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Abstract Natural perception relies inherently on inferring causal structure in the environment. 
However, the neural mechanisms and functional circuits essential for representing and updating the 
hidden causal structure and corresponding sensory representations during multisensory processing 
are unknown. To address this, monkeys were trained to infer the probability of a potential common 
source from visual and proprioceptive signals based on their spatial disparity in a virtual reality 
system. The proprioceptive drift reported by monkeys demonstrated that they combined previous 
experience and current multisensory signals to estimate the hidden common source and subse-
quently updated the causal structure and sensory representation. Single-unit recordings in premotor 
and parietal cortices revealed that neural activity in the premotor cortex represents the core compu-
tation of causal inference, characterizing the estimation and update of the likelihood of integrating 
multiple sensory inputs at a trial-by-trial level. In response to signals from the premotor cortex, 
neural activity in the parietal cortex also represents the causal structure and further dynamically 
updates the sensory representation to maintain consistency with the causal inference structure. Thus, 
our results indicate how the premotor cortex integrates previous experience and sensory inputs 
to infer hidden variables and selectively updates sensory representations in the parietal cortex to 
support behavior. This dynamic loop of frontal-parietal interactions in the causal inference frame-
work may provide the neural mechanism to answer long-standing questions regarding how neural 
circuits represent hidden structures for body awareness and agency.

Editor's evaluation
This study investigates the neural basis of the hidden causal structure between visual and proprio-
ceptive signals in the primate premotor and parietal circuit during reaching tasks executed in a 
virtual reality environment, where information between the two modalities can be dissociated. The 
key novel result is that premotor neurons represent the integration of bimodal information for small 
disparities and the segregation for large disparities between the proprioceptive and visual informa-
tion, while parietal cells show reaching tuning changes that support the updating sensory uncer-
tainty between tasks.

Introduction
The brain is constantly confronted with a myriad of sensory signals. Natural perception relies inherently 
on inferring the environment’s hidden causal structure (Deroy et al., 2016; French and DeAngelis, 
2020; Lochmann and Deneve, 2011). For instance, in the ventriloquism illusion, when the audience is 
presented with a temporally synchronous but spatially discrepant audiovisual stimulus (e.g., a speech 
sound from the speaker and a visibly moving mouth of the puppet), they usually infer these audio-
visual stimuli are coming from a common source and illusive perceive the speech coming from the 
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puppet. In the process of building representation of the bodily self, the brain combines, in a near-
optimal manner, information from multiple sensory inputs. When a single entity (e.g., the bodily self) 
evokes correlated noisy signals, our brain combines the information to infer the properties of this 
entity based on the quality and uncertainty of the sensory stimuli. As a result, behavioral performance 
often benefits from combining information using uncertainty-based weighting across sensory systems 
(Stein and Stanford, 2008). However, in a natural environment, multiple sensory cues are typically 
produced by more than one source (e.g., two entities), which should not be integrated in the brain, 
especially when the superposing cues are sufficiently dissimilar and uncorrelated. Instead, the brain’s 
inferential process of integration fades out, leading to the perception that these cues originate from 
distinct entities. This process of inferring the causes of sensory inputs for perception is known as 
causal inference (Körding et al., 2007).

Thus far, most of the neurobiological studies of multisensory processing have operated under 
the assumption that different streams of sensory information can arise from the same source. For 
example, previous neurophysiological research in monkeys showed that neurons implement reliability-
weighted integration on the premise that visual and vestibular signals are from a common source 
(Fetsch et  al., 2013; Morgan et  al., 2008; Porter et  al., 2007). Therefore, despite the ubiquity 
of the phenomenon of causal inference and many psychophysical and theoretical research (Acerbi 
et al., 2018; Dokka et al., 2019; Kayser and Shams, 2015; Körding et al., 2007; Mohl et al., 2020; 
Rohe and Noppeney, 2015; Sato et al., 2007), its neural mechanisms and functional circuits remain 
largely unknown. Recent neuroimaging studies have started to show the sequential causal inference 
process in the human brain (Aller and Noppeney, 2019; Cao et al., 2019; Rohe et al., 2019; Rohe 
and Noppeney, 2015; Rohe and Noppeney, 2016). However, little was known about the process at 
the single-neuron level in animals (Fang et al., 2019). In particular, the updating of prior and sensory 
information during causal inference has not been examined in animals.

In the present study, we established an objective and quantitative signature of causal inference at 
a single-trial level using a reaching task and a virtual reality system in macaque monkeys. We showed 
that monkeys combined previous experience and current multisensory signals to estimate the hidden 
common source and, more importantly, subsequently updated both the causal structure and sensory 
representation during the inference. We then further recorded from the premotor and parietal (area 
5 and area 7) cortices of three monkeys to investigate the neural dynamics and functional circuits 
of causal inference in multisensory processing. Our behavioral and neural results reveal the neural 
computation that appears to mediate causal inference behavior, including inferring a hidden common 
source and updating prior and sensory representations at different hierarchies.

Results
Behavioral paradigm and hierarchical Bayesian causal inference model
Using a virtual-reality system, we trained three monkeys (monkeys H, N, and S) to reach for a visual 
target with their nonvisible (proprioceptive) arm while viewing a virtual arm moving in synchrony with 
a preset spatial visual-proprioceptive (VP) disparity (Figure 1A). On each trial of the experiment, the 
monkeys were required to initiate the trial by placing their hand on the starting position (blue dot) for 
1 s and were instructed not to move. After the initiation period, the starting point disappeared, and the 
visual virtual arm was rotated; this mismatch arm was maintained for 0.5 s as the preparation period. 
The reaching target was presented as a ‘go’ signal, and monkeys had to reach toward the visual target 
within 2.5 s and place their hand in the target area for 0.5 s, referred to as the target-holding period, 
to receive a reward. Any arm movement during the target-holding period automatically terminated 
the trial. The proprioceptive drift due to the disparity between visual and proprioceptive inputs was 
measured at the endpoint of the reach and was defined as the angle difference between the proprio-
ceptive arm and the visual target (the estimated arm) (Figure 1B, see details of animal training and 
reward in Materials and methods). In addition to this VP conflict (VPC) task, two control experiments 
were conducted: (i) where the visual and proprioceptive signals were perfectly aligned (VP task) and (ii) 
where there was only a proprioceptive signal (P task). The procedures of the three tasks (VPC, VP, and 
P) were identical, except that the visual or proprioceptive information presented to monkeys varied 
according to the context of the experiment (see Materials and methods). Using a block design, the 
order of three different blocks (tasks) in each training or recording session was randomized.

https://doi.org/10.7554/eLife.76145
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We used this paradigm to test the hypothesis of the causal inference process, which predicts how 
the brain infers and updates hidden structures on the basis of multiple sensory inputs.

First, the BCI model encodes probability distributions over the sensory (visual and proprioceptive) 
signals and incorporates rules that govern how a prior belief about the sensory causal structure is 
combined with incoming information to judge the event probability in proprioception (Figure 1C–F). 
Thus, the monkey’s behavior output (the proprioceptive drift distribution under each disparity) should 
show the dynamics of integration and segregation, which is the hallmark of causal inference. That is, 
the drift should increase for small disparities and decrease when the disparities become larger (Fang 
et al., 2019; Körding et al., 2007).

Second, according to the model, the prior of common source in the current trial should be modu-
lated by the experience of the environmental structure. Thus, at a single trial level, the prior of a 
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Figure 1. Behavioral task, the dynamic hierarchical causal inference model, and proprioceptive drift results. (A) Overview of the behavioral task. The 
monkey was instructed to hold its proprioceptive arm over the starting position (blue dot) to initiate one trial. After the virtual visual arm rotation, a 
virtual red dot was presented, and the monkey was required to place its proprioceptive arm on the target and hold it to get a reward. (B) Schematic 
drawing of reward area, proprioceptive drift, and the different types of arms (proprioceptive and virtual/visual). Here, proprioceptive drift was defined as 
the rotated degree from the proprioceptive arm position to the estimated arm position (the same as the target location) measured from the shoulder. 
The reward area is defined by the green area, which ensures the monkey performed the task rationally and without visual feedback (see animal training 
in Materials and methods). (C–F) Schematic drawing of the dynamic hierarchical causal inference model. V-arm, visual arm signal; P-arm, proprioceptive 
arm signal; C=1: both V-arm and P-arm come from a common source; C=2: V-arm and P-arm come from different sources. (G) Example behavioral 
results from one session of one monkey (also see Figure 1—figure supplement 1 and Figure 1—figure supplement 2). CCW, counterclockwise; CW, 
clockwise. The black line represents raw data. The gray line represents the Bayesian causal inference (BCI) model fitting result. The black dots represent 
experimental trials and the gray dots represent simulated trials by the BCI model.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 1:

Source code 1. Related to Figure 1G.

Source data 1. Related to Figure 1G.

Figure supplement 1. Behavior performance and causal inference model predict results in individual monkeys.

Figure supplement 2. Histograms of behavior and model-simulated results in an example session.

https://doi.org/10.7554/eLife.76145
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common source in the current trial should be updated based on the posterior of a common source 
from previous trials (Figure 1C and D).

Third, the sensory uncertainty is also proposed to update to maintain consistency with the prior 
beliefs of the causal structure of the world (French and DeAngelis, 2020). Therefore, the sensory 
uncertainty should increase when there is a conflict between the proprioceptive and visual signals 
(e.g., the VPC task) (Figure 1D and E).

To test these hypotheses, we adopted the Bayesian causal inference (BCI) model to assess monkeys’ 
behavior and investigated whether the neural activities in multiple brain regions correlate to proposed 
components in the behavior.

The probability of common source in monkey’s behavior
To examine whether the monkeys inferred the causal structure during multisensory processing, we 
first examined the proprioceptive drift as a function of disparity in the VPC task. Overall, the three 
monkeys showed a very consistent behavioral pattern, with the proprioceptive drift increasing for 
small levels of disparity and plateauing or even decreasing when the disparity became larger (e.g., 
exceeded 20°) (Figure 1G; for data on individual monkeys, see Figure 1—figure supplement 1). The 
BCI model qualitatively explains the nonlinear dependence of drift as a function of disparity. For small 
disparities, there is a high probability that the proprioceptive and visual signals came from the same 
source. Hence, the visual information is fully integrated with the proprioceptive information. For large 
disparities, however, the proprioceptive and visual signals are likely from different sources, leading to 
a breakdown of integration and consideration of only the proprioceptive information (segregation). In 
this case, visual information has a weaker weight for perception. Consequently, the effect of disparity 
on the drift is reduced by shifting integration to segregation. The BCI model quantified the nonlinear 
dependence between disparity and proprioceptive drift to measure the posterior probability of a 
common source (Pcom), the consequence of causal inference. We fitted the behavioral data using the 
BCI model. The results showed two signatures of the Pcom pattern: (i) the averaged Pcom decreased as 
the disparity increased (Figure 2A, left) and (ii) within each disparity, especially the large ones, the Pcom 
decreased as the proprioceptive drift decreased (Figure 2A, right) (see individual monkeys’ behavior 
in Figure 1—figure supplement 1).

