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Abstract Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobi-
lized surface-attached biofilms. These different phenotypic states play key roles in agriculture, envi-
ronment, industry, and medicine; hence, it is critically important to be able to predict the conditions 
under which bacteria transition from one state to the other. Unfortunately, these transitions depend 
on a dizzyingly complex array of factors that are determined by the intrinsic properties of the indi-
vidual cells as well as those of their surrounding environments, and are thus challenging to describe. 
To address this issue, here, we develop a generally-applicable biophysical model of the interplay 
between motility-mediated dispersal and biofilm formation under positive quorum sensing control. 
Using this model, we establish a universal rule predicting how the onset and extent of biofilm forma-
tion depend collectively on cell concentration and motility, nutrient diffusion and consumption, 
chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quanti-
tatively predicting and controlling biofilm formation in diverse and complex settings.

Editor's evaluation
In this work, the authors develop a continuum description of biofilm formation from initially 
planktonic cells. The coupled partial differential equations that encode the dynamics of the cell 
populations, nutrients and autoinducers contain many parameters, but it is shown that only two 
dimensionless combinations of them are needed to understand the threshold for biofilm formation. 
This work should be of broad interest to a wide range of researchers in biophysics and cell biology.

Introduction
Dating back to their discovery by van Leeuwenhoek over three centuries ago, it has been known 
that bacteria typically exist in one of two phenotypic states: either as motile, planktonic cells that 
self-propel using e.g., flagella or pili (“animalcules … moving among one another”; Van Leewen-
hoeck, 1677), or as immobilized, surface-attached biofilms (“little white matter … in the scurf of 
the teeth”; Leewenhoeck, 1684). These different states have critical functional implications for 
processes in agriculture, environment, industry, and medicine. For example, motility-mediated 
dispersal of planktonic cells enables populations to escape from harmful conditions and colonize 
new terrain (Adler, 1966a; Adler, 1966b; Saragosti et al., 2011; Fu et al., 2018; Cremer et al., 
2019; Bhattacharjee et  al., 2021)—underlying infection progression, drug delivery to hard-to-
reach spots in the body, food spoilage, interactions with plant roots in agriculture, and bioremedia-
tion of environmental contaminants (Balzan et al., 2007; Chaban et al., 2015; Datta et al., 2016; 
Harman et al., 2012; Ribet and Cossart, 2015; Siitonen and Nurminen, 1992; Lux et al., 2001; 
O’Neil and Marquis, 2006; Gill and Penney, 1977; Shirai et al., 2017; Thornlow et al., 2015; 
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Toley and Forbes, 2012; Dechesne et al., 2010; Souza et al., 2015; Turnbull et al., 2001; Watt 
et al., 2006; Babalola, 2010; Adadevoh et al., 2016; Adadevoh et al., 2018; Ford and Harvey, 
2007; Wang et al., 2008; Reddy and Ford, 1996; Martínez-Calvo et al., 2021). In addition, the 
formation of immobilized biofilms can initiate antibiotic-resistant infections, foul biomedical devices 
and industrial equipment, or conversely, help sequester and remove contaminants in dirty water 
(Davey and O’toole, 2000; Hall-Stoodley et al., 2004; Mah et al., 2003; O’Toole and Stewart, 
2005; Fux et al., 2005; Nicolella et al., 2000; Donlan and Costerton, 2002; Davies et al., 1998). 
Hence, extensive research has focused on understanding bacterial behavior in either the planktonic 
or biofilm state.

For example, studies of planktonic cells have provided important insights into bacterial motility—
which can be either undirected (Berg, 2018; Berg, 2004; Bhattacharjee and Datta, 2019a; Bhat-
tacharjee and Datta, 2019b) or directed in response to e.g., a chemical gradient via chemotaxis 
(Adler, 1966b; Adler, 1966a; Saragosti et al., 2011; Fu et al., 2018; Cremer et al., 2019; Bhattacha-
rjee et al., 2021; Keller and Segel, 1971; Odell and Keller, 1976; Keller and Odell, 1975; Lauffen-
burger, 1991; Seyrich et al., 2019; Croze et al., 2011; Amchin et al., 2022). These processes are 
now known to be regulated not just by intrinsic cellular properties, such as swimming kinematics and 
the amplitude and frequency of cell body reorientations, but also by the properties of their environ-
ment, such as cellular concentration, chemical/nutrient conditions, and confinement by surrounding 
obstacles (Berg, 2018; Berg, 2004; Bhattacharjee and Datta, 2019a; Bhattacharjee and Datta, 
2019b; Adler, 1966b; Adler, 1966a; Saragosti et al., 2011; Fu et al., 2018; Cremer et al., 2019; 
Bhattacharjee et  al., 2021; Keller and Segel, 1971; Odell and Keller, 1976; Keller and Odell, 
1975; Lauffenburger, 1991; Seyrich et al., 2019; Croze et al., 2011; Amchin et al., 2022). Thus, 
the manner in which planktonic bacteria disperse can strongly vary between different species and 
environmental conditions.

Similarly, studies of biofilms under defined laboratory conditions have also provided key insights—
such as by revealing the pivotal role of intercellular chemical signaling in biofilm formation (Nadell 
et al., 2008; Bassler and Losick, 2006; Davey and O’toole, 2000; Hall-Stoodley et al., 2004). In this 
process, termed quorum sensing, individual cells produce, secrete, and sense freely diffusible auto-
inducer molecules, thereby enabling different bacteria to coordinate their behavior (Davies et al., 
1998; Sakuragi and Kolter, 2007; Bassler and Losick, 2006; Miller and Bassler, 2001; Herzberg 
et al., 2006; Laganenka et al., 2018; McLean et al., 1997; Paul et al., 2009). For example, in many 
cases, quorum sensing positively controls biofilm formation (Herzberg et al., 2006; Laganenka et al., 
2018; Davies et al., 1998; Sakuragi and Kolter, 2007; McLean et al., 1997; González Barrios et al., 
2006; Yarwood et al., 2004; Koutsoudis et al., 2006; Waters and Bassler, 2005; Parsek and Green-
berg, 2005; Jayaraman and Wood, 2008; Hentzer et al., 2003; Kirisits and Parsek, 2006): auto-
inducer accumulation above a threshold concentration upregulates the expression of genes involved 
in biofilm formation, ultimately driving a transition from the planktonic to the biofilm state (Nadell 
et al., 2008). Again, however, the cellular factors that control this transition, such as the autoinducer 
production rate, diffusivity, and threshold concentration, can strongly vary between different species 
and environmental conditions.

Because planktonic dispersal and biofilm formation both depend on a dizzyingly complex array of 
factors, these distinct processes are typically studied in isolation. Thus, while each is well understood 
on its own, quantitative prediction of the conditions under which a population of planktonic bacteria 
transitions to the biofilm state—or instead, continues to disperse away and remains in the planktonic 
state—remains challenging. Here, we address this challenge by developing a mathematical model 
that describes essential features of motility-mediated dispersal of planktonic cells and autoinducer-
mediated biofilm formation together. Using numerical simulations of this model, we systematically 
examine the influence of cellular concentration, motility, and chemotactic sensing; nutrient availability, 
diffusion, and consumption; and autoinducer production, diffusion, and accumulation on biofilm 
formation. Guided by these results, we establish a potentially-universal biophysical threshold that 
unifies the influence of all these factors in predicting the onset and extent of biofilm formation across 
different species and environmental conditions. Our work therefore provides a theoretical foundation 
for the prediction and control of biofilm formation in diverse and complex settings, and yields new 
quantitative predictions to guide future experiments.

