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Abstract Analyses of genetic variation in many taxa have established that neutral genetic diversity 
is shaped by natural selection at linked sites. Whether the mode of selection is primarily the fixation 
of strongly beneficial alleles (selective sweeps) or purifying selection on deleterious mutations (back-
ground selection) remains unknown, however. We address this question in humans by fitting a model 
of the joint effects of selective sweeps and background selection to autosomal polymorphism data 
from the 1000 Genomes Project. After controlling for variation in mutation rates along the genome, a 
model of background selection alone explains ~60% of the variance in diversity levels at the megabase 
scale. Adding the effects of selective sweeps driven by adaptive substitutions to the model does not 
improve the fit, and when both modes of selection are considered jointly, selective sweeps are esti-
mated to have had little or no effect on linked neutral diversity. The regions under purifying selection 
are best predicted by phylogenetic conservation, with ~80% of the deleterious mutations affecting 
neutral diversity occurring in non-exonic regions. Thus, background selection is the dominant mode of 
linked selection in humans, with marked effects on diversity levels throughout autosomes.

Editor's evaluation
This paper uses state-of-the-art methods and the latest data to answer the question of whether 
variation in polymorphism levels along the human genome is mostly driven by linked purifying selec-
tion or selective sweeps. It makes a very strong case for the former. The paper is exceptionally well 
written and should be of interest to anyone wishing to understand patterns of polymorphism.

Introduction
Selection at a given locus in the genome affects diversity levels at sites linked to it (Hill and Robertson, 
1966; Smith and Haigh, 1974; Kaplan et al., 1989; Begun and Aquadro, 1992; Charlesworth et al., 
1993; Hudson and Kaplan, 1995; Nordborg et al., 1996; Charlesworth, 2013; Cutter and Payseur, 
2013). When a new, strongly beneficial mutation increases in frequency to fixation in the population, 
it carries with it the haplotype on which it arose, thus reducing levels of neutral diversity nearby, in 
what is sometimes called a ‘hard selective sweep’ (Smith and Haigh, 1974; Kaplan et al., 1989). ‘Soft 
sweeps’, particularly those in which an allele segregates at low frequency before becoming benefi-
cial and sweeping to fixation, and ‘partial sweeps’, in which a beneficial mutation rapidly increases 
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to an intermediate frequency, also reduce neutral diversity levels near the selected sites (Hermisson 
and Pennings, 2005; Przeworski et  al., 2005; Pennings and Hermisson, 2006a; Pennings and 
Hermisson, 2006b; Coop and Ralph, 2012; Berg and Coop, 2015). Similarly, when deleterious muta-
tions are eliminated from the population by selection, so are the haplotypes on which they lie. This 
process too reduces diversity levels near selected sites, in a phenomenon known as ‘background 
selection’ (Charlesworth et al., 1993; Hudson and Kaplan, 1995; Nordborg et al., 1996; Comeron 
and Kreitman, 2002; Good et al., 2014; Cvijović et al., 2018). Because the lengths of the haplo-
types associated with selected alleles depend on the recombination rate, selection causes a greater 
reduction in levels of linked neutral genetic diversity in regions with lower rates of recombination or a 
greater density of selected sites. These predicted relationships have been observed in numerous taxa, 
including plants, Drosophila, rodents, and primates, establishing that the effects of linked selection 
are widespread (Begun and Aquadro, 1992; Nachman, 1997; Payseur and Nachman, 2002; Nord-
borg et al., 2005; Wright et al., 2006; Andolfatto, 2007; Begun et al., 2007; Macpherson et al., 
2007; Wright and Andolfatto, 2008; Cai et al., 2009; Sella et al., 2009; Cutter and Payseur, 2013).

More recently, the advent of large genomic datasets and detailed functional annotations have 
made it possible to infer the effects of linked selection and build maps that predict levels of diversity 
along the genome (McVicker et al., 2009; Elyashiv et al., 2016; also see Hudson and Kaplan, 1995; 
Nordborg et al., 1996; Comeron, 2014). The first effort predated the availability of genome-wide 
resequencing data, relying instead on information about incomplete lineage sorting among human, 
chimpanzee and gorilla, which reflects variation in diversity levels along the genome in the common 
ancestor of humans and chimpanzees (McVicker et al., 2009). This pioneering paper showed that 
a model of background selection fits variation in human-chimpanzee divergence levels along the 
genome remarkably well, with only a few parameters.

What remained unclear is whether this remarkable fit should be attributed to the effects of back-
ground selection alone. Notably, the estimate of the rate of deleterious mutations underlying the 
effects of background selection was unrealistically high—substantially greater than the upper limit 
based on estimates of the total mutation rate per site in humans (Kong et al., 2012; Besenbacher 
et al., 2016; Appendix 1 Section 5). In light of this finding, McVicker et al., 2009 suggested that 
the model might be soaking up effects of other modes of selection, particularly those of selective 
sweeps (McVicker et al., 2009). Subsequent work indicated that selective sweeps had little effect 
on diversity levels in humans (Coop et al., 2009; Hernandez et al., 2011), however, with no more 
of a reduction in diversity around plausible targets of positive selection (nonsynonymous substitu-
tions) than around sites assumed to be predominantly neutral (synonymous substitutions) (Coop 
et al., 2009; Hernandez et al., 2011). Yet, the interpretation of these findings was contested: it was 
suggested that on average, background selection causes more of a reduction in diversity around 
synonymous than nonsynonymous substitutions, and consequently that the comparison between the 
two types of sites may obscure the reduction due to sweeps around nonsynonymous substitutions 
(Enard et al., 2014). The map of predicted background selection effects offered little help in evalu-
ating this hypothesis, because it provided poor quantitative fits of diversity levels around both synon-
ymous and nonsynonymous substitutions (Hernandez et  al., 2011). Thus, despite clear evidence 
for the impact of background selection, we still lack an understanding of its contribution relative to 
sweeps (Stephan, 2010), as well as maps of their respective effects on human diversity levels.

Results and disussion
Model and inference
Here we resolve these issues by considering the effects of background selection and selective sweeps 
on diversity levels jointly (Figure 1 and Appendix 1 Section 1). We model the effects on the expected 
neutral heterozygosity (i.e., the probability of observing different alleles in a sample size of two) at a 
given autosomal position ‍x‍, as

	‍
π(x) = 2u(x)

2u(x) + 1/(2NeB(x)) + S(x)
,
‍�

where ‍u(x)‍ is the local mutation rate, ‍Ne‍ is the effective population size without linked selection, ‍B(x)‍ 
is the local (multiplicative) reduction in effective population size due to background selection, and ‍S(x)‍ 
is the local coalescence rate caused by selective sweeps (Wiehe and Stephan, 1993; Elyashiv et al., 
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2016). This model can be understood by thinking about a pair of lineages backward in time and noting 
that, considering mutation vs. coalescence events, ‍π(x)‍ is the probability that a mutation occurs (at a 
rate ‍2u(x)‍ per generation) before the pair coalesces, owing either to genetic drift (at a rate ‍1/(2NeB(x))‍), 
which includes the effect of background selection, or to selective sweeps (at a rate ‍S(x)‍) (Hudson, 1990).

We model the effects of background selection, ‍B(x)‍, as a function of genetic distance from regions 
that may be under purifying selection (Figure  1A) following the theory developed by Hudson and 
Kaplan, 1995 and Nordborg et al., 1996. In this model, the deleterious mutation rate per site and 
distribution of selection effects in a given type of region (e.g. exons) are parameters to be estimated (see 
Appendix 1 Section 1.1 for details). In turn, we model the effects of sweeps, ‍S(x)‍, as a function of genetic 
distance from substitutions on the human lineage that may have been beneficial (Figure 1B), following 
Barton, 1998 and Gillespie, 2000. Here, the fraction of substitutions of a given type (e.g. nonsynon-
ymous) that were beneficial and their distribution of selection effects are parameters to be estimated 
(see Appendix 1 Section 1.1 for details). Importantly, our model should capture the effects of any kind 
of sweeps, be they hard, partial or soft, so long as they eventually resulted in a substitution and affected 
diversity levels nearby (see Coop and Ralph, 2012 and SOM Section D in Elyashiv et al., 2016).

Given the positions of different types of putatively selected regions and substitutions, their 
corresponding selection parameters, and a fine-scale genetic map, the model allows us to calcu-
late the marginal probability that any given neutral site in the genome is polymorphic in a sample 
(Figure 1C). Provided measurements of polymorphism at neutral positions throughout the genome, 
we combine information across sites and samples to calculate the composite likelihood of selection 
parameters, and find the parameter values that maximize this likelihood (Figure 1). In addition to 
parameter estimation, this approach yields a map of the expected neutral diversity levels along the 
genome (Figure 1C). The mathematical form of the model and of the algorithms used for inference 
are detailed in Appendix 1 Section 1.

To infer the effects of background selection and selective sweeps on human diversity levels, we 
analyze autosomal polymorphism data from 26 human populations, collected in Phase III of the 1000 
Genomes Project (Auton et al., 2015). Here, we focus on data from 108 genomes sampled from the 
Yoruba population (YRI), but we get similar results for the other populations (Appendix 1 Sections 7 
and 9). To estimate diversity levels at neutral sites, we focus on non-genic autosomal sites that are the 

Figure 1. Modeling and inferring the effects of linked selection in humans. Given the putative targets of selection 
and corresponding selection parameters (A and B), we calculate the expected neutral diversity levels along the 
genome (C). We infer the selection parameters by maximizing their composite likelihood given observed diversity 
levels (C). Based on these parameter estimates, we calculate a map of the expected effects of selection on linked 
diversity levels.
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least conserved in a multiple sequence alignment of 25 supra-primates (see Appendix 1 Section 3.1). 
To account for variation in mutation rates among neutral sites, we use estimates of the relative muta-
tion rate for contiguous, non-overlapping blocks of 6000 putatively neutral sites, obtained from substi-
tution rates in an eight-primate phylogeny (see Appendix 1 Section 3.3). To minimize the confounding 
of recombination rate estimates and diversity levels, we use a high-resolution genetic map inferred 
from ancestry switches in African-Americans (Hinch et al., 2011), which is highly correlated with other 
maps (Hinch et al., 2011) but is less dependent on diversity levels.

Background selection
We first focus on two of our best-fitting models of the effects of background selection (see below and 
Appendix 1 Section 4). In both cases, we take as putative targets of purifying selection the 6% of auto-
somal sites estimated as most likely to be under selective constraint. In one, we choose these sites using 
phastCons conservation scores obtained for a 99-vertebrate phylogeny that excludes humans (Siepel 
et al., 2005). In the other, we rely on Combined Annotation-Dependent Depletion (CADD) scores, which 
are based primarily on phylogenetic conservation (excluding humans) but also on information from func-
tional genomic assays (Kircher et al., 2014; Rentzsch et al., 2019); to avoid circularity, we use scores 
that were generated without the McVicker et al., 2009 B-map as input (see Appendix 1 Section 2.5).

From these models, we obtain a map of predicted diversity levels (accounting for variation in muta-
tion rates), which we can then compare to observed data (Figure 2A and Appendix 1—figure 24). We 
generate these maps using out-of-sample predictions in non-overlapping, contiguous 2 Mb windows 
(which we note is substantially greater than the scale of linkage disequilibrium in human populations; 
Wall and Pritchard, 2003). Over-fitting has a negligible effect on our results (also see Appendix 1 
Section 6.1 and Appendix 1—figure 48), as expected given that the model has few parameters and 
the large amount of data (7 fitted parameters in this case and 2580 Mb blocks of ~653M putatively 
neutral sites spread over ~2600 LD blocks; Berisa and Pickrell, 2016). As a measure of the precision 
of our predictions, we consider the variance in diversity levels explained in non-overlapping autosomal 
windows (Figure 2B). Our predictions explain a large proportion of the variance across spatial scales: at 
the 1 Mb scale, the predictions based on CADD scores account for 60% of the variance in diversity levels 
compared to 32% explained by previous work (McVicker et al., 2009; see Appendix 1 Section 4.6).

Selective sweeps
Next, we examine whether incorporating selective sweeps alongside background selection improves 
our predictions. Our inference should be able to tease apart the effects of selective sweeps, primarily 
because their effects, unlike those of background selection, should be centered around the locations 

Figure 2. Comparison of diversity levels predicted by our best-fitting maps of background selection effects with 
observations. (A) Predicted and observed diversity levels along chromosome 1 in the YRI sample. Diversity levels are 
measured in 1 Mb windows, with a 0.5 Mb overlap, with the autosomal mean set to 1. (B) The proportion of variance 
in YRI diversity levels explained by background selection models at different spatial scales. Shown are the results for 
four choices of putative targets of selection: all sites with the highest 6% of CADD or phastCons scores (denoted 
CADD and phastCons, respectively) and the subset of these sites that are exonic (denoted CADDe and phastConse, 
respectively). The results shown for our best-fitting models (based on the 6% of sites with the highest CADD or 
phastCons scores) are based on out-of-sample predictions in non-overlapping, contiguous 2 Mb windows. See 
Appendix 1 Section 4 for similar graphs with other choices, and Appendix 1 Sections 7 and 9 for other populations.
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of substitutions. Moreover, as noted, we expect to capture the effects of selective sweeps, be they 
hard, partial or soft (Smith and Haigh, 1974; Kaplan et al., 1989; Hermisson and Pennings, 2005; 
Przeworski et al., 2005; Pennings and Hermisson, 2006a; Pennings and Hermisson, 2006b; Coop 
and Ralph, 2012; Berg and Coop, 2015), so long as they resulted in substitutions and substantially 
affected diversity levels (see Coop and Ralph, 2012 and SOM Section D in Elyashiv et al., 2016). 
Indeed, previous work that applied a similar methodology to data from Drosophila melanogaster 
was able to identify distinct effects of background selection and sweeps (Elyashiv et al., 2016). To 
examine whether we can identify such effects in humans, we consider several choices of putatively 
selected substitutions along the human lineage, including any nonsynonymous substitutions or any 
nonsynonymous and non-coding substitutions in constrained regions, allowing each type to have its 
own selection parameters and considering different measures of constraint (see Appendix 1 Section 
4.5). Regardless of the types of substitutions considered, incorporating sweeps does not improve 
our fit. In fact, in all cases, our estimates of the proportion of substitutions resulting in sweeps with 
discernable effects on neutral diversity is approximately 0.

Moreover, in contrast to previous attempts (McVicker et al., 2009; Hernandez et al., 2011), our 
model of background selection alone provides good quantitative fits to the diversity levels observed 
around different genomic features and in particular around nonsynonymous and synonymous substi-
tutions (Figure  3 and Appendix  1—figure 49). Together, these results refute the hypothesis that 
reduced diversity levels around nonsynonymous substitutions in humans reflect ‘masked’ effects of 
selective sweeps (Enard et al., 2014); more generally, they indicate that selective sweeps resulting in 
substitutions had little effect on diversity levels in contemporary humans.

The lack of sweeps does not imply that adaptation was rare in recent human evolution, as instead, 
much of it may have been driven by selection on genetically complex traits, that is, traits with heritable 
variation arising from many segregating loci (Coop et al., 2009; Pritchard et al., 2010; Pritchard and 
Di Rienzo, 2010; Hernandez et al., 2011; Sella and Barton, 2019). Complex traits are often subject 
to ongoing stabilizing selection, that is, selection that acts to maintain traits near an optimal value 
(Wright, 1935; Robertson, 1966; Walsh and Lynch, 2018; Sella and Barton, 2019). Changes in selec-
tion pressures, that is, in optimal trait values, introduce transient directional selection on such complex 

traits. Under plausible conditions, we expect 
the adaptive response to directional selection 
to be highly polygenic, with phenotypic adap-
tation to new optima achieved rapidly, via tiny 
increases to the frequency of many alleles that 
change the traits in the direction favored by 
selection (Hayward and Sella, 2019). Over the 
long run, these tiny frequency changes cause a 
tiny excess of fixations of the alleles that were 
initially favored by selection (Hayward and 
Sella, 2019). Consequently, polygenic adap-
tation introduces only minor perturbations 
to allele trajectories compared to the case 
in which selection pressures on traits remain 
constant. In particular, the alleles that eventu-
ally fix do so extremely slowly, with trajectories 
that are predominated by weak selection and 
drift (Hayward and Sella, 2019), implying that 
their effects on linked diversity levels should be 
negligible (Barton, 2000; Thornton, 2019).

In contrast, ongoing stabilizing selection on 
complex traits could have a substantial effect 
on linked, neutral diversity levels (Hayward 
and Sella, 2019). Stabilizing selection induces 
purifying selection against minor alleles 
that affect complex traits (Wright, 1931; 
Robertson, 1966; Simons et al., 2018), and 
purifying selection on these alleles could be a 

Figure 3. A background selection model predicts 
neutral diversity levels observed around human-specific 
nonsynonymous (NS) substitutions. Shown are the results 
for putatively neutral sites as a function of their genetic 
distance to the nearest nonsynonymous substitution 
(in 160 bins, each spanning 0.005 cM). For observed 
values, we average diversity levels within each bin. For 
predicted values, we average diversity levels predicted by 
our best-fitting CADD-based model (using the out-of-
sample predictions in non-overlapping, contiguous, 2 Mb 
windows) and correct for relative mutation rate in each 
bin (using substitution data; see Appendix 1 Section 3.3). 
Both observed and predicted diversity levels are plotted 
relative to the autosomal mean. See Appendix 1—figure 
49 and Appendix 1—figure 51 for similar graphs for other 
genomic features and using data from other populations.

https://doi.org/10.7554/eLife.76065
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major source of background selection (Hayward and Sella, 2019). In other words, if much of the 
selection in humans is driven by ongoing and changing selection pressures on complex traits, we may 
expect background selection to be the dominant mode of linked selection, as our results indicate.

The source of background selection
Focusing then on models of background selection alone, we ask which genomic annotations appear to 
be the sources of purifying selection. Previous work found selection on non-exonic regions to contribute 
little, to the extent that removing conserved non-exonic sites from a model of background selection 
had little effect on predicted diversity levels (McVicker et al., 2009). In contrast, when we include only 
conserved exonic regions in our inference, our predictive ability is considerably diminished (Figure 2B).

Moreover, in models that include separate selection parameters for conserved exonic and non-
exonic regions, purifying selection on non-exonic regions accounts for most of the reduction in linked 
neutral diversity (Appendix 1 Section 4.3). Our estimates suggest that ~80% of deleterious mutations 
affecting neutral diversity occur in non-exonic regions (e.g. in the model with the top 6% of phast-
Cons scores, ~84% of selected sites and ~76% of deleterious mutations are non-exonic; with the top 
6% of CADD scores, ~83% of selected sites and ~85% of deleterious mutations are non-exonic; see 
Appendix 1 Sections 4.3 and 4.6). Our estimates of the average strength of selection differ between 
exonic and non-exonic regions, but because the total reduction in diversity levels caused by back-
ground selection is fairly insensitive to the strength of selection (with the reduction being more local-
ized for weakly selected mutations than for strong ones), the proportions of deleterious mutations that 
occur in these regions approximate their relative effects on neutral diversity levels (Hudson, 1994; 
see Appendix 1 Sections 4.3, 4.4, and 4.6). Thus, our estimates suggest that purifying selection on 
non-exonic regions accounts for ~80% of the reduction in linked neutral diversity. Moreover, including 
separate selection parameters for conserved exonic and non-exonic regions does not improve our 
predictions (Appendix 1 Section 4.3 and Appendix 1—figure 19).

Incorporating additional functional genomic information also does little to improve our predictions 
(Appendix 1 Sections 4.2 and 4.4). Notably, when we do not incorporate information on phylogenetic 
conservation, but include separate selection parameters for coding regions and for each of the Ency-
clopedia of DNA Elements (ENCODE) classes of candidate cis-regulatory elements (cCRE) (Moore 
et al., 2020), our predictive ability is considerably diminished (Appendix 1 Section 4.4). Moreover, 
using CADD scores (Kircher et  al., 2014; Rentzsch et  al., 2019), which augment information on 
phylogenetic conservation with functional genomic information, offers little improvement over relying 
on conservation alone (e.g., explaining 59.9% compared to 59.7% of the variance in diversity levels in 
1 Mb windows, a difference that is not statistically significant; Appendix 1 Section 6). Thus, at present, 
functional annotations that do not incorporate phylogenetic conservation appear to provide poorer 
predictions of the effects of linked selection and those that do, offer little improvement over using 
conservation alone (see Appendix 1 Sections 4.1–4).