Pcom in the current trial depended on the experience
More importantly, the model posits that not only the inference of the causal structure is based on 
visual and proprioceptive inputs but also the subsequent updating of (i) the prior belief of causal 
structure based on the experience (e.g., probability of a common source in the previous trials) and 
(ii) the uncertainty of sensory signals for the visual and proprioceptive recalibration (Figure 1C–F). 
To test these hypotheses, we first implemented the Markov analysis of the prior belief and Pcom (see 
Materials and methods) to see whether the prior probability of a common source (Pprior) in the current 
trial depended on the previous Pcom (Figure 2B). The Markov model included the transition probability 
of Pprior between the current (nth) and previous (nth− 1) trial to account for the trial-by-trial variability 
in spatial drifts observed in the three monkeys (Figure 2B, left). The fit to the model demonstrated 
that the Pcom observed in the nth trial was significantly affected by that in the previous (nth− 1) trial 
(Figure 2B, right, Wilcoxon signed-rank test, p<0.001), indicating that the Pcom was computed based 
on both Pprior from the previous trial and the sensory inputs, with their disparity, from the current trial. 
Note that the transition probabilities (P(C=1|C=1) and P(C=1|C=2)) remained relatively high (larger than 0.8 
in three monkeys) because overall, the number of high Pcom trials was much more than low Pcom trials 
in either training or recording sessions. This was consistent with high baseline Pprior in three monkeys 
(Supplementary file 1).

The common-source belief modulated the sensory uncertainty
We next examined whether the sensory representation is updated to maintain consistency with the 
causal structure of the environment. That is, the estimates of physical arm locations should tradeoff 
systematically depending on the current common-source belief (e.g., Pcom in different tasks: VP, P, and 
VPC). For example, when the monkey incorrectly infers that the visual and proprioceptive arms come 
from the same source when a disparity is presented, the uncertainty of proprioception should increase 
to ‘explain away’ the conflict between the two inputs. According to this idea, since the block design in 

https://doi.org/10.7554/eLife.76145
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Figure 2. The causal inference model predicts the dynamic updating of monkey behavior. (A) Left: The average 
Pcom as a function of disparity. The black line represents the average Pcom across monkeys. The dashed lines 
represent the average Pcoms across sessions of three monkeys separately. Error bars indicate standard errors of the 
means (SEMs). Right: Model prediction of the Pcom. Each point represents the average Pcom in each cluster grouped 
by specific disparity and proprioceptive drift according to the clustering of disparity and drift (see Materials and 
methods). (B) The transition probability from the previous trial’s Pcom to the current trial’s Pprior. Left: The transition 
probability of an example session. Right: The transition probabilities across all sessions from three monkeys 
(Wilcoxon signed-rank test, W=6996.0, df = 242, p<0.001, rrb = 0.52). Each circle represents a behavior session. The 

Figure 2 continued on next page
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the current experiment resulted in P trials (in the P task) sometimes following the VPC task and other 
times following the VP task, we then reasoned that because the overall Pcom was lower in the VPC task 
than in the VP task, the uncertainty of proprioception (i.e., the distribution of proprioceptive drifts in 
the P trials) would be larger after the VPC task than after the VP task. We analyzed the drift variation in 
P trials and found that, in the early trials (first third of each P block), the uncertainty of P trials following 
the VPC task was significantly larger than that following the VP task (Figure  2C, right, Wilcoxon 
signed-rank test, p=0.012). The increase in the uncertainty of proprioception was recovered in the late 
trials (last third of each P block), evident by a significant difference in the uncertainty between early 
and late P trials (Figure 2C, right, Wilcoxon signed-rank test, p=0.035). The decrease in the uncer-
tainty of proprioception was reasonable, as the tradeoff effect in the VPC task gradually recovered.

Furthermore, we hypothesized that if a tradeoff of sensory representation occurs during the process 
of causal inference, the tradeoff would also affect the uncertainty of VP integration in both VP and 
VPC tasks. We examined the distribution of proprioceptive drifts using the trials with 0° disparity in 
the VPC task, in which the V and P information were congruent, and compared it with the distribution 
in the VP task. As predicted, we found that the variance of the proprioceptive drift was significantly 
larger in the VPC task than in the VP task (Figure 2D, right, Wilcoxon signed-rank test, p<0.001). 
Note that the difference between VP and VPC (0°) tasks could not be explained by the divergence of 
eye fixation positions (Figure 2—figure supplement 2). As a control, we also investigated whether 
the mean of drift, representing the perceptual accuracy of the proprioceptive arm, was affected by 
the causal structure of the environment. We found there was no significant difference between the 
mean of drift for P trials following the VPC task and that following the VP task in both early parts 
(Figure 2—figure supplement 1, left, Wilcoxon signed-rank test, p=0.37, false-discovery rate [FDR] 
corrected) and late parts (Figure 2—figure supplement 1, right, Wilcoxon signed-rank test, p=0.37, 
FDR corrected). Besides these, we also found that the mean of proprioceptive drift was not updated in 
the VPC task compared with the VP task (Figure 2—figure supplement 1, right, Wilcoxon signed-rank 
test, p=0.29). Thus, these results supported the notion of a tradeoff in proprioception according to 
causal inference environments; that is, sensory representation’s uncertainty, not accuracy, is updated 
dynamically based on the task environment (Pcom).

To summarize the above-described behavioral results, we found that monkeys’ proprioceptive drift 
shows a nonlinear dependency on the disparity between proprioceptive and visual input, which was 
well explained by the causal inference model. Second, we showed that the Pcom integrated with VP 
sensory inputs and is updated by previous experience on a trial-by-trial basis. Third, to maintain a 

most right insert scatter represents a single session’s transition probability. (C) After-trial effect of sensory updating. 
Left: The distribution of arm locations in P blocks after visual-proprioceptive (VP) and VP conflict (VPC) tasks in an 
example session. The solid lines represent fitted Gaussian distributions. Right: The standard deviations of drift in 
P blocks after VP and VPC tasks across all sessions from three monkeys in early trials (Wilcoxon signed-rank test, 
W=851.0, df = 72, p=0.012, false-discovery rate [FDR] corrected, see Materials and methods, rrb = 0.38) and in 
latter trials (W=1024.0, df = 72, p=0.073, FDR corrected, rrb = 0.24). The uncertainty of P trials after the VPC task 
in the early part of the session was significantly larger than that in the later part (W=917.0, df = 72, p=0.035, FDR 
corrected, rrb = 0.29); this is not the case for P trials after the VP task (W=1086.0, df = 72, p=0.15, FDR corrected, rrb 
= 0.20). (D) Within-trial effect of sensory updating. Left: The distribution of arm locations in VP and VPC (0°) tasks. 
The solid lines represent fitted Gaussian distributions. Right: The standard deviation of drift in VPC (0°) trials was 
significantly higher than that in VP trials (Wilcoxon signed-rank test, W=10,035.0, df = 237, p<0.001, rrb = 0.29). In 
(C) and (D), each circle represents a behavior session. The effect sizes (rrb) were performed using the rank-biserial 
correlation (Kerby, 2014). *p<0.05; ***p<0.001; n.s., not significant.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 2:

Source code 1. Related to Figure 2A-D.

Source data 1. Related to Figure 2A–D.

Figure supplement 1. Sensory updating is not reflected in the mean of drift.

Figure supplement 2. No significant difference of the divergence of eye fixation positions between visual-
proprioceptive (VP) and VP conflict (VPC) (0°) tasks (see Materials and Methods, Wilcoxon signed-rank test, 
W=98.0, df = 19, p=0.81).

Figure 2 continued
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consistency of causal inference, sensory uncertainty, reflected by the variance of proprioceptive drift, 
is updated in the inference along with the change of Pcom. Taken together, we established the behav-
ioral paradigm in which monkeys infer the hidden cause by integrating prior information and sensory 
inputs while dynamically updating both Pcom and sensory representation. The behavioral responses of 
the monkeys enabled us to examine the underlying neural mechanisms and functional circuits.

Causal inference in individual premotor and parietal neurons
Previous studies showed that the premotor and parietal cortices were highly involved in body repre-
sentation and multisensory perception (see reviews in Blanke, 2012; Graziano and Botvinick, 2002). 
In monkeys, bimodal neurons with visual and somatosensory receptive fields were found in both 
premotor (including F2vr in dorsal premotor and F4/F5 in ventral premotor) and posterior parietal 
cortices (including area 5 and area 7) (Fogassi et al., 1999; Graziano et al., 2000; Graziano and 
Gross, 1993; Graziano and Gross, 1998; Graziano et  al., 1994). Specifically, ventral premotor 
neurons responded to visual stimuli in the space adjacent to the arm (Graziano and Gross, 1998; 
Graziano et al., 1994). The bimodal neurons in the parietal cortex (area 5 and area 7) showed to 
respond to both the real arm position and the seen position of a dummy arm (Graziano et al., 2000), 
which have a significant projection of the premotor cortex (Graziano and Gross, 1998). Consistently, 
human fMRI studies found that the posterior parietal and premotor (dorsal and ventral) cortices selec-
tively respond to visual stimulation near the hand (Brozzoli et al., 2011) or the dummy hand near 
one’s corresponding hand (Blanke et  al., 2015; Ehrsson et  al., 2004). A human MEG study also 
revealed that the activities in the prefrontal and intraparietal sulcus were related to the causal infer-
ence computation in visual-auditory integration (Cao et al., 2019; Rohe et al., 2019). Therefore, we 
determined to record from two brain regions, the premotor cortex (dorsal and ventral, 412 neurons) 
and parietal cortex (area 5 and area 7; 238 neurons), in the three monkeys performing the reaching 
tasks (Figure 3A, for details, see Materials and methods). We first examined whether neurons in the 
premotor and parietal cortices during the target-holding period (Figure 3B) were selective to basic 
task components, including condition (VP or P), arm location, and visual disparity. In the premotor 
cortex, 40% (163/412) of neurons were selective to condition, 23% to arm location, and 37% to visual 
disparity (Figure 3—figure supplement 1A, upper panel). In the parietal cortex, 35% (83/238) of 
neurons were selective to condition, 27% to arm location, and 31% to visual disparity (Figure 3—
figure supplement 1A, lower panel, ANOVA, main effect, p<0.05). We also examined the neural 
representations of the visual and proprioceptive arm locations in each trial during the target-holding 
period in the VPC, VP, and P tasks, measured by a bias-corrected percent explained variance (ωPEV) 
(Figure 3C). Both brain regions conveyed vital information about the arm location in the three tasks. 
In the VP and P tasks with no VP disparities, both premotor and parietal cortices showed similar visual 
and proprioceptive arm information (Figure 3C). However, when disparities were introduced in the 
VPC task, the premotor cortex showed a more robust signal for visual arm information (Figure 3C). 
In contrast, the parietal cortex showed stronger signals for information related to the proprioceptive 
arm (Figure 3C).

