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Abstract The morphology of the pectoral girdle, the skeletal structure connecting the wing to
the body, is a key determinant of flight capability, but in some respects is poorly known among stem
birds. Here, the pectoral girdles of the Early Cretaceous birds Sapeornis and Piscivorenantiornis are
reconstructed for the first time based on computed tomography and three-dimensional visualiza-
tion, revealing key morphological details that are important for our understanding of early-flight
evolution. Sapeornis exhibits a double articulation system (widely present in non-enantiornithine
pennaraptoran theropods including crown birds), which involves, alongside the main scapula-
coracoid joint, a small subsidiary joint, though variation exists with respect to the shape and size of
the main and subsidiary articular contacts in non-enantiornithine pennaraptorans. This double artic-
ulation system contrasts with Piscivorenantiornis in which a spatially restricted scapula-coracoid joint
is formed by a single set of opposing articular surfaces, a feature also present in other members of
Enantiornithines, a major clade of stem birds known only from the Cretaceous. The unique single
articulation system may reflect correspondingly unique flight behavior in enantiornithine birds, but
this hypothesis requires further investigation from a functional perspective. Our renderings indicate
that both Sapeornis and Piscivorenantiornis had a partially closed triosseal canal (a passage for
muscle tendon that plays a key role in raising the wing), and our study suggests that this type of
triosseal canal occurred in all known non-euornithine birds except Archaeopteryx, representing a
transitional stage in flight apparatus evolution before the appearance of a fully closed bony triosseal
canal as in modern birds. Our study reveals additional lineage-specific variations in pectoral girdle
anatomy, as well as significant modification of the pectoral girdle along the line to crown birds.
These modifications produced diverse pectoral girdle morphologies among Mesozoic birds, which
allowed a commensurate range of capability levels and styles to emerge during the early evolution
of flight.

Editor's evaluation

The authors provide new 3D fossil findings in Sapeornis, an avialan that lived during the Early
Cretaceous period, a key node in our understanding of the evolution of avian flight. The functional
reconstruction of two critical skeletal elements of the avian flight apparatus, the scapula and cora-
coid, enables the authors to hypothesize how the evolution of the scapula and coracoid enabled
the modern avian wing stroke. The new 3D morphological reconstruction enables future integrative
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studies of Sapeornis flight performance based on biomechanical, muscle physiological, and aerody-
namic principles and is thus a key building block to inform our general understanding of the evolu-
tion of avian flight.

Introduction

The evolution of powered flight in birds was one of the great transformations in vertebrate history
and involved a suite of dramatic anatomical changes that were required to produce a functional flight
apparatus (Dudley and Yanoviak, 2011; Padian, 1985; Rayner, 1988; Videler, 2005; Burch, 2014,
Jasinoski et al., 2006). The pectoral girdle, a skeletal structure that connects the forelimb to the
trunk, is a key component of the flight apparatus, and its function and evolutionary history have been
extensively studied (Baier et al., 2007, Bock, 2013, Novas et al., 2020; Senter, 2006; Burch, 2014,
Jasinoski et al., 2006; Ostrom, 1976). The morphology of the pectoral girdle in Late Cretaceous
enantiornithine birds is well known from several three-dimensionally preserved specimens (Atter-
holt et al., 2018; Chiappe and Walker, 2002, Chiappe et al., 2007). However, most Early Creta-
ceous bird fossils are essentially two-dimensionally preserved as slab specimens, and accordingly do
not offer a full anatomical picture of the flight apparatus, a limitation that greatly hinders studies
of early flight. Here, we reconstruct the pectoral girdles of the non-ornithothoracine bird Sapeornis
chaoyangensis (PMoL-AB00015) and the enantiornithine bird Piscivorenantiornis inusitatus (IVPP V
22582) using computed tomography and three-dimensional visualization. Our renderings are the first
three-dimensional ones of the pectoral girdle for these two Early Cretaceous birds and reveal some
important anatomical details for understanding pectoral girdle evolution. One main objective of our
study was to better understand the evolution of the scapula-coracoid articulation and triosseal canal
on the line to crown group birds because the form of the scapula-coracoid articulation has traditionally
been used to distinguish between enantiornithines and euornithines (ornithuromorphs), whereas the
nature of the triosseal canal has implications for the course of the tendon of M. supracoracoideus and
thus for the mechanics of the upstroke during flight.