https://doi.org/10.7554/eLife.76380
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Results
Development of the governing equations
As an illustrative example, and to connect our model to recent experiments of bacterial dispersal 
(Bhattacharjee et al., 2021), we consider a rectilinear geometry with a starting inoculum of plank-
tonic cells at a maximal concentration ‍b1,0‍ and of width ‍x0‍. In general, the continuum variable ‍b(x, t)‍ 
describes the number concentration of bacteria, where ‍x‍ is the position coordinate and ‍t‍ is time, 
and the subscripts ‍{1, 2}‍ represent planktonic or biofilm-associated cells, respectively. Following 
previous work (Lauffenburger, 1991; Keller and Segel, 1971; Adler, 1966a; Croze et al., 2011; 
Fu et al., 2018; Bhattacharjee et al., 2021), we consider a sole diffusible nutrient that also acts as 
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Figure 1. Competition between motility-mediated dispersal and autoinducer-mediated biofilm formation. (A) Schematic of chemotactic dispersal: 
planktonic bacteria (green) consume nutrient (purple) and establish a local gradient that they, in turn, direct their motion in response to. (B) Schematic 
of positive quorum sensing-controlled biofilm formation: accumulation of produced autoinducer (red) above a threshold concentration causes cells 
to transition to the biofilm state (blue). (C) Results of an example simulation of Equations 1–4 showing the dynamics of the nutrient, planktonic cells, 
autoinducer, and biofilm cells from top to bottom, quantified by the normalized concentrations ‍c/c0‍, ‍b1/b1,0‍, ‍a/a∗‍, ‍b2/b1,0‍, respectively; ‍c0‍, ‍b1,0‍, and 
‍a∗‍ represent the initial nutrient concentration, initial bacterial concentration, and autoinducer threshold for biofilm formation, respectively. The position 
coordinate is represented by the normalized position ‍x/x0‍, where ‍x0‍ is the width of the initial cellular inoculum. Different shades indicate different 
time points as listed. The inoculum initially centered about the origin consumes nutrient (purple), establishing a gradient that drives outward dispersal 
by chemotaxis (outward moving green curves); the cells also produce autoinducer (red) concomitantly. At ‍t ≈ 13 h‍, sufficient autoinducer has been 
produced to trigger biofilm formation at the origin; at even longer times (‍t ≳ 16 h‍), nutrient depletion limits autoinducer production at this position. 
However, accumulation of autoinducer by the dispersing planktonic cells triggers partial biofilm formation at ‍x/x0 ≈ 6‍ as well. This competition 
between dispersal and biofilm formation leads to a final biofilm fraction of ‍f = 21%‍ at the final time of ‍t = 20 h‍. An animated form of this figure is shown 
in Video 1. The values of the simulation parameters are given in Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. 

Figure supplement 1. The exact nature of the temporal dynamics of the arrest in motility while transitioning to the biofilm state does not appreciably 
influence our model results.

Figure supplement 1—source data 1. 

Figure supplement 2. The details of the initial inoculum shape do not appreciably influence our model results.

Figure supplement 2—source data 1. 

https://doi.org/10.7554/eLife.76380
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the chemoattractant, with a number concentration represented by the continuum variable ‍c(x, t)‍ with 
diffusivity ‍Dc‍. Initially, nutrient is replete throughout the system at a constant concentration ‍c0‍. The 
bacteria then consume the nutrient at a rate ‍b1κ1g(c)‍, where ‍κ1‍ is the maximum consumption rate per 
cell and the Michaelis-Menten function ‍g(c) ≡ c

c+cchar ‍ quantifies the nutrient dependence of consump-
tion relative to the characteristic concentration ‍cchar‍ (Croze et al., 2011; Monod, 1949; Cremer et al., 
2019; Woodward et al., 1995; Shehata and Marr, 1971; Schellenberg and Furlong, 1977; Cremer 
et al., 2016).

As time progresses, the bacteria thereby establish a local nutrient gradient that they respond 
to via chemotaxis (Figure 1A). In particular, planktonic cells disperse through two processes: undi-
rected active diffusion with a constant diffusivity ‍D1‍ (Berg, 2018), and directed chemotaxis with a 

drift velocity 
‍
v⃗c ≡ χ1∇ log

(
1+c/c−
1+c/c+

)
‍
 that quantifies the ability of the bacteria to sense and respond 

to the local nutrient gradient (Keller and Segel, 1970; Keller and Segel, 1971; Odell and Keller, 
1976; Keller and Odell, 1975) with characteristic bounds ‍c− and c+‍ (Cremer et al., 2019; Sourjik 
and Wingreen, 2012; Shimizu et al., 2010; Tu et al., 2008; Kalinin et al., 2009; Shoval et al., 2010; 
Lazova et al., 2011; Celani et al., 2011; Fu et al., 2018; Dufour et al., 2014; Yang et al., 2015; Cai 
et al., 2016; Chen and Jin, 2011) and a chemotactic coefficient ‍χ1‍. The planktonic cells also prolif-
erate at a rate ‍bγ1g(c)‍, where ‍γ1‍ is the maximal proliferation rate per cell. Finally, as the planktonic 
bacteria consume nutrients, they produce and secrete a diffusible autoinducer, with a number concen-
tration represented by ‍a(x, t)‍ and with diffusivity ‍Da‍, at a maximal rate ‍k1‍ per cell. Motivated by some 
previous work (Hense et al., 2012; Hense and Schuster, 2015; Kirisits et al., 2007; Bollinger et al., 
2001; Duan and Surette, 2007; Mellbye and Schuster, 2014; De Kievit et al., 2001; Pérez-Osorio 
et al., 2010), we take this process (hereafter referred to as ‘production’ for brevity) to also be nutrient-
dependent via the same Michaelis-Menten function ‍g(c)‍ for the results presented in the main text, but 
we also consider the alternate case of ‘protected’ nutrient-independent production in the supplemen-
tary materials. Following previous work (Koerber et al., 2002; Ward et al., 2001; Ward et al., 2003), 
we also model natural degradation of autoinducer as a first-order process with a rate constant λ.

As autoinducer is produced, it binds to receptors on the surfaces of the planktonic cells with a 
second-order rate constant ‍α‍, as established previously (Koerber et al., 2002; Ward et al., 2001; 
Ward et al., 2003). Motivated by experiments on diverse bacteria, including the prominent and well-
studied species Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa (Davies et al., 
1998; Sakuragi and Kolter, 2007; Bassler and Losick, 2006; Miller and Bassler, 2001; Herzberg 
et al., 2006; Laganenka et al., 2018; McLean et al., 1997; Paul et al., 2009; González Barrios 
et al., 2006; Yarwood et al., 2004; Koutsoudis et al., 2006; Waters and Bassler, 2005; Parsek 
and Greenberg, 2005; Jayaraman and Wood, 2008; Hentzer et  al., 2003; Kirisits and Parsek, 
2006), we assume that planktonic cells transition to the biofilm state at a rate ‍τ−1‍ when the local 
autoinducer concentration exceeds a threshold value ‍a∗‍ (Figure 1B). Because our focus is on this 
transition, we assume that it is irreversible, and that cells in the biofilm lose motility. However, they still 
continue to consume nutrient, proliferate, and produce autoinducer with maximal rates ‍κ2‍, ‍γ2‍, and ‍k2‍ 
per cell, respectively; additional behaviors such as subsequent production of extracellular polymeric 
substances or transitioning back to the planktonic state can be incorporated as future extensions to 
this model.

Hence, while planktonic cells can disperse via active diffusion and chemotaxis, their dispersal is 
hindered—and biofilm formation is instead promoted—when autoinducer accumulates sufficiently, as 
schematized in Figure 1A–B. The central goal of this paper is to examine the processes underlying 
this competition between dispersal and biofilm formation. Our model is thus summarized as:

	﻿‍

Planktonic : ∂b1
∂t

= D1∇2b1 −∇ ·
(
b1v⃗c

)
� �� �

Motility

+ b1γ1g(c)� �� �
Proliferation

− b1τ
−1H

(
a − a∗

)
� �� �

Biofilm formation ‍�

(1)

	﻿‍

Biofilm : ∂b2
∂t

= b2γ2g(c)� �� �
Proliferation

+ b1τ
−1H

(
a − a∗

)
� �� �

Biofilm formation ‍�
(2)

https://doi.org/10.7554/eLife.76380
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	﻿‍

Nutrient : ∂c
∂t

= Dc∇2c� �� �
Diffusion

−
(
b1κ1 + b2κ2

)
g(c)� �� �

Consumption ‍�
(3)

	﻿‍

Autoinducer :
∂a
∂t

= Da∇2a� �� �
Diffusion

+
(
b1k1 + b2k2

)
g(c)� �� �

Production

− a
(
λ + αb1

)
� �� �

Loss ‍�

(4)

where ‍H‍ is the Heaviside step function describing the transition from the planktonic to biofilm state. 
To explore the competition between motility-mediated dispersal and autoinducer-mediated biofilm 
formation, we then numerically solve this system of coupled equations using values of all parame-
ters—which are either intrinsic descriptors of cellular physiology or are solely/additionally influenced 
by the local environment—that are derived from experiments (Supplementary file 1). Further details 
are provided in the Materials and methods. Additional simulations indicate that the results obtained 
are not appreciably influenced by variations in the exact nature of how our model treats the arrest in 
planktonic cell motility while transitioning to the biofilm state (Figure 1—figure supplement 1) or the 
initial inoculum shape (Figure 1—figure supplement 2).