Next, to define causal inference response in the VPC task at the single-neuron and single-trial 
levels, we utilized the VP and P tasks to characterize neural responses, as these tasks involve expected 
stereotypical behaviors in the two extreme regimes: full integration and segregation. Thus, neurons 
that are more active during the P task are likely candidates for ‘segregation (P) neurons’, which exhib-
ited increased activity under the large disparities in the VPC task (Figure 3D). By contrast, neurons 
that are more active during the VP task reflect a preference for integrating congruent VP information 
and, hence, constitute a natural candidate for ‘integration (VP) neurons’ (example in Figure 3—figure 
supplement 2). We then implemented a linear probabilistic model which combined how the neural 
response pattern aligned with the VP and P response profiles and used this model to implement a 
probabilistic decoding analysis to calculate the probability of VP or P (VP weight = Pvp/[Pvp + Pp]) based 
on the firing rate in each trial (Figure 3E; also see Materials and methods). Thus, a larger VP weight 
for a single trial denotes a higher probability of integration (high Pcom). We first focused on the target-
holding period in a trial, as the neurons could well display their spatial tunings when monkeys holding 
their arms on the target. We found that both premotor and parietal cortices carry information about 
Pcom at the single-neuron (Figure 3F; the same example neurons in Figure 3D) and population levels 
(Figure 3G; see Materials and methods) during the target-holding period. That is, the VP weight of 

https://doi.org/10.7554/eLife.76145
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Figure 3. Casual inference neurons in premotor and parietal cortices. (A) Recording sites. Left: Two regions of interest were recorded through single 
electrodes in macaque monkeys. Middle and right: Specific recording sites in three monkeys. AS, arcuate sulcus; CS, central sulcus; IPS, intraparietal 
sulcus; SPD, superior precentral dimple. L, left hemisphere; R, right hemisphere; A, anterior; P, posterior; M, medial. The straight dash gray line 
separated the dorsal and ventral part of the premotor cortex in the middle panel. The straight dash gray line indicates the middle of IPS and CS. The 

Figure 3 continued on next page
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the neuron or population progressively decreased along with the disparity, and in trials with large 
disparity (e.g., 35° and 45°), the neuron(s) had a higher VP weight when the drift was large (i.e., the 
monkey integrated the visual information; thus, a high Pcom predicted by the BCI model) and shifted 
gradually toward higher P weights when the drift shifted to 0 (i.e., the monkey segregated the visual 
information; thus, a low Pcom predicted by the BCI model). The VP weight was highly correlated with 
the Pcom from behavior (Figure 3H). Note that the premotor cortex had a slightly higher proportion 
of causal inference neurons (11.7%) than the parietal cortex (7.6%, Pearson chi-square test, χ2=2.33, 
p=0.063).

As neuronal activities in the premotor and the parietal cortices are reported to correlate with the 
eye position in the reaching task (Buneo and Andersen, 2006; Pesaran et al., 2006), one might ask 
whether the Pcom signals can be explained by the eye position. However, the result showed that the VP 
weights in the population could not be predicted by eye fixation positions during the target-holding 
period (Figure 3—figure supplement 3).

Population states encode Pcom during causal inference
We next focused on the overall populations of neurons in both regions and asked whether and how 
their population states reflect the uncertainty of causal structure, Pcom. We were guided by the results 
from single-neuron analyses during the target-holding period described above, in which neurons 
responsive to high Pcom (prefer integration) are more likely to show neural tuning similar to that during 
the VP task, and neurons responsive to low Pcom (prefer segregation) show a tuning profile similar 
to that in the P task. We thus hypothesized that neural components or subspaces embedded in the 
population activity represent the dynamic change in the coding of Pcom in the VPC task, which would 
lie between the components representing the VP and P profiles. Furthermore, the computation of Pcom 

circular dash lines indicate the recording chambers. (B) Temporal structure of a single trial for the visual-proprioceptive conflict (VPC) task. (C) Neural 
information of arm locations in premotor and parietal cortices. Upper: No significant difference between the brain regions for the neural information 
of VP arm (Wilcoxon rank-sum test, W=0.64, dfpremotor = 411, dfparietal = 237, p=0.52, false-discovery rate [FDR] corrected, rrb = 0.030) and P arm (W=0.51, 
dfpremotor = 411, dfparietal = 237, p=0.52, FDR corrected, rrb = 0.031), respectively. Bottom: There were significant differences between the brain regions 
for both the neural information of proprioceptive arm (Wilcoxon rank-sum test, W=–3.92, dfpremotor = 411, dfparietal = 237, p<0.001, FDR corrected, rrb = 
0.18) and visual arm (W=6.34, dfpremotor = 411, dfparietal = 237, p<0.001, FDR corrected, rrb = 0.30) in VPC task, respectively. Both brain regions conveyed 
significant information about the arm location in the three tasks (premotor: VP arm, Wilcoxon signed-rank test, W = 27,712.0, df = 474, p<0.001, FDR 
corrected, rrb = 0.35; P arm, W = 25,614.0, df = 411, p<0.001, FDR corrected, rrb = 0.40; proprioceptive arm (VPC), W=22,316.0, df = 411, p<0.001, FDR 
corrected, rrb = 0.48; visual arm (VPC), W=14,874.0, df = 411, p<0.001, FDR corrected, rrb = 0.65. Parietal: VP arm, W=9466.0, df = 237, p<0.001, FDR 
corrected, rrb = 0.33; P arm, W=7414.0, df = 237, p<0.001, FDR corrected, rrb = 0.48; proprioceptive arm (VPC), W=3745.0, df = 237, p<0.001, FDR 
corrected, rrb = 0.74; visual arm (VPC), W=10,138.0, df = 237, p<0.001, FDR corrected, rrb = 0.29). Each circle indicates a neuron. The effect sizes (rrb) 
were performed using the rank-biserial correlation. (D) Raster plots and mean firing rates from an example neuron in the parietal cortex that exhibited 
responses varied with visual disparity, showing the preference for the P task during the target-holding period (gray zones). The yellow curve was fitted 
with a von Mises distribution. (E) Schematic drawing of VP weight analysis (see Materials and methods) in one example trial for the VPC task. In brief, we 
first mapped the tuning curves of arm position in VP (left red curve) and P (left blue curve) tasks as integration and segregation templates, respectively. 
Then, during the VPC task, for a single trial, we mapped the visual and proprioceptive arm position onto the these templates to get the probabilities 
of integration and segregation. Then, we normalized the probability to get the VP weight. (F) Two examples of causal inference neurons in premotor 
and parietal cortices during the target-holding period (the same neurons shown in Figure 3—figure supplement 2 and (D), respectively). Each point 
represents one single trial, and the color represents the value of VP weight. The color bar represents VP weight, larger values indicate higher VP weights 
(higher probability of integration). (G) Population causal inference patterns in two brain regions. Each point was a pseudo-trial that was generated 
through bootstrapping, and the color represents the value of VP weight. (H) An example neuron in the parietal cortex shows the causal inference pattern 
defined by a significant positive correlation between VP weight and Pcom (Pearson correlation). Each point represents the average Pcom and VP weight in a 
cluster from the behavioral Pcom pattern. The solid line was fitted with linear regression, and the shaded area indicates the 95% confidence interval. The 
bar plot represents the fraction of causal inference neurons in the premotor cortex and parietal cortex. ***p<0.001.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 3:

Source code 1. Related to Figure 3C, D, F, G and H.

Source data 1. Related to Figure 3C, D, F, G and H.

Figure supplement 1. Heterogeneity in the responses of neurons to task components in the premotor and parietal cortices.

Figure supplement 2. Left and middle: Raster plots and mean firing rates from an example neuron in the premotor cortex that exhibited responses 
varied with visual disparity that preferred to the P task during the target-holding period (gray zones).

Figure supplement 3. Histograms of Pearson correlation coefficients between eye fixation position and visual-proprioceptive (VP) weight.

Figure 3 continued
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in the BCI model is determined by the relation and disparities between the visual information from the 
artificial arm and proprioceptive information from the monkey’s actual arm. In other words, according 
to the model, the causal inference can be constructed before the visual target appears, and the partic-
ipant uses this information to guide the reach. We thus further hypothesized that the dynamics of the 
population states also reflect the Pcom during the preparation period, during which there is no motor 
planning or preparation.

Thus, we grouped trials from each neuron into high and low Pcom classes according to the drift 
under each disparity (high, the top third of the trials [in red]; low, bottom third of the trials [in blue]) 
(Figure 4A). We conducted demixed principal component analysis (dPCA) to visualize any neural 
component that represents the Pcom in the VPC task in relation to that in the VP and P tasks (see 
Materials and methods). dPCA decomposes population activity into a set of dimensions that each 
explain the variance of one factor of the data (Kobak et al., 2016). We included the factors of time, 
arm location, and Pcom (Figure 4B). In the analysis, VP and P trials were included, which served as 
the templates of integration and segregation, respectively. As shown in the schema (Figure 4B), if 
the decomposed neural components indeed represent the Pcom, the population activity of high and 
low classes in this subspace should lie between that of the VP and P classes and the four classes 
(high, low, VP, and P) should be separated from each other. The dPCA results indicated that the Pcom 
components, unrelated to the arm location, represented 29.9% and 20.5% of the total firing rate 
variance in the premotor and parietal cortices, respectively (Figure 4C, in red). Notably, the activity in 
Pcom dimensions seems consistent with our hypothesis, demonstrating the dynamics of Pcom between 
integration (VP) and segregation (P). In addition, compared to the activity in the parietal cortex, the 
neural trajectories of the premotor populations showed an earlier divergence in Pcom dimensions 
(Figure 4D).

To further quantify their dynamics statistically, we trained a linear support vector machine (SVM) 
using pooled activities in each brain region throughout the entire trial. The dynamic decoding results 
showed that the Pcom information is correctly predicted by neuronal population activities in both areas 
after target onset but is decoded only by premotor neurons during the preparation period when 
there was no visual target or motor preparation (Figure 4E, cluster-based permutation test, p<0.05). 
Randomization test confirmed the time difference that the Pcom information occurred significantly 
earlier in the premotor cortex than the parietal cortex (Figure 4—figure supplement 3, randomiza-
tion test, p<0.01, see Materials and methods). This may suggest that the premotor cortex is where 
causal inference is computed and sends the information to the parietal cortex during the reaching 
period.

