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Abstract Elucidating the design principles of regulatory networks driving cellular decision- 
making has fundamental implications in mapping and eventually controlling cell- fate decisions. 
Despite being complex, these regulatory networks often only give rise to a few phenotypes. 
Previously, we identified two ‘teams’ of nodes in a small cell lung cancer regulatory network that 
constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained 
from network simulations (Chauhan et al., 2021). However, it remained elusive whether these ‘teams’ 
exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate 
that five different networks of varying sizes governing epithelial–mesenchymal plasticity comprised 
of two ‘teams’ of players – one comprised of canonical drivers of epithelial phenotype and the other 
containing the mesenchymal inducers. These ‘teams’ are specific to the topology of these regulatory 
networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal 
phenotypes being more frequent and dynamically robust to perturbations, relative to the interme-
diary/hybrid epithelial/mesenchymal ones. Our analysis reveals that network topology alone can 
contain information about corresponding phenotypic distributions, thus obviating the need to simu-
late them. We propose ‘teams’ of nodes as a network design principle that can drive cell- fate canali-
zation in diverse decision- making processes.

Editor's evaluation
This important article identifies topological metrics in gene regulatory networks that potentially 
predict the kinds of phenotypic steady states that the network allows. In particular, for epitheli-
al–mesenchymal plasticity, the authors show compellingly that the relevant gene regulatory networks 
are structured as ‘teams’ that may be ‘strong,’ yielding stable phenotypes, or ‘weak,’ yielding 
unstable phenotypes prone to plasticity. The work would be of interest to researchers interested in 
systems biology and the nonlinear dynamics of biological systems, as well as biologists interested in 
gene regulatory networks and their (mis)functioning in cancer cells.

Introduction
Understanding the principles of cellular decision- making is a fundamental question in cellular and devel-
opmental biology, with implications for mapping and eventually controlling cellular reprogramming 
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and disease progression (Balázsi et  al., 2011; Guantes and Poyatos, 2008; Prochazka et  al., 
2017). These decisions are often orchestrated through the emergent dynamics of complex regula-
tory networks operating at multiple levels, including signaling, protein–protein interaction, and tran-
scriptional activation/inhibition. Nonlinear interactions in various such networks can enable emergent 
dynamics such as multistability and hysteresis (cellular memory) to facilitate adaptation to multiple 
stresses (Agozzino et al., 2020; Ozbudak et al., 2004). A better understanding of the underlying 
dynamics can also accelerate the design of synthetic circuits to achieve specific objectives. Thus, 
elucidating how specific regulatory networks lead to different emergent dynamics is instrumental for 
understanding how cells decide among multiple possible fates/phenotypes to choose from and how 
such transitions can be controlled for directing cellular reprogramming to achieve specific desired 
scenarios, such as ‘differentiation therapy’ (Enane et al., 2018) for cancers and/or reprogramming 
pancreatic cells to make insulin (McKimpson and Accili, 2019). Questions related to the transition 
of cells from one state/phenotype to another reversibly or irreversibly during cellular differentiation 
have been investigated for almost five decades (Newman, 2020). We now know that many cellular 
decisions are often mediated by ‘network motifs’ such as a toggle switch – a mutually inhibitory feed-
back loop between the two ‘master regulators’ of sibling cell fates (Zhou and Huang, 2011). Such 
loops often drive two diverging decision- making trajectories in Waddington’s landscape, representing 
different possible ‘terminal’ states to which a cell can converge. Thus, a ‘toggle switch’ between two 
nodes, A and B, leads to two states – (high A, low B) and (low A, high B) – each representing a different 
phenotype. However, decision- making may involve much larger regulatory networks, often involving 
multiple feedback loops. For instance, the global regulatory network in Escherichia coli has approxi-
mately 150 transcription factors (TFs) (Fang et al., 2017). Similarly, networks driving epithelial–mes-
enchymal plasticity (EMP) in cancer cells can have over 50 players (Font- Clos et al., 2018). Despite 
their complexity, many of these networks robustly lead to only a limited number of phenotypes, a 
process termed ‘canalization’ (Gates et al., 2021). This observation raises the question of whether 
these networks constitute topological signatures capable of constraining the corresponding possible 
phenotypic repertoire. We recently investigated the dynamics of a complex regulatory network (33 
nodes, 357 edges) that led to only four phenotypes in small cell lung cancer (SCLC) (Chauhan et al., 
2021). We demonstrated that this network consisted of two ‘teams’ of nodes such that members in 
a team activated each other directly/indirectly, but members across teams inhibited each other. This 
topological feature reduced this complex network effectively into a ‘toggle switch’ between teams, 
thus leading to a small number of phenotypes. However, many questions remain unanswered: (a) 
Can the presence of ‘teams’ be witnessed in other regulatory networks? If yes, do they constrain the 
phenotypic space in those networks too? (b) Do these ‘teams’ also make these biological networks/
phenotypes robust to various perturbations? (c) Can the team strength be used to predict the 
frequency of different phenotypes without performing dynamic simulations? Here, we investigate the 
dynamics and topological hallmarks of five networks of different sizes, all implicated in regulating EMP 
in diverse biological contexts. First, we established that the topology of these networks could give 
rise to a largely bimodal phenotypic stability landscape. Second, by analyzing their network topology, 
we found that all these networks consist of ‘teams’ of nodes; one of these ‘teams’ comprised drivers/
stabilizers of mesenchymal phenotype, while the other one has those for the epithelial phenotype. 
This ‘team’ structure was largely lost upon disrupting the network topology by shuffling/randomizing 
edges. Third, our discrete parameter- independent and continuous parameter- agnostic simulations 
show that these ‘teams’ are integral to stabilizing epithelial and mesenchymal phenotypes, as demon-
strated via various stability metrics. Thus, the hybrid epithelial/mesenchymal phenotypes were less 
frequent and less resilient to dynamic perturbations. Overall, we show that the strength of ‘teams’ in a 
regulatory network directly shapes the emergent largely bimodal phenotypic landscape, thus offering 
a network topology- based metric to identify phenotypic distributions without performing any simu-
lations. The topological signatures and metrics identified here can also be applied to other cellular 
decision- making instances to unravel their underlying fundamental dynamic hallmarks.

