Heterogeneity of the GFP fitness landscape and data-driven protein design

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan  Is a corresponding author
  10. Fyodor A Kondrashov  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. MRC London Institute of Medical Sciences, United Kingdom
  3. Russian Academy of Sciences, Russian Federation
  4. Vanderbilt University, United States
  5. Austrian Academy of Sciences, Austria
  6. LabGenius, United Kingdom

Abstract

Studies of protein fitness landscapes reveal biophysical constraints guiding protein evolution and empower prediction of functional proteins. However, generalisation of these findings is limited due to scarceness of systematic data on fitness landscapes of proteins with a defined evolutionary relationship. We characterized the fitness peaks of four orthologous fluorescent proteins with a broad range of sequence divergence. While two of the four studied fitness peaks were sharp, the other two were considerably flatter, being almost entirely free of epistatic interactions. Mutationally robust proteins, characterized by a flat fitness peak, were not optimal templates for machine-learning-driven protein design - instead, predictions were more accurate for fragile proteins with epistatic landscapes. Our work paves insights for practical application of fitness landscape heterogeneity in protein engineering.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file and are available on GitHub https://github.com/aequorea238/Orthologous_GFP_Fitness_Peaks

The following data sets were generated

Article and author information

Author details

  1. Louisa Gonzalez Somermeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9139-5383
  2. Aubin Fleiss

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander S Mishin

    Department of Genetics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4935-7030
  4. Nina G Bozhanova

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2164-5698
  5. Anna A Igolkina

    Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8851-9621
  6. Jens Meiler

    Department of Chemistry, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8945-193X
  7. Maria-Elisenda Alaball Pujol

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1868-2674
  8. Ekaterina V Putintseva

    LabGenius, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen S Sarkisyan

    Synthetic Biology Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    karen.s.sarkisyan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  10. Fyodor A Kondrashov

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    fyodor.kondrashov@oist.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8243-4694

Funding

European Research Council (771209-CharFL)

  • Fyodor A Kondrashov

MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0)

  • Karen S Sarkisyan

President's Grant (МК-5405.2021.1.4)

  • Karen S Sarkisyan

Marie Skłodowska-Curie Fellowship (898203)

  • Aubin Fleiss

Russian Science Foundation (19-74-10102)

  • Alexander S Mishin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Gonzalez Somermeyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,797
    views
  • 766
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Louisa Gonzalez Somermeyer
  2. Aubin Fleiss
  3. Alexander S Mishin
  4. Nina G Bozhanova
  5. Anna A Igolkina
  6. Jens Meiler
  7. Maria-Elisenda Alaball Pujol
  8. Ekaterina V Putintseva
  9. Karen S Sarkisyan
  10. Fyodor A Kondrashov
(2022)
Heterogeneity of the GFP fitness landscape and data-driven protein design
eLife 11:e75842.
https://doi.org/10.7554/eLife.75842

Share this article

https://doi.org/10.7554/eLife.75842

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.