Next, we tested the relationship between the population activities in the two areas. We performed 
a joint peri-event canonical correlation (jPECC) analysis, which detects correlations in a ‘communica-
tion subspace’ between two brain regions (Steinmetz et al., 2019). In brief, we conducted a canonical 
correlation analysis for every pair of time points containing the population neural firing rates from the 
two regions. If the shared neural activity emerges at different times in the two areas, that is, activity in 
one region potentially leads to activity in the other, then we should observe a temporal offset between 
them. The jPECC results revealed a significant time lag for activity correlations between premotor 
and parietal areas in Pcom dimensions (Figure 4F, cluster-based permutation test, p<0.05), suggesting 
a potential feedback signal of Pcom from the premotor cortex to the parietal cortex. As a control, we 
performed the same procedure with misalignment trials (see Materials and methods) to exclude the 
probability that the observed time lag resulted from the intrinsic temporal property of neuronal activi-
ties in these regions. There was no significant time lag between premotor and parietal areas when the 
trials were misaligned (Figure 4—figure supplement 1).

Experience-dependent Pcom in the premotor cortex
The behavioral experiments showed that the Pcom could be updated by previous sensory experience 
on a trial-by-trial basis. To test the effect of the previous Pcom on the causal inference in each trial, we 
examined neural activities during the baseline period in the VPC task before a disparity in the visual 
and proprioceptive arm was introduced (Figure 5A). We again classified the trials according to high 
and low Pcom. Figure 5A depicts the results from an example premotor neuron, showing that during 
the baseline period, the neural activity exhibited selectivity toward the previous trial’s Pcom, and at the 
same time, its neural trajectories in high and low prior classes lay between the VP and P templates. Of 

https://doi.org/10.7554/eLife.76145
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Figure 4. Dynamic population decoding of Pcom. (A) Schematic drawing of the high Pcom group (top third of trials) and the low Pcom group (bottom third 
of trials) based on the relative drift (drift/disparity). (B) Schematic drawing of the demixed principal component analysis (dPCA). All trials of each neuron 
were grouped into 20 classes (5 targets × 4 conditions, including visual-proprioceptive (VP) and P tasks and high and low groups in the VP conflict [VPC] 
task). The marginalization matrix was generated by averaging all trials in each class. (C) dPCA decomposes population activity into a set of components 
given the task parameters of interest. (D) Temporal evolution of dPCA components of Pcom. The gray points represent the disparity onset; the black 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.76145


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Qi, Fang et al. eLife 2022;11:e76145. DOI: https://doi.org/10.7554/eLife.76145 � 12 of 30

412 neurons in the premotor cortex, 29 (7.0%) showed such selectivity in the previous trial (Figure 5—
figure supplement 1).

To further test the relation between baseline neural activity and behavior quantitatively, we exam-
ined whether the population activities of these neurons can predict the Pcom from previous trials. We 
trained an SVM using pooled activities across recording sessions. The previous Pcom was only correctly 
decoded from the baseline activity in the premotor cortex (Figure 5B, cluster-based permutation test, 
p<0.05). Moreover, only recent experience (nth−1 trial) had a significant impact on the current trial 
(Figure 5C, permutation test, p<0.001).

As both Pprior and Pcom were represented in premotor neural activities, we wanted to examine their 
relationship in the neural states. We first found that very few neurons responded to both informa-
tion types (see Figure 5—figure supplement 1). We then hypothesized that Pprior and Pcom might be 
represented independently at a population level. To validate this hypothesis, we conducted PCA on 
the population activities during baseline and target-holding periods for Pprior and Pcom, respectively. If 
they are independent, the subspaces of Pprior and Pcom will be near orthogonal, and the PCs of Pprior and 
Pcom will capture little variance from each other (Elsayed et al., 2016). To quantify this, we projected 
the Pprior data onto the Pcom subspace to calculate the percent variance explained by the Pcom PCs and 
repeated the same procedure for the Pcom data (Figure 5D). The results show that the top 10 Pprior 
PCs captured very little Pcom variance; similarly, the top 10 Pcom PCs captured very little Pprior variance 
(Figure 5E). These results support the hypothesis that the two information types are represented 
independently in the premotor cortex. However, such independence between Pcom and Pprior could also 
be caused by their different temporal structures in the task. Thus, we examined their neural dynamics 
within a trial. Figure 5F shows the time course of decoding results of prior and posterior information, 
where the Pprior quickly decreased after the disparity onset. At the same time, the Pcom information 
increased and was retained until the end of the trial. These results demonstrated the dynamics in the 
computation of causal inference, where the information from the last trial is only preserved transiently 
and then used to integrate with sensory inputs to generate Pcom information.

Update sensory uncertainty of arm location in the parietal cortex
Finally, we investigated the neural activities associated with updating sensory uncertainty. The 
behavior results revealed a significantly greater uncertainty of proprioception in VP trials in the VPC 
task (low belief of a common source) than in the VP task (high belief of a common source) (Figure 2D). 
We hypothesized that the sensory signals, which were used to make causal inference, in turn, updated 
their neuronal tunings to match inferred causal structure. We first examined the difference in neural 
tuning for arm location using the VP trials in the VP and VPC (VPC (0°), trials with no disparity) tasks. 
To test whether the tuning functions of arm location selective neurons changed between the VP 
condition and VPC (0°) condition at the single-neuron level, we fitted the tuning curve with the von 
Mises distribution by using the neuron response in different arm locations (five levels: [−30°, −20°, 0°, 
20°, and 30°]) for these two conditions respectively (see Materials and methods). We found that the 
averaged firing rates during the target-holding period under the VP condition were higher than that 

points represent the target onset. (E) Population decoding of Pcom. The decoding accuracy was plotted as a function of time. The gray shaded area 
represents the preparation period. The horizontal dashed black line represents the chance level. The horizontal solid-colored bars at the top represent 
the time of significant decoding accuracy (cluster-based permutation test, p<0.05). Shaded areas indicate 95% confidence intervals. (F) Joint peri-
event canonical correlation (jPECC) results averaged across all sessions. Left: x-axis represents the time of parietal from target onset; y-axis: defines 
the time of premotor from target onset. The color bar represents the cross-validated correlation coefficient. Right: Lead-lag interactions as a function 
of time relative to target onset. The horizontal black bar represents the time of significant jPECC asymmetry index versus shuffled data (cluster-based 
permutation test, p<0.05).

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 4:

Source code 1. Related to Figure 4C–F.

Source data 1. Related to Figure 4C–F.

Figure supplement 1. Joint peri-event canonical correlation (jPECC) analysis with shuffled temporal alignment trials.

Figure supplement 2. Population decoding of Pcom in the premotor and parietal cortices from Monkey N.

Figure supplement 3. The Pcom information occurred significantly earlier in the premotor cortex than in the parietal cortex.

Figure 4 continued
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Figure 5. Premotor neurons encode prior information (previous trial’s Pcom) during the baseline period. (A) Example neuron in the premotor cortex 
showing selectivity to prior information during the baseline period. The trials in the raster plot were sorted by the Pcom in the previous trial and grouped 
into high (red dots) and low (blue dots) groups. Bottom: temporal evolution of the average firing rate of ‘high prior’ and ‘low prior’ groups. The black 
horizontal line at the top represents the time window with a significant difference (two-sided t-test, t=2.36, p=0.019). Shaded areas indicate SEMs. 
(B) Dynamic population decoding of prior information (nth–1 trial). The gray shaded window represents the baseline period. The horizontal solid 
colored bar at the top represents the time with significant decoding accuracy with a cluster-based permutation test (p<0.05). Shaded areas indicate 
95% confidence intervals. The horizontal dashed black line represents the chance level. (C) Decoding accuracy of prior trials (nth−1 to nth−4). Lag 
0 represents the decoding of Pcom in the current (nth) trial. The horizontal dashed black line represents the chance level (permutation test, p<0.001). 
The solid lines were fitted with exponential functions. Error bars indicate 95% confidence intervals. (D) Schematic drawing of orthogonal subspaces 
of Pprior and Pcom. The solid-line circles represent Pcom and dotted circles represent Pprior. Red represents high Pcom, blue represents low Pcom. (E) Left: 
Percentage of baseline-period (Pprior) data variance (black bars, explained variance: about 99.63%) and target-holding period data variance (gray bars, 
explained variance: about 8.34%) explained by the top 10 prior PCs. Right: Percentage of baseline-period (Pprior) data variance (black bars, explained 
variance: about 11.30%) and target-holding (Pcom) period data variance (gray bars, explained variance: about 99.99%) explained by the top 10 Pcom PCs. 
(F) Premotor encoded prior information during the baseline period quickly decreased after the disparity onset while the Pcom information emerged. The 
orange line represents the population decoding accuracy of Pprior (nth–1 trial). The black line represents the population decoding accuracy of Pcom. The 
orange and black horizontal solid-colored bars at the top represent the time with significant decoding accuracy with a cluster-based permutation test 
(p<0.05) for prior information and Pcom information, respectively. *p<0.05.

The online version of this article includes the following source data, source code, and figure supplement(s) for figure 5:

Source code 1. Related to Figure 5A–F.

Source data 1. Related to Figure 5A–F.

Figure supplement 1. Percentage of prior selective neurons and causal inference (CI) neurons.

Figure supplement 2. Population decoding of disparity.

https://doi.org/10.7554/eLife.76145
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under the VPC condition (0°) in the parietal cortex (Figure 6—figure supplement 1, left, Wilcoxon 
signed-rank test, p=0.017) but not in the premotor cortex (p=0.71). The gain index under VP condi-
tion were higher than the VPC condition (0°) in the parietal cortex (Figure 6—figure supplement 1, 
middle, Wilcoxon signed-rank test, p=0.0016, FDR corrected) but not the premotor cortex (p=0.11, 
FDR corrected). Figure 6A (right) shows an example neuron from the parietal cortex tuned to the 
center (0°) of arm location in the VP task, and the tuning range/uncertainty of the arm location was 
broader/lower in the VPC task. Here, for visualization purposes, we selected the time point when this 
neuron demonstrated the highest difference of ωPEV in the VP trials between VP and VPC tasks for 
the tuning calculation (Figure 6A, left, peak delta ωPEV). The averaged dynamic spatial selectivity of 
all neurons revealed a significant decrease of the total spike rate variance explained by the arm loca-
tion in the parietal cortex but not in the premotor cortex (Figure 6B, cluster-based permutation test, 
p<0.05). Note that the updating of sensory uncertainty was not correlated with the uncertainty of eye 
position between VP and VPC (0°) tasks (Figure 2—figure supplement 2).

Furthermore, at the population level, we performed the SVM decoding analysis of arm locations 
and found that only the parietal cortex showed a significantly decreased decoding accuracy in the 
VPC task (Figure 6C, cluster-based permutation test, p<0.05). We also confirmed that the change 
of decoding accuracy in the parietal cortex was significantly larger than the change in the premotor 
cortex (two-way ANOVA, Condition (VP and VPC (0°))×Region (premotor and parietal), significant 
interaction effect, p<0.05).