The pectoral girdle underwent dramatic changes in the shape, position, and orientation of each
component element along the line to crown birds (Xu, 2002). In early-diverging theropods (Figure 1A),
the scapula and coracoid lie obliquely on the ribcage with the anatomically cranial (anterior) edge of
the coracoid significantly lower than the trunk vertebral column; the glenoid fossa is caudoventrally
(posteroventrally) directed; the scapula has a large craniodorsally (anterodorsally) oriented acromion
process; and the coracoid is a laterally facing semicircular plate with a small coracoid tubercle (called
the biceps tubercle in some studies, and a precursor to the acrocoracoid process of birds). In early-
diverging maniraptoriform theropods, the coracoid is somewhat biplanar, being divided by a line
of deflection into two subtriangular areas that we term the sternal wing (called the distal ramus in
Xu, 2002) and the scapular wing (called the proximal ramus in Xu, 2002) of the coracoid. In some
maniraptoriform species, the line of deflection is marked by a ridge originating from the coracoid
tubercle, on the coracoid’s lateral surface. In other species, a distinct ridge is absent, and only the
deflection itself defines the boundary between the scapular and sternal wings. The deflection causes
the originally laterally facing lateral surface of the coracoidal sternal wing to be directed somewhat
cranially (anteriorly) and ventrally. The scapular wing comprises the glenoid fossa, the scapular artic-
ulation, and the thin sheet normally housing the supracoracoid foramen, which accommodates the
supracoracoid nerve. In early-diverging pennaraptorans (Figure 1B, E, and F), the glenoid of the
scapulocoracoid is close to the trunk vertebral column and faces laterally; the scapula has a small
acromion process; the scapular blade is nearly parallel to the trunk vertebral column, with its lateral
surface tilted dorsally; and the coracoid has a large coracoid tubercle, a large sternal wing, and a small
scapular wing. The originally lateral surface of the sternal wing faces cranially (anteriorly) and that of
the scapular wing is directed craniodorsally, so that the coracoid more closely resembles an inverted
‘L’ than a semicircular plate in lateral view. In most avialans (Figure 1C and G), the glenoid fossa is
dorsolaterally oriented; the scapular acromion process protrudes farther cranially; the scapular blade
is twisted so that the anatomically lateral surface of the proximal portion faces dorsally, whereas that
of the distal portion faces dorsolaterally; and the coracoid is a strut-like structure with several derived
features (e.g., the coracoid tubercle is enlarged to form the acrocoracoid process; the sternal wing is
elongated in a craniodorsal-caudoventral direction; the scapular wing is highly reduced, bringing the
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Figure 1. The position of the pectoral girdle and the form of the coracoid in different theropod groups. (A-C) Skeletal silhouettes showing the
anatomical position of the pectoral girdle in (A) the early-diverging theropod Coelophysis, (B) the early-diverging pennaraptoran Microraptor, and
(C) the modern bird Columba. The M. supracoracoideus is illustrated in (C) but typically covered by the M. pectoralis, which is not illustrated. (D-G)
lllustrations of the left coracoids of (D) Coelophysis (modified from Tykoski, 1998), (E) the early-diverging pennaraptoran Sinornithosaurus (modified
from Xu et al., 1999), (F) the early-diverging avialan Archaeopteryx (modified from Wellnhofer et al., 2009), and (G) the early-diverging avialan
Jeholornis (based on STM 2-49 and IVPP V 13886). Coracoid of Coelophysis in lateral view, coracoids of other taxa in ventral view.

scapular articulation and glenoid fossa extremely close to the sternal wing; and in many species, the
scapular wing gives rise to a procoracoid process). In species with an extremely small scapular wing,
the supracoracoid foramen is either absent or located in the sternal wing. Figure 1 illustrates the key
morphological features of the pectoral girdle in different theropod groups and the terms used in this
article, though we admit that a complete evolutionary picture of the theropod pectoral girdle has yet
to be presented and there are different opinions on what terms should be used for certain structures
(Xu, 2002; Novas et al., 2021).
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Figure 2. Pectoral girdle bones of Sapeornis chaoyangensis PMoL-AB00015. (A-D) Left scapula in lateral, dorsal, medial (costal), and ventral views.
(E-H) Left coracoid in ventral, dorsal, lateral, and cranial views. (I-L) Furcula in cranial, caudal, lateral, and ventral views. The black arrows in (J) and (L)

indicate the concave surface for the tendon of M. supracoracoideus.

Results

The nearly complete pectoral girdle elements of S. chaoyangensis PMoL-AB00015 and P. inusitatus
IVPP V 22582 have been three-dimensionally rendered in detail based on computed tomography scan
data (Figure 2, Figure 3, and Figure5). However, the bones have been compressed during fossil-
ization, so the renderings do not precisely capture the original morphology. Originally, the furcula
of Sapeornis PMoL-AB0O0015 was probably slightly curved caudally (despite being straight in our
rendering), and the angle between the scapular and sternal wings of the coracoid that contacted the
scapula and the sternum was probably smaller than in our rendering. Because of these distortions, the
pectoral girdle of Sapeornis based on digitally articulating our uncorrected renderings is characterized
by a larger distance between the two coracoids, and a more ventrally oriented glenoid fossa, than
would have been present in the skeleton of the living animal (Gao et al., 2012). However, these errors
do not affect our major conclusions.

Osteology of the pectoral girdle of Sapeornis PMoL-AB00015
The cranial part of the left scapula is curved medially and ventrally. The scapular blade is slightly
twisted about its longitudinal axis, so that the anatomically lateral surface of the proximal portion
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Figure 3. Pectoral girdle bones of Piscivorenantiornis inusitatus VPP V 22582. (A-D) Left scapula in lateral, dorsal, medial (costal), and ventral views.
(E-H) Right coracoid in ventral, dorsal, lateral, and cranial views. (I-L) Furcula in cranial, caudal, left, and ventral views.

faces dorsally, whereas that of the distal portion faces dorsolaterally as in extant birds (Figure 2).
The acromion is short. As in the dromaeosaurid Rahonavis (Forster et al., 2020), a broad flange
protrudes medially from the acromion (Figure 2), adding to a previously known set of derived simi-
larities shared by Rahonavis and some early-diverging avialans (Novas et al., 2018). As in Jeholornis
(Zhou and Zhang, 2003a), the scapular glenoid fossa faces mainly ventrally but also slightly laterally,
showing more lateral deflection than in deinonychosaurs (e.g., Sinovenator and Rahonavis) (Forster
et al., 2020) and Archaeopteryx (Zhou and Zhang, 2003a). The articular surface for the coracoid
consists of two parts: a deeply concave main surface situated craniomedial to the glenoid facet on
the ventral surface of the scapula and a slightly concave subsidiary surface positioned more cranio-
medially (Figure 4). A weak tubercle lies on the ventrolateral margin of the scapular blade, possibly
representing the muscle insertion site for M. subscapulare (Figure 2; Gianechini et al., 2018). A short
and shallow groove (Figure 2) on the medial surface of the scapula, close to the glenoid fossa and
subparallel to the ventral margin, probably represents another muscle insertion site.
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Figure 4. Comparison of scapula and coracoid morphology across various paravian taxa. Each panel shows articulated left scapula and coracoid in
ventral view (on left) and opposing articular surfaces of left scapula and coracoid (on right, with cranial direction toward top of figure for both scapula
and coracoid). (A) Sinovenator changii (mirrored), (B) Sapeornis chaoyangensis, (C) Piscivorenantiornis inusitatus, (D) Tyto alba, (E) Egretta garzetta, and

(F) Pavo muticus.

