Heterogeneity of the GFP fitness landscape and data-driven protein design

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan  Is a corresponding author
  10. Fyodor A Kondrashov  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. MRC London Institute of Medical Sciences, United Kingdom
  3. Russian Academy of Sciences, Russian Federation
  4. Vanderbilt University, United States
  5. Austrian Academy of Sciences, Austria
  6. LabGenius, United Kingdom

Abstract

Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design - instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and are available on GitHub https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks

The following data sets were generated

Article and author information

Author details

  1. Louisa Gonzalez Somermeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9139-5383
  2. Aubin Fleiss

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Mishin

    Department of Genetics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-7030
  4. Nina G Bozhanova

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2164-5698
  5. Anna A Igolkina

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8851-9621
  6. Jens Meiler

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8945-193X
  7. Maria-Elisenda Alaball Pujol

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1868-2674
  8. Ekaterina V Putintseva

    LabGenius, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen S Sarkisyan

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    karen.s.sarkisyan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Fyodor A Kondrashov

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    fyodor.kondrashov@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8243-4694

Funding

European Research Council (771209-CharFL)

  • Fyodor A Kondrashov

MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0)

  • Karen S Sarkisyan

President's Grant (МК-5405.2021.1.4)

  • Karen S Sarkisyan

Marie Skłodowska-Curie Fellowship (898203)

  • Aubin Fleiss

Russian Science Foundation (19-74-10102)

  • Alexander S Mishin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gonzalez Somermeyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,665
    views
  • 745
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan
  10. Fyodor A Kondrashov
(2022)
Heterogeneity of the GFP fitness landscape and data-driven protein design
eLife 11:e75842.
https://doi.org/10.7554/eLife.75842

Share this article

https://doi.org/10.7554/eLife.75842

Further reading

    1. Computational and Systems Biology
    Liqi Kang, Banghao Wu ... Liang Hong
    Research Article

    Artificial intelligence (AI) models have been used to study the compositional regularities of proteins in nature, enabling it to assist in protein design to improve the efficiency of protein engineering and reduce manufacturing cost. However, in industrial settings, proteins are often required to work in extreme environments where they are relatively scarce or even non-existent in nature. Since such proteins are almost absent in the training datasets, it is uncertain whether AI model possesses the capability of evolving the protein to adapt extreme conditions. Antibodies are crucial components of affinity chromatography, and they are hoped to remain active at the extreme environments where most proteins cannot tolerate. In this study, we applied an advanced large language model (LLM), the Pro-PRIME model, to improve the alkali resistance of a representative antibody, a VHH antibody capable of binding to growth hormone. Through two rounds of design, we ensured that the selected mutant has enhanced functionality, including higher thermal stability, extreme pH resistance, and stronger affinity, thereby validating the generalized capability of the LLM in meeting specific demands. To the best of our knowledge, this is the first LLM-designed protein product, which is successfully applied in mass production.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.