In turn, our predictions based on conservation are fairly insensitive to the phylogenetic depth of 
the alignments used to infer conservation levels, although we do slightly better using a 99-vertebrate 
alignment (excluding humans) compared to its monophyletic subsets (e.g. Appendix 1—figure 14 
and Appendix 1—figure 33 and Appendix 1 Section 6.2). Our best-fitting models by a variety of 
metrics, are obtained using 5–7% of sites with the top CADD or phastCons scores as selection targets 
(Appendix 1—figure 16 and Appendix 1—figure 26). This percentage is in good accordance with 
more direct estimates of the proportion of the human genome subject to functional constraint (Ward 
and Kellis, 2012; Rands et al., 2014).

Estimates of the deleterious mutation rate
Reassuringly, the deleterious mutation rates that we estimate for our best-fitting models are plausible 
(Figure 4). Current estimates of the average mutation rate per site per generation in humans, including 
point mutations (Kong et al., 2012; Besenbacher et al., 2016), indels (Besenbacher et al., 2016), mobile 
element insertions (Gardner et al., 2019), and structural mutations (Sudmant et al., 2015; Belyeu et al., 
2021) lie in the range of ‍1.29 × 10−8 − 1.38 × 10−8‍ per base pair per generation (Appendix 1 Section 5). 
Further accounting for the length of deletions (Besenbacher et al., 2016)—whereby a deletion that starts at 
a neutral site and includes selected sites should contribute to our estimate of the deleterious mutation rate, 
but deletions that affect one or several selected sites should have the same contribution—suggests that 

https://doi.org/10.7554/eLife.76065
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the upper bound on estimates of the deleterious 
mutations rate at putatively selected sites should 
fall in the range of ‍1.29 × 10−8 − 1.51 × 10−8‍ 
per base pair per generation (Appendix 1 
Section 5). The estimates for all of our best-fitting 
models fall well below this bound (Figure  4). 
This is expected, because not every mutation at 
putatively selected sites will be deleterious: some 
sites are misclassified as constrained and some 
mutations at selected sites are selectively neutral.

To test whether our estimates of the propor-
tion of mutations that are deleterious are plau-
sible, we compare them with independent 
estimates based on the relative reduction in 
evolutionary rates at putatively selected vs. 
neutral sites along the human lineage (these sets 
of sites were identified from an alignment that 
excludes humans; Appendix 1 Sections 3.1, 4.1, 
and 4.4). The relative reduction allows us to esti-
mate the proportion of deleterious mutations 
because deleterious mutations at selected sites 
rarely fix in the population whereas neutral muta-
tions fix at a much higher rate, which is the same 
at selected and neutral sites (Kimura and Crow, 
1964). In estimating the reduction at putatively 
selected sites, we matched the set of putatively 
neutral sites for the AT/GC ratio, and checked 

that our estimates were insensitive to the composition of other genomic features associated with mutation 
rates and with other non-selective processes that affect substitution rates (e.g., triplet context, methylated 
CpGs and recombination rates, which affect rates of biased gene conversion; Appendix 1 Section 5).

Our estimates based on evolutionary rates are closer to (and even overlap) those obtained from 
fitting models of background selection based on CADD scores compared to those based on phastCons 
scores (Figure 4). This is expected given that CADD scores are much better than phastCons scores at 
identifying constraint on a single site resolution (Kircher et al., 2014; Rentzsch et al., 2019), which 
markedly influences evolutionary rates at putatively selected sites (but not the predictions of back-
ground selection effects). We expect the two estimates to be similar but not identical, both because 
weak selection has a larger effect on evolutionary rates than on linked diversity levels (McVean and 
Charlesworth, 2000; Comeron and Kreitman, 2002; Gordo et  al., 2002; Charlesworth, 2013; 
Good et al., 2014) and because estimates based on the effects of background selection may absorb 
the deleterious mutation rate at selected sites that were not included in our sets but are closely linked 
to sites in them (Appendix 1 Section 5). In summary, given the fit to data and plausible estimates of the 
deleterious rates, it is natural to interpret our maps as reflecting the effects of background selection, 
that is, as maps of ‍B‍ (defined as the ratio of expected diversity levels with background selection, ‍π‍, 
and in its absence, ‍π0‍; Charlesworth et al., 1993).

Background selection on autosomes
Our maps are also well calibrated (Figure 5). When we stratify diversity levels at putatively neutral 
sites by our predictions, predicted and observed diversity levels are similar throughout nearly the 
entire range of predicted values (e.g. ‍R2 = 0.96‍ when sites are in predicted percentile bins). One 
exception is for ~5% of sites in which background selection is predicted to be the strongest (i.e. with 
the lowest ‍B‍), where our predictions are imprecise. This behavior is due to a technical approximation 
we employ in fitting the models (see Appendix 1 Section 1.5). The other exception is for ~2% of sites 
in which background selection is predicted to be the weakest (i.e. with ‍B‍ near 1), where observed 
diversity levels are markedly greater than expected. We observe similar behavior in all the human 
populations examined (Appendix 1—figure 52), and we cannot fully explain it by known mutational 
and recombination effects (e.g. of base composition and biased gene conversion; Appendix 1 Section 

Figure 4. Estimates of the proportion of mutations at 
putatively selected sites that are deleterious. Shown are 
the results using 5–7% of sites with the highest phastCons 
scores (A) and CADD scores (B) as selection targets. 
For estimates based on fitting background selection 
models, we divide our estimates of the deleterious 
mutation rate per selected site by the estimate of 
the total mutation rate per site, where the ranges 
correspond to the range of estimates of the total rate, 
that is, ‍1.29 × 10−8 − 1.51 × 10−8‍ per base pair per 
generation (Appendix 1 Section 5.1). For estimates based 
on evolutionary rates (on the human lineage from the 
common ancestor of humans and chimpanzees), we take 
the ratio of the estimated rates at putatively selected sites 
and at matched sets of putatively neutral sites (see text and 
Appendix 1 Section 5.2 for details).

https://doi.org/10.7554/eLife.76065
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8). This behavior could reflect ancient introgres-
sion of archaic human DNA into ancestors of 
contemporary humans (Appendix 1 Section 8.3), 
indicated also in other population genetic signa-
tures (Wall and Hammer, 2006; Green et  al., 
2010; Reich et al., 2010; Sankararaman et al., 
2014; Racimo et al., 2015; Steinrücken et al., 
2018). Such introgressed regions are expected 
to increase genetic diversity and persist the 
longest in regions with low functional density 
and high recombination, corresponding to weak 
background selection effects (Sankararaman 
et  al., 2014; Harris and Nielsen, 2016; Juric 
et al., 2016; Schumer et al., 2018).

Setting these outlier regions aside, we can use 
the maps to characterize the distribution of back-
ground selection effects in human autosomes. 
We note that background selection effects that 
are not captured by our models would cause us 
to underestimate the range and extent of back-
ground selection effects (Elyashiv et al., 2016). 
We find that diversity levels throughout almost 
all of the autosomes are affected by background 
selection, with a ~37% reduction in the 10% most 
affected sites, a non-zero (~2.1%) reduction even 
in the 10% least affected (after excluding outliers 
in the top 2% of bins; see Figure 5), and a mean 
reduction of ~17%. These conclusions are robust 
across our best-fitting maps and populations 
(Appendix 1 Section 4 and Appendix 1—figure 
35 and Appendix 1—figure 52). An important 
implication is that our maps of the effects of 
background selection provide a more accurate 
null model than currently used for other popu-
lation genetic inferences that rely on diversity 
levels, notably inferences about demographic 
history (Schiffels and Durbin, 2014; Terhorst 
et al., 2017; Pouyet et al., 2018).

Conclusion
Our results indicate that background selection is the dominant mode of linked selection in human 
autosomes and the major determinant of neutral diversity levels on the Mb scale (after accounting 
for variation in mutation rates). They further reveal that background selection effects arise primarily 
from purifying selection at non-coding regions of the genome. Non-coding regions are known to 
exhibit substantial functional turnover on evolutionary timescales (Ward and Kellis, 2012; Rands 
et  al., 2014), and yet we find phylogenetic conservation to be the best predictor of selected 
regions. Moreover, at present, augmenting measures of conservation with functional genomic infor-
mation in humans offers little improvement. It therefore remains unclear how much our maps can 
still be improved. Even without these potential refinements, our findings demonstrate that a simple 
model of background selection, conceived three decades ago (Charlesworth et al., 1993), provides 
a reliable quantitative prediction of genetic diversity levels throughout human autosomes.
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1. Model and inference method
Here we detail the model and inference method used in this study. In Section 1.1, we describe our 
model for the effects of background selection and selective sweeps and our approach to inferring 
the parameters of these models. This section is adapted from Elyashiv and colleagues (Elyashiv 
et al., 2016), who applied a similar approach to data from Drosophila melanogaster; we reproduce 
it here for completeness. In Section 1.2, we describe how we calculate lookup tables for the effects 
of background selection and sweeps, which our inference relies upon. We introduce several changes 
to the methods used in previous studies (McVicker et  al., 2009; Elyashiv et  al., 2016), which 
allow us to better control the precision of maps of the effects of linked selection. In Section 1.3, we 
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describe how we represent neutral polymorphism data and maps of the effects of linked selection 
in our calculations in order to increase computational tractability. In Section 1.4, we describe the 
optimization algorithm that we use to find the selection parameters that maximize our models 
composite-likelihood, and we apply the optimization to simulated datasets in order to demonstrate 
its efficacy and robustness. In Section 1.5, we introduce a thresholding approach that contends 
with biases in our optimization that arise from model misspecification, and we investigate how this 
thresholding affects our inferences. Finally, in Section 1.6, we provide an overview of the software 
that we use for inference and for other key analyses in the paper. The software, its documentation, 
and maps of the effects of linked selection are available for download at (https://github.com/sellalab/​
HumanLinkedSelectionMaps; Murphy, 2021).

1.1 Model and inference problem
We model the effects of background selection and selective sweeps on neutral heterozygosity levels 
(i.e. the probability of observing different alleles in a sample size of two), ‍π‍, at an autosomal position 
‍x‍. In a coalescent framework, the model takes the form

	‍
π(x) = 2u(x)

2u(x) + 1/(2NeB(x)) + S(x)
,
‍�

(1)

where ‍u(x)‍ is the local mutation rate, ‍Ne‍ is the effective population size without linked selection, ‍B(x)‍ 
is the local (multiplicative) reduction in the effective population size due to background selection and 
‍S(x)‍ is the local coalescence rate caused by selective sweeps (Wiehe and Stephan, 1993; Elyashiv 
et  al., 2016). This approximation can be derived by considering the probability that a mutation 
occurs (at a rate ‍2u(x)‍ per generation) before the pair of lineages coalesces, owing either to genetic 
drift (‍1/(2NeB(x))‍), which includes the effect of background selection, or to a selective sweep (‍S(x)‍). 
While we consider autosomes, the model can be extended to sex chromosomes with straightforward 
modifications.

The model for the effects of background selection, ‍B(x)‍, follows Hudson and Kaplan, 1995 and 
Nordborg et al., 1996 (Appendix 1—figure 1a). We assume a set of distinct annotations ‍iB = 1, . . . IB‍ 
under purifying selection (e.g. conserved exonic and non-exonic regions) and positions in the genome 

Appendix 1—figure 1. Modeling and inferring the effects of linked selection in humans. Given the targets of 
selection and corresponding selection parameters (a and b), we calculate the expected neutral diversity levels 
along the genome (c). We infer the selection parameters by maximizing their composite-likelihood given observed 
diversity levels (c). Based on these parameter estimates, we calculate a map of the expected effects of linked 
selection on diversity levels.

https://doi.org/10.7554/eLife.76065
https://github.com/sellalab/HumanLinkedSelectionMaps
https://github.com/sellalab/HumanLinkedSelectionMaps
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‍AB = {aB(iB)|iB = 1, . . . , IB}‍, where ‍aB(iB)‍ denotes the set of genomic positions with annotation 

‍iB‍. The selection parameters at these annotations are given by ‍ΘB = {
(
ud(iB), f(t|iB)

)
|iB = 1, . . . , IB}‍, 

where ‍ud‍ is the rate of deleterious mutations and ‍f(t)‍ is the distribution of selection coefficients in 
heterozygotes for a deleterious mutation. The reduction in the effective population size is then

	‍
B(x|AB,ΘB, R) = Exp

−
∑

iB

∑
y∈aB(iB)

ˆ
ud(iB)

t
(
1 + r(x, y)(1 − t)/t

)2 f(t|iB)dt

,
‍� (2)

where ‍R‍ is the genetic map and ‍r(x, y)‍ is the genetic distance between the focal position ‍x‍ and 
positions ‍y‍ (only positions on the same chromosome are considered). The integrand reflects 
the effect that a site under purifying selection at position ‍y‍ exerts on a neutral site at position 
‍x‍. This expression and its combination across sites provide a good approximation to the effect of 
background selection so long as selection is sufficiently strong (i.e. when ‍2Net ≫ 1‍).

In turn, the model for the effect of selective sweeps follows from an approximation used by 
Barton, 1998 and Gillespie, 2000, among others (Appendix  1—figure 1b). Similarly to the 
model for background selection, we assume a set of distinct annotations ‍iS = 1, . . . , IS‍ subject 
to sweeps, but here the specific positions at which substitutions have occurred are known, 

‍AS =
{

aS(iS)|iS = 1, . . . , IS
}
‍ with ‍aS(iS)‍ denoting the set of substitution positions with annotation ‍iS‍. 

The selection parameters at these annotations are ‍ΘS =
{(

α(iS), g(s|iS)
)

|iS = 1, . . . , IS
}
‍, where ‍α‍ is 

the fraction of substitutions that are beneficial and ‍g(s)‍ is the distribution of their additive selection 
coefficients. For autosomes, the expected rate of coalescence per generations at position ‍x‍ due to 
sweeps is then approximated by

	‍
S(x|AS,ΘS, R, N̄e, T) = 1

T
∑

iS

α(iS)
∑

y∈a(iS)

ˆ
Exp

(
−r(x, y)τ (s, N̄e)

)
g(s|iS)ds,

‍� (3)

where ‍T ‍ is the length of the lineage (in generations) over which substitutions occurred, the positions 
of substitutions ‍y‍ are summed over the chromosome with the focal site, ‍̄Ne‍ is the average effective 
population size and ‍τ (s, N̄e)‍ is the expected time to fixation of a beneficial substitution with selection 
coefficient ‍s‍ and given an effective population size ‍̄Ne‍. We use the diffusion approximation for the 
fixation time

	‍
τ (s, Ne) =

2
(
ln(4Nes) + γ − (4Nes)−1)

s
,
‍� (4)

where ‍γ‍ is the Euler constant (Hermisson and Pennings, 2005). This model relies on several 
simplifying assumptions and approximations. In particular, the term ‍1/T ‍ relies on an assumption 
of one substitution per site per lineage and neglects variation in the length of lineages across 
loci. In combining the effects over substitutions, we further assume that the timings of beneficial 
substitutions are independent and uniformly distributed along the lineage, and that they are 
infrequent enough such that we can ignore interference among them (Kim and Stephan, 2003). The 
exponent approximates the probability of coalescence of two samples due to a classic sweep with 
additive selection coefficient ‍s‍ (where ‍2Nes ≫ 1‍) in a panmictic population of constant effective size 
‍̄Ne‍. (For the relationships between these expressions and other kinds of sweeps see SOM Section 
D in Elyashiv et al., 2016). In principle, we should use the local ‍Ne‍ incorporating the effects of 
background selection but given the logarithmic dependence of Equation (4) on ‍Ne‍, we simply use 
the average ‍̄Ne‍.

To infer the selection parameters ‍ΘB‍ and ‍ΘS‍, we use a composite-likelihood approach across sites 
and samples (Hudson, 2001; Appendix 1—figure 1). We denote the positions of neutral sites by 
‍X ‍ and the set of samples by ‍I ‍. We then summarize the observations by a set of indicator variables 
across sites and all pairs of samples ‍O =

{
Oi,j(x)|x ∈ X, i ̸= j ∈ I

}
‍, where ‍Oi,j(x) = 1‍ indicates that 

samples ‍i‍ and ‍j (j ̸= i)‍ differ at position ‍x‍ and ‍Oi,j(x) = 0‍ indicates that they are the same. In these 
terms, the composite log-likelihood takes the form

https://doi.org/10.7554/eLife.76065
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	‍
log(L) =

∑
x∈X

∑
i̸=j∈I

log
(
Pr

{
Oi,j(x)|ΘB,ΘS

})
,
‍�

(5)

where

	‍

Pr{Oi,j(x)|ΘB,ΘS} =




π(x|ΘB,ΘS) Oi,j(x) = 1

1 − π(x|ΘB,ΘS) Oi,j(x) = 0
‍�

Using composite-likelihood circumvents the complications of considering linkage disequilibrium 
(LD) and of coalescent models for larger sample sizes. Importantly, maximizing this composite-
likelihood should yield unbiased point estimates (Fearnhead, 2003; Wiuf, 2006). Beyond losing 
the information in LD patterns and in the site frequency spectrum, the main cost of this approach is 
the difficulty in assessing uncertainty in parameter estimates (as standard asymptotic results do not 
apply). We therefore use other ways to assess the reliability of our inferences.

To make the composite-likelihood calculations (i.e. the calculation of ‍π(x|ΘB,ΘS)‍) feasible 
genome-wide, we discretize the distribution of selection coefficients on a fixed grid. Given a grid of 
negative and positive selection coefficients, ‍tg‍ and ‍sk‍, ‍g = 1, . . .G‍ and ‍k = 1, . . .K ‍, the distribution of 
selection coefficients for each annotation becomes a set of weights on this grid, ‍w(tg|iB)‍ and ‍w(sk|is)‍. 
(In principle, the grid could also be annotation-specific.) For background selection, these weights 
reflect the rate of deleterious mutations with a given selection coefficient and their sum should 
therefore be bound by the maximal deleterious mutation rate per site. For sweeps, the weights 
reflect the fraction of beneficial substitutions with a given selection coefficient and their sum should 
be bound by 1. In these terms, the effect of background selection takes the form

	‍
B
(
x|ΘB

)
= Exp

(
−
∑

iB

G∑
g=1

w(tg|iB)b(x|tg, iB)
)
,
‍�

(6)

where ‍Exp
(
−b(x|tg, iB)

)
‍ is the proportional reduction in the effective population size induced by 

having one deleterious mutation per generation per site with selection coefficient ‍tg‍ at all the 
positions in annotation ‍iB‍ . By the same token, the effects of sweeps take the form

	‍
S
(
x|ΘS

)
= 1

T
∑
iS

K∑
k=1

w(sk|iS)s(x|sk, iS),
‍�

(7)

where ‍
1
T s(x|sk, iS)‍ is the probability of coalescence per generation induced by sweeps in annotation 

‍iS‍, if all the substitutions in this annotation are beneficial with selection coefficient ‍sk‍. By using a grid, 
we can calculate a lookup table of ‍b(x|tg, iB)‍ and ‍s(x|sk, iS)‍ once and then use it repeatedly to calculate 
the likelihood of different sets of weights. Moreover, the interpretation of estimated distributions on 
a grid is arguably simpler than that of the continuous parametric distributions commonly used (e.g. 
gamma and exponential), which impose rigid interdependencies between the densities associated 
with different selection coefficients with little justification and while the data is only informative 
about a subset of the domain. In the next section, we describe additional simplifications in the 
calculation of ‍b(x|tg, iB)‍ and ‍s(x|sk, iS)‍.