The coracoid is in general similar to that of non-avialan pennaraptorans in having a large scap-

ular wing, with the glenoid fossa and scapular articulation well separated from the sternal wing. The

caudal margin of the sternal wing is slightly convex and lacks a visible articular facet for the sternum
(Figure 2), rather than being straight to concave and bearing a sternal facet as in Jeholornis (Wang
et al., 2020a) and most ornithothoracines (Atterholt et al., 2018; Wang and Zhou, 2017a). The lack
of a sternal facet lends further support to previous inferences that an ossified sternum is genuinely
absent in this early pygostylian lineage (Zheng et al., 2014). In living birds, the ossified sternum
provides the major attachments for M. supracoracoideus and M. pectoralis; while in Sapeornis, the

large coracoid may have served to provide a proximal attachment surface for these muscles (Zheng

et al., 2014). On the ventral surface of the coracoid, a ridge extends from the acrocoracoid process to

the distomedial corner of the bone, clearly demarcating the scapular and sternal wings of the coracoid
(Figure 2) as in some maniraptoriform theropods (e.g., Sinornithosaurus) (Xu, 2002). The sternal wing
is short, having a ratio of cranial-caudal length to medial-lateral width at the caudal margin of only
1.17. This is close to the value for Archaeopteryx (~1.15), but differs from those for the more elon-
gated sternal wings of Jeholornis, Confuciusornis, and most ornithothoracines (generally >1.5). The

scapular wing is large, as in most non-avialan pennaraptorans, but in contrast to the reduced scapular

wing seen in such dromaeosaurids as Microraptor and in the avialans Archaeopteryx and Jeholornis
(Wang et al., 2020aWang et al., 2020a; Wellnhofer et al., 2009, Xu et al., 2003). In most euorni-
thines, the scapular wing is likewise small, and curves ventrally and gives rise to a narrow procoracoid

process at the craniomedial corner (e.g., Egretta garzetta; Figure 4E). In some euornithine species

(e.g., Tyto alba; Figure 4D), however, the scapular wing is thin and relatively large, somewhat similar
to the condition in non-enantiornithine pennaraptorans. As in Jeholornis (Wang et al., 2020a), the

supracoracoid foramen (Figure 2) is large and positioned within the scapular wing.
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Figure 5. Simplified phylogeny with hypothetical steps in pectoral girdle evolution. The pectoral girdles of Sapeornis chaoyangensis, Piscivorenantiornis
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The acrocoracoid process is short and blunt, and extends slightly above the midpoint of the
coracoidal glenoid fossa as in Jeholornis and Confuciusornis (Turner et al., 2012Wang and Zhou,
2018bWang and Zhou, 2018b; Wang et al., 2020a; Zhou and Zhang, 2003b; Zhou and Zhang,
2003b). In enantiornithines (Panteleev, 2018; Chiappe and Walker, 2002), the acrocoracoid process
extends slightly above the dorsal margin of the coracoidal glenoid fossa. In most euornithines (e.g.,
Figure 4D-F), this process is proportionally longer and extends much further beyond the glenoid than
in non-euornithine birds. In non-avialan theropods and Archaeopteryx, by contrast, the acrocoracoid
process (frequently described as coracoid tubercle or biceps tubercle) is located cranioventral to the
glenoid fossa (Mayr et al., 2005; Novas et al., 2021). The acrocoracoid process of Sapeornis forms a
shelf-like structure projecting dorsally, cranially, and laterally from the lateralmost part of the coracoid,
a condition not known in other birds. A small shallow fossa with an irregular surface, located at the
medial end of the cranioventral surface of the acrocoracoid process (Figure 2), may have provided
an attachment point for a coracoclavicular ligament connecting the coracoid and furcula (Figure 5).
In some volant extant birds, by contrast, the coracoclavicular ligament attaches to the cranial edge of
the medial surface of the acrocoracoid process (Ghetie, 1976).

The glenoid fossa is on the craniolateral corner of the dorsal face of the coracoid and wraps onto
the cranial margin. The scapular articular surface is situated entirely on the coracoid’s cranial margin
and is not separated from the coracoidal glenoid fossa by any distinct border. The coracoidal glenoid
fossa is weakly concave and faces dorsocaudally and only slightly laterally, whereas the lateral tilt of
the fossa is greater in late-diverging birds (Figure 4).