https://doi.org/10.7554/eLife.76535
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Results
EMP network topology can lead to a largely bimodal phenotypic 
stability landscape
EMP is a developmental program that enables cells to attain phenotypes in a spectrum ranging 
from epithelial (E) to hybrid (E/M) to mesenchymal (M) phenotypes. While identifying the number of 
possible hybrid phenotypes is an ongoing research area (Brown et al., 2022; Cook and Vanderhyden, 
2020; Karacosta et al., 2019), their stability characteristics have been well- studied. The epithelial and 
mesenchymal phenotypes at the end of the spectrum (referred to as terminal phenotypes here) have 
been observed to be more ‘stable’ than the hybrid phenotypes in various contexts. These stability 
differences lead to an uneven, bimodal phenotypic stability ‘landscape’, that is, a highly stable group 
of terminal phenotypes and a weakly stable group of hybrid phenotypes (Pastushenko et al., 2018). 
To understand the role of network topology in the emergence of such a bimodal landscape, we chose 

Figure 1. Epithelial–mesenchymal plasticity (EMP) network topology can result in a bimodal phenotypic stability landscape. (A) EMP network of size 22N 
82E, where N stands for number of nodes and E stands for number of edges. (B) Demonstration of network randomization. (C) (i) Distribution of number 
of steady states in random networks of size 22N 82E. The wild- type EMP network of the same size is represented using the red line. (ii) Percentile 
of the WT network in the distribution of the number of steady states in random networks. (D) Heatmap depicting the steady states of the 22N 82E 
network. Each column represents a steady state. Each row represents a node. White cells indicate low- expressing/inactive node (–1) in a state and black 
cells indicate high expression/active (1). The width of each column is proportional to the frequency of the given steady state. (E) Comparison of the 
cumulative frequency of the terminal (epithelial and mesenchymal) states vs. that of the hybrid states for all five EMP networks.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. EMP networks and their steady state pattems.