Representative numerical simulations
The results of a prototypical example are shown in Figure 1C and Video 1. Consumption by the 
planktonic cells (green curves) rapidly establishes a steep nutrient gradient (purple) at the leading 
edge of the inoculum. This gradient forces the planktonic cells to then move outward via chemotaxis. 

Video 1. Animated form of Figure 1C: Results of an example simulation of Equations 1–4 showing the dynamics 
of the nutrient, planktonic cells, autoinducer, and biofilm cells from top to bottom, quantified by the normalized 
concentrations ‍c/c0‍, ‍b1/b1,0‍, ‍a/a∗‍, and ‍b2/b1,0‍, respectively; ‍c0‍, ‍b1,0‍, and ‍a∗‍ represent the initial nutrient 
concentration, initial bacterial concentration, and autoinducer threshold for biofilm formation, respectively. The 
position coordinate is represented by the normalized position ‍x/x0‍, where ‍x0‍ is the width of the initial cellular 
inoculum. The inoculum initially centered about the origin consumes nutrient (purple), establishing a gradient 
that drives outward dispersal by chemotaxis (outward moving green curves); the cells also produce autoinducer 
(red) concomitantly. At ‍t ≈ 13 h‍, sufficient autoinducer has been produced to trigger biofilm formation at the 
origin; at even longer times (‍t ≳ 16 h‍), nutrient depletion limits autoinducer production at this position. However, 
accumulation of autoinducer by the dispersing planktonic cells triggers partial biofilm formation at ‍x/x0 ≈ 4‍ as 
well. This competition between dispersal and biofilm formation leads to a final biofilm fraction of ‍f = 21%‍ at 
the final time of ‍t = 20 h‍. The values of the simulation parameters are given in Supplementary file 2. The video 
displays the profiles every ‍30 min‍, to retain a manageable file size; however, the temporal step size in the actual 
simulations is ‍0.1 s‍.

https://elifesciences.org/articles/76380/figures#video1

https://doi.org/10.7554/eLife.76380
https://elifesciences.org/articles/76380/figures#video1
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In particular, they self-organize into a coherent front that expands from the initial inoculum and 
continually propagates, sustained by continued consumption of the surrounding nutrient—consistent 
with the findings of previous studies of planktonic bacteria (Bhattacharjee et al., 2021). In this case, 
however, the cells also concomitantly produce autoinducer that accumulates into a growing plume 
(red). In some locations, the autoinducer eventually exceeds the threshold ‍a∗‍, thus driving the forma-
tion of an immobilized biofilm (blue). Hence, at long times, ‍f = 21%‍ of the overall population is biofilm-
associated, while the remaining ‍1 − f = 79%‍ continues to disperse in the planktonic state.

Because the processes underlying motility-mediated dispersal and autoinducer-mediated biofilm 
formation are highly species- and environment-dependent, the values of the parameters in Equations 
1–4 can span broad ranges—giving rise to different emergent behaviors under different conditions. 
Our simulations provide a way to examine how these behaviors depend on cellular concentration 

0

0.5

1
0 h

0.5 h 7 h

14 h

20 h

N
ut

rie
nt

,

0

0.5

1
0 h

0.5 h 7 h 14 h 20 h

P
la

nk
to

ni
c,

0

0.5

1

0.5 h

7 h 14 h
20 h

0 h

A
ut

oi
nd

uc
er

,

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

0 h, 0.5 h, 7 h, 14 h, 20 h

Position,

B
io

fil
m

, No biofilm

Complete dispersal

Faster consumption

Figure 2. Faster nutrient consumption limits autoinducer production, leading to complete dispersal. Retion as 
in Figure 1C, but for planktonic cells with faster nutrient consumption (larger ‍κ1‍). Panels and colors show the 
same quantities as in Figure 1C. The inoculum initially centered about the origin consumes nutrient (purple), 
establishing a gradient that drives outward dispersal by chemotaxis (outward moving green curves); the cells also 
produce autoinducer (red) concomitantly. However, nutrient is depleted at this position more rapidly, limiting 
autoinducer production; as a result, the population continues to disperse in the planktonic state and the final 
biofilm fraction is ‍f = 0%‍. An animated form of this figure is shown in Video 2. The values of the simulation 
parameters are given in Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. 

Figure supplement 1. Slower nutrient consumption allows greater autoinducer production, leading to more 
biofilm formation.

Figure supplement 1—source data 1. 

https://doi.org/10.7554/eLife.76380
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and motility, quantified by ‍{b1,0, D1,χ1, c−, c+}‍, 
nutrient availability and consumption, quantified 
by ‍{Dc, c0,κ1,κ2, cchar}‍, cellular proliferation, quan-
tified by ‍{γ1, γ2}‍, and autoinducer produc-
tion, availability, and sensing, quantified by 

‍{Da, k1, k2,λ,α, τ , a∗}‍. For example, implementing 
the same simulation as in Figure 1C, but for cells 
with faster nutrient consumption, yields a popu-
lation that completely disperses in the planktonic 
state (the fraction of the population in the biofilm state at the final time of ‍t = 20 h‍ is ‍f = 0%‍, as shown 
in Figure 2 and Video 2). Conversely, when cells consume nutrient slower, a larger fraction of the 
population forms an immobilized biofilm (‍f = 52%‍, Figure 2—figure supplement 1 and Video 3).

Given that the competition between motility-mediated dispersal and autoinducer-mediated biofilm 
formation depends sensitively on such a bewildering array of cellular and environmental factors, we 
ask whether these dependencies can be captured by simple, generalizable, biophysical rules. Nondi-
mensionalization of Equations 1–4 yields characteristic quantities and dimensionless groups that can 
parameterize these dependencies, as detailed in Appendix 1; however, given the large number of 
such groups, we seek an even simpler representation of the underlying processes that could unify the 
influence of all these different factors. To do so, we examine the fundamental processes underlying 
biofilm formation in our model.

Availability of nutrient for autoinducer production
When autoinducer production is nutrient-dependent, we expect that a necessary condition for biofilm 
formation is that enough nutrient is available for sufficient autoinducer to be produced to eventually 
exceed the threshold ‍a∗‍. To quantify this condition, we estimate two time scales: ‍τd‍, the time taken 
by the population of planktonic cells to deplete all the available nutrient locally, and ‍τa‍, the time at 
which produced autoinducer reaches the threshold for biofilm formation. While ‍τd‍ and ‍τa‍ can be 
directly obtained in each simulation, we seek a more generally-applicable analytical expression for 
both, solely using parameters that act as inputs to the model. In particular, for simplicity, we consider 

Video 2. Animated form of Figure 2: Results of the 
same simulation as in Video 1, but for planktonic cells 
with faster nutrient consumption (larger ‍κ1‍). Panels and 
colors show the same quantities as in Video 1. The 
inoculum initially centered about the origin consumes 
nutrient (purple), establishing a gradient that drives 
outward dispersal by chemotaxis (outward moving 
green curves); the cells also produce autoinducer (red) 
concomitantly. However, nutrient is depleted at this 
position more rapidly, limiting autoinducer production; 
as a result, the population continues to disperse in the 
planktonic state and the final biofilm fraction is ‍f = 0%‍. 
The values of the simulation parameters are given in 
Supplementary file 2. The video displays the profiles 
every ‍30 min‍, to retain a manageable file size; however, 
the temporal step size in the actual simulations is ‍0.1 s‍.

https://elifesciences.org/articles/76380/figures#video2

Video 3. Animated form of Figure 2—figure 
supplement 1: Results of the same simulation as in 
Video 1, but for planktonic cells with slower nutrient 
consumption (smaller ‍κ1‍). Panels and colors show the 
same quantities as in Video 1. The inoculum initially 
centered about the origin slowly consumes nutrient 
(purple), establishing a slight gradient that allows 
partial planktonic dispersal (green curves moving 
outward); the cells also produce autoinducer (red) 
concomitantly. Because nutrient is consumed slowly, 
autoinducer production is not limited, resulting in 
partial biofilm formation (blue). Autoinducer has 
sufficiently accumulated above the threshold after 
‍t ≈ 14 h‍, which causes a population of biofilm cells to 
form at the origin (‍x/x0 ≈ 0‍). After ‍20 h‍, the biofilm 
population continues to grow, and additionally, 
autoinducer concentration exceeds the threshold 
concentration at ‍x/x0 ≈ 10‍. Thus, we see a second 
population of biofilm cells form, centered at ‍x/x0 ≈ 10‍. 
The slower nutrient consumption results in a greater 
final biofilm fraction than in Video 1—here, ‍f = 52%‍. 
The values of the simulation parameters are given in 
Supplementary file 2. The video displays the profiles 
every ‍30 min‍, to retain a manageable file size; however, 
the temporal step size in the actual simulations is ‍0.1 s‍.

