Proteostasis is differentially modulated by inhibition of translation initiation or elongation

  1. Khalyd J Clay
  2. Yongzhi Yang
  3. Christina Clark
  4. Michael Petrascheck  Is a corresponding author
  1. Scripps Research Institute, United States

Abstract

Recent work has revealed an increasingly important role for mRNA translation in maintaining proteostasis. Here, we use chemical inhibitors targeting discreet steps of translation to compare how lowering the concentration of all or only translation initiation-dependent proteins rescues Caenorhabditis elegans from proteotoxic stress. We systematically challenge proteostasis and show that pharmacologically inhibiting translation initiation or elongation elicits a distinct protective profile. Inhibiting elongation protects from heat and proteasome dysfunction independently from HSF-1 but does not protect from age-associated protein aggregation. Conversely, inhibition of initiation protects from heat and age-associated protein aggregation and increases lifespan, dependent on hsf-1, but does not protect from proteotoxicity caused by proteasome dysfunction. Surprisingly, we find that the ability of the translation initiation machinery to control the concentration of newly synthesized proteins depends on HSF-1. Inhibition of translation initiation in wild-type animals reduces the concentration of newly synthesized proteins but increases it in hsf-1 mutants. Our findings suggest that the HSF-1 pathway is not only a downstream target of translation but also directly cooperates with the translation initiation machinery to control the concentration of newly synthesized proteins to restore proteostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Khalyd J Clay

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    Khalyd J Clay, is a scientific founder and advisor to Cyclone Therapeutics, Inc., a biotech company developing therapeutics targeting translation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1381-5295
  2. Yongzhi Yang

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9713-0009
  3. Christina Clark

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Michael Petrascheck

    Department of Molecular Medicine, Scripps Research Institute, La Jolla, United States
    For correspondence
    pscheck@scripps.edu
    Competing interests
    Michael Petrascheck, is a scientific founder and advisor to Cyclone Therapeutics, Inc., a biotech company developing therapeutics targeting translation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1010-145X

Funding

National Institutes of Health (R21NS107951)

  • Michael Petrascheck

National Institute on Aging (R01AG067331)

  • Michael Petrascheck

The Glenn Foundation

  • Michael Petrascheck

Dorris Neuroscience Scholar Fellowship

  • Khalyd J Clay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Clay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,494
    views
  • 281
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Khalyd J Clay
  2. Yongzhi Yang
  3. Christina Clark
  4. Michael Petrascheck
(2023)
Proteostasis is differentially modulated by inhibition of translation initiation or elongation
eLife 12:e76465.
https://doi.org/10.7554/eLife.76465

Share this article

https://doi.org/10.7554/eLife.76465

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.