Figure supplement 2. Heatmaps depicting the steady states of the epithelial–mesenchymal plasticity (EMP) networks.

https://doi.org/10.7554/eLife.76535
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to investigate a collection of five EMP networks that have been shown to be previously investigated 
via different simulation formalisms (Silveira and Mombach, 2020; Silveira et al., 2020; Huang et al., 
2017; Tripathi et al., 2020a; Font- Clos et al., 2018; Figure 1A, Figure 1—figure supplement 1A). 
We chose these networks to range over various sizes and densities (18N 33E to 57N 113E, where N 
is the number of nodes and E is the number of edges in the network). Each of these networks depicts 
the regulation of EMP at the transcriptional/post- transcriptional level (compiled under different 
biological/experimental contexts). Therefore, each node is either a TF or a micro- RNA, and each 
edge represents transcriptional or post- transcriptional activation or inhibition. We classify these nodes 
into two categories based on their topological configuration: ‘peripheral’ nodes and ‘core’ nodes. 
The peripheral nodes are the ones that either have no incoming edges (i.e., input nodes/signals) or 
no outgoing edges (i.e., output nodes). Based on their biochemical nature, we further classify the 
core nodes as epithelial nodes, which are the drivers of the epithelial phenotype, and mesenchymal 
nodes, known to be the drivers of the mesenchymal phenotype. In the 22N 82E network shown in 
Figure 1A, the mesenchymal nodes are TWIST1/2, GSC, FOXC2, ZEB1/2, SNAI1/2, and TGFb; the 
epithelial nodes are miR- 200a, miR- 200b, miR- 200c, miR- 34a, miR- 141, and miR- 101; and the periph-
eral nodes are KLF8, TCF3, VIM, CDH1, miR205, miR30c, and miR9 (Tripathi et al., 2020b; Deshmukh 
et al., 2021; Brabletz and Brabletz, 2010). Similar classification of nodes has been implemented 
for other networks (Figure 1—figure supplement 1A; Silveira and Mombach, 2020; Silveira et al., 
2020; Huang et al., 2017; Tripathi et al., 2020a; Font- Clos et al., 2018). The interactions between 
these nodes are referred to as edges and are either activating or inhibiting in nature. We simulate 
the dynamics of these networks using a threshold- based, parameter- independent, Boolean formalism 
(Font- Clos et al., 2018), where each node can be either active (1) or inactive (–1). We define the state 
of a node as an array of –1s and 1s, where each element of the array depicts the activity of a node. The 
activity of each node is affected by the activity of all the incoming edges based on a majority rule, that 
is, if there are more inhibiting edges active, the node gets inactivated and vice versa (see ‘Methods’). 
We update the state of the network using an asynchronous formalism where only one node (randomly 
chosen) is updated at a time step. This formalism captures the inherent stochasticity in the emergent 
dynamics of these networks. We simulated these networks until the system reaches a steady state, 
that is, the state of the network does not change with time.

Despite the size and complexity of these networks, we noticed a relatively smaller number of 
states, indicating canalization (36 steady states for the 22N 82E network, out of the 222 possible states, 
Figure 1—figure supplement 1B). To check whether this property depends on the network topology, 
we generated 500 random (hypothetical) networks by randomly selecting and swapping different 
pairs of edges in the network. This ensured that the in and out degrees of all nodes remain the same, 
but the way they are connected (network topology) changes (Figure 1B, ‘Methods’). The wild- type 
(WT) EMP networks showed a much smaller number of steady states than those shown by most 
random networks (Figure 1C), suggesting that the topology of the EMP networks plays a significant 
role in limiting the phenotypic repertoire.