https://elifesciences.org/articles/76380/figures#video3

https://doi.org/10.7554/eLife.76380
https://elifesciences.org/articles/76380/figures#video2
https://elifesciences.org/articles/76380/figures#video3
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nutrient consumption and autoinducer production, both occurring at their maximal rates ‍κ1‍ and ‍k1‍, 
respectively, by an exponentially-growing population of planktonic cells that are uniformly distributed 
in a well-mixed and fixed domain. Integrating Equations 3 and 4 then yields (Appendix 2)

	﻿‍ τd = γ−1
1 ln(1 + β̃1,0)‍� (5)

	﻿‍
τa = γ−1

1 ln
[
1 − ζ̃−1

1,0 ln
(
1 − η̃

)]
.
‍� (6)

Three key dimensionless quantities, denoted by the tilde ‍(˜)‍ notation, emerge from this calculation. 
The first, ‍β̃1,0 ≡ γ1/

(
b1,0κ1/c0

)
‍, describes the yield of new cells produced as the population consumes 

nutrient—quantified by the rates of cellular proliferation and nutrient consumption, ‍γ1‍ and ‍b1,0κ1/c0‍, 
respectively (Amchin et al., 2022). The second, ‍̃η ≡ αa∗/k1‍, describes the competition between auto-
inducer loss and production, quantified by their respective rates ‍αa∗‍ and ‍k1‍, at the single-cell scale. 
The third, ‍ζ̃1,0 ≡ αb0/γ1‍, describes the loss of autoinducer due to cell-surface binding as the popu-
lation continues to grow, quantified by the population-scale rates of autoinducer loss and cellular 
proliferation, ‍αb0‍ and ‍γ1‍, respectively; for simplicity, this quantity neglects natural degradation of 
autoinducer, given that the degradation rate is relatively small, with ‍λ ≪ αb0‍.

The ratio between Equations 5 and 6 then defines a nutrient availability parameter, ‍D̃ ≡ τd/τa‍. 
When ‍D̃‍ is large, produced autoinducer rapidly reaches the threshold for biofilm formation before 
the available nutrient is depleted; by contrast, when ‍D̃‍ is small, nutrient depletion limits autoin-
ducer production. Hence, we hypothesize that ‍D̃ ≳ D̃∗

‍ specifies a necessary condition for biofilm 
formation, where ‍D̃∗‍ is a threshold value of order unity. The simulations shown in Figures 1C and 2 
and Figure 2—figure supplement 1 enable us to directly test this hypothesis. Consistent with our 
expectation, the simulation in Figure 1C is characterized by ‍D̃ = 0.33‍, near the expected threshold 
for biofilm formation; as a result, ‍f = 21%‍. When consumption is faster as in Figure 2 (‍D̃ = 0.033‍), 
the available nutrient is rapidly depleted; thus, cells disperse away before sufficient autoinducer is 
produced to initiate biofilm formation, and ‍f = 0%‍. Conversely, when nutrient consumption is slow 
as in Figure 2—figure supplement 1 (‍D̃ = 3.1‍), nutrient continues to be available for autoinducer 
production, eventually driving biofilm formation, with a larger fraction ‍f = 52%‍.

Taken together, these results support our hypothesis that ‍D̃ ≳ D̃∗ ∼ 1‍ is a necessary condition 
for biofilm formation. It is not, however, a sufficient condition: repeating the simulation of Figure 1C 
but for faster-moving cells yields a population that rapidly disperses without forming a biofilm at all 
(‍f = 0%‍, Figure 3A and Video 4)—despite having the same value of ‍D̃ = 0.33‍. Thus, our mathematical 
description of the conditions that determine biofilm formation is, as yet, incomplete.

Competition between motility-mediated dispersal and autoinducer 
accumulation
The results shown in Figure 3 indicate that the ability of planktonic bacteria to move, which is not 
incorporated in the nutrient consumption parameter ‍D̃‍, also plays a key role in regulating whether a 
biofilm forms. Indeed, close inspection of Figure 3A hints at another necessary condition for biofilm 
formation: as shown by the magnified view in Figure 3B (e.g., at ‍t = 4 h‍), the leading edge of the 
dispersing planktonic cells extends beyond the plume of produced autoinducer. Therefore, we expect 
that even when sufficient nutrient is available for autoinducer production (‍D̃ ≳ D̃∗ ∼ 1‍), autoinducer 
production must be rapid enough to reach the threshold for biofilm formation before cells have 
dispersed away. To quantify this condition, we estimate the the time ‍τc‍ at which the motile plank-
tonic cells begin to ‘outrun’ the growing autoinducer plume. Specifically, we quantify the dynamics of 
the leading edge positions of the chemotactic front of planktonic cells and the autoinducer plume, 

‍x1,edge(t)‍ and ‍xa,edge(t)‍, respectively. The front position ‍x1,edge(t)‍ is known to depend on cellular motility, 
nutrient diffusion, and nutrient consumption in a non-trivial manner (Berg, 2004; Cremer et al., 2019; 
Fu et al., 2018; Amchin et al., 2022), and we are not aware of a way to compute this quantity a priori 
from input parameters; instead, we extract this sole quantity from each simulation by identifying 
the largest value of ‍x‍ at which ‍b1 ≥ 10−4b1,0‍. While the plume position ‍xa,edge(t)‍ can also be directly 
obtained in each simulation, we again develop a more generally applicable analytical expression by 
assuming that the autoinducer continually diffuses from the initial inoculum: ‍xa,edge(t) = x0 +

√
2Dat‍. 

Then, ‍τc‍ can be directly determined as the time at which ‍x1,edge(t)‍ begins to exceed ‍xa,edge(t)‍.

https://doi.org/10.7554/eLife.76380
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Figure 3. Enhanced motility enables cells to disperse before sufficient autoinducer accumulates, leading to 
complete dispersal. (A) Results of the same simulation as in Figure 1C, but for faster-moving planktonic cells 
(larger ‍D1‍ and ‍χ1‍). Panels and colors show the same quantities as in Figure 1C. The inoculum initially centered 
about the origin consumes nutrient (purple), establishing a gradient that drives outward dispersal by chemotaxis 
(outward moving green curves); the cells also produce autoinducer (red) concomitantly. More rapid dispersal 
enables the planktonic cells to ‘outrun’ the growing autoinducer plume, as shown by the extended and magnified 
view in (B). As a result, the population continues to disperse in the planktonic state and the final biofilm fraction is 

‍f = 0%‍. An animated form of this figure is shown in Video 4. The values of the simulation parameters are given in 
Supplementary file 2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.76380
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The ratio between ‍τc‍ thereby determined and ‍τa‍, the time required for produced autoinducer to 
reach the threshold for biofilm formation (Equation 6), then defines a cellular dispersal parameter, 
‍J̃ ≡ τc/τa‍. When ‍J̃ ‍ is large, autoinducer accumulation is sufficiently rapid to drive biofilm formation; 
by contrast, when ‍J̃ ‍ is small, the planktonic cells rapidly disperse without forming a biofilm. Hence, 
we hypothesize that ‍J̃ ≳ J̃ ∗

‍ specifies another necessary condition for biofilm formation, where ‍J̃ ∗‍ 
is, again, a threshold value of order unity. The simulations shown in Figures 1C and 3A enable us 
to directly test this hypothesis. Consistent with our expectation, the simulations in Figure 1C and 
Figure  2—figure supplement 1 are characterized by ‍J̃ = 1.6‍, near the expected threshold for 
biofilm formation; as a result, ‍f > 0‍ in both cases. Furthermore, implementing the same simulation 
as Figure 1C (with the same ‍D̃ = 0.33‍) but for slower-moving cells, characterized by a larger ‍J̃ = 120‍, 
yields a population that forms an even larger biofilm fraction ‍f = 82%‍ (Figure 3—figure supplement 
1 and Video 5). Conversely, when cellular dispersal is faster as in Figure 3, characterized by a smaller 
‍J̃ = 0.1‍, the cells disperse away before sufficient autoinducer is produced to initiate biofilm formation, 
and ‍f = 0%‍. Taken together, these results support our hypothesis that ‍J̃ ≳ J̃ ∗ ∼ 1‍ is another neces-
sary condition for biofilm formation.