Other parameters are estimated as follows. Consider Equation (1) rewritten as

	‍
π(x) =

π0 ·
(
u(x)/ū

)

π0 ·
(
u(x)/ū

)
+ 1/B(x) + 2NeS

(
x; Ne, T

) ,
‍�

(8)

to clearly specify all the additional parameters required for inference. ‍π0 ≡ 4Neū‍ is (approximately) 
the average neutral heterozygosity, given the effective population size in the absence of linked 
selection and the average mutation rate per site (‍̄u‍); ‍π0‍ is estimated through the likelihood 
maximization. The local variation in mutation rate ‍u(x)/ū‍ is estimated based on substitution rates 
at putatively neutral sites in an eight-primate phylogeny (excluding humans) in nonoverlapping 

https://doi.org/10.7554/eLife.76065
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windows, with a window size chosen to balance true variation in mutation rates and measurement 
error (see Section 3.3). Finally, ‍̄Ne‍ is estimated based on the average genome-wide heterozygosity 
at putatively neutral sites, after dividing out by a direct estimate of the spontaneous point mutation 
rate of ‍1.2 × 10−8‍ per site per generation (Kong et al., 2012), and ‍T/2N̄e‍ is estimated by ‍(K̄/2)/π0‍, 
where ‍̄K ‍ is the average number of point substitutions per putatively neutral site on the human 
lineage (see Section 2.7).

1.2 Calculating lookup tables
Here we describe how we calculate the lookup tables for

	‍
s(x|sk, iS) ≡

∑
y∈a

(
iS
)Exp

(
−r(x, y)τ (sk, N̄e)

)
‍�

(9)

and

	‍

b(x|tg, iB) ≡
∑

y∈aB(iB)

1
tg
(
1 + r(x, y)(1 − tg)/tg

)2
‍�

(10)

at all putatively neutral autosomal positions (‍x‍), given annotations (‍iB‍ and ‍iS‍) and selection coefficients 
(‍tg‍ and ‍sk‍). We focus on one annotation and selection coefficient at a time and therefore simplify the 
notation to ‍b(x)‍ and ‍s(x)‍, and omit the variables in ‍τ ‍ and the subscripts of the selection coefficients. 
When we refer to accuracy in this section, we assume that there is no model misspecification (e.g., 
that putatively neutral sites are neutral, that sets of selected sites and selection parameter values are 
accurate, that genetic maps are accurate, etc.); once we control the accuracy in this sense, the main 
sources of error in our predictions will be due to model misspecification.

Our general approach is to calculate ‍b(x)‍ and ‍s(x)‍ with high accuracy at a subset of positions and 
to use linear interpolation between them. The distances between these positions are chosen such 
that maps built using the lookup tables maintain a preset level of accuracy ‍ϵ‍. Specifically, we require 
that our approximation ‍̃s‍ and ‍̃b‍ at any position ‍x‍ satisfy

	‍

����
s̃(x) − s(x)

s(x)

���� < ϵ and

�����
Exp

(
−uM · b̃(x)

)
−Exp

(
−uM · b(x)

)

Exp
(
−uM · b(x)

)
����� < ϵ,

‍�

where ‍uM‍ is an upper bound on the deleterious mutation rate per site per generation. When these 
conditions are met one can show (based on Equations 6; 7) that the relative accuracy of ‍S‍ and ‍B‍, and 
consequently of the expected neutral diversity level ‍π‍ (based on Equation 1), are also bound by ‍ϵ‍.

Sweeps
Assume that we have calculated ‍s‍ accurately at position ‍x‍ and consider the distance ‍∆‍ at which the 
relative change in ‍s‍ is bound by ‍ϵ‍, i.e., where

	‍

∣∣∣∣
s(x + ∆) − s(x)

s(x + ∆)

∣∣∣∣ ≤ ϵ.
‍� (11)

From Equation 11, we find that

	‍

��s(x + ∆) − s(x)
�� ≤

∑
y

��Exp
(
−r(x + ∆, y) · τ

)
−Exp

(
−r(x, y) · τ

)��

=
∑
y

Exp
(
−r(x + ∆, y) · τ

)
·
��1 − Exp

((
r(x + ∆, y) − r(x, y)

)
·τ
)��

≈
∑
y

Exp
(
−r(x + ∆, y) · τ

)
·
��1 − Exp

(
r(x + ∆, x) · τ

)��

≈ s(x + ∆) ·
(
r(x + ∆, x) · τ

)
, ‍�

where the approximations assume ‍r(x + ∆, x) ≪ 1‍. Consequently, by solving for ‍∆‍ such that

	‍ r(x + ∆, x) = ϵ/τ ‍� (12)
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we assure that the relative accuracy between ‍x‍ and ‍x + ∆‍ is bound by ‍ϵ‍. We therefore calculate ‍s‍ at 
the selected set of positions on a chromosome beginning at one end and choosing our step sizes 
according to Equation 12 until we reach the other end.

Background selection
Our calculation for background selection is based on the algorithm developed by McVicker et al., 
2009 (their calc_bkgd program) with several important modifications (Appendix 1—figure 2). The 
problems that require these modifications are most pronounced for small selection coefficients, 
whose background selection effects are localized at short genetic distances from selected segments 
where they can be quite strong. First, McVicker et al. used an additional lookup table to integrate 
over the effects of background selection exerted by a contiguous selected segment (SI of McVicker 
et al., 2009). This lookup table had poor resolution for small selection coefficients at short genetic 
distances from selected segments, and we have increased the resolution accordingly to fix the 
problem. Second, the algorithm for choosing the step size ‍∆‍ is designed to control the absolute 
error, such that

	‍

����Exp
(
−uM ·

∼
b(x)

)
−Exp

(
−uM · b(x)

)���� < ϵ,
‍�

rather than the relative error (Equation 13), which results in large relative errors when background 
selection effects are the strongest (which is with small selection coefficients). Third, the choice of 
step size ‍∆‍ is based on the local behavior of background selection at the previous position, and 
consequently it sometimes skips over selected segments largely ignoring their highly localized 
effects (which are due to small selection coefficients). We describe how we resolve the last two 
problems in turn.

Assume that we have calculated ‍b‍ accurately at position ‍x‍ and consider the distance ‍∆‍ at which 
the relative change in ‍Exp(−uM · b)‍ is bound by ‍ϵ‍ (see Equation 13), that is, where

	‍

�����
Exp

(
−uM · b(x + ∆)

)
−Exp

(
−uM · b(x)

)

Exp
(
−uM · b(x + ∆)

)
����� ≤ ϵ.

‍�
(13)

Appendix 1—figure 2. Distribution of relative errors in predictions before and after modifying calc_bkgd. We 
consider the model in which autosomal sites with the top 6% of CADD scores are chosen as selection targets, the 
deleterious mutation rate is ‍ud = 7.4 · 10−8

‍ per bp per generation and the selection coefficient is the lowest in 
our grid (‍t = 10−4.5‍), because this is the case most prone to errors (see text). We calculate ‍B‍-values accurately 
(using Equation 10) at a million positions picked randomly from the 22 autosomes and use these values to 
calculate the relative errors based on the McVicker et al. algorithm (a) and on our modified algorithm (b). The side 
panel shows the proportion of sites in which the error exceeds ‍ϵ‍ (below), as well as its breakdown in multiples of ‍ϵ‍.
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Rearranging the left-hand side, we find that

	‍
��1 − Exp

(
−uM ·

(
b(x) − b(x + ∆)

))�� ≤ ϵ,‍�

and assuming that ‍
��uM ·

(
b(x) − b(x + ∆)

)�� ≪ 1‍ we find that this requirement is well approximated by

	‍

∣∣∣b(x + ∆) − b(x)
∣∣∣ ≈

∣∣∣b′(x) ·∆ + b′′(x) ·∆2/2
∣∣∣ ≤ ϵ/uM.

‍�

As our putative step size, we therefore take the (smallest) solution of the quadratic

	‍

∣∣∣b′
(x) ·∆ + b

′′
(x) ·∆2/2

∣∣∣ = ϵ/uM.
‍� (14)

As in the case of sweeps, we calculate ‍b‍ at a selected set of positions on a chromosome, beginning 
on one end and choosing our step sizes in a way that maintains the preset relative accuracy ‍ϵ‍ until 
we reach the other end. Assuming that we have calculated ‍b‍ accurately at position ‍x‍, our algorithm 
for choosing the step size consists of the following steps:

1.	 If ‍x‍ is at the end of the chromosome, stop.
2.	 Calculate a candidate step size ‍∆∗‍ by solving Equation 14.
3.	 If ‍∆∗‍ is greater than a preset maximal step size ‍∆max‍ then set ‍∆∗ = ∆max‍.
4.	 If there is a selected segment between positions ‍x‍ and ‍x + ∆∗‍ then set ‍∆∗‍ such that ‍x + ∆∗‍ is 

the midpoint between ‍x‍ and the beginning of the (closest) selected segment. This step assures 
that we do not ‘skip’ selected segments.

5.	 Convert ‍∆∗‍ from Morgans to base-pairs, rounding downwards. But if the step ≤ 1 bp then set it 
to 1 bp, calculate ‍b(x + ∆∗)‍, set ‍x‍ to ‍x + ∆∗‍, and return to step 1.

6.	 Calculate ‍b(x + ∆∗)‍ . If ‍|b(x + ∆∗) − b(x)| > ϵ/uM‍ then set the step size in Morgans to ‍∆∗/2‍ and 
return to step 4. Otherwise, set ‍x‍ to ‍x + ∆∗‍ and return to step 1.

Interpolation and representation of lookup tables
We calculate ‍b(x)‍ or ‍s(x)‍ at every autosomal position ‍x‍ (for a given selection coefficient and selected 
annotation) by linear interpolation between adjacent positions at which we calculated ‍s‍ and ‍b‍ 
accurately. We then discretize the values of ‍b(x)‍ or ‍s(x)‍ on a linear grid of values corresponding to the 
preset accuracy ‍ϵ‍, and group together contiguous autosomal segments with the same discrete value. 
We intersect these segments with our list of putatively neutral sites (Section 3.1) to obtain lookup 
tables consisting of contiguous segments of putatively neutral sites with the same coarse-grained ‍s‍ 
and ‍b‍ values for our sets of selected annotations and selection coefficients.

1.3 Binning neutral sites
A direct calculation of the composite log-likelihood function for given sets of selected annotations and 
selection coefficients and parameters (Equation 5) requires that we store and access lookup tables and 
calculate the log-likelihood function at ~‍6.5 × 108‍ putatively neutral autosomal sites (see Section 2.1). 
Doing so would entail high computation and memory demands in the search for selection parameters 
that maximize the composite-likelihood. For example, our best-fitting models of background selection 
(see Main Text) with a grid of 6 selection coefficients would require storing and repeatedly accessing 
lookup tables that amount to ‍6.5 × 108 × 8 × 6 ≈ 32‍ GB (given a precision of ‍ϵ = 0.01‍), and models 
involving multiple annotations for background selection and sweeps push the memory requirement to 
hundreds of GBs.

We reduce the computational and memory demands by dividing the set of putatively neutral sites into 
bins in which all the effects of background selection and sweeps predicted by the lookup tables and our 
estimates of the local (relative) mutation rate (‍u(x)/ū‍ in Equation 8; Section 3.3) are identical. The composite 
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log-likelihood function can then be calculated by summing over log-likelihood functions corresponding to 
bins, where the calculation per bin requires only the bin-specific parameters and bin-specific summaries of 
polymorphism. The number and identity of bins varies with the sets of selected annotations and selection 
coefficients and parameters and with the precision (‍ϵ‍). For our best-fitting models, the average number 
of sites per bin is ~100, implying a ~100 fold reduction in demands on memory and in the number of log-
likelihood calculations. For our most complex selection models (Section 4), the binning reduces memory 
and computational demands tenfold.

1.4 Optimization
Here we describe how we developed and tested the algorithm we use in order to find the selection 
parameters that maximize the composite-likelihood of our different models. The high dimensional 
parameter space (including up to 55 parameters in the most complex model in Section 4) potentially 
makes this optimization problem non-trivial.

One step optimization
First, we tested the performance of standard optimization algorithms from the SciPy minimization 
toolkit (Virtanen et al., 2020). To this end, we generated polymorphism datasets based on our best-
fitting model of background selection based on phastCons conservation scores, as follows:

1.	 We fixed the total deleterious mutation rate to ‍ud = 10−8
‍ per base pair per generation, and randomly 

divided it among the 6 selection coefficients of the model by sampling from a Dirichlet distribution (with 
‍α = 1‍). We set the expected neutral diversity level in the absence of  background selection to 

‍π0 = πYRI‍, where ‍πYRI‍ is a value of ‍π0‍ from an iteration of our best-fitting phastCons-based model 
using polymorphism data from the Yoruba (YRI) population (Section 2.1).

2.	 We generated the map of expected neutral diversity levels in autosomes given the chosen parame-
ters. The map was represented in terms of the expected levels at each bin of putatively neutral sites 
(see Section 1.3).

3.	 We generated a polymorphism dataset corresponding to a sample size ‍n = 108‍ pairs of (haploid) 
autosomes by picking the number of pairwise differences in each bin such that the average diversity 
level in it most closely matched the level predicted by the map. The discretization step introduces 
small differences between average and expected diversity levels in bins.

We tested each algorithm by applying it to 10 simulated datasets, with 3 sets of initial conditions 
for each dataset, corresponding to weak, intermediate and strong background selection (with 
‍ud = 5 × 10−10

‍, ‍5 × 10−9‍, and ‍5 × 10−8‍ per base pair per generation, respectively), and 5 randomly 
chosen initial conditions in each set (with the total rate divided among the 6 selection coefficients by 
sampling from a Dirichlet distribution with ‍α = 1‍) amounting to 150 runs. The initial value of ‍π0‍ was 
always set to the average diversity level in the dataset ‍

−
π‍.

None of the algorithms closely converged to the ground truth parameters in all cases. Nelder-
Mead downhill simplex minimization (Nelder and Mead, 1965) (NM) and Constrained Trust 
Region minimization (Conn et  al., 2000) (CTR) performed the best overall, closely recovering 
the true parameters in ~2/3 of cases. While CTR was slightly more reliable, it was also up to ten 
times slower than NM. We therefore decide to combine them in order to leverage the relative 
strengths.

Two-step minimization algorithm
After some experimentation we converged on the following two-step algorithm (Appendix 1—figure 3):

1.	 We apply NM with multiple initial conditions. For models of background selection with a single 
selected annotation we generate 3 sets of initial conditions, with 5 randomly chosen initial 
conditions per set, as we described above. For models of sweeps with a single annotation 
we generate the initial conditions analogously. Namely, we generate 3 sets of initial condi-
tions corresponding to a low, intermediate and high proportion of beneficial substitutions (with 
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‍α = 0.0125, 0.125 and 1‍, respectively) with 5 randomly chosen initial conditions per set (with the 
total proportion divided among selection coefficients by sampling from a Dirichlet distribution 
with ‍α = 1‍). For models with background selection and sweeps and/or multiple annotations, we 
generate 3 sets of initial conditions, corresponding to the weak/low, intermediate, and strong/
high categories, with 5 random initial conditions per set that are chosen similarly for each mode 
and annotation. In all cases, the initial value of ‍π0‍ is set to the average diversity level in the 
dataset ‍̄π‍.

2.	 We apply the CTR algorithm with a single initial condition that is chosen based on the output of 
the previous step. Specifically, we focus on the sets of selection parameters inferred in the 3 out 

Appendix 1—figure 3. Illustration of the two-step algorithm. In this example, the optimization is applied to a 
model of background selection with a single selected annotation and a grid of 6 selection coefficients. See text for 
details.

https://doi.org/10.7554/eLife.76065
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of 15 initial runs that yielded the highest composite-likelihood, and use their average as our initial 
condition.

We tested the two-step algorithm under a variety of scenarios. When we applied it to the 
aforementioned ‘deterministically’ simulated datasets corresponding to the best-fitting model of 
background selection, it always closely recovered the ground truth parameters (Appendix 1—
figure 4). The tiny differences between predicted and simulated diversity levels introduced by 
discretizing sometimes caused tiny differences between the inferred and ground-truth parameter 
values (see e.g. Appendix  1—figure 4c), but the composite log-likelihood of the inferred 
parameters was always higher, indicating that the algorithm is working well. Moreover, the runtime 
of the CTR algorithm in step 2 was typically short, presumably because its initial conditions were 
close to the true maximum.

We also tested the algorithm on simulated datasets that include substantial noise in diversity 
levels. We generated the datasets for a sample size ‍n = 2‍ by sampling the number of pairwise 
differences in a bin of neutral sites from a Binomial distribution with a probability of success 
that equals the predicted diversity level (replacing step 3 in the simulations described above). 
The parameters inferred by our optimization algorithm were always similar to those used in the 
corresponding simulations, but with noticeable differences (Appendix  1—figure 5). In all cases, 
however, the composite-likelihood of the inferred parameters was greater than that of the ground-
truth parameters indicating that the differences were due to overfitting (which is expected given the 
noise we introduced in the simulations) rather than a problem in the optimization.

Lastly, we tested the optimization algorithm on datasets simulated under a joint model 
of background selection and selective sweeps. We modeled the effects of sweeps driven by 
nonsynonymous substitutions, assuming that they made up ‍α = 0.25‍ of the nonsynonymous 
substitutions on the human lineage since divergence from the common ancestor with chimpanzees 
(see Section 2.7), and randomly dividing this proportion among 6 selection coefficients of by sampling 
from a Dirichlet distribution (with ‍α = 1‍). We modeled background selection as we detailed above, 
and generated the dataset using the ‘noisy’ simulation scheme corresponding to a sample size of 
‍n = 2‍. The parameters inferred by our optimization algorithm were always similar to those used in the 
simulations, with greater composite-likelihood of inferred than of ground-truth parameters indicative 
of overfitting (Appendix 1—figure 6) as we observed in the case with background selection alone. 

Appendix 1—figure 4. Comparison of inferred and ground-truth parameters for datasets simulated 
‘deterministically’ under the best-fitting background selection model. Panels a-d correspond to different simulated 
datasets. Boxed region in (c) highlights the small differences between inferred and ground truth parameters 
introduced by discretization.

https://doi.org/10.7554/eLife.76065
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We obtained similar results when we simulated datasets under a variety of scenarios corresponding 
to the combinations weak, intermediate and strong background selection (‍ud = 5 × 10−10

‍, ‍5 × 10−9‍ 
and ‍5 × 10−8‍ per base pair per generation, respectively) with low, intermediate, and high proportions 
of beneficial substitutions (‍α = 0.0125, 0.125 and 1‍, respectively).

1.5 Thresholding
Our inference is strongly affected by forms of model misspecification that cause erroneous 
predictions of strong background selection effects (i.e., low values of ‍B‍) and thus of low diversity 
levels at a relatively small proportion of neutral sites in our dataset. (We refer to neutral rather 
than putatively neutral sites for brevity and because low error in the identification of neutral sites 
is irrelevant to the problem at hand). These kinds of erroneous predictions can occur, for example, 

Appendix 1—figure 5. Comparison of inferred and ground-truth parameters for datasets simulated with noise 
under the best-fitting background selection model. Panels a-d correspond to different simulated datasets.

Appendix 1—figure 6. Comparison of inferred and ground-truth parameters for datasets simulated with noise 
under a joint model of background selection and selective sweeps. Panels a and b correspond to different 
simulated datasets.

https://doi.org/10.7554/eLife.76065
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at neutral sites near regions that are incorrectly annotated as conserved or that are truly conserved 
but have proportionally fewer weakly deleterious mutations than most similarly annotated regions 
(because weakly deleterious mutations have strong localized effects on diversity levels). Even when 
neutral sites near such regions make up a small proportion of the dataset, having more of them be 
polymorphic than predicted can substantially reduce the composite-likelihood of models that may 
otherwise fit the data well (see Equation 5), potentially biasing our inference. Here, we present 
evidence for this problem, show how we modify our inference to solve it – by imposing a lower 
threshold for the value of ‍B‍ in the lookup tables or in the optimization, and address the consequences 
of this modification.