We represent the steady states of WT EMP networks in a heatmap, where each row corresponds 
to one node in the network, and each column corresponds to a steady state (Figure 1D, Figure 1—
figure supplement 2). As expected, we see three categories of states: epithelial states that have all 
epithelial nodes (highlighted by a blue border) as active (dark cells) and all mesenchymal nodes (high-
lighted by a red border) as inactive (white cells); mesenchymal states that have all mesenchymal nodes 
as active and epithelial nodes as inactive; and hybrid states that have one of the possible combina-
tions of epithelial and mesenchymal nodes as active. The steady- state frequency (SSF) is calculated 
as the fraction of initial conditions that converge to the given steady state. We represent the SSF for 
each steady state as the width of the corresponding column. The epithelial and mesenchymal states 
account for >70% of the SSF in four of the five EMP networks (Figure 1E). These results indicate the 
emergence of the experimentally observed uneven (bimodal) stability landscape (Pastushenko et al., 
2018) that can be explained from the network topology alone, without any specific kinetic parameters.

Bimodality of the phenotypic landscape is weakened upon randomizing 
the network topology
SSF, the fraction of the possible states that converge to a given steady state, is a measure of the 
stability of a steady state. SSF shows a bimodal distribution in WT EMP networks (Figure 2A), following 

https://doi.org/10.7554/eLife.76535
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Figure 2. Dynamic traits of phenotypes observed from wild- type (WT) epithelial–mesenchymal plasticity (EMP) networks and their randomized 
counterparts. (A) Distribution of steady- state frequency (SSF) of the steady states obtained for the five EMP networks, in log10 scale. The corresponding 
Sarle’s bimodality coefficients have been reported. A value greater than 0.55 indicates bimodality. (B) Depiction of coherence calculation. The blue balls 
indicate unperturbed steady state (P1, say). The green and dark blue balls represent the perturbations given to the steady state. The red balls represent 
a different steady state that the system reached after the perturbation. The fraction of perturbations that reverted to the original state P1 (3 out of 7 
balls) is calculated as coherence. (C) Similar to (A), but for coherence of the steady states of WT EMP networks. (D) Scatterplot between coherence 
and SSF of WT EMP networks. Spearman’s correlation coefficient for each network has been reported. *p<0.05. (E) Comparison of the distribution of 
coherence of the steady states of WT EMP network (22N 82E), with the distribution of maximum coherence values and minimum coherence values of the 
corresponding random networks. (F) Similar to (E), but for SSF. (G) Distribution of the SSF bimodality coefficients for random networks of size 22N 82E. 
The red vertical line represents the WT network. (H) Percentile of the WT networks in the distribution of multiple stability metrics obtained from random 
networks.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Coherence and steady- state frequencies for EMP networks.

https://doi.org/10.7554/eLife.76535
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the observation that terminal phenotypes have much higher SSF than hybrid phenotypes (Figure 1D 
and E, Figure 1—figure supplement 2). SSF measures the global stability of a given steady state/
phenotype in the state space. Specifically, SSF is an estimate of the fraction of the state space that 
can converge to the given steady state. Similarly, the local stability of the steady state can be esti-
mated by measuring the fraction of neighboring states in the state- space that converges to the steady 
state. We hence used a metric – ‘coherence’ - based on the idea of local stability proposed previ-
ously (Willadsen and Wiles, 2007). The calculation of coherence follows the perturbation procedure 
depicted in Figure 2B. For each steady state, we perturb the activity of one node at a time (active 
nodes flipped to be inactive and vice versa) and simulate the dynamics till a steady state is reached. 
We then measure the fraction of times the original steady state is regained upon such perturbations 
and label it as the coherence of the corresponding steady state (‘Methods’).

Next, we quantified the SSF and coherence for all steady states from the randomized (hypothetical) 
networks and compared the stability of the phenotypes emerging from WT and random networks. We 
calculated the minimum, maximum, and mean coherence and SSF across all steady states for a given 
random network and plotted the distribution of these values (Figure 2E and F). When comparing with 
the corresponding values observed for the WT networks, we found that the maximum coherence seen 
for the 22N 82E WT network was more than that seen for most of the corresponding random networks 
(compare columns 2 and 3 in Figure 2E); consistent results were obtained for other WT networks 
(Figure 2—figure supplement 1A).