Like the opposing surface on the scapula, the scapular articular surface on the coracoid is divided
into main and subsidiary parts. The former is weakly convex, to match the concave main articular
surface for the coracoid on the scapula, whereas the latter extends along the cranial margin of the
scapular wing of the coracoid and contacts the subsidiary coracoidal articular surface on the scapula.
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The robust, craniocaudally compressed furcula presumably would not have been as flexible as
those of volant extant birds, which have mediolaterally compressed rami and in at least some cases
act as a spring during flapping flight (Boggs et al., 1997, Nesbitt et al., 2009). The omal third of the
ramus is slightly narrower than the remainder and terminates in a blunt epicleidium. In dorsal view, the
epicleidium is twisted laterally by about 80° relative to the ramus. Similar torsion can also be observed
in some other early birds (e.g., Confuciusornis) and in some deinonychosaurs (e.g., Halszkaraptor,
Buitreraptor) (Cau et al., 2021; Gianechini et al., 2018). The lateral surface of the epicleidium is
concave, making the epicleidium C-shaped in dorsal view. This concave surface possibly accommo-
dated the tendon of the supracoracoideus muscle, which would have passed through the partially
closed triosseal canal and over the small acrocoracoid process to reach its insertion on the humerus
(Figure 5). As in Confuciusornis (Wu et al., 2020) and Xiaotingia (Xu et al., 2011), a small caudal
projection is located on the medial side of the epicleidium and probably articulated with the acromion
of the scapula. The short, slender hypocleidium is broken away, but the probable outline of the hypo-
cleidium is indicated in Figure 2I-K based on another specimen of Sapeornis (IVPP V 19058).

Osteology of the pectoral girdle of the P. inusitatus IVPP V 22582

The pectoral girdle is closely comparable in morphology to those of other enantiornithines (Hu et al.,
2015a; Zhang et al., 2014; Chiappe and Walker, 2002). The long and robust acromion of the scapula
is separated by a neck from the coracoidal articular surface. The cranial part of the medial surface
of the acromion forms a flat articular surface for the furcula, as in many other enantiornithines (e.g.,
Rapaxavis and Halimornis) (Chiappe et al., 2002, O’Connor et al., 2011). The subtriangular scapular
glenoid fossa faces more laterally than in Sapeornis and non-avialan theropods (Brusatte et al., 2013;
Funston et al., 2020), although the orientation of the fossa is nevertheless also somewhat ventral. The
slightly concave coracoidal articular surface lies cranial and medial to the scapular glenoid fossa, and
is nearly perpendicular to the latter. This surface corresponds to the main coracoidal articular surface
on the scapula of non-enantiornithine pennaraptorans, and that the subsidiary coracoidal articular
surface is absent. The scapular blade is curved ventrally and tapered caudally.

The coracoid is subtriangular in dorsal or ventral view. The acrocoracoid process is rounded and
minimally developed, as is typical in enantiornithines (Atterholt et al., 2018; Zhang et al., 2014;
Panteleev, 2018). The coracoidal glenoid fossa is craniocaudally elongated and faces caudally and
somewhat dorsolaterally. The slightly convex scapular articular surface is smaller than the coracoidal
glenoid fossa, and is situated dorsomedial to the latter as in other ornithothoracines. In Sapeornis
and non-avialan theropods, the scapular articular surface is proportionally larger and situated directly
medial to the coracoidal glenoid fossa. This surface corresponds to the main scapular articular surface
on the coracoid of non-enantiornithine pennaraptorans, and that the subsidiary scapular articular
surface is absent. On the medial side of the glenoid fossa, between the acrocoracoid process and
scapular articular surface, lies a small incisure that is present in most enantiornithines (Hu et al.,
2015bHu et al., 2015b; Panteleev, 2018; Wang et al., 2016d). This structure is identified as the
sulcus M. supracoracoideus, through which the M. supracoracoideus tendon passed (Hu et al., 2012;
Panteleev, 2018). A large impression (Figure 3) associated with attachment of Lig. acrocoracohu-
merale is located on the cranioventral surface of the acrocoracoid process, above the level of the
ventral margin of the glenoid fossa, and faces cranially and slightly laterally. In extant birds, by contrast,
the equivalent feature is located well craniodorsal to the glenoid fossa and faces more laterally. The
sheet-like component of the scapular wing of the coracoid, termed the ‘medial crest’ by Panteleev,
2018, is extremely narrow and terminates at the base of the scapular articular surface. The loss of the
subsidiary scapular articular surface is connected to the reduction of the coracoid’s scapular wing. The
scapular wing is perforated by a small supracoracoid foramen, as in most enantiornithines (Atterholt
et al., 2018; Chiappe et al., 2007, Panteleev, 2018; Wang et al., 2016a). The neck of the sternal
wing is proportionally shorter than the equivalent structure in most extant birds (Panteleev, 2018).

The furcula is robust and generally Y-shaped, with an interclavicular angle of only about 50° and a
long hypocleidium, as in most enantiornithines (Hu et al., 2015a; Zhang et al., 2014). The epicleidium
is expanded both craniocaudally and mediolaterally to form a dorsally facing articular facet for the
coracoid, as in other enantiornithines (Atterholt et al., 2018). The midshaft of each ramus is ‘L’ shaped
in cross section owing to the presence of a deep caudolateral groove, another characteristic of Enan-
tiornithes (Atterholt et al., 2018; Chiappe et al., 2007; Close et al., 2010). The omal part of this
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groove faces somewhat laterally due to torsion of the ramus and tapering of the cranial surface of the
ramus from the lateral side. The groove extends ventrally to the end of the hypocleidium, producing a
high keel on the caudal surface of the hypocleidium between the right and left grooves. The bilaterally
compressed form of the hypocleidium is shared with many enantiornithines (Wang et al., 2014; Wang
et al., 2020b), but differs from the craniocaudal compression seen in some oviraptorosaurs, some
troodontids, and Sapeornis (Nesbitt et al., 2009; Xu and Norell, 2004).

Discussion

S. chaoyangensis PMoL-AB00015 and P. inusitatus IVPP V 22582 provide significant new information
on the pectoral girdle morphology of these two Early Cretaceous birds. This information bears, in
particular, on the following issues pertaining to the early evolution of the avialan pectoral girdle.