A universal biophysical threshold for biofilm formation
Thus far, we have shown that the two conditions ‍D̃ ≳ D̃∗

‍ and ‍J̃ ≳ J̃ ∗
‍ are both necessary for biofilm 

formation. Is the combination of both sufficient 
to fully specify the conditions required for biofilm 
formation? To test this possibility, we implement 

Source data 1. 

Figure supplement 1. Diminished motility enables autoinducer to accumulate, resulting in increased biofilm 
formation.

Figure supplement 1—source data 1. 

Figure 3 continued

Video 4. Animated form of Figure 3: Results of the 
same simulation as in Video 1, but for faster-moving 
planktonic cells (larger ‍D1‍ and ‍χ1‍). Panels and 
colors show the same quantities as in Video 1. The 
inoculum initially centered about the origin consumes 
nutrient (purple), establishing a gradient that drives 
outward dispersal by chemotaxis (outward moving 
green curves); the cells also produce autoinducer 
(red) concomitantly. More rapid dispersal enables the 
planktonic cells to ‘outrun’ the growing autoinducer 
plume, as shown by the extended and magnified view 
in (B). As a result, the population continues to disperse 
in the planktonic state and the final biofilm fraction is 

‍f = 0%‍. The values of the simulation parameters are 
given in Supplementary file 2. The video displays 
the profiles every ‍30 min‍, to retain a manageable file 
size; however, the temporal step size in the actual 
simulations is ‍0.1 s‍.

https://elifesciences.org/articles/76380/figures#video4

Video 5. Animated form of Figure 3—figure 
supplement 1: Results of the same simulation as in 
Video 1, but for slower-moving planktonic cells (smaller 

‍D1‍ and ‍χ1‍). Panels and colors show the same quantities 
as in Video 1. The inoculum initially centered about 
the origin consumes nutrient (purple), establishing 
a slight gradient—however, because the motility 
parameters are diminished, the planktonic population 
(green) remains around the origin. The planktonic 
cells produce autoinducer (red) concomitantly, and 
after ‍1 h‍, the autoinducer concentration exceeds the 
threshold concentration. Thus, some of the planktonic 
cells transition to biofilm cells, centered at the origin. 
Both the biofilm cells and planktonic cells continue to 
grow, produce autoinducer, and consume nutrient; the 
planktonic cells do not disperse due to their diminished 
motility, resulting in a larger fraction of biofilm cells 
(‍f = 82%‍) than in Video 1. The values of the simulation 
parameters are given in . The video displays the profiles 
every ‍30 min‍, to retain a manageable file size; however, 
the temporal step size in the actual simulations is ‍0.1 s‍.

https://elifesciences.org/articles/76380/figures#video5

https://doi.org/10.7554/eLife.76380
https://elifesciences.org/articles/76380/figures#video4
https://elifesciences.org/articles/76380/figures#video5
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10,983 numerical simulations of Equations 1–4 exploring the full physiological ranges of the input 
parameters that describe cellular, nutrient, and autoinducer properties for diverse bacterial species/
strains and environmental conditions (Supplementary file 1). For each simulation, we compute ‍D̃‍, 
‍J̃ ‍, and ‍f ‍. Remarkably, despite the extensive variability in the values of the underlying parameters, all 
the results cluster between two states parameterized by ‍D̃‍ and ‍J̃ ‍, as shown in Figure 4A: motility-
mediated dispersal without biofilm formation (‍f = 0%‍, green points) when either ‍D̃ < D̃∗‍ or ‍J̃ < J̃ ∗‍, 
and biofilm formation without dispersal (‍f = 100%‍, blue points) when both ‍D̃ > D̃∗‍ and ‍J̃ > J̃ ∗‍. Many 
different combinations of the input parameters yield the same ‍(D̃‍, ‍J̃ )‍; yet, no matter the input values 
of these parameters, which vary over broad ranges for different cells and environmental conditions, 

‍(D̃‍, ‍J̃ )‍ uniquely specify the resulting biofilm fraction ‍f ‍ for all points, as shown in Figure 4B–C—indi-
cating that these two dimensionless parameters reasonably encompass all the factors determining 
biofilm formation within our model. We observe some exceptions at the boundary between these two 
states, likely because the simplifying assumptions underlying the derivation of the ‍D̃‍ and ‍J̃ ‍ param-
eters begin to break down. Nevertheless, the boundary between both states, summarized by the 
relation ‍D̃∗/D̃ + J̃ ∗/J̃ ∼ 1‍ with ‍D̃∗‍ and ‍J̃ ∗‍ both ‍∼ 1‍ (black curve), thus specifies a universal biophysical 
threshold for biofilm formation.

Discussion
The transition from the planktonic to biofilm state is known to depend on a large array of factors 
that describe cellular concentration, motility, and proliferation; nutrient availability and consumption; 
and autoinducer production, availability, and sensing—all of which can vary considerably for different 
strains/species of bacteria and environmental conditions. Therefore, quantitative prediction of the 
onset of biofilm formation is challenging. The biophysical model presented here provides a key step 
toward addressing this challenge. In particular, for the illustrative case we consider—in which cells can 
either disperse through active motility, retaining them in the planktonic state, or form an immobilized 
biofilm when exposed to sufficient autoinducer—we have shown that the onset of biofilm formation 
is uniquely specified by a biophysical threshold set by the two dimensionless parameters ‍D̃‍ (quanti-
fying nutrient availability) and ‍J̃ ‍ (quantifying bacterial dispersal). Importantly, within the formulation 
of our model, this threshold is universal: many different combinations of cellular and environmental 
factors are described by the same ‍(D̃, J̃ )‍, and thus, yield the same onset of biofilm formation. There-
fore, given a bacterial strain and set of environmental conditions, extensions of our model could help 
provide a way to predict whether a biofilm will form a priori. Indeed, because the factors that define 
‍D̃‍ and ‍J̃ ‍ can be directly measured, our work now provides quantitative principles and predictions (as 
summarized in Figure 4) to guide future experiments.

For generality, our model also incorporates proliferation, nutrient consumption, and autoin-
ducer production by cells after they have transitioned to the biofilm state. Hence, within our model, 
biofilm-produced autoinducer could also drive surrounding planktonic cells to transition to the biofilm 
state. In this case, we expect that the long-time fraction of the population in the biofilm state, ‍f ‍, 
will also depend on nutrient depletion and autoinducer production by the growing biofilm. Indeed, 
performing a similar calculation as that underlying the nutrient availability parameter, ‍D̃‍, yields a third 
dimensionless parameter, ‍S̃ ≡ τd,2/τa,2‍; here, ‍τd,2‍ and ‍τa,2‍ describe the times at which biofilm cells 
have depleted all the available nutrient and produced enough autoinducer to reach the threshold for 
biofilm formation, respectively (Appendix 2). Thus, we hypothesize that, while the onset of biofilm 
formation is specified by ‍(D̃, J̃ )‍, the final extent of biofilm that has formed will also be described by 
‍S̃ ‍. The results shown in Figures 1–4C have a fixed ‍S̃ = 50‍, which describes the case of a biofilm that 
produces autoinducer rapidly; repeating these simulations for the opposite case of slow autoinducer 
production by biofilm cells, with ‍S̃ = 1/50‍, yields the state diagram shown in Figure 4D. In agreement 
with our hypothesis, while the transition to the biofilm state (black line) is not appreciably altered 
by the change in ‍S̃ ‍, the transition to complete biofilm formation (‍f = 1‍) is more gradual in this case 
(compare Figure 4A,B,D,E). Moreover, we note that our analysis thus far has focused on the case 
in which autoinducer production is nutrient-dependent; however, this process may sometimes be 
nutrient-independent (Narla et al., 2021). In this case, we expect that our overall analysis still applies, 
but with the onset of biofilm formation specified by only the dispersal parameter ‍J̃ ‍—as confirmed in 
Figure 4—figure supplement 1.