In Appendix  1—figures 7–9, we compare the results of our inference with and without 
thresholding for our best-fitting CADD-based model (the results for other models are qualitatively 
similar). Under the aforementioned forms of model misspecification, we might expect excess 
neutral diversity in regions where background selection is predicted to be strongest. Accordingly, 
when we apply the inference with little or no thresholding and focus on 1% of neutral sites where 
background selection is predicted to be the strongest, we find that observed diversity levels are up 
to twofold higher than our predictions (Appendix 1—figure 7a). Additionally, we expect this form 
of model misspecification to bias the inferred distribution of selection effects toward larger selection 
coefficients, because smaller selection effects cause a more localized reduction in diversity levels and 
are therefore expected to be heavily penalized by having even relatively few misspecified regions. 
Accordingly, we find that the inferred distribution without thresholding is shifted toward greater 
selection coefficients (‍t ≥ 10−2.5‍) compared to the distributions with thresholding (Appendix 1—
figure 7c(i)).

Importantly, the map of background selection effects generated without thresholding fits the data 
more poorly than the maps with thresholding. Notably, when we compare observed and predicted 
diversity levels around nonsynonymous substitutions, we find that the predictions generated without 
thresholding underestimate the reduction in diversity levels near nonsynonymous substitutions (inset 
in Appendix 1—figure 7b). This can be explained by the bias toward larger selection coefficients, 
which causes the inference without thresholding to underestimate the reduction in diversity levels 
near conserved regions that are specified correctly (in order to avoid the reduction in diversity 
levels near misspecified regions). Additionally, when we compare the fit of maps with and without 
thresholding, we find that without thresholding the composite-likelihood is lower (Appendix 1—
figure 7c(iv)), the variance in diversity levels explained throughout the range of window sizes is 
lower (Appendix 1—figure 7d and Appendix 1—figure 8) and the calibration of our predictions 
is poorer (Appendix 1—figure 7a; this remains the case when we exclude the top and bottom 5% 
of our predicted values, such that the predictions with and without thresholding span the same 
ranges of values; for example, Pearson ‍R2‍ of ‍0.99‍ and ‍0.97‍ with a threshold of ‍B = 0.6‍ and without 
thresholding, respectively).

We considered two ways of thresholding, where in both we set any value of ‍B‍ that is below 
the threshold to the threshold value: (1) applying the threshold in the lookup tables, that is, 
before the composite-likelihood maximization step, and (2) applying the threshold at each step 
of the maximization, when ‍B‍ values are calculated for a given distribution of selection effects 
(see Equation 6). The two approaches yield similar improvements in fit at equivalent threshold 
levels, and even applying a relatively low threshold improves fits markedly compared to B-
maps without thresholding (Appendix  1—figure 8). Based on our metrics of fit, we find that 
applying a threshold of ‍B = 0.6‍ in the lookup tables yields the best fits (Appendix 1—figures 7–9), 
although thresholds within the range ‍0.45 ≤ B ≤ 0.65‍ yield comparable results. Nonetheless, lower 
thresholds yield better fits to data in regions of the genome where selection is particularly strong 
(e.g. Appendix 1—figure 7a–b, red box in Appendix 1—figure 9). It may therefore be useful to 
use a lower threshold when considering regions of the genome that are subject to especially strong 
background selection. We provide B-maps for a range of thresholds that can be downloaded at 
https://github.com/sellalab/​HumanLinkedSelectionMaps (in addition to the ‘best-fitting B-maps’ 
presented in the Main Text).

While thresholding largely resolves the aforementioned problem of model misspecification, it also 
introduces some problems. First, as we already noted, it leads to an underestimation of background 
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selection effects at ~5% of the genome in which background selection effects is predicted to be 
the strongest. Second, thresholding potentially biases our estimates of the distribution of selection 
effects. While this bias is probably smaller than the bias without thresholding, its form and magnitude 
are not obvious. This is why we decided not to report the inferred distributions of selection effects 
in the Main Text. We are working on more principled ways of resolving the problems introduced by 
model misspecification, but these fall beyond the scope of the current paper.

Appendix 1—figure 7. Comparison of inference results with and without thresholding. The results shown 
correspond to our best-fitting CADD-based model (see Main Text), with threshold values of ‍B = 0‍ (without 
threshold, labeled ‘none’), ‍0.2‍, ‍0.5‍, and ‍0.6‍ applied in the lookup tables. (a) Observed vs. predicted neutral 
diversity levels across the autosomes. The graph was generated as detailed in Figure 5. Note that the division 
of neutral sites among bins varies with the choices of thresholds because it is based on corresponding maps. 
(b) Observed vs. predicted neutral diversity levels as a function of genetic distance from human-specific 
nonsynonymous (NS) substitutions. The graph was generated as detailed in Figure 3, using a narrower range 
of genetic distances to NS substitutions to highlight differences among thresholds. (c) Parameter estimates 
and summaries of the inferences. From left to right: (i) The estimated distribution of fitness effects, described in 
terms of the rate of mutation per generation with a given selection coefficient. Mutation rates (throughout) are 
measured relative to the estimate of the total mutation rate in humans, ‍u0 = 1.4 · 10−8

‍ per bp per generation 
(see Section 5). (ii) The total deleterious mutation rate (‍ud ‍) measured in units of ‍u0‍. (iii) Our prediction of the 
mean reduction in neutral diversity level due to background selection, measured as the ratio of the average 
predicted level across the genome, ‍̄π‍, to the predicted level in the absence of selection at linked sites, ‍π0‍. (iv) 
The reduction in composite log-likelihood (CLL) per site relative to the model with the highest CLL. Differences 
in CLL should be interpreted with caution, as this measure does not account for linkage disequilibrium. (d) The 
proportion of variance in diversity levels explained (‍R2‍) on different spatial scales (measured in non-overlapping 
windows).
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1.6 Software
We provide a set of Python programs to download and format the genomic data that we use (see 
Section 2), infer maps of the effects of linked selection and reproduce all of the analyses and figures 
described in this study (https://github.com/sellalab/HumanLinkedSelectionMaps). We rely on publicly 
available software for some steps, including the PHAST package (Siepel and Haussler, 2004; Siepel 
et  al., 2005), which we use to identify conserved regions and to estimate substitution rates (see 
Sections 3 and 5), and a modified version of the calc_bkgd program from McVicker et al., 2009, 
which we use to generate lookup tables of the effects of background selection (see Section 1.2).

Running the inference pipeline
The inference pipeline is controlled by a data structure called RunStruct, which is initialized with 
information about input/output file paths used, model parameters and other control variables, such 
as the precision ‍ϵ‍ of lookup tables (see Section 1.2) and the ‍B‍ threshold (see Section 1.5). Once 
RunStruct has been initialized, the pipeline proceeds through the following steps:

1.	 Download and organize input files (annotations, genetic maps, etc.).
2.	 Create lookup tables of the effects of background selection and/or selective sweeps (Section 

1.2) for the given set of selected annotations and grid of selection coefficients.
3.	 Organize polymorphism dataset that includes polymorphism data at putatively neutral sites 

(Section 2.1), corresponding estimates of substitution rates (Section 3.3) and corresponding 
values of lookup table into our compressed bins format (Section 1.3).

4.	 Run the two-step optimization algorithm to obtain estimates of model parameters, a map of 
the predicted effects of linked selection, and summary statistics including, for example, the esti-
mated deleterious mutation rate (‍ud‍) and proportion of beneficial substitutions (‍α‍) associated 
with different annotations and the average reduction in diversity levels (‍̄π/π0‍).

Appendix 1—figure 9. Predicted and observed diversity levels along chromosome 1 in the YRI sample. Diversity 
levels are measured in 1 Mb windows, with a 0.5 Mb overlap, with the autosomal mean set to 1. Thresholds were 
applied in the lookup tables. Lower thresholds yield better predictions in regions with low diversity levels, for 
example, near 50 Mb (red box).

Appendix 1—figure 8. The proportion of variance explained in 10 kb, 100 kb, and 1 Mb windows using a range of 
‍B‍ thresholds applied to lookup tables (‘lookup’) or during maximization (‘maximization’).
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Parallelization and runtimes
The composite-likelihood calculations during optimization can be partitioned into sums over 
subsets of bins of neutral sites, which in turn allows us to parallelize the optimization. The number 
of processing cores used in optimization is controlled by RunStruct. For our best-fitting models 
of background selection, loading lookup tables and neutral polymorphism data and running the 
two-step optimization requires ~1 GB of memory for each of the 15 processes in step 1 and the 
single process in step 2. Running each process on a single core takes ~12–24 hr or ~200–400 CPU 
× GB hours. The computing cluster we used allows up to 12 cores per process and thus using 
parallelization we were able to run the optimization for the best-fitting models in 1–2 hr. Our most 
complex models (see Section 4) required up to 10 GB of memory per process and took up to 60 hr 
with using 12 cores (i.e. ~ 104 CPU × GB hours).

2. Data sources and filters
2.1 Polymorphism data
We download 1000 Genomes Project phase 3 VCF files for all 26 populations from across the world 
(Auton et al., 2015). Unless otherwise noted, results in the Main Text and Appendix 1 are based on 
autosomal data from Yoruba (YRI); the results for other populations are reported in Sections 7 and 
9 of this Appendix 1.

We apply several filters to these data. First, we restrict our analysis to bases that pass all filters, 
denoted ‘P’ in the 1000 Genomes Project strictMask accessibility mask (Abecasis et  al., 2012; 
Auton et al., 2015). In addition, we remove low-complexity, simple repeats, duplications, and hg19 
build gaps using repeatMasker files downloaded from UCSC (Karolchik et  al., 2004). For each 
population, we restrict polymorphic sites to that population’s subset of biallelic SNPs from VCF 
files, excluding indels and other variants using VCFTools (Danecek et al., 2011). Remaining sites are 
treated as monomorphic.

We apply additional filters to restrict our analyses to putatively neutral sites. First, we remove 
the union of genic regions, as detailed in section 2.4. Second, we remove all remaining sites with 
phastCons conservation scores greater than 0.001 as described in section 3.1. Third, we remove 
putatively neutral sites at the telomeric ends of autosomes, near the edges of our genetic maps 
(Section 2.3), as detailed in Section 3.2. Accessibility and repeat masks remove  ~33.3% of all 
autosomal sites; excluding genic regions removes an additional ~3.3%; filtering based on phastCons 
scores removes another ~40.5%; and filtering sites at the telomeric ends removes ~1.2% more. We 
are left with a set of ~653 M putatively neutral sites, which correspond to ~23% of autosomal sites 
(based on hg19 build).

2.2 Multiple species alignment data
We rely on multiple sequence alignments to identify phylogenetically conserved and non-conserved 
regions of the genome, as well as for estimating local variation in neutral substitution rates (see 
Sections 3 and 4). To this end, we download mutation annotation format (MAF) files containing 99 
vertebrate genomes aligned to the human genome (build hg19), using the Multiz software from 
UCSC (Blanchette et al., 2004).

2.3 Genetic map
We use the (Hinch et al., 2011) genetic map, which was inferred from ancestry switches in African-
Americans. At the >10 kb scale, it is highly correlated to other fine-scale maps (e.g. Frazer et al., 
2007; Halldorsson et al., 2019). Among high-resolution genetic maps in humans, however, this one 
is likely the least confounded by diversity levels along the genome.

2.4 Human gene annotations
We use genic annotations from the UCSC knownGene database (Hsu et al., 2006) to identify putative 
targets of selection as well as regions that should be removed from our set of putative neutral 
sites. To this end, we rely on exon coordinates from knownGene transcripts to identify four kinds of 
annotations: (1) upstream/downstream regions, defined as 1 kb upstream of a transcript start and 
1 kb downstream of a transcript end; (2) untranslated region (UTR), both 5’ and 3’; (3) protein coding 
sequences (CDSs); and (4) splice regions, defined as 200 bp from the start and end of each intron.

For the purpose of identifying putative targets of selection, we rely on a non-overlapping subset 
of these four annotations. For genes with multiple splice variants, we keep only the set of exons 
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within the longest isoform. In rare cases of two overlapping gene predictions, we retain the gene 
with the longer exonic sequence. For the purpose of removing putatively functional regions from 
our set of putative neutral sites, however, we remove the union of all four annotations for all gene 
transcripts.

2.5 CADD scores
We use CADD scores (Kircher et al., 2014; Rentzsch et al., 2019) in order to annotate putative 
targets of selection in a couple of models (Sections 4.4 and 4.5). The standard CADD scores rely 
on the map of background selection effects generated by McVicker et al., 2009 as one of their 
inputs. While this input has minor effects on CADD scores (i.e. the top 1–10% of scores; see Table 
S3 in Kircher et al., 2014), in order to avoid any measure of circularity we approached the Kircher 
Lab (Martin Kircher, Lusiné Nazaretyan, Philip Rentzsch and Max Schubach), who manage the 
development of CADD scores, and who kindly agreed to generate and share a version of CADD 
score without the background selection map as input (this set of CADD scores is available on request 
from either the Kircher or Sella labs). For each site in the genome, we retain the highest of the 
three CADD scores (corresponding to the three possible point mutations). We use the distribution 
of scores across the autosomes to determine cutoffs for our annotations (e.g. sites within the top 
6% of scores) and use sites with scores that exceed these cutoffs as putative targets of selection 
(sometimes in conjunction with another annotation, e.g. exons).

2.6 ENCODE cCRE annotations
In two of our models (Section 4.4), we consider regulatory elements identified by the ENCODE 
project as putative targets of selection (Moore et al., 2020). To this end, we download ENCODE 
candidate cis-regulatory elements (cCREs) from the Tier 1  a group of biosamples, which include 
experimental support from all relevant assays used to define elements: high DNase signal and high 
H3K4me3, H3K27ac or CTCF signal (Moore et al., 2020). The resulting cCREs are categorized as 
(1) enhancer-like signatures (ELS), (2) promoter-like signatures (PLS), (3) CTCF-bound (CTCF) and (4) 
poised elements marked by DNase and H3K4me3 (H3K4me3). cCRE annotations were downloaded 
for each individual Tier 1 a biosample using the SCREEN tool (Moore et al., 2020) and lifted over 
from hg38 to hg19 coordinates.

2.7 Substitutions in the human lineage
We rely on an estimate of the human-chimpanzee ancestor inferred using the Enredo-Pecan-Ortheus 
(EPO) 6-species alignment pipeline (Paten et al., 2008) to identify likely substitutions on the human 
lineage. We use subsets of these substitutions that arose in putative targets of positive selection as 
candidate substitutions resulting in classic sweeps (Section 4.5). We derive sets of likely substitutions 
in a couple of different ways. First, we compare the reconstructed ancestral genome with the human 
hg19 reference, taking the differences as putative substitutions. In this case and others, we do not 
differentiate between low and high confidence calls (lower and upper case, respectively) in the 
estimated ancestor. Because the hg19 reference genome is a composite of genomes with different 
ancestries (Church et al., 2011), we also consider population-specific inferences of substitutions for 
YRI and CEU. To this end, we compare the reconstructed ancestral genome with the polymorphism 
data collected in the 1000 Genome Project for a given population. If a site is monomorphic in the 
population and differs from the HC ancestor, we include the site in our set of substitutions. For 
biallelic sites where one of the two alleles is ancestral, we randomly choose one of the alleles with 
probabilities that are weighted by allele frequency; if the chosen allele is the derived one, the site 
is considered a substitution. We generate two such samples for a given population to see whether 
different choices of substitutions affect our results. In practice, each of these sets differs from the 
set based on the hg19 reference at fewer than 1% of sites, the differences between the two samples 
for a given population are even smaller, and the results of our inference end up being insensitive to 
these differences (Section 4.6).

2.8 Covariates of ‍‍B‍‍‍
In Section 8, we ask whether genomic features that covary with ‍B‍ could account for the divergence 
between observed and predicted diversity levels in the ~2% of sites in which background selection 
is predicted to be the weakest. In addition to annotations of features whose sources were already 
mentioned, we also use the following datasets: (1) BED files of CpG islands downloaded from the 
UCSC Table Browser Karolchik et al., 2004; (2) BED files of testis CpG methylation levels in human 
males downloaded from the GEO database (GEO accession: GSM1127119; Barrett et al., 2013); (3) 
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coordinates of C>G hypermutable regions, given at 1 Mb resolution, taken from the Supplemental 
Information of Jónsson et al., 2017; (4) coordinates of centromeres and telomeres taken from the 
hg19 gaps track in the UCSC Table Browser Karolchik et  al., 2004; (5) inferred proportions of 
archaic ancestry in European (CEU) and East-Asian (CHB/CHS) populations based on estimates from 
Steinrücken et al., 2018.

3. Choice of exogenous parameters
Fitting our model to data requires several choices beyond those of datasets and filters. Here, we 
describe how we chose our set of putatively neutral sites and estimate the substitution rate at these 
sites. In Section 4, we describe how our results depend on the choice of targets of selection.

3.1 Choosing putatively neutral sites based on phylogenetic conservation
Our main source of information for choosing the set of putatively neutral sites is the degree of 
conservation in multiple species alignments. To this end, we rely on running phastCons (Siepel 
et  al., 2005) on subsets of the 99-vertebrate alignment (from which we exclude the human 
genome). PhastCons fits a phylogenetic hidden Markov Model (phylo-HMM) with two states, neutral 
and conserved, to multiple species alignments of contiguous sites along the genome using the 
relative substitution rates in the alignment columns to infer conservation. The phastCons score is 
the posterior probability that any given site is conserved. In principle, including more species in the 
alignment increases the power to distinguish between conserved and neutral sites (Appendix 1—
figure 10a). However, as the phylogenetic distance from humans increases, sequence conservation 
might become less informative about conservation in humans because of functional turnover (Ward 
and Kellis, 2012; Rands et al., 2014). In practice, the latter effect is ameliorated by the fact that 
phastCons only uses information at aligned sites and the proportion of the genome that aligns to 
the human reference decreases with phylogenetic distance (Appendix 1—figure 10b), especially in 
regions with considerable turnover.

In relying on phastCons scores to identify a set of putatively neutral sites, we need to choose two 
parameters: the phylogenetic depth of species included in the alignment and the cutoff conservation 
score below which a site will be considered neutral. In both cases, we pick the parameter values 
that maximize the variance in diversity levels explained by our best-fitting models (Appendix 1—
figure 11). Given these criteria, we chose to base our set of neutral sites on the alignment of supra-
primates (Appendix 1—figure 11a), and use the 35% of sites (in the set remaining after filters and 
removing genic regions; see Sections 2.1 and 2.4) with the lowest phastCons scores in this alignment, 
which includes sites with scores ≤ 0.001 (Appendix 1—figure 11b). These choices are robust to the 
phylogenetic depth used to specify the selection targets (see Section 4) and to the window size in 
which we measure the variance explained by our model (we show the results for windows of 1 Mb 
in Appendix 1—figure 11).

3.2 Removing sites at the telomeric ends of chromosomes
The Hinch et al. genetic map (Hinch et al., 2011) does not include recombination rate estimates 
for  ~0.5–1  Mb at the 5’ and 3’ ends of autosomes. Consequently, we are unable to describe 
background selection effects of putatively selected regions that lie in these telomeric regions, and 
our inferences and predictions at putatively neutral sites near the telomeres are less accurate. We 
therefore exclude putatively neutral sites in telomeric regions not covered by the genetic map. 
Similar to our approach in the previous section, we choose the map size of the region to remove 
based on how the choice affects the model fit to diversity levels across autosomes (Appendix 1—
figure 12a). We find that filtering putatively neutral sites in 0.1 cM from the edge of the genetic map, 
which amounts to ~0.8% of neutral sites, largely removes this ‘edge effect’. This genetic distance 
makes sense, as it is roughly one at which background selection effects of deleterious mutations with 
‍s = 10−3‍ – the strongest selection effects inferred to contribute substantially (Appendix 1—figure 
12b) – become negligible. Moreover, our estimates of model parameters are fairly insensitive to the 
removal of larger regions (Appendix 1—figure 12b).

