Heterogeneity of the GFP fitness landscape and data-driven protein design

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan  Is a corresponding author
  10. Fyodor A Kondrashov  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. MRC London Institute of Medical Sciences, United Kingdom
  3. Russian Academy of Sciences, Russian Federation
  4. Vanderbilt University, United States
  5. Austrian Academy of Sciences, Austria
  6. LabGenius, United Kingdom

Abstract

Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design - instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and are available on GitHub https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks

The following data sets were generated

Article and author information

Author details

  1. Louisa Gonzalez Somermeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9139-5383
  2. Aubin Fleiss

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Mishin

    Department of Genetics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-7030
  4. Nina G Bozhanova

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2164-5698
  5. Anna A Igolkina

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8851-9621
  6. Jens Meiler

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8945-193X
  7. Maria-Elisenda Alaball Pujol

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1868-2674
  8. Ekaterina V Putintseva

    LabGenius, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen S Sarkisyan

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    karen.s.sarkisyan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Fyodor A Kondrashov

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    fyodor.kondrashov@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8243-4694

Funding

European Research Council (771209-CharFL)

  • Fyodor A Kondrashov

MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0)

  • Karen S Sarkisyan

President's Grant (МК-5405.2021.1.4)

  • Karen S Sarkisyan

Marie Skłodowska-Curie Fellowship (898203)

  • Aubin Fleiss

Russian Science Foundation (19-74-10102)

  • Alexander S Mishin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gonzalez Somermeyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,349
    views
  • 712
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan
  10. Fyodor A Kondrashov
(2022)
Heterogeneity of the GFP fitness landscape and data-driven protein design
eLife 11:e75842.
https://doi.org/10.7554/eLife.75842

Share this article

https://doi.org/10.7554/eLife.75842

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article Updated

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into ‘global’ and ‘local’ modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.