https://doi.org/10.7554/eLife.76380
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Figure 4. The two states of complete dispersal by planktonic cells (green) and complete formation of a biofilm (blue) can be universally described 
by three dimensionless parameters. (A) State diagram showing the fraction of biofilm formed, ‍f ‍, at the final time (‍t = 20 h‍) for different values of 
the nutrient availability and cellular dispersal parameters, ‍D̃‍ and ‍J̃ ‍, respectively. The state diagram summarizes the results of 10,983 simulations 
of Equations 1–4 exploring the full range of parameter values describing different bacterial species/strains and different environmental conditions 
(Supplementary file 1). Each point represents the mean value of ‍f ‍ obtained from multiple simulations with different parameter values, but with similar 
‍D̃‍ and ‍J̃ ‍ (identical within each bin defined by the spacing between points). (B) represents the same data, but each point represents the standard 
deviation of the values of ‍f ‍ obtained from the same simulations. Despite the vastly differing conditions explored in each simulation, they cluster into 
the two states of planktonic dispersal (green) and biofilm formation (blue) when parameterized by ‍D̃‍ and ‍J̃ ‍. The boundary between the two states can 

Figure 4 continued on next page
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Possible extensions of our work
The transition from the planktonic to biofilm state is highly complex and, in many cases, has 
features that are unique to different species of bacteria. Nevertheless, our model provides a 
minimal description that can capture many of the essential features of biofilm formation more 
generally—thereby providing a foundation for future extensions of our work, some of which are 
described below.

1.	 For simplicity, our model considers only one spatial dimension; however, fascinating new effects 
may arise in higher-dimensional implementations of our model. For example, in our prior work 
modeling the collective migration of planktonic bacteria in the absence of quorum sensing-
mediated biofilm formation, we found that variations in the shape of the cellular front orthogonal 
to the main propagation direction ‘smooth out’ over time (Alert et al., 2022; Bhattacharjee 
et  al., 2022). In particular, cells at outward-bulging parts of the front are exposed to more 
nutrient, which diminishes their ability to respond to the nutrient gradient via chemotaxis and 
thus slows them down. As a result, the migrating front eventually smooths to a flat shape whose 
subsequent dynamics can then be described using just one spatial dimension, just as in our 
treatment here. However, we expect that this behavior could be altered in interesting new ways 
when the cells can additionally produce and sense autoinducer and thereby transition to the 
biofilm state, as is the case here. In this case, we speculate that because cells at outward-bulging 
parts of the front are exposed to more nutrients and have a weaker chemotactic response, 
autoinducer production and accumulation will be more rapid relative to cellular dispersal. That 
is, at these parts of the front, ‍τa‍ and ‍τc‍ will be shorter and longer, respectively, causing the 
dispersal parameter ‍J̃ ‍ to be larger locally. Thus, our model would predict biofilm formation 
to occur first at these parts of the front, potentially also influencing subsequent dispersal and 
biofilm formation at other locations along the front. Therefore, while our conclusions here could 
be the same locally at different parts of the front, the global behavior of the population could be 
different—potentially giving rise to e.g., spatially-heterogeneous biofilm formation.

2.	 As an illustrative example, our model considers the case in which cells produce a single autoin-
ducer; however, some quorum sensing systems utilize multiple autoinducers (Miller and Bassler, 
2001; Miller et al., 2002; Pesci et al., 1997), which could be described using additional field 
variables and equations similar to Equation 4. Moreover, while we take the nutrient to be the 
sole chemoattractant, in some cases, autoinducers can also act as chemoattractants (Laganenka 
et al., 2016), which could also be described in our framework by e.g., introducing autoinducer-
dependent chemotaxis in the drift velocity in Equation 1.

3.	 Our model considers positive quorum sensing control in which planktonic cells transition to the 
biofilm state in a step-like fashion when the local autoinducer concentration exceeds a threshold 

be described by the relation ‍D̃∗/D̃ + J̃ ∗/J̃ ∼ 1‍, as shown by the black line; this relation combines the transition between the two states that occurs at 
both ‍D̃∗ ∼ 1‍ and ‍J̃ ∗ ∼ 1‍. Away from this boundary, all simulations for the same ‍D̃‍ and ‍J̃ ‍ collapse to have the same biofilm fraction ‍f ‍, as shown by 
the points in (B) and examples (i)–(iii) and (v) in (C)—confirming the universality of our parameterization. Near the boundary, we observe some slight 
differences between simulations, as shown in (B) and examples (iv) and (vi) in (C). The values of the simulation parameters for the examples in (C) are 
given in Source Data file 1. The data in (A–C) correspond to a fixed value of the third dimensionless parameter ‍S̃ = 50‍, which describes the case of 
biofilm cells that produce autoinducer rapidly; repeating these simulations for the opposite case of slow autoinducer production by biofilm cells 
(‍S̃ = 1/50‍) yields the state diagram shown in (D), but for 14,351 simulation runs; again, (E) shows the standard deviation of the corresponding values 
of ‍f ‍. As shown by (D–E), while the transition between the two states (black line) is unaffected by the change in ‍S̃ ‍, the transition to complete biofilm 
formation is more gradual. Together, the three parameters ‍D̃‍, ‍J̃ ‍, and ‍S̃ ‍ provide a full description of the onset and extent of biofilm formation across 
vastly different conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. 

Source data 2. 

Source data 3. 

Figure supplement 1. In the case of ‘protected’ nutrient-independent autoinducer production, the transition from planktonic to biofilm states occurs 
at, ‍J̃ ∼ 1‍ independent of ‍D̃‍.

Figure supplement 1—source data 1. 

Figure supplement 2. Simulation results are not appreciably influenced by our choice of discretization.

Figure supplement 2—source data 1. 

Figure 4 continued

https://doi.org/10.7554/eLife.76380
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value. That is, when planktonic cells encounter sufficiently concentrated autoinducer, the diffu-
sivity and chemotactic coefficient transition in a step-like fashion from the constant values ‍D1‍ 
and ‍χ1‍, respectively, to zero after the time duration ‍τ ‍, for simplicity. In real systems, the change 
in cellular motility may not be as temporally abrupt. Future work could address a more gradual 
loss of motility in our theoretical framework by, for example, considering a cellular diffusivity 
and chemotactic coefficient that gradually transition from their planktonic values to zero over a 
non-zero time scale. Given that the same cells would be transitioning from the motile planktonic 
to immotile biofilm state—but in this case with the introduction of a time-varying diffusivity and 
chemotactic coefficient—we expect that the long-time biofilm fraction ‍f ‍ will be similar, and 
only the spatial profile of the biofilm population may be altered. Hence, we expect that our 
main findings summarized in Figure 4 will be unaffected by such a change. Indeed, performing 
the same representative simulation shown in Figure 1C, but with both motility parameters ‍D1‍ 
and ‍χ1‍ smoothly transitioning to zero in time, shows nearly identical results (Figure 1—figure 
supplement 1)—confirming our expectation that the temporal nature of the arrest in motility 
does not appreciably influence our model results and conclusions.

4.	 While we take the transition to the biofilm state as being irreversible, this is often not the case 
(Barraud et al., 2006; Kaplan, 2010; Abdel-Aziz, 2014). Longer-time transitions back to the 
planktonic state could be described using additional terms similar to the last terms of Equations 
1; 2, but with the opposite sign. Similar modifications could be made to describe other species 
of bacteria (e.g., Vibrio cholerae) that utilize the opposite case of negative quorum sensing 
control, in which biofilm cells instead transition to the planktonic state when the autoinducer 
accumulates above a threshold value (Hammer and Bassler, 2003; Bridges and Bassler, 2019).