Discussion
Our data of behavior and multi-area neural recordings revealed, for the first time, the dynamic compu-
tation of causal inference in the frontal and parietal regions at single-neuron resolution during multi-
sensory processing. Complementary to the previous findings focused on the feedforward sequential 
processing of BCI, the present results demonstrate parallel top-down processing of the hidden vari-
able of Pcom from the premotor cortex, which monitors the weights of sensory combinations in the 
parietal cortex. By resolving the experience and causal belief, the hidden causal structure and sensory 
representation are dynamically updated in the premotor and parietal cortices, respectively.

In the last 15 years, the BCI model has been extended to account for a large number of percep-
tual and sensorimotor phenomena and a vast behavioral data (Shams and Beierholm, 2010). Recent 
studies have begun to map the algorithms and neural implementation in the human brain. Noninva-
sive human functional magnetic resonance imaging studies revealed a neural correlation to causal 
inference in the parietal cortex, and magnetoencephalography showed that frontal neural activities 
are also involved in the causal inference (Cao et al., 2019; Rohe et al., 2019; Rohe and Noppeney, 
2015; Rohe and Noppeney, 2016). However, at the single-neuron level, very few studies have exam-
ined the neural mechanism in animals. More importantly, none of the human studies have investigated 
the neural representation of the hidden variable, Pcom. How the frontoparietal circuit contributes to the 
encoding and updating of Pcom has not been explored. Our results reconciled and extended previous 
findings by showing that Pcom is successively represented by premotor and parietal neural activities 
(Cao et al., 2019; Fang et al., 2019; Rohe et al., 2019). Unlike previous human imaging studies, 
which used the final behavioral estimation as the index of the causal inference (Cao et al., 2019; Rohe 
et al., 2019), our study directly examined the neural representation and dynamics of the hidden vari-
able Pcom at single-neuron and neural population levels. We showed that, even within a trial, the infer-
ence of a common source was dynamic. We thus propose a dynamic flow of information processing 
during causal inference, where the Pcom is estimated from the information of sensory uncertainties 
and the disparity between them in the premotor cortex and then used for later sensory integration or 
segregation (model-weighted average) (Körding et al., 2007); finally, these signals are maintained in 
the frontoparietal circuit to guide the reaching behavior (Archambault et al., 2011; Caminiti et al., 
2017; Cisek and Kalaska, 2005; Gail and Andersen, 2006).

Experience creates our prior beliefs of the surrounding environment. It was proposed that various 
cognitive functions, such as sensory perception, motor control, and working memory, can be modu-
lated by experience (Akrami et al., 2018; Ernst and Banks, 2002; Rao et al., 2012). Computationally, 
the prior updating and its modulation of behavior can be well understood within the Bayesian frame-
work (Badde et al., 2020; Beierholm et al., 2020; Körding and Wolpert, 2004; Rohe et al., 2019). 
For instance, by imposing the BCI model in the present study, we showed that prior knowledge of 
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Figure 6. Representation of arm location is updated in the parietal cortex. (A) Left: The difference of ωPEV 
between visual-proprioceptive (VP) and VP conflict (VPC) (0°) tasks for an example neuron in the parietal cortex. 
Right: Snapshot of the arm location tuning for VP and VPC (0°) tasks at the time point showed in the left panel 
(peak delta ωPEV). At the given time point of this neuron, there is no significant main effect for condition (two-
way ANOVA, condition VP and VPC (0°)×hand location; condition, F(1,154)=1.450, p=0.23), but for hand location 
(F(4,154)=6.736, p<0.001). The solid curves were fitted with von Mises distributions. (B) Dynamic average ωPEV for VP 
and VPC (0°) tasks. The horizontal bar at the top represents the time bins in which the ωPEV for the VPC (0°) task 
was significantly lower than that for the VP task (cluster-based permutation test, p<0.05). (C) Dynamic population 
decoding of arm locations. The horizontal bar at the top represents the time bins in which the decoding accuracy 
for the VPC (0°) task was significantly lower than that for the VP task (cluster-based permutation test, p<0.05). 
Shaded areas indicate 95% confidence intervals. The horizontal dashed black lines represent the chance level.

The online version of this article includes the following source data, source code, and figure supplement(s) for 
figure 6:

Source code 1. Related to Figure 6A–C.

Source data 1. Related to Figure 6A–C.

Figure supplement 1. The comparisons of tuning curve parameters between the visual-proprioceptive (VP) and 
VP conflict (VPC) (0°) tasks.
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a common source is updated by the hidden probability of the common source (Pcom) in the previous 
trial and then integrated with the sensory inputs in a Bayesian manner. Such prior updating was also 
reported in a recent sensorimotor study, in which the posterior signals in the frontal cortex were used 
to update the prior (Darlington et al., 2018). Intriguingly, the empirical findings in this study could be 
reproduced by a biologically plausible recurrent neural network, which suggests that using the feed-
back of posterior from a Bayesian computation to update prior is an essential feature of a hierarchical 
recurrent Bayesian model (Darlington et al., 2018). From this perspective, the prior updating and its 
modulation of behavior may also serve as a plausible computational mechanism of multisensory reca-
libration in various sensorimotor behaviors (Badde et al., 2020; Bruns and Röder, 2015; Park and 
Kayser, 2019; Van der Burg et al., 2013).

The frontoparietal circuit, including the premotor and parietal cortices, has long been recog-
nized as a central area in sensorimotor representations (Caminiti et al., 2017; Caminiti et al., 1991). 
Although the present experiments shared many movement features in the reaching task, the key find-
ings of causal inference processing are unlikely to be explained by the kinematical components. First, 
previous studies have demonstrated that the neuronal activities in the premotor cortex are related 
to hand kinematics (e.g., hand position, speed, and direction) in the motor planning and execution 
(Caminiti et al., 1991; Churchland et al., 2006), which lead the neural activities in the parietal cortex 
(Archambault et al., 2011). However, in our study, the early activities of Pcom in the premotor cortex 
cannot be purely induced by the sequential activities of kinematics in the premotor and parietal 
cortices. Because the Pcom is abstract information, and its activity pattern is not correlated with any 
kinematical components. Expressly, under a given value of Pcom, the reaching kinematics can be varied 
(e.g., the hand position can be anywhere on the table according to the target position and disparity in 
a given trial). Moreover, the neural signals about Pcom in the premotor cortex were observed before the 
target onset, where no motor planning was possible during this period. Thus, our results are consis-
tent with the idea that the high-level information, such as abstract and hidden structures, potential 
probability of multiple motor options, and VP integration, are encoded in the frontoparietal circuit, 
which could later integrate with the low-level sensory representations to guide the desired movement 
(Cisek and Kalaska, 2005; Gail and Andersen, 2006; Limanowski and Blankenburg, 2016).

Second, the dynamic updating of prior and sensory representation proposed a putative mechanism 
for multisensory recalibration in sensorimotor tasks. At the behavioral level, our results are in accord 
with the observations that sensory perception is modulated by a multisensory context with sensory 
conflicts. The BCI theory thus provides a framework to explain how the multisensory context (e.g., 
the prior of common source) modulates the sensory representations, such as sensory uncertainty in 
our study and sensory estimation (e.g., spatial localizations) in previous sensorimotor studies (Badde 
et al., 2020; Bruns and Röder, 2015; Park and Kayser, 2019; Van der Burg et al., 2013). The results 
support the notion of dynamic representations of Pcom in the present study – the top-down signal of 
common source from the premotor cortex modulates the spatial tuning in the parietal cortex and then 
guides hand estimation.

Previous research over the past two decades has revealed that even the perceptions of body 
ownership and agency are remarkably malleable and involve continuous processing of multisensory 
information and causal inference (Kilteni et  al., 2015; Legaspi and Toyoizumi, 2019). Thus, our 
study provides unique data for understanding self-relative awareness (e.g., bodily self-consciousness) 
in macaque monkeys, showing neural implementation of causal inference at the neural circuit level. 
Using a VP task, we also identified the hidden components of causal inference in macaque monkeys’ 
parietal and premotor cortices. This is important because, unlike most sensory and cognitive func-
tions, the subjective perceptions of body ownership and agency cannot be directly measured from 
explicit reports from animals. Using the BCI model and neural activities recorded from multiple brain 
areas, we can now begin exploring body ownership and agency qualitatively by examining the hidden 
variable in both behavior and neural representations.

In the BCI framework, there are two key components, inferring the hidden variables (e.g., Pcom) 
and updating the causal structure and sensory representation. First, our results suggested that the 
representation and core computation of the hidden common source most likely takes place in the 
premotor cortex (Ehrsson and Chancel, 2019; Fang et al., 2019), which is consistent with findings in 
the body awareness (Blanke et al., 2015; Ehrsson et al., 2004). Our results were also consistent with 
previous finding in monkeys that the higher order representations (e.g., the multisensory response of 
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body recognition) of the body were encoded in both dorsal and ventral premotor cortex and posterior 
parietal cortex (Fogassi et al., 1999; Graziano et al., 2000; Graziano and Gross, 1993; Graziano 
and Gross, 1998; Graziano et al., 1994). Intriguingly, our results seem complementary to previous 
findings of mirror neuron systems in the premotor and parietal cortices in both humans and monkeys. 
Typically, a mirror neuron fires both when individual acts and when the individual observes the same 
action performed by another. That is, the mirror neuron is believed to mediate the understanding of 
others’ behavior (Jerjian et al., 2020; Jiang et al., 2020; Pezzulo et al., 2022). By contrast, the role 
of causal inference neurons in our study was putatively participating in self-identification and self-
other discrimination. Future studies are needed to examine how these two systems work together to 
identify both self and foreign agents.

Second, the posterior belief of a common source is calculated using a Bayesian approach by 
integrating prior knowledge and sensory entities, and theoretically, these components should be 
dynamically updated at different time hierarchies. For example, the prior configuration of the body, 
known as the body schema in psychology, constrains the possible distribution of the body states but 
is dynamically updated when the context changes to maintain consistency between the internal body 
model and sensory inputs (e.g., rubber hand illusion or body illusion) (Botvinick and Cohen, 1998; 
Kilteni et al., 2015). Pathological impairment in inferring the sensory source can result in somato-
paraphrenia, in which the patient declares that their body part belongs to another person despite 
the visual and proprioceptive signals from the common source of their body (Keromnes et al., 2019). 
Similarly, schizophrenia patients suffering from delusions of the agency have shown impairments in 
updating their internal causal structures. They show a deficit in detecting the source of their thoughts 
and actions and thus incorrectly attribute them to external agents (Haggard, 2017). Therefore, 
although we demonstrated the neural representations and their updating by using the multisensory 
and reaching task in monkeys, the computational mechanism and underlying neural circuits might 
contribute to learning and inference in any task that relies on causal inference.