Like SSF, coherence of the steady states of EMP networks also shows a bimodal distribution, 
endorsing the bimodality in the stability landscape of EMP phenotypes (Figure  2C). We further 
observed a strong positive correlation between coherence and SSF for all five WT EMP networks 
(Figure 2D). In WT networks, we expect terminal phenotypes to have a higher coherence based on 
the strong positive correlation between SSF and coherence (Figure 2D). Conversely, we expect hybrid 
phenotypes to have a reduced coherence. As a metric, coherence provides the following advantages 
over SSF: (1) coherence is a perturbation- based measure and therefore provides a dynamic perspec-
tive of the stability of the steady states. In EMP, coherence can be visualized as the effect of a weak 
EMT (Epithelial to Mesenchymal Transition)/MET (Mesenchymal to Epithelial Transition) -inducing 
signal. (2) Coherence being a local stability measure is less dependent on the other steady states of 
the network. Therefore, the absolute coherence values can be compared across networks, unlike SSF 
(compare the range of y- axis values in Figure 2A for SSF vs. Figure 2C for coherence).

When comparing the patterns for minimum coherence, we observed similar trends for the 22N 
82E network (Figure 2E, columns 1 and 2) but not for 3 of the four remaining WT EMP networks 
(Figure 2—figure supplement 1A). Maximum and minimum SSF behave similarly to the coherence, 
that is, the WT maximum SSF is higher than most random networks. In contrast, minimum SSF is not 
consistent (Figure 2F, Figure 2—figure supplement 1B, columns 1–3). Furthermore, we compared 
the bimodality coefficient of SSF of the WT 22N 82E network against the distribution obtained from 
random networks and found it to be higher than most random networks (Figure 2G). The trend holds 
for other EMP networks and the bimodality coefficient of coherence (Figure 2—figure supplement 
1C and D). To quantify these trends better, we obtained percentiles for the WT values of all eight 
(four for coherence, four for SSF) of these metrics in the corresponding random network distributions 
(Figure 2H). The coherence bimodality coefficient of all five WT EMP networks is greater than 80% 
of the corresponding random networks. Similarly, we find the SSF bimodality coefficient to be higher 
than 75% of the random networks in all cases except the networks of size 26N 100E. Furthermore, we 
find that the maximum coherence and maximum SSF for all five WT EMP networks are higher than at 
least 75% of the corresponding random networks. Such a trend was not consistently seen for minimum 
and mean coherence and SSF values (Figure 2H). In WT EMP networks, the maximum coherence and 
SSF represent the terminal phenotypes, and minimum coherence and SSF represent the hybrid pheno-
types. Hence, these results suggest that the WT networks show a more robust control in maintaining 
the high stability of terminal phenotypes but exhibit a weaker control over the stability of hybrid 
phenotypes. Hence, we hypothesize that the bimodal landscape observed in WT EMP networks is an 
emergent feature of their network topology.

We then investigated what factors determine the emergence of the bimodal landscape, where 
terminal phenotypes show higher relative stability (SSF and coherence) than hybrid phenotypes. One 
possible way to stabilize a state is to have a strong agreement between the state configuration and 

https://doi.org/10.7554/eLife.76535
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the network topology. For instance, if A activates B in a network, and for a given state, if A and B have 
opposite values (e.g., –1,1), there is a disagreement between the state configuration and the partic-
ular edge. Such disagreement is referred to as the edge of being frustrated. For a given network and 
a state, we measure the fraction of such frustrated edges and call this fraction the frustration of the 
state (Figure 3A, Tripathi et al., 2020a). The higher the frustration, the lesser the chance of a state 
being stable (see Appendix 1, Appendix text).

We quantified the frustration for each state for each EMP network and observed a strong negative 
correlation of frustration with both SSF and coherence (Figure 3B and C). We then calculated the 
pairwise correlation for the three metrics in random networks. While the correlation between SSF and 
coherence was consistently positive (Figure 3—figure supplement 1A), the correlation of frustra-
tion with SSF and coherence was positive in some random networks (Figure 3—figure supplement 
1B and C, 18N, and 20N networks). These results suggest that, while frustration, a measure of the 
support that the network topology provides to a given state, can explain the stability of a state in 
terms of SSF and coherence in WT networks, the same may not be accurate for random networks.