5.	 Biofilms are often formed by multiple different microbial species, whereas our model describes 
biofilm formation by a single species, for simplicity. Nevertheless, we expect that our theoret-
ical framework can be extended by following reasoning similar to that described in this paper, 
but with the introduction of additional equations and variables in the governing Equations 1–4 
to describe the distinct cell and chemical types, as appropriate. For example, if the different 
species i consume and respond to distinct nutrients ‍ci‍, and secrete and respond to distinct 
autoinducers ‍ai‍, each species could be described in isolation using our same governing Equa-
tions 1–4, but now extended to incorporate the distinct variables ‍ci‍, ‍ai‍, ‍b1,i‍, and ‍b2,i‍. Then, 
directly following our approach, each species would be described by its own dimensionless 
parameters ‍D̃i‍ and ‍J̃i‍, with ‍D̃∗/D̃i + J̃ ∗/J̃i ∼ 1‍ again specifying the threshold for biofilm forma-
tion for each. We hypothesize that the composition of the final two-species biofilm community 
would then be given by the combination of each single-species biofilm. Alternatively, in the case 
that the different species consume and respond to the same nutrient ‍c‍, and secrete and respond 
to the same autoinducer ‍a‍, our Equations 1–4 could again be extended to consider the cellular 
parameters specific to each species i. In this approach, however, biofilm formation by each of 
the species cannot be described in isolation, because they are coupled through the nutrient 
and autoinducer dynamics. Instead, the calculations of the characteristic time scales ‍τd‍, ‍τa‍, and 
‍τc‍ would need to be extended, following our approach, to now reflect contributions from all 
the different species. We hypothesize that the overall multi-species community would then be 
described by one set of governing dimensionless parameters ‍(D̃, J̃ )‍, and ‍D̃∗/D̃ + J̃ ∗/J̃ ∼ 1‍ 
would again specify a universal biophysical threshold for the onset of biofilm formation for the 
overall community—but the composition of the final multi-species biofilm that results above this 
threshold may not be uniquely specified by ‍(D̃, J̃ )‍.

6.	 Biofilm formation may be regulated by other, non-quorum sensing-based, processes not consid-
ered in our model. For example, the intracellular accumulation of secondary signaling molecules 
such as cyclic di-GMP can also regulate biofilm formation (Valentini and Filloux, 2016; Simm 
et al., 2004; Jenal et al., 2017; Römling et al., 2013; Hengge, 2009; Krasteva et al., 2010; 
Baraquet and Harwood, 2013; Trampari et al., 2015; Davis et al., 2013; Boehm et al., 2010; 
Russell et al., 2013). In some cases, this process may be controlled by quorum sensing (Waters 
et al., 2008) and thus could be described by our model, while in others, it is controlled by other 
cues such as e.g., contact with surfaces, which would need to additionally be incorporated into 
our theoretical framework.

7.	 Finally, we note that our model is deterministic—describing the cellular processes of motility, 
nutrient consumption, proliferation, and autoinducer production, availability, and sensing using 
the parameters ‍{D1,χ1, c−, c+,κ1,κ2, cchar, γ1, γ2, k1, k2,α, τ , a∗}‍, respectively. Each of these is 
taken to be single-valued in each of our simulations. However, these parameters can have a 
distribution of values arising from e.g., inherent cell-to-cell variability. Because these values 
define the governing ‍D̃‍ and ‍J̃ ‍ that specify the threshold for biofilm formation in our model, we 
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expect that variability in the parameter values would broaden the planktonic-to-biofilm tran-
sition predicted by our model. That is, we expect the transition specified by the black curve 
in Figure 4A to be smeared out, similar to what is seen in Figure 4D, though due to a funda-
mentally different reason—with biofilm formation arising in some cases at lower ‍(D̃, J̃ )‍ than 
predicted by the black curve. Indeed, similar behavior was recently observed in a distinct model 
of biofilm formation on flat surfaces (Sinclair et al., 2022). Exploring the influence of such vari-
ations by using a more probabilistic approach in our theoretical framework will thus be a useful 
direction for future research.

Materials and methods
To numerically solve the continuum model described by Equations 1–4, we follow the experimentally 
validated approach used in our previous work (Bhattacharjee et al., 2021; Amchin et al., 2022). 
Specifically, we use an Adams-Bashforth-Moulton predictor-corrector method in which the order of 
the predictor and corrector are 3 and 2, respectively. Because the predictor-corrector method requires 
past time points to inform future steps, the starting time points must be found with another method; 
we choose the Shanks starter of order 6 as described previously (Rodabaugh and Wesson, 1965; 
Shanks, 1966). For the first and second derivatives in space, we use finite difference equations with 
central difference forms in rectilinear coordinates. The temporal and spatial resolution of the simula-
tions are ‍δt = 0.1 s‍ and ‍δx = 20 µm‍, respectively; furthermore, we constrain our analysis to simulations 
for which the peak of the overall bacteria population moves slower than ‍δx/δt‍. Repeating represen-
tative simulations with different spatial and temporal resolution indicates that even finer discretiza-
tion does not appreciably alter the results (Figure  4—figure supplement 2). Thus, our choice of 
discretization is sufficiently finely-resolved such that the results in the numerical simulations are not 
appreciably influenced by discretization. Furthermore, performing the same representative simulation 
shown in Figure 1C, but with the shape of the initial inoculum changed from a Gaussian profile to a 
step function with the same maximum cellular concentration and width, shows nearly identical results 
(Figure 1—figure supplement 2)—suggesting that our results are robust to variations in this initial 
condition chosen. Further probing the mathematical structure of our biophysical model to examine 
additional influences of initial conditions and explore the possibility of oscillatory solutions, closed 
orbits, or singularities would be a fascinating direction for future work.

To connect the simulations to our previous experiments (Bhattacharjee et al., 2021), we choose 
a total extent of ‍1.75 × 104 µm‍ for the size of the entire simulated system, with no-flux conditions for 
the field variables ‍b1‍, ‍b2‍, ‍c‍, and ‍a‍ applied to both boundaries at ‍x = 0‍ and ‍1.75 × 104 µm‍. As in the 
experiments, we initialize each simulation with a starting inoculum of planktonic cells with a Gaussian 
profile defined by the maximum concentration ‍b1,0‍ at ‍x = 0‍ and a full width at half maximum of ‍100 µm‍. 
Nutrient is initially uniform at a fixed concentration ‍c0‍, and the autoinducer and biofilm concentrations 
are initially zero, throughout. Furthermore, following previous work (Amchin et al., 2022; Dell’Ar-
ciprete et al., 2018; Volfson et al., 2008; Farrell et al., 2013; Klapper and Dockery, 2002; Head, 
2013), we also incorporate jammed growth expansion of the population in which growing cells push 
outward on their neighbors when the total concentration of bacteria is large enough. In particular, 
whenever the total concentration of bacteria (planktonic and biofilm) exceeds the jamming limit of 

‍0.95 cells µm−3
‍ at a location ‍xi‍, the excess cell concentration is removed from ‍xi‍ and added to the 

neighboring location, ‍xi + δx‍, where ‍δx‍ represents the spatial resolution of the simulation, retaining 
the same ratio of planktonic to biofilm cells in the new location. We repeat this process for every loca-
tion in the simulated space for each time step.

We run each simulation for a total simulated duration of ‍tsim = 20 h‍. At this final time, we use the 

simulation data to directly compute 
‍
f ≡

´
b2dx´

b2dx+
´

b1dx‍
, the total fraction of the population in the biofilm 

state. We also compute the values of the dimensionless parameters ‍D̃‍, ‍J̃ ‍, and ‍S̃ ‍ using the equations 
presented in the main text. We note that the autoinducer production time ‍τa‍ (Equation 6) is only finite 
for ‍̃η ≡ αa∗/k1 < 1‍; when ‍̃η ≥ 1‍, the rate of autoinducer loss exceeds that of autoinducer production, 
and thus the time required to reach the threshold for biofilm formation diverges. Because both ‍D̃‍ and 
‍J̃ ‍ are defined as ‍τd/τa‍ and ‍τc/τa‍, respectively, for simulations with ‍̃η ≥ 1‍, we represent them on the 
state diagrams in Figure 4 and Figure 4—figure supplement 1 at ‍(D,J ) = (10−2, 10−3)‍, the smallest 
values shown on the diagrams. All of these simulations have ‍f = 0‍, as expected. Furthermore, to 
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ensure that ‍tsim‍ is sufficiently long, we (i) only perform simulations with ‍τa‍ and ‍τa,2‍ smaller than ‍tsim‍, 
and (ii) do not include simulations with ‍f = 0‍ but ‍τc = τsim‍, for which sufficient time has not elapsed for 
planktonic cells to chemotactically disperse.
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Appendix 1
Nondimensionalizing the governing equations
The governing equations Equations 1–4 are described by six variables: those describing the 
concentrations of planktonic bacteria (‍b1‍), biofilm bacteria (‍b2‍), nutrient (‍c‍), autoinducer molecules 
(‍a‍), as well as the one-dimensional space (‍x‍), and time (‍t‍) coordinates. Additional constants for 
our equations are highlighted in Supplementary file 1, with initial conditions ‍b1(t = 0) = b1,0‍, 
‍c(t = 0) = c0‍, and ‍x0‍ as the width of the initial planktonic inoculum. We define the dimensionless 
variables ‍b̃1 ≡ b1