Morphology of the scapula-coracoid articulation, the scapular wing of
the coracoid, and the procoracoid process

The scapula-coracoid articulation is variable in morphology among pennaraptoran theropods. In non-
avialan pennaraptorans, the structure of the articulation between the scapula and coracoid is not
well known. This is mainly because the two elements tend to fuse, albeit normally at a relatively late
ontogenetic stage, to form a scapulocoracoid. For example, the scapula and coracoid are tightly
sutured together, but not fused, in a juvenile specimen of Velociraptor mongoliensis (MPC-D100/54),
and a fused scapulocoracoid is seen in an adult specimen (IGM 100/986) (Hone et al., 2012; Norell
and Makovicky, 1999). Complete fusion of the scapulocoracoid, leaving no visible suture, is the
usual condition in adult individuals (e.g., Citipati osmolskae IGM 100/1004, Anzu wyliei CM 78 001)
(Lamanna et al., 2014; Norell et al., 2018). Among non-ornithothoracine avialans, all known jinguo-
fortisids, and all known confuciusornithiforms except a single subadult Eoconfuciusornis zhengi spec-
imen (IVPP V 11977), possess a fused scapulocoracoid (Wang et al., 2018a; Wu et al., 2021). The
occurrence of scapula-coracoid fusion in Archaeopteryx is controversial, but the scapula and coracoid
are separately preserved in some specimens (Kundrat et al., 2018, Mayr et al., 2005; Wellnhofer
et al.,, 2009; Wu et al., 2021). In sapeornithiforms and jeholornithiforms, the scapula and coracoid
are not fused (Zhou and Zhang, 2003b; Zhou and Zhang, 2003b). Among ornithothoracines, a fused
scapulocoracoid is known only in flightless paleognaths (Wu et al., 2021).

In several deinonychosaurs (e.g., Sinovenator and Rahonavis), the scapula and coracoid not only fail
to fuse but remain loosely rather than tightly connected, contacting one another via smooth articular
surfaces rather than via a firm interdigitating suture as in other non-avialan pennaraptorans (Forster
et al., 2020). In Sinovenator (Figure 4A), the glenoid fossa of the coracoid is smaller than the scap-
ular articular surface as in other non-avialan theropods. The reverse is true in crown group birds, and
also in many stem birds in which this anatomical region is well known, such as Piscivorenantiornis
(Figure 3), Elsornis (Chiappe et al., 2007), Mirarce (Atterholt et al., 2018), and Gansus (Wang et al.,
2016c¢). The scapular articular surface is located on the scapular wing of the coracoid and consists of
two parts: a broadly convex main articular surface and a flat to shallowly concave subsidiary articular
surface. The corresponding coracoidal articular surfaces on the scapula are both concave. The main
and subsidiary articulations together form what is termed here a double articulation between the
scapula and the coracoid. Bambiraptor also has a double articulation, in which the smaller, shallowly
convex subsidiary articular surface on the coracoid is located mediodorsally to the flat main articular
surface and is separated from the latter by a low ridge. The corresponding coracoidal articular surfaces
on the scapula are shallowly concave, as in Sinovenator. This implies a gap between the main articular
surfaces on the scapula and coracoid, which in life was presumably filled with cartilage. The dromae-
osaurid Rahonavis possesses a double articulation, with a slightly concave main articular surface for
the coracoid as in Sinovenator (Forster et al., 2020). As described above, the scapula-coracoid artic-
ulation of Sapeornis resembles that of Sinovenator in that the coracoid has a convex main scapular
articular surface (matching the scapula’s concave main coracoidal articular surface) and a subsidiary
articular surface that would have contacted the cranioventral margin of the acromion process of the
scapula. Sapeornis thus has a double articulation, consistent with the plesiomorphic overall shape
of the scapulocoracoid, as in non-avialan pennaraptorans. Avialans other than enantiornithines have
a broadly uniform type of scapula-coracoid articulation, although some morphological variation is
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present. In Jeholornis and Fukuipteryx, the coracoid has a concave main articular surface for the
scapula (Imai et al., 2019, Turner et al., 2012), a feature that has been proposed as an apomorphy
of the Euornithes (Ornithuromorpha) in previous studies (Wang and Zhou, 2017a). In most euorni-
thines, the coracoid indeed has a deep cotyla that receives a corresponding convexity on the scapula
(Figure 4E). In some crown birds, however, the main scapular articular surface on the coracoid is flat
to slightly convex (Figure 4D and F), as in many enantiornithine birds and in some non-avialan thero-
pods, such as Sinovenator. In most euornithines and Jeholornis, the subsidiary articular surface for the
scapula is situated partly on the procoracoid process, which is a projection of the dorsomedial margin
of the small scapular wing of the coracoid.

Enantiornithines have a strikingly different scapula-coracoid articulation from other pennarapto-
rans. The presence of a single, convex articular surface, fitting into a cotyla on the cranial end of
the scapula, has been widely accepted as a unique feature of the coracoid of enantiornithine birds
(Chiappe and Walker, 2002; Panteleev, 2018, Wang and Zhou, 2019). Conversely, modern birds
have been considered to display the opposite condition, with the main scapular articular surface on
the coracoid being concave and that on the scapula convex. This purported discrepancy is the source
of the clade name Enantiornithes, meaning ‘opposite birds.” As mentioned above, however, a convex
scapular articular surface is also seen on the coracoids of some non-avialan theropods, such as Sinove-
nator, and in some crown birds that are secondarily evolved (Mayr, 2021), though the convexity is less
prominent in these taxa than in late-diverging enantiornithine birds. Furthermore, the scapular artic-
ular surface on the coracoid is shallowly concave in some enantiornithines, such as pengornithids (e.g.,
IVPP V 18687 and V 18632). Consequently, the ‘opposite’-type scapula-coracoid articulation is neither
present in all enantiornithine birds nor unique to the Enantiornithes. However, our study indicates that
the enantiornithine scapula-coracoid articulation is indeed unique, but for a different reason: extreme
reduction of the scapular wing of the coracoid and consequent loss of the subsidiary articular surface
for the scapula in all enantiornithines (including pengornithids). This results in a single articulation
in enantiornithines, in which the coracoid bears only one spatially restricted articular surface for the
coracoid. The single articulation of enantiornithines is thus smaller in area, as well as morphologically
simpler, than the double articulation of other pennaraptorans.