3.3 Estimating local variation in mutation rates
We rely on estimates of substitution rates at putatively neutral sites along the genome to control for 
the effect of variation in mutation rates on neutral diversity levels (see Equation 1 in Section 1.1). 
To this end, we use phyloFit (Siepel and Haussler, 2004) to estimate the substitution rate in a 
phylogeny, in windows of putatively neutral sites across the genome. We choose the species to 
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include in the phylogeny based on the following considerations. The number of substitutions in 
a given window can be approximated by a Poisson random variable with expectation ‍λ‍, which is 
proportional to the total branch length of the phylogeny, ‍T ‍, and the number of putatively neutral 
sites in the window, ‍n‍. Consequently, the precision of our estimates of the relative mutation rate 
increase with ‍λ ∝ n · T ‍. Including more species in the phylogeny increase ‍T ‍ but reduces ‍n‍, because 
it reduces the fraction of putatively neutral sites that align to the human reference in all the species 
included. Appendix 1—figure 13a shows the trade-off between the two factors, for all subsets of 9 
primate species included in the 99-vertebrate alignment (see Section 2.2). We chose the subset that 
maximizes ‍n · T ‍, which includes 8 of the 9 species (gibbon is removed) with an average of ~0.135 
substitutions per putatively neutral site.

We estimate relative mutation rates along the genome based on the estimated substitution rates 
in the 8-primate phylogeny in windows with a fixed number of contiguous putatively neutral sites. 
Using windows with a greater number of sites decreases the sampling error but reduces the spatial 
resolution of our estimates. We use the variance in diversity levels explained by our best-fitting models 

Appendix 1—figure 10. The distribution of phastCons scores across autosomes for varying phylogenetic 
distances from humans. (a) The number of species included at each phylogenetic depth is noted in the caption. 
As the number of species in the alignment increases, the ability to distinguish between conserved and neutral 
sites increases. (b) The proportion of a species’ sequenced genome that aligns to the human reference (hg19) 
decreases with their phylogenetic distance from humans. The decrease is not monotonic because of other factors, 
for example, the quality of the sequencing. The proportion is not 1 for humans because of missing information in 
the reference genome.
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as a criterion for choosing the window size, finding that a window with 6000 putatively neutral sites 
performs best among the options we examined (Appendix 1—figure 13b). This choice corresponds 
to mean physical window sizes of 26,454 bp (with a S.D. of 18,455 bp) and to a mean relative error 
of ~3.3% in our estimates of the relative mutation rate per window. We also examined other ways 
of estimating the relative mutation rate, including using windows of fixed physical length and sliding 
windows with varying degrees of overlap, but none of these approaches yielded better results.

Appendix 1—figure 12. The effect of removing putatively neutral sites near telomeres on model fit and 
parameter estimates. We show the result for our best-fitting CADD-based model; results for phastCons scores are 
highly similar (not shown). (a) The proportion of variance in diversity levels explained for different window sizes, as 
a function of the size of the removed region (in cM). (b) (i-iii) Estimates of model parameters as a function of the 
size of the removed region (in cM).

Appendix 1—figure 11. The variance in diversity levels explained by our two best-fitting models using different 
choices of putatively neutral sites. In (a) we vary the phylogenetic depth of the multi-species alignment (i.e. 
the maximal phylogenetic distance from humans to any/all of the other species) and in (b) we vary the cutoff 
phastCons score for the least conserved sites included in our set. The best fit corresponds to the least conserved 
35% of sites (phastCons scores ≤ 0.001) in the supra-primate alignment (euar).
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Appendix 1—figure 13. Choosing the parameters used in estimating the relative mutation rate at putatively 
neutral sites. (a) The trade-off between the fraction of aligned sites and total branch length for subsets of the 
primate phylogeny. The fraction of aligned sites is estimated for our set of putatively neutral sites, and the total 
branch length is measured in terms of the average number of substitutions per site on the phylogeny, estimated 
by phyloFit. The maximum product of the fraction and branch length is attained by including all primates included 
in the 99-vertebrate alignment other than gibbon. (b) The variance in diversity levels explained by our best-fitting 
models across 1 Mb windows, for different choices of window sizes (i.e. the number of putatively neutral sites) used 
to control for variation in mutation rates at putatively neutral sites.

In the analyses in which we bin neutral sites, either by their distance to genomic elements (e.g. 
Figure 3) or by predicted ‍B‍ (e.g. Figure 5), we estimate the relative mutation rate in each bin. 
To this end, we use phyloFit (Siepel and Haussler, 2004) to estimate the substitution rate in the 
8-primate phylogeny on all sites in that bin jointly and then normalize this estimate by the average 
across bins.

4. Fitting models with different targets of selection
Our framework allows us to fit models of background selection, selective sweeps, or both, based on 
different choices of putative targets of negative and/or positive selection. Here we detail the analysis 
of the models and choices that are described in the Main Text. We use several criteria to evaluate 
how well the models fit the data; these indicate that models of background selection alone in which 
the targets of selection are chosen based on constrained elements annotated by either phastCons 
or CADD scores are best supported by the data. We also compare the predictions of these models 
with those of McVicker et al., 2009.

4.1 Background selection model based on phylogenetic conservation
We first consider a model of background selection in which targets of selection are chosen based on 
phylogenetic conservation. We identify conserved genomic elements using phastCons scores (Siepel 
et  al., 2005) calculated on monophyletic subsets of the 99-vertebrate alignment to the human 
genome (Blanchette et al., 2004), all of which exclude the human genome itself (see Section 2.2). 
We vary the phylogenetic depth of the subset of species considered (i.e. the maximal distance from 
humans). For a given depth, we obtain targets of selection by specifying a proportion of selected 
sites (i.e. of the total autosomal length in hg19) and choosing those sites that have the highest 
phastCons scores in the alignment (after excluding some sites, e.g. from up to 5% of the four-ape 
alignment to less than 0.1% of the 99-vertebrate alignment, that are in our putatively neutral set). As 
we have done for previous choices (e.g. Section 3.1), we examine how our choices of phylogenetic 
depth and of proportion of selected sites affect the models’ fit to autosomal diversity levels.

We find the fit to be largely insensitive to the choice of phylogenetic depth, with models based 
on conservation in the full 99-vertebrate alignment fitting slightly better than other choices of depth 
(Appendix 1—figure 14). Notably, the explained variance in diversity levels (in windows of different 
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sizes) is similar across depths, increasing slightly with the number of species included, other than 
for the four-ape phylogeny (Appendix 1—figure 14b and c). The fits of predicted diversity levels 
along the genome (e.g. Appendix 1—figure 14d) and around genomic features (e.g. Appendix 1—
figure 14e) are similar, with none of the choices of depth clearly outperforming others. Moreover, 
for all choices, the predicted diversity levels are well calibrated (Appendix  1—figure 14f), with 
the exception of regions in which background selection is predicted to be very weak, that is, ‍B ≈ 1‍ 
(see Section 8). When we restrict each annotation to the top 6% of scores in sites for which all 
phylogenetic depths include phastCons scores (~98% of sites satisfy this criterion), our results are 
unchanged.

Distantly related species, such as those added when we move from supra-primates (‍n = 25‍) to 
vertebrates out to lamprey (‍n = 99‍), have little effect on phastCons scores and thus on our models, 
because only a small proportion of their genomes align with humans (Appendix 1—figure 10b). This 
can be seen in the high correlations between the number of conserved sites based on different depths 
across windows of different sizes (Appendix 1—figure 15a). The spatial distribution of conserved sites 
is even fairly insensitive to varying the species included from four apes to 99 vertebrates (Appendix 1—
figure 15a). Interestingly, we later show that the improvement in fit across 1 Mb windows of the model 
based on conservation in 99 vertebrates compared with models based on conservation in shallower 
phylogenies is statistically significant, except for the model based on four-apes (Appendix 1—figure 
33), whereas the spatial distributions of conserved sites in the 99-vertebrate and four-ape models are 
the least correlated (Appendix 1—figure 15). The v-shaped dependence on phylogenetic depth may 
reflect a tradeoff in which phastCons scores based on deeper alignments have greater power to identify 
long-lived selected regions (see, e.g. Appendix  1—figure 10a), whereas those based on apes are 
better at identifying regions that are selected in humans but exhibited functional turnover in the deeper 
phylogeny (Rands et al., 2014; see also Section 6.2).

The model fit is also fairly insensitive to the cutoff conservation score used in choosing 
selection targets, although choosing 5–7% of autosomal sites as targets does appear to yield 
slightly better fits than other choices (Appendix 1—figure 16). Notably, the variance explained 
for different window sizes is maximized between 5–7% (Appendix 1—figure 16b and c); at the 
higher end of the range of cutoffs from 2% to 9%, the fits of diversity levels along the genome (e.g. 
Appendix 1—figure 16d) and around genomic features (e.g., Appendix 1—figure 16e) appear 
to be slightly worse, and the stratification of observed values by predicted ones spans a smaller 
range (Appendix 1—figure 16f). Among comparisons between models based on 6% and all other 
cutoffs in the range of 2–9%, only 8 and 9% lead to a statistically significant reduction of fit in 
windows of 1 Mb (Appendix 1—figure 33). Based on these analyses, we use the model with the 
6% of autosomal sites with the highest phastCons scores based on the 99-vertebrate alignment in 
many of our analyses, and refer to this as our best-fitting phastCons-based model in both the Main 
Text and throughout Appendix 1.

The insensitivity of our fits to varying the conservation cutoff can be understood as follows. 
phastCons estimates the probability that runs of sites belong to conserved segments (Siepel et al., 
2005). When we reduce the conservation cutoff, shorter segments with high scores tend to expand to 
include adjacent, lower scoring sites. This results in a high spatial correlation between the conserved 
sites corresponding to different cutoffs (Appendix 1—figure 15b). Given a lower conservation cutoff 
and longer ‘selected’ segments, we infer a lower deleterious mutation rate per site (Appendix 1—
figure 16a(ii)) but a similar deleterious mutation rate per segment (see, e.g. Appendix 1—figure 
15c), thereby producing similar troughs in diversity around such segments and similar fits overall.

4.2 Background selection model based on genic annotations
Next, we consider a model of background selection in which selection targets are chosen based on 
simple genic annotations, i.e., the exons divided into UTRs and protein coding sequences (CDSs), as 
well as regions in the immediate vicinity of these sequences controlling transcript regulation: regions 
1 kb up- and downstream of transcript start/end, and splice regions 200 bp at the start and end of 
introns (Black, 2003; Kim et al., 2005; see Section 2.4 for details). We allow selection parameters 
to vary among annotations, but find that in the best-fitting model only protein coding and splice 
regions have non-negligible deleterious mutation rates (for other annotations, ‍ud/u0 < 10−6

‍).
We also find that this model fits much worse than our best-fitting phastCons-based model 

(Appendix  1—figure 17): the variance in diversity levels it explains is substantially lower across 
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Appendix 1—figure 14. Comparison of background selection models based on phastCons conservation scores in 
phylogenies of difference depths. Shown are results of models based on conservation in four apes, eight primates, 
12 prosimians, 25 supra-primates, 50 laurasiatherians, 61 mammals, and 99 vertebrates extending out to lamprey. 
In all cases, we take the 6% of autosomal sites with the highest phastCons scores (excluding putatively neutral 
sites) as our targets of selection. Throughout Appendix 1, with the exception of Section 7, we show results using 
data from YRI. The panels describe: (a) Parameters and summaries of models (from left to right): (i) Estimated 
distribution of fitness effects, described in terms of the rate of mutations with given selection coefficients. 
Mutation rates throughout are measured relative to the estimate of the estimated average mutation rate per bp 
Appendix 1—figure 14 continued on next page
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different window sizes (Appendix  1—figure 17b), its fit to diversity levels along the genome is 
discernably worse (e.g. Appendix 1—figure 17c), and when observed diversity levels are stratified 
by the model’s predictions, they are less calibrated (Appendix 1—figure 17e). The genic model 
does do reasonably well at predicting how diversity levels drop with genetic distance around 
nonsynonymous substitutions (e.g. Appendix 1—figure 17d). The generally poorer fit as well as the 
reasonably good fit around nonsynonymous substitutions can be understood in terms of the overlap 
between our simple genic annotations and direct measures of constraint (Appendix  1—figure 
18). Namely, the genic annotations miss most constrained sites, which are intronic or intergenic 
(Appendix 1—figure 18b), but most protein coding regions (CDSs) are constrained (Appendix 1—
figure 18a) explaining why models including them as an annotation perform well near them.

4.3 Background selection models separating conserved exonic and non-
exonic sites
While background selection models based on simple genic annotations do worse than those based 
on phylogenetic conservation, using such annotations in conjunction with conservation could allow 
for improved fits. Notably, it is often argued that purifying selection in protein coding regions is 

per generation in humans, ‍u0 = 1.4 · 10−8
‍ (see Section 5). As detailed in Section 1.5, the inferred distribution of 

selection coefficients should be interpreted with caution. (ii) Estimated total deleterious mutation rate per selected 
site (‍ud ‍) measured in units of ‍u0‍. (iii) Estimated autosomal average fold-reduction in neutral diversity levels due to 
selection at linked sites, i.e., the ratio of average predicted heterozygosity, ‍̄π‍, to average predicted heterozygosity 
in the absence of selection at linked sites, ‍π0‍. (iv) The reduction in composite log-likelihood (CLL) per site relative 
to the model with the highest CLL. Differences in CLL should be interpreted with caution, as diversity levels at 
putatively neutral sites are not independent. (b) The proportion of variance in diversity levels explained (‍R2‍) on 
different spatial scales (measured in non-overlapping contiguous windows). (c) Close-up on the variance explained 
for several window sizes. (d) Predicted and observed diversity levels along chromosome 1. Diversity levels are 
measured in 1 Mb windows, with 0.5 Mb overlap, and are normalized by the mean level (as detailed in Figure 2). 
The results here and in subsequent panels are shown for a subset of depths, including four apes, 25 supra-primates 
and 99 vertebrates. (e) Predicted and observed diversity levels as a function of genetic distance to the nearest 
human-specific nonsynonymous (NS) substitutions. The plot was generated as detailed in Figure 3. Inset shows 
closeup between –0.05 and 0.05 cM. (f) Observed vs. predicted neutral diversity levels across the autosomes. The 
plot was generated as detailed in Figure 5.

Appendix 1—figure 14 continued

Appendix 1—figure 15. The spatial distribution of putatively selected sites remains similar when we vary the 
phylogenetic depth of the alignment used to infer conservation (shown in a), and the proportion of sites with 
the highest conservation scores included (in b). We compare two choices of selection targets at a time, and 
show the Pearson correlations (‍ρ‍) between the numbers of putatively selected sites among windows of different 
genetic lengths (measured in Morgans). The range of window sizes roughly corresponds to the spatial scales over 
which selection affects linked neutral diversity for the estimated range of selection effects. When we vary the 
phylogenetic depth, we use the 6% of autosomal sites with the highest phastCons scores, and when we vary the 
conservation cutoff, we use phastCons scores based on the 99-vertebrate alignment. (c) The deleterious mutation 
rate per gamete per generation inferred as a function of assumed proportion of selected sites in autosomes.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 16. Comparison of background selection models based on phastCons scores using 
different proportions of autosomal sites as selection targets. In all cases considered, we rely on conservation in 99 
vertebrates. Otherwise, all panels are as described in Appendix 1—figure 14.

stronger than in functional non-coding regions (Kellis et al., 2014; Rands et al., 2014); if this were 
true, then allowing them to have different selection parameters could result in better fits. To examine 
this possibility, we fit a model with two types of selection target: exonic (i.e. segments combining 
CDSs and UTRs) and non-exonic conserved sites (see details in Section 2.4).

https://doi.org/10.7554/eLife.76065
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We infer a higher deleterious mutation rate and stronger selection in exonic compared to non-
exonic sites (Appendix 1—figure 19a), although we note that our estimates of selection parameters 
could be affected by thresholding (see Section 1.5). The total deleterious mutation rate per gamete 
is similar in models with and without the exonic/non-exonic division (‍U = 1.6‍ and ‍U = 1.73‍ per 
gamete per generation, respectively), but the (weighted) average selection effect is greater in the 
model with the division (‍̄s = 1.71 × 10−3‍ vs. ‍̄s = 6.8 × 10−4‍ for the models with and without division, 
respectively), primarily due to stronger selection in conserved exonic sites. Overall, despite affording 
additional parameters, dividing conserved sites into exonic and non-exonic has little effect on our 
fits (Appendix 1—figure 19b–e).

Regardless of whether we separate exonic and non-exonic conserved sites, most of the reduction 
in diversity levels is caused by selection in non-exonic regions. Weakly selected mutations cause a 
large reduction in neutral diversity levels over short genetic distances, whereas strongly selected 
mutations cause a weak reduction over long genetic distances; but the integral reduction in 
diversity levels due to weak and strong selection on a given set of deleterious mutations end up 
roughly equivalent (Hudson, 1994). This property allows us to use estimates of the total deleterious 

Appendix 1—figure 17. The background selection model based on simple genic annotations fits worse than 
our best-fitting phastCons-based model. All the panels are as described in Appendix 1—figure 14 (but with the 
hatch-marked blue bars in a (i) and (ii) corresponding to different annotations of the genic model).

https://doi.org/10.7554/eLife.76065
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mutation rates in conserved exonic and non-exonic regions as a rough measure of their proportional 
effects on neutral diversity levels, despite differences in selection effects in these regions. These 
estimates suggest that ~80% of deleterious mutations occur in non-exonic regions, indicating that 
they account for most of the reduction in linked neutral diversity (e.g. in the model with the top 6% 
of phastCons scores, ~84% of selected sites and ~76% of deleterious mutations are non-exonic; with 
the top 6% of CADD scores, ~83% of selected sites and ~85% of deleterious mutations are non-
exonic; also see discussion in Section 4.6).

Given that the bulk of deleterious mutations exerting background selection occur in non-exonic 
regions, it is not surprising that a model including only conserved non-exonic sites fits the data only 
slightly worse than a model including all conserved sites as targets of selection (Appendix 1—figure 
20). By the same token, it is not surprising that a model including only conserved exonic sites fits 
the data substantially worse than models with either conserved non-exonic or all conserved sites as 
targets of selection (Appendix 1—figure 20). Moreover, the estimate of the deleterious mutation 
rate per site in the exonic model is much higher than in the other two (Appendix 1—figure 20a(ii)).

It is somewhat surprising that the model based on conserved exonic sites alone fits the data 
as well as it does (Appendix  1—figure 20b and c). This can be understood by noting that the 
spatial distribution of conserved exonic sites and of all conserved sites are fairly highly correlated 
(Appendix  1—figure 21). Given similar spatial distributions of selected sites, the distribution of 
background selection effects in the model with all conserved sites can be approximated by having 
a higher deleterious mutation rate per site at the fewer selected sites in the exonic model. These 
considerations explain why we infer a similar (albeit lower) average reduction in diversity levels but 
a substantially higher deleterious mutation rate in the exonic model (Appendix 1—figure 20a(ii) 
and (iii)). They also help to explain differences between our inferences and those of McVicker et al., 
2009, notably their implausibly high estimate of the deleterious mutation rate given that their main 
model assumes selection only at conserved exonic sites (see Main Text and Section 4.6).