B1 ‍, ‍b̃2 ≡ b2
B2 ‍, ‍̃c ≡ c

C ‍, ‍̃a ≡ a
A‍, ‍̃x ≡ x

X ‍, and ‍̃t ≡
t
T ‍, where the tilde ‍(̃)‍ notation indicates a 

dimensionless quantity and the dimensional quantities ‍B1‍, ‍B2‍, ‍C‍, ‍A‍, ‍X ‍, and ‍T ‍ are not specified a 
priori. Thus, in nondimensional form, Equations 1–4 can be represented as:

	﻿‍

Planktonic : ∂b̃1
∂ t̃

= D1(
X 2/T

) ∇̃2b̃1 − χ1(
X 2/T

) ∇̃ ·
(

b̃1∇̃ log
(

1+c̃/̃c−
1+c̃/̃c+

))

+ b̃1(γ1T)g(c̃) − b̃1(τ−1T)H
(
ã − a∗/A

)
‍�

(S1)

	﻿‍
Biofilm : ∂b̃2

∂ t̃
= (γ2T)b̃2g(c̃) + (B1/B2)(τ−1T)b̃1H

(
ã − a∗/A

)
‍�

(S2)

	﻿‍
Nutrient : ∂c̃

∂ t̃
= Dc(

X 2/T
) ∇̃2c̃ −

(
(B1/C)κ1Tb̃1 + (B2/C)κ2Tb̃2

)
g(c̃)

‍�
(S3)

	﻿‍ X 2/D1,X 2/chi1,X 2/Dc,X 2/Daγ
−1
1 , γ−1

2 , τ , co
b1, 0k1

, co
b1, 0k2

, a∗
b1, 0k1

, a∗
b1, 0k2

,⋋−1, (αβ1,0)−1
‍� (S4)

where ‍g(c̃) ≡ c̃
c̃+c̃char ‍. Given that the characteristic autoinducer concentration ‍a∗‍ arises in the argument 

of the Heaviside step function in Equations S1 and S2, we choose ‍A = a∗‍. Moreover, given that the 
planktonic cells have a characteristic concentration ‍b1,0‍ defined by the initial inoculum, we choose 

‍B1 = b1,0‍. The fraction of the population in the biofilm state is defined as ‍f = b2/
(
b2 + b1

)
‍; thus, to 

ensure that ‍̃f = f ‍ for simplicity, we also choose ‍B2 = B1 = b1,0‍. Finally, given that the nutrient has a 
characteristic concentration c0 defined by the initial saturation, we choose ‍C = c0‍. With these choices 
of characteristic quantities, multiple length and time scales emerge as possible choices for ‍X ‍ and ‍T ‍, 
respectively:

Length scale:‍
√

TD1,
√

TDa,
√

TDc,
√

TDa ‍
 

  Time scale:

‍

X 2/D1,X 2/chi1,X 2/Dc,X 2/Da, γ−1
1 , γ−1

2 , τ ,
co

b1, 0k1
, co

b1, 0k2
, a∗

b1, 0k1
, a∗

b1, 0k2
,⋋−1, (αβ1,0)−1

‍
 

  Each such choice will lead to the emergence of many different dimensionless groups characterizing 
this problem. Nevertheless, all these different groupings are accounted for in the dimensionless 
parameters ‍D̃‍, ‍J̃ ‍, and ‍S̃ ‍ described in the main text, with the exception of quantities involving 
the nutrient diffusivity ‍Dc‍, planktonic-to-biofilm transition rate ‍τ−1‍, and the natural autoinducer 
degradation rate ‍λ‍, which have corresponding time scales that are much smaller than the other time 
scales of the systems considered here and are neglected from our analysis for simplicity.

https://doi.org/10.7554/eLife.76380
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Appendix 2
Derivation of the dimensionless parameters ‍̃D‍ and ‍̃S‍
We first estimate the time ‍τd‍ taken for cells to deplete available nutrient through consumption. To do 
so, for simplicity, we consider a population of planktonic cells exponentially growing at the maximal 
rate ‍γ1‍, uniformly distributed in a well-mixed and fixed domain (i.e., neglecting motility-mediated 
spreading), and consuming nutrient at the maximal rate ‍κ1‍. Thus, ‍

dc
dt = −κ1b1,0etγ1

‍; integrating this 
equation from ‍t = 0‍ (with ‍c = c0‍) to ‍t = τd‍ (with ‍c = 0‍) yields Equation 5 of the main text.

We use a similar approach to estimate the time ‍τa‍ taken for produced autoinducer to reach the 
threshold for biofilm formation ‍a∗‍. In particular, we consider the same population of planktonic cells 
secreting autoinducer at the maximal rate ‍k1‍. We neglect natural degradation of autoinducer, given 
that the degradation rate is relatively small compared to binding to the cell surface receptors with 
a second-order rate constant ‍α‍, that is, ‍λ ≪ αb0‍. The rate of autoinducer production and loss are 
then given by ‍b1,0etγ1 × k1‍ and ‍b1,0etγ1 × αa‍, respectively, ultimately yielding ‍

da
dt = b1,0etγ1 (k1 − αa)‍. 

Integrating this equation from ‍t = 0‍ (with ‍a = 0‍) to ‍t = τa‍ (with ‍a = a∗‍) then yields Equation 6 of the 
main text. Notably, this analytical solution for the time scale ‍τa‍ is only defined for ‍̃η ≡ αa∗/k1 < 1‍; 
when ‍̃η ≥ 1‍, the rate of autoinducer loss exceeds that of autoinducer production and secretion, and 
thus the time required to reach the threshold for biofilm formation diverges. Finally, the ratio of ‍τd‍ 
and ‍τa‍ thus derived yields the nutrient availability parameter ‍D̃‍ as described in the main text.

Thus far, we have only considered nutrient consumption by planktonic bacteria. However, cellular 
proliferation, autoinducer production, and nutrient consumption can also occur for cells after they 
have transitioned to the biofilm state, causing biofilm-produced autoinducer to also drive surrounding 
planktonic cells to transition to the biofilm state. Hence, we repeat the same calculations for ‍τa‍ and ‍τd‍ 
as described above, but now for a population of cells in the biofilm state (still with the characteristic 
concentration ‍b1,0‍ defined in our model), exponentially growing at the maximal rate ‍γ2‍ and consuming 
nutrient at the maximal rate ‍κ2‍. In this case, ‍

dc
dt = −κ2b1,0etγ2

‍, and integrating this equation from ‍t = 0‍ 
(with ‍c = c0‍) to ‍t = τd,2‍ (with ‍c = 0‍) yields ‍τd,2 = γ−1

2 ln(1 + β̃2,0)‍, where ‍β̃2,0 ≡ γ2/
(
b1,0κ2/c0

)
‍ describes 

the yield of new biofilm cells produced as the population consumes nutrient. For the calculation of 
autoinducer production, we adopt a similar approach as that described above to calculate ‍τa‍, but 
now assuming that the biofilm surface receptors are saturated (i.e., neglecting autoinducer loss). As 
a result, ‍

da
dt = b1,0k2etγ2

‍. Integrating this equation from ‍t = 0‍ (with ‍a = 0‍) to ‍t = τa,2‍ (with ‍a = a∗‍) finally 

yields 
‍
τa,2 = γ−1

2 ln
(

1 + θ̃2,0

)
‍
, where ‍θ̃2,0 ≡ γ2

b1,0k2/a∗ ‍. The ratio of ‍τd,2‍ and ‍τa,2‍ thus derived then yields 

the parameter ‍S̃ ‍ as described in the main text.

https://doi.org/10.7554/eLife.76380

	A biophysical threshold for biofilm formation
	Editor's evaluation
	Introduction
	Results
	Development of the governing equations
	Representative numerical simulations
	Availability of nutrient for autoinducer production
	Competition between motility-mediated dispersal and autoinducer accumulation
	A universal biophysical threshold for biofilm formation

	Discussion
	Possible extensions of our work

	Materials and methods
	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	﻿Appendix 1﻿
	Nondimensionalizing the governing equations

	﻿Appendix 2﻿
	Derivation of the dimensionless parameters ﻿‍￼‍﻿ and ﻿‍￼‍﻿