Combining anatomical details revealed by this study with information from the literature, three
important modifications to the scapula-coracoid articulation may be inferred to have occurred among
avialans: (1) loss of fusion between the scapula and coracoid in the majority of adult avialans, (2)
displacement of the main articular surface for the scapula to a position extremely close to the base
of the acrocoracoid process in a clade comprising Jeholornis and pygostylians (reversed in Sapeornis
to the primitive condition of having the main articular surface relatively distant from the acrocoracoid
process), and (3) establishment of the unique single articulation by extreme reduction of the scap-
ular wing of the coracoid in enantiornithine birds. All non-enantiornithine pennaraptorans, including
crown birds, have a double articulation connecting the scapula and coracoid, and in the majority of
non-enantiornithine birds, a procoracoid process is present to buttress the double articulation and
contribute to the triosseal canal.

Architecture of the triosseal canal

The triosseal canal facilitates powered flapping flight in modern birds by forming a passage to admit
the tendon of M. supracoracoideus, a muscle that contributes to humeral elevation and longitudinal
rotation (Baumel and Witmer, 1993; Poore et al., 1997). However, the name ‘triosseal canal’ is
misleading given the variable composition of this structure in living birds (Livezey and Zusi, 2006).
The annotation provided for the triosseal canal by Baumel and Witmer, 1993 explicitly described
variation across taxa in the canal’s architecture. In most extant birds, the furcula, coracoid, and scapula
all participate (hence the name of the canal) in forming a fully enclosed bony passage. Typically, the
epicleidium of the furcula forms the craniomedial wall of the triosseal canal, the acrocoracoid process
of the coracoid forms the lateral wall, and the procoracoid process of the coracoid and the cranial
margin of the acromion of the scapula form the caudomedial wall. However, in many extant birds
(e.g., Phalacrocorax capillatus and E. garzetta), the bony triosseal canal is only partially closed, in that
the furcula lacks a bony contact with the scapula but is bound to the latter by Lig. scapuloclaviculare
dorsale (Baumel and Witmer, 1993). In Rhea, the Lig. acrocoracoacromiale bridges the tendon of
M. supracoracoideus, contributing to a what is functionally a ‘triosseal canal’ (Novas et al., 2021). In
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certain other birds, a closed bony canal is formed by the coracoid and scapula only, with no contri-
bution from the furcula, or even formed by the coracoid alone via an ossified bridge connecting the
acrocoracoid and procoracoid processes (e.g., Upupa epops and Columba livia) (Baumel and Witmer,
1993). Therefore, the triosseal canal is not necessarily formed by all three pectoral elements and is not
necessarily a fully enclosed bony passage. Also, the procoracoid process is absent in certain volant
crown birds that possess a triosseal canal, including Pavo muticus (Figure 4) and Colius striatus (Mayr,
2021), as well as in the Late Cretaceous galliform-like genus Palintropus (Longrich, 2009). Accord-
ingly, the procoracoid process cannot be considered an essential constituent of the triosseal canal.

Among stem birds, a triosseal canal is widely accepted as present in early-diverging euornithines
(Mayr, 2017, Wang et al., 2016b; Zhou and Wang, 2017). In most euornithine specimens (e.g.,
Yixianornis and Gansus) (Clarke et al., 2006; Wang et al., 2016c), the acrocoracoid process is medi-
ally hooked and a prominent procoracoid process is present, features that suggest the existence
of a typical, fully enclosed bony triosseal canal formed by the scapula, coracoid, and furcula. Many
previous studies have denied the presence of a triosseal canal in non-euornithine birds because of the
lack of a long medially hooked acrocoracoid process and a procoracoid process (Novas et al., 2021,
Wang and Zhou, 2017a). Although a small and pointed procoracoid process has been reported in
Protopteryx (Zhang and Zhou, 2000; Chiappe et al., 2020), this cannot be confirmed in the provided
figures and preservation of the omal region is poor. Other studies have argued that a triosseal canal
is present in enantiornithines, albeit based on limited evidence (Kurochkin et al., 2013, Zhang and
Zhou, 2000). Mayr, 2017 argued that the tendon of M. supracoracoideus ran along the medial side
of the acromion in enantiornithine birds, rather than along the lateral side as in crown birds, which
would imply that the supracoracoideus pulley system was differently configured in enantiornithines
than in euornithines.