Materials and methods
Experimental model and subject details
All animal procedures were approved by the Animal Care Committee of the Center for Excellence in 
Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences 
(Permit Number: CEBSIT-2020034), and were described previously in detail (Fang et al., 2019). Three 
male adult rhesus monkeys (Macaca mulatta; Monkeys H, N, and S, weighting 6–10 kg) participated in 
the experiment. During the experiment, the monkeys were seated comfortably in the monkey chairs, 
and their heads were fixed. All monkeys were implanted with chambers for recordings.

Method details
Some of the following methods are similar to those previously published (Fang et al., 2019).

Apparatus
The monkeys were seated in front of a chest-height table on which a lab-made virtual reality system 
was placed (Fang et al., 2019). During the experiment, the monkey’s left arm (and the right arm in the 
case of Monkey H, who was right-handed) was placed in the system and blocked from sight. A CCD 
camera (MV-VEM120SC; Microvision Co., China) captured the image of the monkey’s arm reflected in 
a 45° mirror. This image was projected to the rear screen by a high-resolution projector (BenQ MX602, 
China). Therefore, when the monkey looked in the horizontal mirror suspended between the screen 
and the table, the visual arm image appeared to be its real arm on the table. The lower edge of the 
screen was aligned to the table edge. The monkey’s trunk was close to the edge of the table, and the 
left shoulder was aligned with the midline of the screen. Using the OpenCV graphics libraries in C++ 
(Visual Studio 2010; Microsoft Co., Redmond, WA, USA), the arms image and the visual target were 
generated and manipulated. Using CinePlex Behavioral Research Systems (Plexon Inc, Dallas, TX, 
USA), sampled at 80 Hz, the hand position was tracked and recorded. The tracking color marker was 
painted onto the monkey’s first segment of the middle finger, which was not visible after adjusting the 
light exposure settings of the video.
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Behavioral task procedures
The monkey was trained to report its proprioceptive arm location by reaching for a target in a VPC 
causal inference task (Figure 1A; Fang et al., 2019). The monkey initiated a trial by placing its hand 
on the starting point (a blue dot with a 1.5 cm diameter) for 1000 ms and was instructed not to move. 
After the initiation period, the starting point disappeared, and the visual arm was rotated (within one 
video frame, 16.7 ms) for the VPC task. The rotation was maintained for 500 ms (the preparation 
period). After that, the reaching target was presented as a ‘go’ signal. The monkey had to reach the 
target (chosen from T1 to T5 randomly trial by trial [Figure 1A]) within 2500 ms and hold its hand in 
the target area (see as follows) for 500 ms to receive a drop of juice as the reward. Any arm movement 
during the target-holding period automatically terminated the trial. The rotated arm was maintained 
throughout the entire trial along with the arm movement. The intertrial interval (ITI) was ~1.5–2 s, 
after which the monkey was allowed to start the subsequent trial. During the ITI, the visual scene was 
blank. Under the VPC task, across trials, the visual arm was randomly presented with a disparity of 0°, 
±10°,± 20°, ±35°, or ±45° (+, clockwise [CW]; −, counterclockwise [CCW] direction) from the subject’s 
proprioceptive arm, with its shoulder as the center point. The starting point was fixed 25 cm away 
from the monkey’s shoulder. The target position was selected randomly trial by trial from one of five 
possible positions located on an arc (a ±4° jitter was added to the original position trial by trial to 
ensure the monkey did not perform the task by memorizing all the target positions).

Besides the VPC task, the monkey was also instructed to perform a VP congruent and P task during 
the recording session. The only difference between the VPC and VP task was that during the entire 
trial under the VP task, the visual arm was always congruent with the proprioceptive arm. The only 
difference between VP and P tasks was that during the single trial for the P task, the visual arm infor-
mation was blocked starting from the onset of the preparation period.

Each VPC block contained 55 trials in which the nine disparities and five targets were randomly 
combined. Each VP and P block had 27 trials in which five targets randomly occurred in every single 
trial. In one recording session, typically, one or two P blocks were given first to ensure that the monkey 
performed the task with its proprioceptive arm, and then in the following blocks, VP, P, and VPC tasks 
were randomly mixed. One recording session contained more than three VP and P blocks and more 
than eight VPC blocks.

Target (with reward) area
To ensure the monkeys indeed performed the reaching-to-target task with their proprioceptive hand, 
under the VPC task, the reaching target area (with reward) was defined as follows: the radial distance 
from the hand to the center of the target was less than 5 cm to ensure that the monkey did reach out 
to the target; with the target as the center, the azimuth range was set from [−7 (8 for some sessions, 
same below) + rotation degree/disparity] to +7° when the rotation degree was negative (counter-
clockwise), and from –7° to [+7 + rotation degree/disparity] when the rotation degree was positive 
(clockwise). As shown in Figure 1B (green zone), the reward area ensured the monkey performed the 
task rationally and without visual feedback. That is monkey’s reaching position between two extreme 
conditions: one is that the monkey reaches the target purely relying on the visible arm (the drift is 
equal to the disparity); the other is that the monkey relies on the proprioceptive arm (the drift is equal 
to zero). Only the correct trials (when the monkey’s arm was located within the reward zone) were used 
in the subsequent analysis.

Electrophysiology
Extracellular single-unit recordings were performed as described previously (Fang et  al., 2019; 
Merchant et al., 2013) from three hemispheres in three monkeys. Briefly, under strictly sterile tasks 
and general anesthesia with isoflurane, a cylindrical recording chamber (Crist Instrument Co., Inc, 
Hagerstown, MD, USA) of 22 mm diameter was implanted in the premotor cortex and the parietal 
cortex (area 5 and area 7). We collected the structural magnetic resonance images (MRI) of three 
monkeys (3T, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neurosci-
ence, Chinese Academy of Sciences), while they were in an MRI-compatible Horsley-Clarke stereotaxic 
apparatus. The location of the recording chamber on each animal was determined by the atlas with the 
origin at the Ear Bar Zero (Saleem and Logothetis, 2012). The centers of implanting recording cham-
bers were [right: 20.0 mm; forward: 10.0 mm] for the premotor cortex in Monkey N, [left: 21.9 mm; 
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forward: 24.9 mm] for the premotor cortex in Monkey H, [right: 14.7 mm; forward: 1.1 mm] for the 
parietal cortex in Monkey N, and, [left: 17.0 mm; forward: 3.5 mm] for the parietal cortex in Monkey S. 
During the recording session, glass-coated tungsten electrodes (1–2 MΩ; Alpha Omega, Israel) were 
inserted into the cortex via a guide tube using a multi-electrode driver (NAN electrode system; Plexon 
Inc, Dallas, TX, USA). All isolated neurons were recorded regardless of their activity during the task, 
with the recording locations varying from session to session. At each location, the raw extracellular 
membrane potential was sampled at 40 kHz. On-line raw neural signals were processed offline to 
obtain a single unit by Offline Sorter (Plexon Inc, Dallas, TX, USA). All spike data were re-sorted using 
off-line spike sorting clustering algorithms (Offline Sorter, PCA) (Merchant et al., 2013). With manual 
adjustments, only well-isolated units were considered for further analysis (signal-to-noise is larger than 
3). The sorted files were then exported in MATLAB format for further analysis in MATLAB (Mathworks, 
Natick, MA, USA) and Python (The Python Software Foundation).

Quantification and statistical analysis
All statistical analyses were implemented with scripts written in MATLAB or Python. In the premotor 
cortex, 412 neurons were recorded from two monkeys (231 neurons from Monkey H and 181 neurons 
from Monkey N); in the parietal cortex (area 5 and area 7), 238 neurons were recorded from two 
monkeys (116 neurons from Monkey N and 122 neurons from Monkey S). As all monkeys’ behavior 
and model fitting results were similar, for all analyses, data were combined across monkeys. All related 
statistics are reported in the figure legends.

Analysis of behavior data
BCI model
To capture the uncertainty of causal structure, the core of causal inference, the BCI model described 
in a previous study (Fang et al., 2019) was adopted. In the present study, the BCI framework included 
three models: (i) the full-segregation model, which assumes that visual and proprioceptive estimates 
of the arm’s locations are drawn independently from different sources (C=2) and processed inde-
pendently; (ii) the forced-fusion model, which assumes that visual and proprioceptive estimates of the 
arm’s locations are drawn from a common source (C=1) and integrated optimally, weighted by their 
reliabilities; and (iii) the BCI model, which computes the final proprioceptive estimate by averaging 
the spatial estimates under full-segregation and forced-fusion assumptions weighted by the posterior 
probabilities of a common source. Here, the BCI model assumes that both visual and proprioceptive 
location information (‍SV ‍ and ‍SP‍) are represented as ‍xV ‍ and ‍xP‍ in the neural system, respectively, which 
are drawn from the normal distribution with sensory noise [‍N

(
SV,σV

)
‍, ‍N

(
SP,σP

)
‍ ]. The causal inference 

structure is determined by the joint distribution of two sensory signals (sensory likelihood) and the 
prior probability of a common source (Pprior). Thus, according to the Bayesian rule, the posterior prob-
ability of a common source (Pcom) is calculated as follows:
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where ‍N
(
µPr,σPr

)
‍ represents a prior distribution of arm locations. In this experiment, the ‍µPr‍ was 

set to 0 and ‍σPr‍ was set to 10,000 to approximate a uniform distribution.

If the system completely ‘believes’ the two sensory signals are from different sources (full-
segregation situation), the proprioceptive arm position is estimated independently from the visual 
information, as follows:
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If the system completely ‘believes’ there is only a common source for the two sensory signals 
(forced-fusion situation), then the estimate of arm position is determined by the optimal integration 
rule, as follows:
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Here, we used the model average decision function to estimate final arm location (Fang et al., 
2019):

	﻿‍
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In the model simulation, the proprioceptive arm position at the end of the trial was set to zero 
(‍SP = 0‍), so that the visual arm position is the VP (‍SV = disparity‍). In the task, monkeys were required to 
report their proprioceptive arm position; thus, only the proprioceptive estimate was simulated.

Model fitting
To estimate the best-fitting model parameters in the BCI model, for each recording session, an optimi-
zation search was implemented that maximized the log-likelihood of each model given the monkey’s 
data under the VPC task. The prior probability of a common source (Pprior) and visual and propriocep-
tive standard deviations, σV and σP, respectively, were set as free parameters to be optimized. For each 
optimization step, 5000 trials per disparity were simulated to obtain the distribution, and the sum 
log-likelihood of the observations given the model was calculated for each disparity. Then, the param-
eters were optimized by minimizing the sum log-likelihood using a genetic algorithm (ga function in 
MATLAB). The procedure was the same as for the optimal integration model, except that there were 
no causal structures and only two free parameters (‍σV ‍ and ‍σP‍) needed to be optimized. All simulation 
and optimization processes were performed in MATLAB. Only correct trials were included.

