Heterogeneity of the GFP fitness landscape and data-driven protein design

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan  Is a corresponding author
  10. Fyodor A Kondrashov  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. MRC London Institute of Medical Sciences, United Kingdom
  3. Russian Academy of Sciences, Russian Federation
  4. Vanderbilt University, United States
  5. Austrian Academy of Sciences, Austria
  6. LabGenius, United Kingdom

Abstract

Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design - instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and are available on GitHub https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks

The following data sets were generated

Article and author information

Author details

  1. Louisa Gonzalez Somermeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9139-5383
  2. Aubin Fleiss

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Mishin

    Department of Genetics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-7030
  4. Nina G Bozhanova

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2164-5698
  5. Anna A Igolkina

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8851-9621
  6. Jens Meiler

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8945-193X
  7. Maria-Elisenda Alaball Pujol

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1868-2674
  8. Ekaterina V Putintseva

    LabGenius, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen S Sarkisyan

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    karen.s.sarkisyan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Fyodor A Kondrashov

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    fyodor.kondrashov@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8243-4694

Funding

European Research Council (771209-CharFL)

  • Fyodor A Kondrashov

MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0)

  • Karen S Sarkisyan

President's Grant (МК-5405.2021.1.4)

  • Karen S Sarkisyan

Marie Skłodowska-Curie Fellowship (898203)

  • Aubin Fleiss

Russian Science Foundation (19-74-10102)

  • Alexander S Mishin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, United States

Version history

  1. Received: November 25, 2021
  2. Preprint posted: December 9, 2021 (view preprint)
  3. Accepted: March 25, 2022
  4. Accepted Manuscript published: May 5, 2022 (version 1)
  5. Accepted Manuscript updated: May 6, 2022 (version 2)
  6. Version of Record published: May 19, 2022 (version 3)

Copyright

© 2022, Gonzalez Somermeyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,521
    Page views
  • 541
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan
  10. Fyodor A Kondrashov
(2022)
Heterogeneity of the GFP fitness landscape and data-driven protein design
eLife 11:e75842.
https://doi.org/10.7554/eLife.75842

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Vanessa Rossetto Marcelino
    Insight

    High proportions of gut bacteria that produce their own food can be an indicator for poor gut health.

    1. Computational and Systems Biology
    2. Neuroscience
    Huu Hoang, Shinichiro Tsutsumi ... Keisuke Toyama
    Research Article

    Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.