Our renderings of the pectoral girdles of Sapeornis and Piscivorenantiornis indicate the presence
of a partially enclosed triosseal canal in these early stem birds. In Sapeornis, the lateral wall of the
triosseal canal is formed by the acrocoracoid process, the medial wall by the furcula, and the caudo-
medial wall by the scapular wing of the coracoid and the cranial margin of the acromion of the scapula.
In these respects, the triosseal canal of Sapeornis has essentially the same structure as in most extant
flying birds. In Piscivorenantiornis, the scapular wing of the coracoid is extremely reduced and lacks
a procoracoid process. The caudomedial wall of the triosseal canal is formed by the cranioventral
margin of the long acromion process of the scapula and the floor of the sulcus M. supracoracoideus
of the coracoid, as in some extant birds that lack a procoracoid process, for example, Corvus corax
and P. muticus (Figure 4). Both Sapeornis and enantiornithines have features of the pectoral girdle
(e.g., dorsolaterally projecting acrocoracoid process in Sapeornis, and elongate acromion process and
widely spaced acrocoracoid processes in enantiornithines) that imply the lack of a coracoid-furcula
contact (Mayr, 2017; Novas et al., 2021). Absence of such a contact is a plesiomorphic feature, widely
observed among non-avialan theropods (Currie and Zhiming, 2001; Klingler, 2020; Lii, 2003). Thus,
Sapeornis and enantiornithines have only a partially enclosed bony triosseal canal, though a ligament
could have completed the enclosure of the canal as in some modern birds (Ghetie, 1976). Absence of
the cranial bony wall of the triosseal canal presumably would not affect the upstroke in these birds as
the acrocoracoid process redirects the tendon of M. supracoracoideus (Baumel and Witmer, 1993).

Pectoral girdle evolution and early flight

Mapping major aspects of pectoral girdle morphology onto an avialan phylogenetic tree suggests
that three important evolutionary steps can be defined along the line to the modern flight apparatus
and reveals some distinctive features characterizing certain avialan clades (Figure 5). Step | occurs at
the base of the clade comprising Jeholornis and pygostylians, and involves torsion and elongation
of scapular blade (ratio of scapular length to femoral length about 0.9, compared to 0.68-0.81 in
Archaeopteryx [Rauhut et al., 2018], 0.68 in Anchiornis [Hu et al., 2009], and 0.58-0.73 in several
dromaeosaurids [Burnham et al., 2000; Hwang et al., 2002; Makovicky et al., 2005)); elongation
of sternal wing of coracoid (ratio of cranial-caudal length of sternal wing to medial-lateral width of
caudal margin of sternal wing greater than 1.5; reversed to primitive condition in Sapeornis) (Zhou
and Zhang, 2003b) shifting of scapular articular surface and glenoid fossa of coracoid to position
extremely close to base of acrocoracoid process; reduction in area occupied by scapula-coracoid
articulation compared to condition in non-avialan theropods; elongation of acrocoracoid process,
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which is situated at dorsoventral level of coracoidal glenoid fossa; reduction in distance between left
and right coracoids, indicating a relatively narrow and deep chest; reduction in angle between scapula
and coracoid (Novas et al., 2021) and establishment of partially closed triosseal canal. Step Il occurs
at the base of Ornithothoraces and involves cranial extension and thickening of the acromion process
(Novas et al., 2021) reduction of the interclavicular angle (generally to less than 65°) (Hu et al.,
2015b) and reduction of the supracoracoid foramen. Step lll occurs in early-diverging Euornithes and
involves increased downward curving of caudal end of scapular blade (O’Connor et al., 2016) shifting
of glenoid fossa of scapula onto the external surface of bone, causing the fossa to face dorsolaterally
(Wellnhofer et al., 2009) appearance of the procoracoid process on the scapular wing of coracoid
(Clarke et al., 2006) medial curving and further elongation of the acrocoracoid process (Novas et al.,
2021) further reduction in angle between the scapula and coracoid (Wellnhofer et al., 2009) and the
complete bony enclosure of triosseal canal. Regarding distinctive pectoral girdle features in particular
taxa, Jeholornis has an unusual combination of a prominent procoracoid process and a large supra-
coracoid foramen (Lefévre et al., 2014; Turner et al., 2012, Wang et al., 2020a), Sapeornis has a
dorsolaterally oriented acrocoracoid process, and Enantiornithes is characterized by an extremely
small scapular wing of the coracoid, a single scapula-coracoid articulation, elongation of the hypo-
cleidium, presence of caudal grooves on the furcular rami and a keel on the caudal surface of the
hypocleidium, and further solidification of the furcula-scapula articulation.

The variation in pectoral girdle morphology seen among early birds is suggestive of a similarly
wide diversity of flight capabilities and modes, an inference supported by previous studies (Close and
Rayfield, 2012; Heers and Dial, 2012, Novas et al., 2021). The position of the acrocoracoid process,
or coracoid tubercle, and the orientation of the glenoid fossa are functionally important because the
former is a key determinant of the course of the M. supracoracoideus tendon and the latter has a
major effect on the range of motion of the wing (Novas et al., 2020; Novas et al., 2021). In volant
crown birds, the tendon ascends through the triosseal canal, passes laterally over the acrocoracoid
process, and ultimately inserts on the dorsal tubercle near the proximal end of the humerus. The
medial surface of the acrocoracoid process forms the lateral wall of the triosseal canal and acts as a
pulley to redirect the M. supracoracoideus tendon. Because the pulley is situated above the insertion
point when the humerus is depressed, the force generated by the ventrally positioned belly of the
M. supracoracoideus elevates the humerus, rather than protracting the humerus as in early-diverging
theropods (Burch, 2014). In contrast to non-avialan theropods, volant crown birds are characterized
by a well-developed acrocoracoid process located above the level of the glenoid fossa, which has
a sub-horizontal major axis and faces laterodorsally (Novas et al., 2020). The M. supracoracoideus
is the main elevator of the wing, and the wing moves approximately dorsoventrally at the shoulder
(Novas et al., 2020, Novas et al., 2021). In Archaeopteryx and deinonychosaurs (e.g., Buitreraptor
and Sinovenator), the hypertrophied coracoid tubercle would likewise have acted as a pulley for the
M. supracoracoideus tendon (Novas et al., 2021), but the pulley would have been located below the
level of the glenoid fossa and approximately at the dorsoventral level of the insertion point when the
humerus was depressed. Thus, the M. supracoracoideus would have protracted the humerus, as in
flightless extant paleognaths (Novas et al., 2020, Novas et al., 2021; Jasinoski et al., 2006). The
glenoid fossa of Archaeopteryx, non-avialan pennaraptorans, and flightless paleognaths faces laterally
and has a sub-vertical major axis, indicating that the movements of the forelimb at the shoulder joint
are, or in the case of extinct taxa would have been, predominantly cranial-caudal (Novas et al., 2020,
Ostrom, 1974).