Model comparison
To determine the model that best explained the data at the group level using the Bayesian informa-
tion criterion (BIC), a Bayesian random-effects model comparison was used (Rigoux et al., 2014). 

‍BIC = −2LL + k × ln
(
n
)
‍ , where LL denotes the log-likelihood, k is the number of free parameters, n is 

the total number of data points, and ln is the natural logarithm. The BIC is a criterion for model selec-
tion among a finite set of models; models with lower BIC are generally preferred. Finally, the better 
model was identified at the group level by the exceedance of the probability based on all sessions of 
monkeys’ BICs (Wozny et al., 2010). We used the exceedance probability to evaluate how likely it is 
that any given model is more frequent than all other models in the comparison set.

The models’ goodness-of-fit was reported using the coefficient of determination (R2) (Fang et al., 
2019),

	﻿‍
R2 = 1 − exp
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(
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)
− LL

(
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‍�

where ‍LL(β̂)‍ and ‍LL(0)‍ denote the log-likelihoods of the fitted and the null model, respectively, 
and n is the number of observations. The null model assumes that monkeys report the perceived arm 
position randomly over the disparity range from the leftmost to the rightmost. Thus, a uniform distri-
bution over this span was predicted.

Pprior updating in causal inference
To evaluate how the previous posterior probability of a common source (Pcom) influences the prior 
probability of a common source (Pprior), a Markov process was adopted to model the updating of Pprior. 
That is,
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 denote Pprior and Pcom respectively, and n denotes the nth trial under 

the VPC task. Two prior states were included: C=1 (a common source) and C=2 (two different sources) 
at each trial. 
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 denotes the transition probability from a common source (C=1) to a common 

source (C=1), and 
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 denotes the transition probability from different sources (C=2) to a 

common source (C=1). For statistical significance analysis between 
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)
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 and 

‍p
(

C=1|C=2
)
‍
 , the 

Wilcoxon signed-rank test was used for paired data.
Note both Pprior and Pcom are latent variables. During the model fitting, we first used the BCI model 

(as mentioned before) to search the overall Pprior, σP, and σV for each session/day, which were used as 
initial parameters in the subsequent Markov model. The σP and σV were fixed during the Markov model 
fitting. For all subsequent trials (except the first trial), both Pprior and Pcom are unknown. As time goes 
on, starting from the first trial, the Pcom of the current trial is obtained through the BCI model, and the 
Pprior of the next trial is obtained through the integration probability (Pcom) or separation probability 
(1 − Pcom) which are multiplied and added by the corresponding transition probability. Here, we fitted 
the observed data-drift to get the two free parameters transition probability. Through the transition 
probability, we define the influence of the Pcom of the previous trial on the Pprior of the next trial.

Updating of proprioceptive representation
To evaluate whether the primary sensory representation was modulated by the belief of causal struc-
ture, the proprioceptive variance within and after VPC tasks was compared to the baseline condition. 
For the within effect, the proprioceptive drift was calculated using the trials with 0° disparity in the 
VPC task and trials in the VP task (baseline condition). Here, the standard deviation (SD) of proprio-
ceptive drift was used as a measurement for the uncertainty of proprioceptive representation, in 
which higher SD indicates higher uncertainty and vice versa. The mean of the proprioceptive drift for 
each target was normalized to zero. For the after-effect, the SDs of proprioceptive drift under the P 
task were compared between after the VP task and after the VPC task. To characterize the temporal 
dynamic of the proprioceptive updating (after-effect), trials in the first third and trials in the last third 
of the P task were compared. As a control, a similar analysis was conducted for the raw mean of 
proprioceptive drift (Figure 2—figure supplement 1). For statistical significance analysis, Wilcoxon 
signed-rank test was used for paired data.

Eye movement analysis
We trained the monkeys to perform the task without their eye fixed, but the eye movement during 
the recording sessions was recorded. To examine whether the updating of sensory uncertainty was 
correlated with the uncertainty of eye position between VP and VPC (0°) tasks. We identified the eye 
fixation position at the target-holding period. We examined the divergence of eye fixation position in 
VP and VPC (0°) tasks (see below). The average distance from the central point was used to measure 
the divergence at each target for each session. Each session’s divergence was obtained by averaging 
all the trials (see follows). The eye-tracking data were imported into MATLAB using EDF Converter (SR 
Research). The fixations and saccades in eye movements were separated with the default algorithm 
of the software with the velocity (30°/s), acceleration (8000°/s2), and motion thresholds (0.1°), respec-
tively. The fixation positions were averaged during the target-holding period of each trial.

The normalized divergence of 2D eye fixation positions at each target was determined as follows:

	﻿‍
Divergence = 1

n

n∑
i=1

∥zi − c∥
‍�

where n is the sample size, ‍c =
(
c1, c2

)
‍ is center of the eye fixation position, and ‍zi =

{
xi, yi

}
‍ is 

ith eye fixation position. The divergence was averaged across different target positions for each 
session. ‍∥zi − c∥‍ indicates the Euclidean distance between c and ‍zi‍ . For statistical significance anal-
ysis, Wilcoxon signed-rank test was used for paired data.

Moreover, to examine whether the neural activity of Pcom was correlated with the eye position, we 
calculated the Pearson correlation coefficients between eye fixation position and VP weight. We found 
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that there was no correlation between the VP weight and the eye fixation position at the population 
level for both regions (the premotor and parietal cortices) at both horizontal and vertical directions 
(Figure 3—figure supplement 3, Wilcoxon signed-rank test, premotor (horizontal): p=0.11; premotor 
(vertical): p=0.86; parietal (horizontal): p=0.35; parietal (vertical): p=0.87). Note that the recorded eye 
movement data used in this analysis included 78 sessions for the premotor cortex and 45 sessions for 
the parietal cortex.

Correction for FDR
In all cases, we used the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to control 
FDR at an α=0.05 level, as follows. The p-values of a given set of hypothesis tests were sorted in 
ascending order, {p1, p2, …, pn}, and we found the first rank ‍iα‍ such that ‍piα ≤ iα × 0.05/n‍ . Then we 
considered tests to be significantly above chance (rejecting null hypotheses) for all ‍p < piα‍ .

Preprocessing of single-unit data
To estimate continuous time-dependent firing rates, timestamps of spiking events were resampled 
at 1 kHz and converted into binary spikes for single trials. Spike trains were then convolved with a 
symmetric Hann kernel (MATLAB, MathWorks),

	﻿‍ convolvedw
(
n
)

= A
(
1 − cos

(
2π n

N
))

, 0 ≤ n ≤ N
(
N = L − 1

)
‍�

where A is a normalization factor ensuring the sum of the kernel values equals 1. Window width L 
was set to 300 ms. Single neurons were included in the analysis only if they had been recorded for a 
full set of tasks (VP, P, and VPC tasks with nine disparities: 0°, ±10°, ±20°, ±35°, and ±45°).

Peri-stimulus time histograms (PSTHs) were then calculated for four periods of interest in a trial: (i) 
the baseline period (500 ms before the onset of visual arm rotation), (ii) the preparation period (500 
ms after the onset of the visual arm rotation), (iii) the target-onset period (1000 ms after the onset of 
target onset), and (iv) the target-holding period (500 ms after the onset of target-holding). To smooth 
the firing rate at each time point, the neural firing rate was calculated by averaging in sliding windows 
(window size, 400 ms; step size, 100 ms) in a single trial (Fried et al., 2011; Gu et al., 2016), resulting 
in 22 time bins of mean firing rate for every single trial for subsequent dynamic analysis.

Task selective neurons
To examine whether neurons in the premotor and parietal cortices during the target-holding period 
were selective to basic task components, including condition (VP or P task), arm location, and visual 
disparity. For each neuron, we conducted a two-way ANOVA in two datasets. One dataset contains 
the VP and P tasks (condition (two levels: VP and P tasks)×arm location (five levels: [–30°, –20°, 0°, 20°, 
and 30°]); the response variable is the mean firing rate during the holding period of each neuron). If 
a main effect of condition (or arm location) in the two-way ANOVA was found (p<0.05), this neuron 
was classified as a condition (or arm location) selective neuron. The other dataset is the VPC task (the 
visual disparity (nine levels: [–45°, –35°, –20°, –10°, 0°, 10°, 20°, 35°, 45°])×target position (five levels: 
[–30°, –20°, 0°, 20°, and 30°]); the response variable is the mean firing rate during the holding period 
of each neuron). If the main effect of visual disparity in the two-way ANOVA was found (p<0.05), this 
neuron was classified as a visual disparity selective neuron.

Tuning curve analysis of arm location selective neurons
To investigate whether the tuning functions of arm location selective neurons (Figure  3—figure 
supplement 1) changed between VP condition and VPC (0°) condition at single-neuron level, we 
fitted the tuning curve with a reduced von Mises function by using the neuron response in different 
arm location (five levels: [−30°, −20°, 0°, 20°, and 30°]) for these two conditions separately. Here, VPC 
(0°) condition represents the trials in VPC condition where the disparity equals to 0. And the fitting 
function was defined as:

	﻿‍ fr
(
x
)

= b + a ∗ cos
(
x − µ

)
‍�

where b is the spontaneous firing rate of the neuron, a is defined as the gain index, and μ is 
preferred arm location. ‍fr

(
x
)
‍ represents the firing rate when the arm location is x. We analyzed the 
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spontaneous firing rate of the neuron, gain index, and preferred arm location between VP condition 
and VPC (0°) condition in both premotor and parietal cortices (Figure 6—figure supplement 1).

Causal inference neuron
To measure the representation of a single neuron for causal inference on a single trial, the proba-
bility that a single neuron would integrate or segregate the sensory information on a single trial was 
calculated (Fang et al., 2019). The basic assumption here is that in a single trial under the VPC task, 
if the neuron is more inclined to represent integrated information, then its firing rate will be closer to 
its response under VP tasks and farther away from the response under P tasks, and vice versa. The 
normalized weight of integration (VP weight) was calculated as follows:

(1) First, obtain the neuron response to the arm position under P and VP tasks and fit the von Mises 
distribution to get the tuning curve.