4.4 Background selection models based on other annotations
We consider two additional widely-used functional annotations as putative background selection 
targets. First, we rely on the expanded encyclopedias of DNA elements (ENCODE) annotations of 
candidate cis-regulatory elements (cCREs), including enhancer-like signatures (ELS), promoter-like 
signatures (PLS), CTCF-bound (CTCF) and poised/DNAse-hypersensitive (H3K4me3) assayed in 25 
Tier 1 a biosamples (Moore et al., 2020), alongside protein coding sequences (CDSs) (see Sections 
2.4 and 2.6 for data sources and definition of elements). ENCODE cCREs attempt to capture the 
diverse repertoire of regulatory elements across cell types that control gene expression in different 
cellular and biological contexts. They are based on a large set of epigenomic assays, including ChIP-
seq measuring the occupancy of histone marks associated with both activation and repression of 
gene expression, pulldown of DNA-bound transcription factors, and DNA accessibility measured in 

Appendix 1—figure 18. The relationship between simple genic annotations and our main measures of constraint. 
Specifically, we examine the overlap of the 6% of autosomal sites with the highest phastCons or CADD scores 
with the genic annotation detailed in the text; we added intronic (INTRON) and intergenic (INTERG) annotations 
for completeness. (a) The fraction of each genic annotation within the 6% most constrained sites. (b) The fraction 
of the 6% most constrained within each genic annotation. (c) Enrichment of genic annotations in the 6% most 
constrained sites, i.e., the ratio of their proportion among constrained and all autosomal sites.

https://doi.org/10.7554/eLife.76065


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Murphy et al. eLife 2022;11:e76065. DOI: https://doi.org/10.7554/eLife.76065 � 41 of 70

terms of DNAse sensitivity. Since we infer the majority of autosomal sites under purifying selection 
to be non-exonic (see Section 4.3), we reason that some combination of cCREs may substantially 
overlap these sites. Importantly, cCRE annotations may allow us to better partition non-exonic 
regions into sub-classes of sites experiencing different selection strengths. We define our choices of 
selection targets (other than CDSs) by grouping cCRE in two alternative ways. In one, we take the 
union of cCREs of a given type over all 25 biosamples. In the other, we divide cCREs of a given type 
into those identified in few (≤ median number) or in many (> median number) biosamples (in practice, 
most cCREs included in the first set are cell-type specific whereas most of those in the second 
are found in a few to all cell-types). The model in which cCREs of a given type are split performs 
slightly better, presumably because of the additional degrees of freedom. Both models, however, 
fit the data substantially worse than either of our best-fitting models (Appendix  1—figure 22). 
The poor fit accords with the modest overlap between cCREs and our estimates of constraint sites 
(Appendix 1—figure 23). Moreover, PLSs, the cCREs that are most highly enriched in constrained 
sites (Appendix 1—figure 23a and c) are inferred to have a negligible deleterious mutation rate.

Appendix 1—figure 19. Dividing conserved sites into exonic and non-exonic sets leads to different estimates 
of selection parameters in each, but to little improvement in fit compared to the model based on conservation 
alone. Our set of conserved sites consists of the 6% of sites with the highest phastCons scores in the 99-vertebrate 
alignment (see Section 4.1). All panels are as described in Appendix 1—figure 14. Because of thresholding 
(Section 1.5), the model based on conservation alone is not formally nested in the one with the division into exonic 
and non-exonic sets, explaining how its maximum composite-likelihood can be slightly greater.

https://doi.org/10.7554/eLife.76065


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Murphy et al. eLife 2022;11:e76065. DOI: https://doi.org/10.7554/eLife.76065 � 42 of 70

Next, we consider Combined Annotation-Dependent Depletion (CADD) scores (Kircher et al., 
2014; Rentzsch et al., 2019). CADD scores predict the ‘deleteriousness’ of every point mutation in 
the genome. They are generated by using machine learning to integrate information from a diverse 

Appendix 1—figure 20. Comparison of background models using exonic, non-exonic and all conserved sites as 
targets of selection. Our set of conserved sites consists of the 6% of sites with the highest phastCons scores in the 
99-vertebrate alignment (see Section 4.1). All panels are as described in Appendix 1—figure 14.

Appendix 1—figure 21. The spatial correlations of exonic, non-exonic and all conserved sites for varying window 
sizes (‘cone’, ‘conn’ and ‘cona‘, respectively).

https://doi.org/10.7554/eLife.76065
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set of annotations (122 annotations in version 1.6), such as measures of phylogenetic conservation 
(including phastCons scores based on the 99-vertebrate alignment), predictions of regulatory 
elements (including many of the assays used for constructing the ENCODE cCREs), genic annotations 
(including those described in Sections 2.7 and 4.2) and predicted functional consequences of variants 
in protein coding sequences. The algorithm is trained using the depletion of 14.7  million high-
frequency (>95%) derived alleles (based on 1000 Genomes Data) relative to 14.7 million simulated 
variants with the same genomic distribution as the criterion for ‘deleteriousness’. While the standard 
CADD scores (version 1.6) incorporate the McVicker et  al., 2009 map of background selection 
effects as one of the annotations, we use a version in which this annotation was excluded in order to 
avoid circularity (see Section 2.5). We use the maximal score at each site (corresponding to the most 
deleterious of three possible point mutations), and, for comparison with our best-fitting phastCons-
based model (Section 4.1), we begin by considering the 6% of autosomal sites with the highest 
CADD scores (excluding putatively neutral sites) as targets of selection.

Appendix 1—figure 22. The model based on the ENCODE annotations of cCRE fit the data substantially worse 
than our best-fitting phastCons-based model using conservation in the 99-vertebrate alignment (conserved). The 
results shown correspond to the model in which we split each type of cCREs into those that occur in few (subscript 
1) and many biosamples (subscript 2). We infer a non-negligible deleterious mutation rate (i.e. ‍ud/u0 > 0.01‍) in 
2 of the 8 cCRE-based putative selection targets: enhancer like sequences and CTCF binding sites identified in 
few biosamples, ELS1 and CTCF1 respectively, as well as in protein coding regions (CDS). All the panels are as 
described in Appendix 1—figure 14.

https://doi.org/10.7554/eLife.76065


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Murphy et al. eLife 2022;11:e76065. DOI: https://doi.org/10.7554/eLife.76065 � 44 of 70

Despite incorporating many sources of information beyond phylogenetic conservation, and 
doing better than phastCons scores at predicting functional consequences of variants at a single site 
resolution (Kircher et al., 2014), the model based on CADD scores offers only a minor improvement 
over our best-fitting phastCons-based model (Appendix 1—figure 24). For example, the model 
based on CADD scores explains 59.9% of the variance in diversity levels in 1 Mb windows compared 
to 59.7% for the model based on phastCons scores, although this difference and differences in other 
window sizes are not statistically significant (see Appendix 1—figure 32 and Section 6.2). The little 
improvement is not that surprising, given that phylogenetic conservation is the annotation most 
correlated with CADD scores genome-wide (Kircher et al., 2014), and that the spatial distributions 
of sites with top CADD and phastCons scores are highly correlated on the spatial scales that impact 
background selection effects (Appendix 1—figure 25).

The fit of models based on CADD scores is fairly insensitive to the proportion of sites included 

as selection targets, with proportions of 5–7% yielding slightly better fits than other choices 

(Appendix 1—figure 26). This insensitivity and the increase in estimates of the deleterious mutation 
rate per site with decreasing proportion of sites used as selection targets (Appendix  1—figure 
26a(ii)) can be explained in the same way that we explained similar observations for models based 
on phastCons scores (Section 4.1).

Based on the analyses in Appendix 1—figure 24 and Appendix 1—figure 26, we refer to the 
model with the 6% of autosomal sites with the highest CADD scores as our best-fitting CADD-based 
model, and use it in most of our analyses here and in the Main Text. While the differences in fit of 
our best-fitting CADD-based and phastCons-based models are minor, the improved predictions of 
CADD compared to phastCons scores at the single site resolution substantially affects our estimates 
of the deleterious mutation rate based on evolutionary rates and thus their agreement with estimates 
based on the effects of background selection (see Main Text and Section 5).

4.5 Models with selective sweeps
Next, we examine whether models that include both background selection and selective sweeps 
fit the data better than models with background selection alone. Our inference should be able 
to tease apart the effects of sweeps, primarily because these effects, unlike those of background 
selection, are centered around the locations of substitutions. This feature should hold true for hard, 
partial or soft sweeps (Hermisson and Pennings, 2005; Przeworski et al., 2005; Pennings and 
Hermisson, 2006a; Pennings and Hermisson, 2006b; Coop and Ralph, 2012; Berg and Coop, 
2015), so long as they result in substitutions and have a substantial effect on diversity levels (SOM 
Section D in Elyashiv et al., 2016). Indeed, previous work that applied a similar methodology to data 
from Drosophila melanogaster was able to identify and quantify distinct signatures of background 
selection and sweeps alongside one another (Elyashiv et al., 2016).

Appendix 1—figure 23. The relationship between ENCODE cCRE annotations and our main measures of 
constraint. Specifically, we examine the overlap of the 6% of autosomal sites with the highest phastCons or CADD 
scores with promoter like sequences (PLS), enhancer like sequences (ELS), CTCF-bound (CTCF), poised/DNAse-
hypersensitive (H3K4me3), as well as sites that are not in any of these annotations (NONE). (a) The fraction of each 
cCRE annotation within the 6% most constrained sites. (b) The fraction of the 6% most constrained within each 
cCRE annotation. (c) Enrichment of cCRE annotations in the 6% most constrained sites, that is, the ratio of their 
proportion among constrained and all autosomal sites.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 24. The model based on CADD scores offer little improvement over the model based on 

phastCons scores (based on the 99-vertebrate alignment). In both cases, we take the 6% of sites with the highest 

scores. All the panels are as described in Appendix 1—figure 14.

Appendix 1—figure 25. The spatial correlation between the 6% of sites with the highest CADD and phastCons 

scores.

We consider a variety of models characterized by different sets of putatively selected sites. For 
background selection, we consider the two sets used in our best-fitting models based on phastCons 
and CADD scores. We also consider several choices for targets of positive selection, i.e., for sweeps, 
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corresponding to different kinds of substitutions that we infer to have occurred on the human lineage 
from the common ancestor with chimpanzees (see Section 2.7). Notably, we consider models that 
include the set of all nonsynonymous substitutions paired with either of the two sets for background 
selection. We also consider models with the substitutions that have occurred at sites with the top 2%, 
3%, …, 9% of phastCons or CADD scores, where in each case we separate substitutions into sets of 
nonsynonymous and other, and pair that choice with the corresponding set for background selection 

Appendix 1—figure 26. Comparison of background selection models based on CADD scores using different 
proportions of autosomal sites as selection targets. All panels are as described in Appendix 1—figure 14.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 27. Models with sweeps alone fit substantially worse than models with background 
selection alone. Shown are the results for sweep models based on either: all nonsynonymous substitutions 
(NS); nonsynonymous and other substitutions at sites within the top 9% of phastCons scores (9%: NS/other); 
or nonsynonymous and other substitutions at sites within the top 2% of phastCons scores (2%: NS/other). 
For comparison, we also show the results of our best-fitting phastCons-based background selection model 
(conserved). The panels are as described in Appendix 1—figure 14, with the exception of the bottom halves 
of panels a (i) and (ii), which show the proportions of substitutions that are estimated to be adaptive for a given 
selection coefficient (i) or in total (ii), for different annotations and sweeps models.

(i.e. based on phastCons or CADD scores). For each of these choices, we infer the set of substitutions 
on the human lineage in two ways, either comparing the estimated human-chimpanzee ancestral 
genome (Paten et al., 2008) with the human reference genome (hg19) or with a population (YRI or 
CEU) sample of human genomes (see Section 2.7). We perform the inference for all of these models 
(18 in total) using the same grid of selection coefficients for each of the sets of selected sites, and 
data from either YRI or CEU. In all cases, our estimate of the fraction of beneficial substitutions, ‍α‍, is 
essentially 0 (< 10-9). We do not show the results because they are indistinguishable from those for the 
corresponding models with background selection alone (i.e., see Appendix 1—figures 16 and 26).

We also consider models with sweeps alone. Appendix 1—figure 27 shows the results for a 
subset of these models, including the best-fitting one (e.g. based on variance explained). These 

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 28. The spatial correlation between targets of selection in sweep models and in our best-
fitting phastCons-based background selection model. Results shown for sweep models based on human-specific 
substitutions at sites within the top 2% and 9% of phastCons scores (see text for details).

models fit the data substantially worse than those with background selection alone, as seen 
by each of our measures (interestingly, even when considering the reduction in diversity levels 
around nonsynonymous substitutions; Appendix 1—figure 27d). Sweep models do account for 
substantial variance in diversity levels, but given that they add nothing to a model of background 
selection alone yet fit much worse, this is plausibly because they approximate some of the effects 
of background selection. Notably, both background selection and sweeps cause reductions 
in diversity levels near selected sites, and the densities of sites that give rise to background 
selection and sweeps in the corresponding models are spatially correlated along the genome 
(Appendix 1—figure 28). Moreover, the sweep models that fit the data best are those that rely 
on substitutions whose spatial distributions are the most highly correlated with the distributions 
of selection targets in our best-fitting background selection models (e.g. compare the fits and 
correlations for the models based on substitutions in the most conserved 2% and 9% of sites 
in Appendix  1—figures 27 and 28). Taken together, the evidence presented here supports 
previous studies (Coop et al., 2009; Hernandez et al., 2011) indicating that sweeps had little 
effect on current diversity levels and that background selection is the dominant mode of linked 
selection in humans.

4.6 Comparison with previous work by McVicker et al
For completeness, we conclude by comparing our inferences about the effects of background 
selection with those of McVicker et al., 2009. The McVicker et al. study was done more than a 
decade ago, before genome-wide resequencing polymorphism data were available. Instead, 
they ingeniously used a five-primate alignment of  ~4.7  million putatively neutral sites, relying 
on incomplete lineage sorting between human, chimpanzee and gorilla in order to learn about 
variation in the effective population size along the genome of the common ancestor of humans and 
chimpanzees. We rely on diversity levels in samples of 108 individuals at ~653 million putatively 
neutral sites (Section 2.1). Similar to this study, they relied on conservation scores and estimates of 
neutral substitution rates based on multiple sequence alignments, but they based themselves on the 
genomes of 15 placental mammals when we have 99 aligned vertebrate genomes at our disposal 
(Section 2.2). Lastly, they used a genetic map based on LD patterns (Myers et al., 2005), whereas 
we rely on genetic maps based on ancestry switches in African Americans (Hinch et al., 2011). The 
McVicker study also differed in several aspects of the methodology. Notably, McVicker et al. did not 
incorporate selective sweeps into their models, and were therefore unable to exclude the possibility 
that sweeps had made a substantial contribution to their inferred effects of background selection 
(McVicker et al., 2009). Also, McVicker et al. assumed that selection coefficients are distributed 
exponentially, whereas we assumed a more flexible (non-parametric) distribution on a grid. Despite 
limitations, the McVicker et al. maps of the effects of background selection capture substantial 
variation in diversity levels along the human genome (Appendix  1—figure 29a and Figure 7 in 
McVicker et al., 2009).

Nonetheless, our maps of the effects of background selection fit the data substantially better 
than the map from McVicker et al., both quantitatively and qualitatively (Appendix 1—figure 29). 
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They explain considerably greater proportions of the variance in diversity levels across window sizes 
(Appendix  1—figure 29c); for example, they explain  ~60% compared to  ~32% of the variance 
on the 1 Mb scale. Our predictions are well calibrated, whereas those of McVicker et al. are not 
(Appendix 1—figure 29d). Our predictions also do substantially better at capturing diversity patterns 
near specific genomic features, as illustrated by the fit to diversity levels around nonsynonymous 
substitutions (Appendix 1—figure 29b). The relatively poor quantitative fit of the McVicker et al. 
predictions around synonymous and nonsynonymous substitutions (Hernandez et al., 2011) was used 
to argue that the effects of background selection could be more pronounced around synonymous 

Appendix 1—figure 29. Our maps of the effects of background selection fit the data much better than the maps 
from McVicker et al., 2009. Shown are the results for our best-fitting CADD-based model. All panels are as 
described for the corresponding ones in Appendix 1—figure 14.

https://doi.org/10.7554/eLife.76065
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than nonsynonymous substitutions, thereby masking the effects of selective sweeps (Enard et al., 
2014). In this regard, the close fit of our predictions helps to refute one of two arguments for a 
residual, important role of selective sweeps.

We turn to the second argument, regarding estimates of the deleterious mutation rate, next. 
Our work and that of McVicker et al. differ markedly in our inferences about the rate and genomic 
distribution of deleterious mutations causing background selection in humans. In fact, the main 
problem in interpreting the McVicker et al. findings in terms of background selection alone is that 
they are based on an estimated deleterious mutation rate of ‍7.4 × 10−8‍ per generation at their 
‘conserved exonic’ sites (defined as sites within the top 5.3% of conservation scores in segments that 
overlap exons, accounting for ~1.1% of euchromatic autosomal sites) – more than fivefold higher 
than current estimates of the total mutation rate per site (see next Section). In contrast, as we detail in 
the next section, our estimates of the deleterious mutation rate per selected site are quite plausible 
(‍1.00 × 10−8‍ per generation for both of our best-fitting models based on phastCons and CADD 
scores; Figure 4 in Main Text). The results of McVicker et al. further suggest that background selection 
arises predominantly from deleterious mutations in the ‘conserved exonic’ regions covering ~1.1% 
of euchromatic autosomal sites (i.e. they estimate ~2.3 mutations per gamete per generation in such 
regions in exons compared to ~0.1 elsewhere). In contrast, our results suggest that background 
selection arises mostly from deleterious mutations at non-exonic sites (i.e. from ~1.22 and~1.27 
mutations per gamete per generation in non-exonic compared to  ~0.38  and~0.23 mutations in 
exonic sites in the models based on phastCons and CADD scores, respectively). Notably, in our best-
fitting models, these deleterious mutations occur in 6% of autosomal sites as opposed to only ~1% 
in the McVicker et al. model. Having the effects of background selection arise from deleterious 
mutations in a substantially greater fraction of the genome largely explains why our estimates of the 
deleterious mutation rate are much lower and much more plausible (Figure 4 and Appendix 1—
figure 30).

5. Assessing estimates of the deleterious mutation rate
Here, we consider the plausibility of the deleterious mutation rate that we estimated by fitting 
models of background selection. First, we consider the total mutation rate per site in humans, which 
provides an upper bound on the deleterious mutation rate. Second, we rely on the reduction in 
substitution rates at our selection targets relative to putative neutral sites to obtain estimates of the 
proportion of mutations at selected sites that are deleterious. These estimates should be largely 
independent of those that we obtained by fitting background selection models, and can therefore 
be used to evaluate the plausibility of the latter. Lastly, we briefly consider to what extent we should 
expect the two kinds of estimates to line up.

5.1 Estimates of the total mutation rate per site
The total mutation rate per site includes contributions from point mutations, indels, mobile 
element insertion (MEIs) and copy variants such as inversions. Current estimates of mutation 
rates per site per generation in humans are ‍1.2 × 10−8 − 1.29 × 10−8‍ for point mutations (Kong 
et  al., 2012; Besenbacher et  al., 2016), ‍8.79 × 10−10 − 9.82 × 10−10‍ for indels (Besenbacher 
et  al., 2016), whereas the rate for MEIs and other structural variants (including inversions 
and duplications) are more than two orders of magnitude lower than the point mutation rate 
(Sudmant et al., 2015; Gardner et al., 2019; Belyeu et al., 2021), making their contribution 
to our calculations below negligible. Adding up point mutation and indel rates results in a per 
site per generation estimate of ‍1.29 × 10−8 − 1.38 × 10−8‍. In estimating an upper bound on the 
rate of deleterious mutations at selected sites, we may consider weighting deletions by their 
length. For instance, we would like to count a deletion that begins at a neutral site but includes 
a selected site yet avoid counting one that includes multiple selected sites more than once. 
Counting deletions, which account for ~0.725 of indels, between once and up to their mean size 
of ~2.88 bp (Besenbacher et al., 2016), yields estimates of the total mutation rate in the range 
of ‍1.29 × 10−8 − 1.51 × 10−8‍ per site per generation. Throughout the paper, we use the middle 
of this range, that is, ‍1.4 × 10−8‍ per site per generation, as our estimate for the total mutation 
rate (‍u0‍). The estimates of the deleterious rate per putatively selected site for our best-fitting 
models fall well below the estimated total mutation rate (Figure 4 and Sections 4.1 and 4.4), as 
one would hope.

https://doi.org/10.7554/eLife.76065
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5.2 Estimating the proportion of deleterious mutations at putatively selected 
sites
Next, we estimate the proportional reduction of the substitution rate at selection targets relative 
to that at putatively neutral sites. We apply phyloFit (Siepel and Haussler, 2004) to the human-
chimp-gorilla-orangutan (HCGO) alignment (based on the HCGO sequences from the 99-vertebrate 
alignment described in Section 2.2) in order to estimate the substitution rate per site on the human 
lineage from the ancestor with chimpanzee, for sets of selected and neutral sites (Section 3.1). To 
control for differences in base composition between the two sets, we estimate the reduction in 
substitution rates separately for each type of ancestral nucleotide (e.g. substitutions from G>X), and 
weight the proportional reductions by the proportions of each nucleotide in the set of selected sites. 
Controlling for the composition of triplets rather than single nucleotides produces similar estimates. 
Note that in choosing our sets of neutral and selected sites based on phylogenetic conservation 
(Sections 3.1 and 4.1), we excluded the human genome from the alignments and therefore our 
estimates of the reduction in substitution rates on the human branch should be minimally confounded 
with the choice of sites. Similarly, the conservation scores that serve as input for calculating CADD 
scores are based on the same 99-vertebrate alignment excluding the human reference genome (see 
Supplementary Table 1 in Kircher et al., 2014).