In Sapeornis and most other non-ornithothoracine avialans (e.g., Jeholornis and Confuciusornis),
the acrocoracoid process is slightly above the midpoint of the coracoidal glenoid fossa (Zhou and
Zhang, 2003b), and consequently would have been above the insertion point when the humerus
was depressed, as in living birds. The more dorsal location of the acrocoracoid process would have
caused the tendon of M. supracoracoideus to be slightly dorsally displaced relative to its position in
Archaeopteryx and non-avialan pennaraptorans (Mayr et al., 2005; Turner et al., 2012, Wang and
Zhou, 2018b). The triosseal canal is located mediocranial to the glenoid fossa, whereas in extant birds
the triosseal canal is located more directly medial to the glenoid fossa. In Sapeornis, the vector of
the tension exerted by the M. supracoracoideus on the humerus would therefore have been directed
cranially and somewhat dorsomedially, causing the muscle to promote protraction, elevation, and
pronation of the wing during the upstroke. The angle with the vertical formed by the major axis of the
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glenoid fossa is larger than in flightless paleognaths, but smaller than in volant extant birds (Novas
et al., 2020). This suggests that the wing may have moved in a craniodorsal-caudoventral down-
stroke, unlike either the dorsal-ventral downstroke of extant volant birds or the largely cranial-caudal
humeral movements of flightless paleognaths and presumably also of Archaeopteryx and non-avialan
pennaraptorans. Several studies Mayr, 2017; Olson and Feduccia, 1979 have suggested that the
well-developed M. deltoideus, which would have inserted broadly on the deltopectoral crest and
humeral shaft, played the main role in the wing elevation in Sapeornis and other non-ornithothoracine
birds. This seems consistent with the finding in this study that the M. supracoracoideus of Sapeornis
would have pulled the humerus cranially (Figure 5) rather than acting primarily as a wing elevator, and
with the finding that Lig. acrocoracohumerale in Sapeornis had a relatively horizontal orientation, so
that the dorsal shoulder musculature would have been largely responsible for preventing ventral dislo-
cation of the humeral head when M. pectoralis was strongly activated. Nevertheless, the presence of
the triosseal canal indicates that most non-ornithothoracine birds possessed some incipient capacity
for powered, flapping flight. In Piscivorenantiornis, the acrocoracoid process is only slightly higher
than the coracoidal glenoid fossa as in most non-ornithothoracine avialans, but nevertheless is consid-
erably higher than the coracoid’s scapular articular surface as in euornithines, due to the craniodorsally
caudoventrally elongated shape of the coracoidal glenoid fossa. The orientation of the major axis of
the glenoid fossa falls within the range seen in volant extant birds, and the triosseal canal is located
medial to the glenoid fossa. Therefore, the wing movements of Piscivorenantiornis would have been
more like those of volant extant birds than those of Sapeornis, indicating stronger flight capabilities in
enantiornithines than in non-ornithothoracine birds.

In general, our study reveals additional lineage-specific variations in pectoral girdle anatomy as
well as an overarching pattern of significant modification of the pectoral girdle along the line to crown
birds. The morphological diversity seen across the pectoral girdles of Mesozoic birds presumably
resulted in a commensurate range of flight capabilities and modes in early-flight evolution. The wing
movements of Sapeornis would have differed from those of extant volant birds, highlighting the need
to consider the possible effect of wing kinematics when reconstructing the flight ability of early birds.

Materials and methods

Institutional abbreviations

PMoL, Paleontological Museum of Liaoning, Shenyang, China; IVPP, Institute of Vertebrate Paleon-
tology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China; STM, Shandong
Tianyu Museum of Natural History, Linyi, China.

S. chaoyangensis PMoL-AB00015 is a nearly complete semi-articulated skeleton collected from the
Lower Cretaceous Jiufotang Formation at Yuanjiawa Village, Dapingfang Town, Chaoyang County,
Liaoning Province, China. It is probably an adult individual based on skeletal fusion features (e.g.,
closed neurocentral sutures in all vertebrae, sacral vertebrae fused to form a synsacrum, distal carpals
fused with metacarpals to form a carpometacarpus, proximal tarsals fused with tibia to form a tibio-
tarsus, and distal tarsals fused with metatarsals to form a tarsometatarsus). P, inusitatus IVPP V 22582
is a disarticulated skeleton collected from the Jiufotang Formation near Dapingfang Town (Wang and
Zhou, 2017Wang and Zhou, 2017, Wang et al., 2016a). The skeleton shows the same fusion features
as PMoL-AB00015 and probably also represents an adult individual. These two specimens are the main
data sources for this study. For comparison, we also examined the skeletons of several extant birds
and fossil theropods, including T. alba IVPP OV 954, E. garzetta IVPP OV 1631, P. muticus IVPP OV
1668, and the troodontid Sinovenator changii IVPP V 12615. The specimens were scanned using a GE
v[tome|x m300&180 micro-computed tomography scanner (GE Measurement & Control, Wuntsdorf,
Germany) and a 225 kV micro-computerized tomography scanner (developed by the Institute of High
Energy Physics, CAS), both housed at the Key Laboratory of Vertebrate Evolution and Human Origins
of the Chinese Academy of Sciences. Three-dimensional segmentation of the computed tomography
data was performed using the software package Mimics (19.0).
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