(2) Under VPC tasks, obtain the current visual arm and the real arm positions, and at the same time, 
obtain the neuron’s firing rate when the arm is in the corresponding position under VP and P tasks, 

‍λVP‍ , and ‍λP‍, respectively.
(3) The VP and P templates can be generated through the Poisson distribution:

	﻿‍
PrVP

(
X = k

)
=

λk
VPe−λVP

k! ‍�

	﻿‍
PrP

(
X = k

)
= λk

Pe−λP

k! ‍�

(4) According to the corresponding probabilities, ‍PrVP‍ and ‍PrP‍ in the two templates are obtained, 
and the integration weights for this neuron in the VPC task can be obtained through standardization:

	﻿‍
VPweight = PrVP(

PrVP + PrP
)
‍�

To quantitatively describe whether a single neuron is encoding causal inference, the correlation 
between Pcom and VP weight is calculated. The logic is as follows: the Pcom can be used to measure 
the degree of integration or segregation of sensory information at the behavioral level, whereas 
VP weight can measure this characteristic at the electrophysiological level. Therefore, if a neuron is 
performing causal inference, there should be a significant positive correlation between the Pcom and 
VP weight for the corresponding behavior. Neurons that (i) respond to VP/P tasks and (ii) for which 
Pcom and VP weight are significantly positively correlated in the final holding stage are called causal 
inference neurons. The specific algorithm was as follows:

1.	 First, obtain neurons with significant selectivity under VP and P tasks (condition selective neuron, 
see Materials and methods: Task selective neurons).

2.	 According to proprioception drift, all trials were divided into 29 classes. Continuous drift values 
were grouped into nine clusters: < –35°, [–35° –25°], [–25° –15°], [–15° –6°], [–6°+6°], [+6°+15°], 
[+15°+25°], [+25°+35°], >+35°. To be noticed, ±6° covers approximately 99% of drift distribu-
tion under the VP and P task. Thus, for the disparity of 0°, there was only one cluster [–6°+6°]. 
Since the distribution of drift becomes wider (higher variance) the larger the disparity, the more 
clusters would be assigned for the big disparity. For example, for the disparity ±45°, there were 
five clusters of drifts. Pcom and VP weight were assigned for each class by averaging all trials 
within it. The Pearson correlation coefficient was then calculated between Pcom and VP weight. If 
the Pcom and VP weight were correlated significantly and positively (p<0.05 and r>0), the neuron 
was called a causal inference neuron.

Population pattern of causal inference
To visualize the VP weight pattern at the brain region level, the VP weight of each trial of a single 
neuron under VPC tasks was calculated and then divided into 29 clusters as described above. Then, 
the bootstrap method was used to randomly select 50 trials from each cluster for averaging. This was 
repeated 50 times to obtain the VP weight (50×29) of a neuron for visualization. This results in a 50 × 
29 × N matrix, where N indicates the number of neurons in each brain region (all neurons were used). 
The trial corresponding to each neuron was averaged to obtain a 50×29 matrix. The VP weights of a 
brain region were visualized in a heatmap.

https://doi.org/10.7554/eLife.76145
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High/low Pcom groups
To characterize the dynamic representation of the Pcom in the entire session, all trials in a recording session 
were divided into high Pcom trials and low Pcom trials based on the relative proprioception drift (RD). Each 
trial’s relative proprioception drift (RD = drift/disparity) was calculated. The basic idea was that the 
larger the Pcom, the more likely the monkey would integrate the visual and proprioceptive information, 
and the corresponding RD is closer to 1. The top third and bottom third of the trials were designated the 
high Pcom class and the low Pcom class, respectively. These grouping methods were verified by the dPCA. 

dPCA
The method for dPCA was adopted from that published in a previous study (Kobak et al., 2016). 
Time, target position/arm location (−30°, −20°, 0°, 20°, and 30°), and Pcom (VP, P, high Pcom, and low 
Pcom) were combined to obtain the marginalized covariance matrix of the three. The neurons whose 
trial number was not less than five under a single condition were selected for dPCA. Population 
activity was then projected on the decoding axes and ordered by their explained total variance for 
each marginalization.

Information encoded by individual neurons
The percentage of explained variance (PEV) (Buschman et al., 2011) was used to measure the basic 
task components encoded by a single neuron, in which PEV reflected the degree to which the variance 
of a single neuron can be explained for a specific task component. Generally, PEV can be expressed as 
a statistical value of ‍η

2
‍ , that is, the variance ratio between groups to the total variance. As the statis-

tical value of ‍η
2
‍ has a strong positive bias for a small sample, the unbiased ‍ω2‍ statistical value (ωPEV) 

(Olejnik and Algina, 2003) was used.
To evaluate the information about the locations of the proprioceptive arm, visual arm, and esti-

mated arm encoded by a single neuron in the VPC task, an analysis of covariance was used to decom-
pose the variance, and the ωPEV was calculated. In detail, for a single neuron, ωPEV was calculated 
for each type of arm when setting the other two types of arm locations as covariates. The whole 
reaching space was divided into 11 parts from −45° to 45° to transform it from a continuous variable 
to a discrete variable. A nonparametric Wilcoxon rank-sum test was used for unpaired data for statis-
tical significance analysis comparing two brain regions.

The ωPEV was calculated in each time bin to characterize the temporal dynamics of neural infor-
mation under VP and VPC (0°) tasks. The baseline was defined as the period 500 ms before the onset 
of visual arm rotation. A one-sided, paired Wilcoxon signed-rank with FDR correction determined 
the time bins significantly different from the baseline. The time bins showing significant differences 
between VP and VPC (0°) tasks were determined by a cluster-based permutation test (Gramfort et al., 
2013).

Population decoding analysis
Decoding of Pcom
The population decoding analysis of Pcom was performed by the linear SVM classifiers with the scikit-
learn toolbox (Pedregosa et al., 2011). All neurons were included in this analysis without considering 
their Pcom selectivity. The classifier was trained to classify the Pcom (high/low Pcom) with neural activity 
(PSTHs) from each brain region. All recording sessions were pooled to form a pseudo-population. 
Neurons with more than 50 trials in each Pcom group were included in this analysis. Tenfold cross-
validation was then implemented by splitting the neural data into 10 subsamples, each randomly 
drawn from the entire dataset. Decoders were then trained on nine of the subsamples and tested 
on the remaining one. This process was repeated 10 times to obtain the decoding accuracy by aver-
aging across all 10 decoders. This cross-validation process was repeated 1000 times, and the overall 
decoding accuracy was taken as the mean across the 1000 repetitions. The decoding analysis was 
conducted for all time points. The significance of decoding accuracy was determined by comparing 
the mean decoding accuracy to the null distribution from the shuffled data. The significant time dura-
tion was determined using a cluster-based permutation test for multiple comparisons across time 
intervals (permutations = 5000; cluster-level statistic: sum of the t values in a cluster; auxiliary cluster 
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defining threshold t=3) (Gramfort et al., 2013). For visualization, we plotted the mean of decoding 
accuracy with 95% confidence interval using 50 repetitions.

To test whether the premotor cortex neurons encode Pcom earlier than parietal cortex, a random-
ization test was performed between them. Neurons with more than 50 trials in each Pcom group were 
included in this analysis. The corresponding numbers (here, 200 neurons per region) of neurons were 
randomly exchanged between the paired regions 1000 times to generate a null distribution (chance 
level) of time lags, and the significance was determined by a permutation test of the true time lag from 
the original data and the null distribution (Panichello and Buschman, 2021).

Decoding of Pprior
Neurons with more than 50 trials in each Pcom group (high and low Pcom groups, same as for the Pcom 
decoding analysis described above) were selected for the Pprior updating decoding. The decoding 
procedure was the same as described for ‘Decoding of Pcom ’ unless the trials were sorted and labeled 
by the previous trial’s Pcom (nth−1 to nth−4) under the VPC task. The statistical significance was deter-
mined by a cluster-based permutation test (Gramfort et al., 2013).

Subspace overlap analysis
PCA was performed on neural activities during the baseline period and during the target-holding 
period. The first 10 principal components (PCs) during each period were used to obtain the Pprior and 
Pcom subspaces. To test the overlap of these subspaces, the baseline-period activity was projected 
onto the Pprior subspace, and the percent variance explained relative to the total variance of the base-
line period data was quantified; similarly, the target-holding period activity was projected onto the 
Pcom subspace, and the percent variance explained relative to the total variance of the target-holding 
period data was quantified (Elsayed et al., 2016).

Decoding of arm locations
All arm locations were separated into five spatial bins: −30°, −20°, 0°, 20°, and 30°. The basic decoding 
procedure was the same as described above for ‘Decoding of Pcom’. Neurons with more than six trials 
in each arm location bin were selected. Leave-one-out cross-validation was then implemented, and 
this process was repeated 1000 times to obtain the averaged decoding accuracy. The decoding anal-
ysis was conducted for all time points. Statistical significance for decoding accuracy was determined 
by comparing the mean decoding accuracy to the null distribution from shuffled data. The time bins 
with significant differences between tasks (VP and VPC (0°)) were determined by the cluster-based 
permutation test for multiple comparisons across time intervals (Gramfort et al., 2013).

jPECC analysis
To test the relationship between population activities in the two brain regions, the jPECC method 
described in a previous study (Steinmetz et al., 2019) was utilized. First, the neuronal responses in 
two brain regions under the same behavior conditions, namely, high Pcom and low Pcom, were aligned. 
Then, a PCA was conducted across time and trials to reduce the dimensionality to obtain the first 10 
PCs for each brain region. The trials were then divided into 10 equal parts (training set and testing 
set) for cross-validation (10-fold cross-validation). The PCs of the training set of each brain region 
were used to perform canonical correlation analysis to obtain the first pair of canonical correlation 
components (L2 regularization, λ=0.5). Then, the PCs of the testing set from each brain region were 
projected onto the first pair of canonical correlation components, and the correlation was determined 
by the Pearson correlation coefficient between these projections from each region. This analysis was 
performed for each pair of time bins to construct a cross-validated correlation coefficient matrix. 
Fifty trials for each group (high Pcom and low Pcom) from each brain region were randomly selected by 
bootstrapping in this analysis. Finally, a heatmap was obtained by averaging the correlation coefficient 
matrix repeated 1000 times.

To quantify the lead-lag relationship of information exchange between brain regions, an asym-
metric index was calculated by diagonally slicing the jPECC matrix from +300 ms to +300 ms relative 
to each time point (Steinmetz et al., 2019). For time point t, the average correlation coefficient across 
the left half of this slice (i.e., the average along a vector from [t − 300, t + 300] to [t, t]) was subtracted 
from the right half of this slice (from [t, t] to [t + 300, t − 300]) to yield the asymmetry index. To test the 
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leading significant time point across brain regions, the data from neurons in these brain regions were 
exchanged, and the above-described analysis was repeated 1000 times to obtain the null distribution 
of the asymmetric index. Then, a cluster-based permutation test was performed to test whether the 
symmetric index was significantly greater than the chance level (Gramfort et al., 2013).

To further exclude the possibility that the observed lead-lag relationship resulted from the intrinsic 
properties of neuronal activities rather than the encoded information in these regions, all trials in each 
brain region were shuffled to ensure that the inter-region trials were not aligned. Then, the analysis 
was repeated as described above to obtain the asymmetric index.

Note that, due to the limitations of the asynchronous recording (the premotor and parietal neurons 
were grouped from different individual animals and only Monkey N was recorded in both areas), 
further studies are required to clarify the dynamics and functional interactions between regions using 
a simultaneous recording.
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