Appendix 1—figure 30. Different estimates of the deleterious mutation rate at putatively selected sites, 
measured relative to total mutation rates per site (‍u0‍). Estimates based on evolutionary rates are shown for sets 
of selected sites chosen based on either: (a) the top 4–8% of phastCons scores for the 99-vertebrate alignment, 
(b) the top 4–8% of CADD scores, or (c) the top 6% of phastCons scores for alignments of varying phylogenetic 
depths. As expected, (see Section 4.1), the estimates are fairly insensitive to the phylogenetic depth (c). (d and 
e) Estimates based on evolutionary rates vs. those based on the effects of background selection, for sets of 
putatively selected sites based on phastCons scores for the 99-vertebrate alignment (d) and on CADD scores 
(e). (f) Estimates for different sets of putatively selected sites based on evolutionary rates (ER) and background 
selection effects (BS). The range of estimates based on background selection effects (in d-f) is due to the 
uncertainty about the total mutation rate per site (Section 5.1).

https://doi.org/10.7554/eLife.76065
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The estimates of the proportion of mutations that are deleterious are shown in Appendix 1—
figure 30 (and Figure  4), along with their comparison to estimates from background selection 
models. Expectedly, estimates based on substitution rates decline slightly as the cutoff phastCons 
or CADD score decreases (i.e. as the percentage of sites included in the selected set increases; 
Appendix 1—figure 30a and b). Importantly, estimates based on substitution rates are substantially 
greater for the sets chosen based on CADD than on phastCons scores (Appendix 1—figure 30a and 
b), whereas estimates based on background selection effects are similar in both cases (Appendix 1—
figure 30d and e). We interpret this finding as reflecting the greater ability of CADD scores to 
identify selection on a single site resolution (Kircher et al., 2014), plausibly because CADD scores 
incorporate measures of phylogenetic conservation based on one site at a time (e.g. phyloP, GERP; 
Cooper et al., 2005; Apostolico et al., 2006) in addition to measures that rely on runs of sites, such 
as phastCons scores. Consequently, the two estimates of the deleterious mutation rate are within 
a factor of 2 for our best-fitting phastCons-based model whereas they overlap for our best-fitting 
CADD-based model, while the estimates based on background selection effects are similar in both 
cases (Appendix 1—figure 30d and e).

5.3 Interpreting the relationship between the two estimates
We would expect the two estimators of the deleterious mutation rate to yield similar but not 
identical answers. For one, the range of selection coefficients that cause a substantial reduction 
in evolutionary rates, e.g., ‍4Nes ≳ 3‍ (Kimura and Crow, 1964), is greater than the range of effects 
that cause a substantial reduction in diversity levels via classic background selection, e.g., ‍4Nes ≳ 10‍ 
(Charlesworth et al., 1993; McVean and Charlesworth, 2000; Gordo and Charlesworth, 2001). 
This consideration suggests that estimates based on evolutionary rates should be greater than 
those based on the effects of background selection (although non-equilibrium demographic history, 
notably changes in population size, might complicate quantitative expectations). On the other hand, 
we cannot expect to identify all selected sites and only those by our criteria. Estimates based on 
the effects of background selection plausibly soak up much of the contribution of missing selected 
sites, because their spatial distribution is likely to be highly correlated with sites that are included in 
our sets (see Section 4.1). In contrast, estimates based on evolutionary rates are affected only by the 
sites in our sets and would be biased downwards by the accidental inclusion of effectively neutral 
sites. For these reasons, we do not expect the two estimates of the deleterious mutation rate to 
align perfectly. Nonetheless, it is encouraging that when we rely on selected sites that amount to 
current estimates of the proportion the human genome under selection, that is,~5–9% (Kellis et al., 
2014; Rands et  al., 2014), our two estimates of the deleterious mutation rate are quite similar. 
Moreover, the similarity is highest when we use CADD scores, which are better than phastCons 
scores at identifying selection on a single site resolution (Kircher et al., 2014). Thus, our results 
resolve the issues raised by the substantial overestimation of the deleterious mutation rate in past 
work (McVicker et al., 2009).

6. Statistics
6.1 Estimates of explained variance
Our main quantitative measure for the fit of our models is the variance in diversity levels explained 
by our predictions, ‍R2‍, for different window sizes. A concern in using ‍R2‍ as a measure of fit is that 
it not be inflated by overfitting. To avoid this problem, we exclude the data in a given window from 
the inference used to predict diversity levels in that window. Specifically, we divide the autosomal 
polymorphism data into contiguous non-overlapping blocks of 2 Mb, and repeat the inference using 
the data excluding one block at a time. As the autosomes cover just over 2.88 Gb, this amounts to 
repeating our inference 1440 times. When we calculate the contribution of a given window (of size 
≤ 2 Mb) to ‍R2‍, we use the prediction based on excluding the 2 Mb block containing that window. 
In Section 6.3, we use the same datasets and inferences to calculate jackknife estimates for the 
sampling error of our estimates of model parameters.

Appendix 1—figure 31 shows the relative difference between our ‍R2‍ estimates using all the data 
and this exclusion approach for our two best-fitting models. Additionally, in Appendix 1—figure 48 
we compare the results of our main analyses of the best-fitting CADD-based model, using all the 
data, out-of-sample predictions in contiguous, non-overlapping 2  MB blocks, and out-of-sample 
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predictions for each autosome. These results suggest that overfitting has a tiny effect, which is not 
surprising given the large amounts of data used in our inferences. Given the negligible effect and 
computational burden of these analyses, we do not repeat it for each of the models we examine, and 
use the ‍R2‍ estimates based on predictions using all the data instead.

6.2 Comparing the fit of different maps
We use permutations of paired maps to test whether differences in ‍R2‍ between two maps are 
statistically significant. Assume without loss of generality that ‍R2‍ for a given window size is greater 
for map I than for map II. We divide autosomes into 2881 contiguous non-overlapping blocks of 
1 Mb and generate a new map (map A) by picking each 1 Mb block from map I or II at random; we 
generate the complementary map (map B) by picking the alternative 1 Mb blocks throughout. This 
way, we generate ‍n‍ paired maps and calculate the difference in ‍R2‍ between each pair, ‍∆R2‍, to obtain 
a distribution for the expected differences in ‍R2‍ between maps I and II under the null hypothesis that 
their fit to polymorphism data is roughly equivalent. Having ‍r‍ denote the number of permutations 
with ‍∆R2‍ greater than or equal to the observed difference ‍∆R2

O‍, we estimate the p-value for ‍∆R2
O‍ 

under the null by ‍p = (r + 1)/(n + 1)‍.
We illustrate this procedure by comparing our two best-fitting models (Appendix 1—figure 32). 

The fit of these models is very similar, with, for example, ‍R2 = 0.599‍ and ‍0.597‍ at the 1 Mb scale for the 
models based on CADD and phastCons scores, respectively. We find that the difference between the 
fits is not statistically significant, supporting our claim that the functional annotations incorporated 
in CADD offer little or no improvement in predictive power (see Main Text and Section 4.4). Using 

Appendix 1—figure 31. The relative difference between ‍R2‍ estimates using all the data and the exclusion 
approach described in the text, for our two best-fitting models.

Appendix 1—figure 32. Assessing the differences in fit between our best-fitting models on three spatial scales. 
We show the distribution of differences in explained variance (‍∆R2‍) for 10,000 paired permutations of the 
best-fitting CADD and phastCons based maps. The part of the distributions with ‍∆R2 ≥ ∆R2

O‍ is in red, and the 
corresponding p-value is shown above.

https://doi.org/10.7554/eLife.76065


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Murphy et al. eLife 2022;11:e76065. DOI: https://doi.org/10.7554/eLife.76065 � 54 of 70

this procedure to compare our best-fitting phastCons-based model with phastCons-based models 
with alternative phylogenetic depths or conservation thresholds, we only find significant differences 
at the 1 Mb scale in a small subset of cases (Appendix 1—figure 33a and b). The same is true 
for comparisons of our best-fitting CADD-based model with CADD-based models with alternative 
thresholds (Appendix 1—figure 33c). We note that even when the fits are significantly worse, they 
are still far closer to the fits of our best-fitting models than any of the models based on other choices 
of selection targets discussed in Section 4.

Interestingly, the difference in fit between the model based on conservation in 99-vertebrates and 
four-apes is the only non-significant comparison across phylogenetic depths (Appendix 1—figure 
33a), despite the fact that other phylogenetic depths have ‍R2‍ values closer to the 99-vertebrate 
result  across various window sizes (Appendix  1—figure 14c). We believe this is due to the fact 
that the four-ape alignment may actually better capture some recent targets of selection, but with 
greater noise, reflecting a tradeoff in the power to detect conservation vs. functional turnover. 
As a result, a non-negligible subset of 1 Mb windows in the four-ape yield better fits to the data 
than the 99-vertebrate map. In contrast, maps from deeper in the phylogeny are essentially highly 
correlated to the 99-vertebrate map, and the small differences in fit are uniformly biased in favor of 
the 99-vertebrate map across 1 Mb windows due to its greater power to resolve the boundaries of 
conserved elements.

6.3 Sampling error in parameter estimates
We use a jackknife resampling approach to estimate the sampling errors of our parameter estimates 
(see, e.g. Patterson et  al., 2012). To this end, we perform the inference on datasets excluding 
2 Mb blocks as described in Section 6.1. Specifically, denoting the parameter of interest by ‍θ‍, and 
the estimate based on the data set excluding block ‍i = 1, . . . , n‍ by ‍̂θi‍, our jackknife estimates of the 

Appendix 1—figure 33. Significance level of differences in fit between our best-fitting models and variations on 
these models, on the 1 Mb spatial scale. (a and b) Comparison of our best-fitting phastCons-based model with 
phastCons-based models with alternative phylogenetic depths (a) and conservation thresholds (b). (c) Comparisons 
of our best-fitting CADD-based model with CADD-based models with alternative thresholds.

Appendix 1—figure 34. Estimates of the sampling errors of parameter estimates for our two best-fitting models. 
The bars denote ‍±SE ‍ estimated using jackknife as described in the text.

https://doi.org/10.7554/eLife.76065
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 as our measure of sampling error (SE). Appendix 1—figure 34 shows the SEs for 

the parameter estimates of our two best-fitting models. As these examples illustrate, these errors 
are quite small and do not affect the conclusions of our analyses. Consequently, and given the 
computational cost of obtaining them, we do not calculate these SEs for most models.

7. Results for other human populations
Here, we examine whether the maps of the effects of background selection that we infer and evaluate 
using polymorphism data from YRI provide a good fit to data from other populations. To this end, we 
use data from each of the other 25 populations collected in Phase III of the 1000 genomes project 
(Auton et al., 2015), which span a wide geographic range and have had different demographic 
histories (Auton et  al., 2015), to infer the maps corresponding to our best-fitting models. The 
population-specific maps can be found at https://github.com/sellalab/HumanLinkedSelectionMaps.

Overall, we find that the maps and main parameters inferred in different populations are 
remarkably similar (Appendix 1—figures 35, 50–52). When we compare the predictions of relative 
diversity levels along autosomes (i.e. relative to the mean in each population) we find nearly perfect 
correlations across window sizes (Appendix 1—figure 35a and b). The distributions of selection 
effects of deleterious mutations, estimates of the total deleterious mutation rate per selected site, 
and the mean reduction in diversity levels, are all quite close among populations (Appendix 1—
figure 35c). The similarity among maps implies that we can use the maps of relative diversity levels 
inferred in YRI to predict diversity levels in other populations without loss of accuracy. Specifically, we 
multiply predictions based on YRI by a constant, chosen such that the predicted and observed mean 
diversity level in the focal population match. Appendix 1—figure 36 illustrates that the adjusted YRI 
maps predict diversity levels as well as the population specific ones.

Appendix 1—figure 35. The maps and parameter estimates for different populations are remarkably similar. 
Shown are the results for our best-fitting models using data for one of 1000 Genomes Project populations from 
each continental group: Africa – Yoruba (YRI), Europe – North-Western European (CEU), South Asia – Gujrati 
Indian (GIH), East Asia – Japanese (JPT), and Americas – Mexican (MXL). (a and b) The Pearson correlations 
between predictions of relative diversity levels (compared to the population mean) in YRI vs. the other 
populations for the models based on phastCons (a) and CADD (b) scores. (c) Comparison of parameter estimates 
using data from these populations (panels c (i-iii) as described in panels a (i-iii) in Appendix 1—figure 14).

https://doi.org/10.7554/eLife.76065
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While the maps inferred in different populations are highly similar, the proportion of variance 
explained differs substantially among populations (Appendix 1—figure 36). These differences can 
be explained by the effects of different demographic histories (e.g. historical changes in effective 
population sizes) on variation in diversity levels across the genome. To make this more concrete, 
we consider a simple model for the variance in neutral diversity levels in non-overlapping windows 
of a given size; for simplicity, we ignore variation in mutation rates across windows. We denote the 
relative (average) diversity level in window ‍i‍ by ‍yi = πi/π̄‍, the predicted relative diversity level in that 
window by ‍fi = Bi/B̄‍, and the corresponding residual by ‍ei = yi − fi‍, where ‍̄y = f̄ = 1‍ and ‍̄e = 0‍. We can 
now decompose the variance in relative diversity levels across windows, as

	‍ V
(
y
)

= V
(
f
)

+ V
(
e
)

+ 2Cov
(
e, f

)
,‍� (15)

where ‍V(f)‍ corresponds to the variance due background selection; ‍V(e)‍, the variance of residuals, can 
be thought of as reflecting the effects of drift and demographic history; and the covariance, ‍Cov(e, f)‍, 
can be thought of as reflecting the interaction between background selection and demographic 
history. Recasting the proportion of variance explained in these terms, we find that
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where ‍β = 2 · Cov(e, f)/V(f)‍ is the slope of the linear regression of the residuals against the predictions, 
which reflects the effects of interactions between background selection and demographic history on 
diversity levels.

Given that we found the predicted effects of background selection to be highly similar across 
populations, this modeling exercise sets up a testable prediction: if the interaction terms were nil, 
the difference in ‍R2‍ among populations should come from the total variance in the denominator, 

‍V(y) = V(f) + V(e)‍, and specifically from the contribution of demographic history to this variance, ‍V(e)‍. 
Appendix 1—figure 37a–c suggest that while most of the differences in ‍R2‍ among populations 
are indeed explained by differences in total variance due to demographic history, the interaction 
terms (the ‍β‍s) are non-zero. To examine these interactions further, we look at the relationship 
between residuals, ‍ei‍, and predictions, ‍fi‍, in several populations (Appendix 1—figure 37d–h). We 
find a strong apparent dependency at the low and high ends of our predicted range, presumably 
reflecting artifacts due to thresholding at the low end (see Section 1.5) and possibly the effects of 
ancient introgression at the high end (see Section 8); removing 1.5% of the windows at each of these 
extremes appears to largely remove these effects. In the rest of the range, we find a weak negative 
correlation between residuals and predictions (which becomes somewhat stronger when we remove 
the ends). We also find that this correlation varies substantially among populations, for example, 
–0.06 to –0.1 for 1 Mb windows, which is what we would expect given differences in demographic 

Appendix 1—figure 36. The proportion of variance in diversity levels explained (‍R2‍) in different populations, 
using the population specific map vs. the YRI map. We show the results for three window sizes (10 kb, 100 kb, 
and 1 Mb) based on our best-fitting CADD-based model. Each point corresponds to one of the 26 populations 
sampled in the 1000 genomes project and is colored based on continental origin, i.e., African (AFR), European 
(EUR), South Asian (SAS), East Asian (EAS), and American (AMR).

https://doi.org/10.7554/eLife.76065
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history. Thus, our analysis suggests that interactions between demographic history and background 
selection also contribute to the differences in ‍R2‍ among populations.

In summary, our findings suggest that the effects of background selection are similar across 
human populations, and that differences among populations in the proportion of variance in diversity 
levels that our predictions explain are likely due to differences in population demographic history. 

Appendix 1—figure 37. Differences among populations in the variance in diversity levels explained by our map 
of the effects background selection. (a–c) The variance explained (‍R2‍) as a function of ‍1/V(y)‍ (where ‍V(y)‍ is the 
total variance), for three choices of window size. If the interaction terms (‍β‍) were 0, we would expect populations 
to fall on the dashed line ‍R2 = V(f) · 1/V(y)‍, with slope ‍V(f)‍ and differences in ‍V(y)‍ due to demographic history. 
The distances from the dashed line reflect the interaction terms (specifically, ‍R2 − V(e)/V(y) = β · V(e)/V(y)‍; 
Equation 15). The points correspond to the 26 populations sampled in the 1000 genomes project (Auton et al., 
2015) and are colored by continental origin as described in Appendix 1—figure 36. Here we base our predictions 
on our best-fitting CADD-based map in YRI, but using other population-specific maps yields almost identical 
results. (d-h) The relationship between the residuals (‍ei‍) and predictions (‍fi‍) in representative populations (same 
as in Appendix 1—figure 36) on the 1 Mb scale. The 1.5% of windows with lowest and highest predicted values, 
where our predictions are likely off for various reasons (see Sections 1.5 and 8), are marked in blue. The ‍β‍s for each 
population, with and without extreme points, are shown on the graph (denoted ‘a’ for ‘all’ and ‘t’ for ‘trimmed’, 
respectively). As above, we use the predictions in YRI, but other population maps yield qualitatively similar results 
(‍β‍s obtained using the corresponding population specific maps are shown in parenthesis).

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 38. Observed vs. predicted neutral diversity levels across the autosomes (similar to Figure 5). 
(a) Light orange scatter plot: We divide putatively neutral sites into 100 equally sized bins based on the predicted 
effect of background selection, ‍B‍, from the best-fitting CADD-based model. For predicted values (x-axis), we 
average the predicted ‍B‍ in each bin. For observed values (y-axis), we divide the average diversity level in each 
bin by the average predicted diversity level in the absence of background selection, ‍π0‍, after scaling each in bin 
by its estimated local (relative) mutation rate (‍u(x)/ū‍ in Equation 8; Section 3.3). Dark orange curve: the LOESS 
curve for a similarly defined scatter plot but with 2000 rather than 100 bins (with span = 0.1). (b) A close-up near 
‍B = 1‍ corresponding to the boxed region in (a). Here, the LOESS curve has span = 0.033 and the scatter plot 
corresponds to 2000 bins (showing the top 30%).

Interestingly, there appears to be an interaction between the effects of background selection and 
demography on diversity levels, which varies among populations, as recently suggested by several 
studies (Comeron, 2017; Wang et al., 2017; Torres et al., 2018; Torres et al., 2020). Our maps of 
the effects of background selection have enabled us to identify evidence for these interaction effects 
and should facilitate a better understanding of these effects in the future.

