  5. Ryan Dinkele
  6. Atondaho Ramudzuli
  7. Neeraj Dhar
  8. Timothy J de Wet
  9. Saber Anoosheh
  10. Dirk M Lang
  11. Jesse Arron
  12. Teng Leong Chew
  13. Jennifer Herrmann
  14. Rolf Müller
  15. John D McKinney
  16. Roger Woodgate
  17. Valerie Mizrahi
  18. Česlovas Venclovas
  19. Meindert Hugo Lamers
  20. Digby F Warner
(2023)
The mycobacterial ImuA'-ImuB-DnaE2 mutasome: composition and recruitment in live cells
eLife 12:e75628.
https://doi.org/10.7554/eLife.75628

Share this article

https://doi.org/10.7554/eLife.75628

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Hao Wang, Biying Zhu ... Zhaoliang Zhang
    Research Article

    Ethylamine (EA), the precursor of theanine biosynthesis, is synthesized from alanine decarboxylation by alanine decarboxylase (AlaDC) in tea plants. AlaDC evolves from serine decarboxylase (SerDC) through neofunctionalization and has lower catalytic activity. However, lacking structure information hinders the understanding of the evolution of substrate specificity and catalytic activity. In this study, we solved the X-ray crystal structures of AlaDC from Camellia sinensis (CsAlaDC) and SerDC from Arabidopsis thaliana (AtSerDC). Tyr341 of AtSerDC or the corresponding Tyr336 of CsAlaDC is essential for their enzymatic activity. Tyr111 of AtSerDC and the corresponding Phe106 of CsAlaDC determine their substrate specificity. Both CsAlaDC and AtSerDC have a distinctive zinc finger and have not been identified in any other Group II PLP-dependent amino acid decarboxylases. Based on the structural comparisons, we conducted a mutation screen of CsAlaDC. The results indicated that the mutation of L110F or P114A in the CsAlaDC dimerization interface significantly improved the catalytic activity by 110% and 59%, respectively. Combining a double mutant of CsAlaDCL110F/P114A with theanine synthetase increased theanine production 672% in an in vitro system. This study provides the structural basis for the substrate selectivity and catalytic activity of CsAlaDC and AtSerDC and provides a route to more efficient biosynthesis of theanine.

    1. Biochemistry and Chemical Biology
    Tristan A Bell, Bridget E Luce ... Luke H Chao
    Research Article Updated

    Prominin 1 (Prom1) is a five-transmembrane pass integral membrane protein that associates with curved regions of the plasma membrane. Prom1 interacts with membrane cholesterol and actively remodels the plasma membrane. Membrane-bending activity is particularly evident in photoreceptors, where Prom1 loss-of-function mutations cause failure of outer segment homeostasis, leading to cone-rod retinal dystrophy (CRRD). The Tweety Homology (Ttyh) protein family has been proposed to be homologous to Prominin, but it is not known whether Ttyh proteins have an analogous membrane-bending function. Here, we characterize the membrane-bending activity of human Prom1 and Ttyh1 in native bilayer membranes. We find that Prom1 and Ttyh1 both induce formation of extracellular vesicles (EVs) in cultured mammalian cells and that the EVs produced are physically similar. Ttyh1 is more abundant in EV membranes than Prom1 and produces EVs with membranes that are more tubulated than Prom1 EVs. We further show that Prom1 interacts more stably with membrane cholesterol than Ttyh1 and that this may contribute to membrane-bending inhibition in Prom1 EVs. Intriguingly, a loss-of-function mutation in Prom1 associated with CRRD induces particularly stable cholesterol binding. These experiments provide mechanistic insight into Prominin function in CRRD and suggest that Prom and Ttyh belong to a single family of functionally related membrane-bending, EV-generating proteins.