8. Diversity levels where background selection is weakest (‍B ≈ 1‍)
Our maps of background selection effects are well calibrated throughout the range of predicted 
effects, with two exceptions. One is in the ~5% of sites in which background selection is predicted 
to be strongest, where predictions are imprecise; this arises from the thresholding approximation we 
apply in fitting, and is discussed in Section 1.5. The other exception is for sites in which background 
selection is predicted to be the weakest, where observed diversity levels are markedly greater than 
expected (Figure 5 and Appendix 1—figure 38). A close up on this region shows that observed 
values depart from predictions in the ~2% of sites where ‍B ≳ 0.98‍ (Appendix 1—figure 38b). Similar 
behavior is seen in all 26 populations sampled in the 1000 Genomes Project (Appendix 1—figure 
52). We consider possible explanations for it here.

First, we characterize the main covariates of the strength of background selection (quantified by ‍B‍), 
such as recombination rate, base composition, and chromosomal position. Beyond the inherent interest 
in these covariates, they point toward processes that may explain the departure from our predictions 
near ‍B = 1‍. Second, we investigate whether differences in rates of different kinds of mutations and of 
biased gene conversion associated with the covariates of ‍B‍ can explain the departure near ‍B = 1‍; our 
analysis suggests that they cannot. Third, we argue that the residual effect of ancient introgression 
between archaic humans and ancestors of extant humans may contribute to this departure.

8.1 Covariates of ‍‍B‍
We expect the effects of background selection to be strongest in regions with low rates of 
recombination and high densities of functional sites, because neutral variation in such regions will be 
linked to more deleterious mutations. In line with these expectations, recombination rates increase 

https://doi.org/10.7554/eLife.76065
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with greater predicted ‍B‍ (Appendix 1—figure 39a); in particular, they increase sharply between 
the 99th and 100th percentile of predicted ‍B‍ to >10 cM/Mb, which is tenfold the autosomal average. 
In addition, as expected, the average level of conservation around neutral sites decreases as ‍B‍ 
increases (Appendix 1—figure 39b and c).

Next, we consider base composition and other factors that are known to affect rates of mutation 
and biased gene conversion (BGC). GC content has a J-shaped dependence on predicted ‍B‍ 
(Appendix 1—figure 40a). The greater peak in GC content, in regions under weak background 
selection (‍B‍ near 1), is plausibly largely driven by the long-term effects of BGC due to higher rates of 
recombination in these regions (Duret and Galtier, 2009; Li et al., 2019; Appendix 1—figure 39a). 
Both peaks (for low and high ‍B‍) are associated with an increase in the proportion of GC sites in CpG 
islands but this proportion is small throughout (<1%) (Appendix 1—figure 40b), suggesting that it 
has little effect on GC content and on mutation rates. In contrast, methylated CpG content increases 
sharply as predicted ‍B‍ approaches 1 (Appendix 1—figure 40c), suggesting a corresponding increase 
in the rate of C>T transitions. The proportion of sites in C>G hypermutable regions also increases 
with predicted ‍B‍ (Appendix 1—figure 40d).

Lastly, predicted ‍B‍ is associated with chromosomal position, with regions under weak 
background selection (‍B‍ near 1) clustered near telomeres (Appendix 1—figure 41). In turn, regions 
near telomeres are early replicating, and replication timing is known to affect mutational patterns 
(Stamatoyannopoulos et al., 2009).

8.2 Mutational spectrum and biased gene conversion
As we noted, the covariates of ‍B‍ are associated with mutational processes and with biased gene 
conversion that affect diversity and divergence levels (Appendix 1—figure 42). Specifically, we see 
the footprints of the following processes:

•	 Increased rates of A>C/T>G  and A>G/T>C substitutions near ‍B = 1‍ (Appendix  1—figure 
42a), due to higher rates of biased gene conversion that are associated with the higher rates 
of recombination (Duret and Galtier, 2009; Li et al., 2019; Appendix 1—figure 39a). Biased 
gene conversion also reduces the rates of C>A/G>T and C>T/G>A substitutions, but this is 
not clearly visible (Appendix 1—figure 42b), presumably because of other processes affecting 
these substitutions (see below).

•	 Increased rate of C>T mutations near ‍B = 1‍ (Appendix 1—figure 42b), associated with the 
higher methylated CpG content (Barrett et al., 2013; Appendix 1—figure 40c).

•	 Reduced rates of C>A/G>T  and A>T/T>A mutations near ‍B = 1‍ (Appendix  1—figure 42a 
and b), associated with improved repair of these types of mutations near origins of replication, 
which tend to be near telomeres (Stamatoyannopoulos et al., 2009; Appendix 1—figure 41).

•	 Increased rates of C>G/G>C mutations near ‍B = 1‍ (Appendix  1—figure 42b), due to the 
enrichment of C>G hypermutable regions (Jónsson et al., 2017; Appendix 1—figure 40d).

Appendix 1—figure 39. Average recombination rate (a) and functional density per bp (b) and per cM (c) as a 
function of predicted ‍B‍. The predicted ‍B‍, binning of putatively neutral sites and LOESS fitting are as described 
in Appendix 1—figure 38a. We calculate the average recombination rate in each bin based on the African-
American admixture map from Hinch et al., 2011 (Section 2.3). We measure functional density by calculating the 
mean phastCons score (based on the 99-vertebrate alignment) in a radius of 50 kb (b) or 0.05 cM (c) around each 
putatitively neutral site, and averaging these means over sites in each bin.

https://doi.org/10.7554/eLife.76065
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Consequently, the rates of substitutions between any two bases covary with predicted ‍B‍ 
(Appendix  1—figure 42). However, the different types of substitutions have markedly different 
contributions to levels of diversity and divergence (Appendix  1—figure 43), and different 
dependencies on predicted ‍B‍ (Appendix 1—figure 42).

To investigate whether these processes can explain the departure from our predictions near 
‍B = 1‍, we break up the observed diversity levels by types of substitutions (Appendix  1—figure 
44). We reason that if all types behave similarly near ‍B = 1‍, the differential processes affecting them 
cannot explain the departure from predictions (at least not fully). Note that, up to a multiplicative 
constant, our observations are ratios of diversity levels and substitution rates (on the 8-primate 
phylogeny), implying that the signatures of processes that affect diversity and divergence similarly 
should cancel out. Conversely, for a process to affect our observations it must have noticeably 
different effects on diversity and divergence. We find that the observations associated with different 
types of substitutions largely align with each other and with the observations that include all types 

Appendix 1—figure 40. GC content (a), CpG sites in CpG islands (b), proportion of methylated CpGs in neutral 
sites (c), and proportion of neutral sites in C>G hypermutable regions (d) as a function of predicted ‍B‍. Proportions 
and other quantities are measured for putatively neutral sites, whose type (i.e. GC and CpG) is defined based on 
the inferred state in the human-chimpanzee ancestor (Section 2.7). Data sources are detailed in Section 2.8. The 
predicted ‍B‍, binning of putatively neutral sites and LOESS fitting are as described for Appendix 1—figure 38a.

https://doi.org/10.7554/eLife.76065
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jointly (Appendix 1—figures 38 and 44). Specifically, they align with predictions throughout nearly 
the entire range of predicted ‍B‍, and are markedly higher than predictions near ‍B = 1‍.

Nonetheless, the observed levels associated with C>G mutations near ‍B = 1‍ are markedly higher 
than for other types of substitutions (Appendix  1—figure 44b and d). This effect contributes 
negligibly to the total observed levels near ‍B = 1‍, however, because C>G substitutions have a minor 
contribution to total diversity and divergence levels (Appendix 1—figure 43). The higher levels 
of C>G substitutions are associated with the enrichment of C>G hypermutable regions near ‍B = 1‍ 

Appendix 1—figure 41. The relationship between chromosomal position and predicted ‍B‍. (a) The distance to 
telomeres is measured on the same chromosome (see Section 2.8). (b) The distribution of putatively neutral sites 
by relative chromosomal position, defined as the ratio of a site’s distance to the centromere and the distance 
between centromere and telomeres on that chromosomal arm (see Section 2.8); relative distances corresponding 
to the shorter chromosome arm are shown on the left (in [–1, 0]) and to the longer arm on the right (in [0, 1]). The 
binning of putatively neutral sites by predicted ‍B‍ is as described for Appendix 1—figure 38a.

Appendix 1—figure 42. Rates of different types of substitutions as a function of predicted ‍B‍. We bin putatively 
neutral sites by predicted ‍B‍ as described in Appendix 1—figure 38a. We calculate the rate of X>Y substitutions 
in a bin by dividing the estimate of the number of X>Y substitutions at its sites in an 8-primate phylogeny by the 
estimated number of its sites with state X in the ancestor of that phylogeny (see Section 3.3). We obtain the relative 
rate by dividing the rate in a bin by the average rate across bins. We show the rates of substitutions with ancestral 
state AT in (a) and GC in (b).

https://doi.org/10.7554/eLife.76065
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(Appendix 1—figure 40d). Notably, when we remove these regions, the observed levels associated 
with C>G substitutions are no longer higher than for other types of substitutions (Appendix 1—
figure 45). Removing C>G hypermutable regions also affects the magnitude of the departure 
from predictions for other types of substitutions (compare Appendix  1—figure 45c and d with 
Appendix 1—figure 44c and d), because C>G is not the only type of mutation whose rate is higher 
in these regions. These hypermutable regions plausibly affect diversity more than divergence (and 
thus our observations) given that their effects are stronger in recent human evolution than in the 
more distant past and in the lineages of closely related species (Ipsita Agarwal and Molly Przeworski, 
personal communication). This may reflect the fact that these regions were identified in extant 
humans and/or a dependence of their effects on life history (Jónsson et al., 2017; Gao et al., 2019). 
Setting the causes aside, even when we remove these regions from the set of putatively neutral 
sites used in our inference, observed levels of all types are still markedly higher than the revised 
predictions near ‍B = 1‍ (Appendix 1—figure 46).

In summary, while we cannot rule out that there are other mutational processes that contribute to 
the departure from predictions near ‍B = 1‍, our analysis suggests that known mutational processes 
and biased gene conversion fall short of explaining these departures.

8.3 A footprint of archaic introgression?
Next, we consider whether the excess diversity observed near ‍B = 1‍ could reflect a residual signal 
of archaic introgression. The presence of archaic alleles at a locus increases diversity because their 
coalescence with modern human alleles traces back to the ancestors of modern humans and the 
archaic hominin from which they originated. Archaic introgression could help to explain the excess 
diversity in regions with ‍B ≈ 1‍, if archaic alleles were more common in these regions. As we argue 
below, there are good reasons to believe this to be the case.

Aside from evidence for positive selection on introgressed alleles in a few cases (Sankararaman 
et  al., 2014; Vernot and Akey, 2014; Racimo et  al., 2015), the pattern of Neanderthal and 
Denisovan introgression in contemporary human populations appears to be dominated by purifying 
selection to remove archaic ancestry from the human genome, as evidenced by the depletion of 

Appendix 1—figure 43. Contribution of different types of substitutions to diversity levels (a) and number of 
substitutions per site in the 8-primate phylogeny (b) as a function of predicted ‍B‍. We bin putatively neutral sites 
by predicted ‍B‍ as described in Appendix 1—figure 38a. (a) We define the ancestral state, that is, AT or GC, as 
the inferred state in the human-chimpanzee ancestor (see Section 2.7). We define the contribution of each type 
of substitution to the diversity level in a bin as the ratio of the number of pairwise differences of that type and the 
total number of pairwise comparisons in a bin; this way, the sum over types equals the observed diversity level in 
a bin (‍π‍). (b) We calculate the number of substitutions of each type in a bin as described in Appendix 1—figure 
42, but here we normalize it by the number of sites, such that the sum over types equals the observed number of 
substitutions per site in the 8-primate phylogeny.

https://doi.org/10.7554/eLife.76065
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archaic introgression in and around genes (Sankararaman et al., 2014; Vernot and Akey, 2014; 
Harris and Nielsen, 2016; Juric et  al., 2016; Sankararaman et  al., 2016). The causes for this 
purifying selection are still being deliberated (Harris and Nielsen, 2016; Juric et al., 2016; Schumer 
et al., 2018). One hypothesis is that selection acts against introgressed alleles that are incompatible 
with the genetic background in modern humans, for example, alleles that are part of Dobzhansky-
Muller incompatibilities between archaic hominins and modern humans (Sankararaman et al., 2014; 
Schumer et al., 2018). Another hypothesis is that selection acts against alleles that were deleterious 
in both archaic hominins and modern humans, which were more common in archaic hominins because 
their long-term effective population sizes were smaller than in modern humans (Harris and Nielsen, 
2016; Juric et al., 2016; Steinrücken et al., 2018).

Regardless of its cause, we expect purifying selection to remove archaic alleles, including neutral 
variants, more rapidly in genomic regions under stronger background selection (Harris and Nielsen, 
2016; Juric et al., 2016; Schumer et al., 2018). This is because these regions harbor more selected 
sites (Appendix  1—figure 39b) in which archaic alleles could be selected against, and because 
they have lower rates of recombination (Appendix 1—figure 39a) causing selection against archaic 
alleles to remove larger archaic segments. Conversely, we expect the highest, residual proportion 

Appendix 1—figure 44. Observed vs. predicted neutral diversity levels for different types of substitutions. 
Diversity levels are presented as in Appendix 1—figure 38, but here, we calculate diversity levels and substitution 
rates for sites with a given ancestral state, that is, AT (a and c) or CG (b and d), and for each of the three types of 
substitutions from the ancestral state, as in Appendix 1—figure 43.

https://doi.org/10.7554/eLife.76065
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of archaic neutral variants in regions with ‍B ≈ 1‍—precisely where we observe a 10–15% excess of 
diversity above our predictions (Appendix 1—figure 38).

In order to test this expectation, we use fine-scale maps of archaic introgression inferred for 
European (CEU) and East-Asian (CHB/CHS) individuals from the 1000 Genomes Project (Steinrücken 
et  al., 2018). These maps assign a probability of Neanderthal ancestry to contiguous 500  bp 
segments tiling individual genomes based on the high-coverage Altai Neanderthal genome (Prüfer 
et al., 2014). We use them to estimate the average proportion of archaic ancestry per putatively 
neutral site in bins of predicted ‍B‍. As expected, we find that the estimated proportion of archaic 
alleles increases with predicted ‍B‍ (Appendix  1—figure 47). The power to identify introgressed 
segments using this and other methods decreases substantially in regions with ‍B ≈ 1‍, because 
higher recombination rate in these regions results in much shorter archaic segments (Skov et al., 
2018; Steinrücken et al., 2018). We therefore expect that the actual proportion of archaic ancestry 
increases more sharply near ‍B = 1‍ than our analysis suggests, and may therefore better trace the 
sharp increase in diversity relative to predictions near ‍B = 1‍.

Appendix 1—figure 45. Observed vs. predicted neutral diversity levels for different types of substitutions after 
removing C>G hypermutable regions (from both the inference and observations). Other than removing ~12% of 
putatively neutral sites in these regions, the details are as in Appendix 1—figure 44. We note that while a greater 
proportion of sites is removed from bins near ‍B = 1‍ (~20% for the 100th percentile), this in itself has a minor effect 
on the departures from predictions in these bins.

https://doi.org/10.7554/eLife.76065
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Current inferences about archaic introgression are divided into those that incorporate 
sequenced Neanderthal and Denisovan genomes (Green et  al., 2010; Reich et  al., 2010; 
Sankararaman et al., 2014; Vernot and Akey, 2014; Steinrücken et al., 2018), such as the maps 
we used in Appendix 1—figure 47, and those that are based only on patterns of variation in 

Appendix 1—figure 47. Estimated proportion of Neanderthal (NE) ancestry as a function of predicted ‍B‍ in 
Europeans (CEU) (a) and East-Asians (CHB/CHS) (b). See text for the estimation procedure. The bins and LOESS 
curves were calculated as in Appendix 1—figure 38.

Appendix 1—figure 46. Comparison of the best-fitting CADD-based models with and without C>G 
hypermutable regions. All panels are as described for the corresponding ones in Appendix 1—figure 14.

https://doi.org/10.7554/eLife.76065
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contemporary humans (Plagnol and Wall, 2006; Wall et al., 2009; Skov et al., 2018; Durvasula 
and Sankararaman, 2020). When we repeat the analysis in Appendix  1—figure 47 using 
ancestry-maps based on the latter approach in both Africans and non-Africans (Skov et al., 2018; 
Durvasula and Sankararaman, 2020), we find that levels of archaic ancestry either increase and 
level off at intermediate values of ‍B‍, or peak at intermediate values and decrease as ‍B‍ approaches 
1. We believe that this departure from our expectation reflects a decrease in the power of these 
methods near ‍B‍ = 1 (due to higher rates of recombination), which is greater than the decrease 
for methods based on sequenced archaic genomes. An additional caveat is that the evidence for 
the contribution of archaic introgression to the African gene pool is based solely on patterns in 
contemporary genetic variation (Plagnol and Wall, 2006; Wall and Hammer, 2006; Wall et al., 
2009; Durvasula and Sankararaman, 2020) and remain more speculative in lieu of more direct 
evidence. Thus, while it seems plausible that the greater retention of neutral archaic variants in 
regions with the highest ~2% of predicted ‍B‍ values contributes substantially to the departure from 
our predictions in both African and non-African populations, at present, the evidence for such a 
contribution remains equivocal.

9. Additional figures

Appendix 1—figure 48. Overfitting has negligible effects on our results (see also Section 6.1). As an illustration, 
we compare the results corresponding to our best-fitting CADD-based model, using all the data jointly (orange), 
out-of-sample predictions in non-overlapping, contiguous, 2 Mb windows (light blue) and out-of-sample predictions 
for each autosome (pink). (a) Predicted and observed diversity levels along chromosome 1 in the YRI sample; 
(details as in Figure 2A in Main Text). (b) The proportion of variance in YRI diversity levels explained by background 
selection at different spatial scales (details as in Figure 2B in Main Text). (c) Predicted and observed neutral diversity 
levels around human-specific nonsynonymous (NS) substitutions (details as in Figure 3 in Main Text). (d) Observed 
vs. predicted neutral diversity levels across the autosomes (details as in Figure 5 in Main Text). As an example, the 
explained variance in diversity levels over 1 Mb windows is 59.9% without excluding data, 59.8% when we exclude 
2 Mb windows, and 59.5% when we leave out one chromosome at a time. Our statistical analysis in Section 6.2 
suggests that these minute difference are not significant. Moreover, the reduction in explained variance in the case 
in which we exclude one autosome at a time is plausibly due to the reduced amount of data rather than overfitting 
(e.g. chromosomes 1 and 2 correspond to 8% and 9.3% of our putatively neutral sites, respectively).

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 49. A background selection model predicts neutral diversity levels around different genomic 
features. Here we use our best-fitting CADD-based model and show diversity levels around: (a) human-specific 
synonymous substitutions; (b) human-specific substitutions in conserved regions; (c) exons; and (d) conserved 
exonic regions. The inference of human-specific substitutions is described in Section 2.7. Conserved regions are 
based on autosomal sites with the top 6% phastCons scores in the 99-vertebrate alignment (Section 4.1). The set of 
exons is described in Section 2.4. The genetic distance to the nearest element (e.g. exon) is measured to its closest 
edge. Other details are similar to Figure 3.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 50. Predicted and observed neutral diversity levels along chromosome 1 based on data from 
representative continental populations. Plots are generated as detailed in Figure 2A.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 51. A background selection model predicts neutral diversity levels around human-specific 
nonsynonymous (NS) substitutions in representative continental populations. Plots are constructed as detailed in 
Figure 3, using polymorphism data from each population for both inferences and observations.

https://doi.org/10.7554/eLife.76065
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Appendix 1—figure 52. Observed vs. predicted neutral diversity levels across the autosomes in representative 
continental populations. Plots are constructed as detailed in Figure 5, using polymorphism data from each 
population for both inferences and observations.

https://doi.org/10.7554/eLife.76065
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