Figure 3. Frustration as a stability metric for wild- type (WT) and random networks. (A) Depiction of calculation of frustration. represents the interaction 
from ith node to jth node, si and sj represent the activity of the ith node and the jth node for a given state  S . (B) Scatterplot between frustration and 
(i) steady- state frequency (SSF), (ii) coherence for WT epithelial–mesenchymal plasticity (EMP) networks. Spearman’s correlation coefficient for each 
network has been reported. *p<0.05. Each dot corresponds to a steady state for the given network. (C) Comparison of the distribution of frustration 
of the steady states of WT EMP network (22N 82E), with the distribution of maximum frustration values and minimum frustration values of the 
corresponding random networks. (D) Heatmap of the percentile of WT network values in the random network value distribution for the minimum, 
maximum, and mean frustration. (E) Representation of WT steady states in a scatterplot of frustration and coherence with the color representing 
the corresponding SSF. Spearman’s correlation coefficient between the axis metrics is reported. *p<0.05. The terminal and hybrid phenotypes are 
highlighted with red rectangles.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Association among SSF, coherence and frustration across EMP networks.

https://doi.org/10.7554/eLife.76535
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Next, we compared the minimum and maximum frustration values for random networks with those 
of corresponding WT EMP networks. As noted earlier for coherence and SSF (Figure  2E and F, 
Figure 2—figure supplement 1A and B), not all metrics (maximum, minimum, mean) of frustration 
show the same trend across EMP networks. While minimum frustration of EMP networks was lower 
than that of most random networks, the maximum and mean frustration do not necessarily follow the 
same trend (Figure 3D, Figure 3—figure supplement 1D). Furthermore, the bimodality coefficient 
of frustration for WT networks is also higher than most of the random networks (Figure 3D), similar 
to that observed in SSF and coherence (Figure 2G and H, Figure 2—figure supplement 1C and D). 
Finally, having investigated three different metrics – coherence, SSF, and frustration – to measure state 
stability, we collated this information for the steady states of WT networks on a scatterplot of coher-
ence vs. frustration, with the color marked by SSF. In this plot, we can clearly visualize the bimodal 
landscape, that is, the terminal phenotypes have high SSF, high coherence, and low frustration, and 
hybrid phenotypes, on the other hand, have low SSF, low coherence, and high frustration (Figure 3F).

EMP networks contain two mutually inhibiting teams of nodes
Next, we asked what salient features of network topology for WT EMP networks may underlie their 
specific bimodal phenotypic stability landscape and the limited phenotypic repertoire. We had earlier 
observed that a large and complex network regulating phenotypic heterogeneity in SCLC gave rise 
to predominantly only four phenotypes and, consequently, a bimodal phenotypic stability landscape 
(Chauhan et al., 2021). The hallmark of the topology of the SCLC network was the presence of ‘teams’ 
of nodes mutually inhibiting each other. Furthermore, the composition of the dominant phenotypes 
perfectly coincided with the composition of the ‘teams.’ Hence, we hypothesized that these EMP 
networks consist of similar ‘teams’ of nodes and that these teams underlie their bimodal stability 
landscape.

Unlike the SCLC network, these EMP networks were highly sparse, that is, the ratio between the 
number of edges ( E ) and the number of possible edges ( N2 ) given the number of nodes ( N  ) is very 
less (5–15%) (Figure  4A). However, pairs of nodes can influence each other not only directly but 
also via indirect paths (connected edges) of length >1 that can connect them. Thus, we decided to 
use the pairwise influence among the nodes of these networks rather than just the direct interac-
tions among them to analyze the structure of these networks. This ‘influence matrix’ represents the 
effective regulation of one node by another when many different indirect paths are also counted 
(up to path length <=10) in addition to direct regulation. Each path is assigned a weight inversely 
proportional to its length while calculating the influence matrix (see the formula below Figure 4A and 
Methods section : Figure 4). To check whether the influence matrix can explain phenotypic stability, 
we calculated the ‘strength’ of each steady state corresponding to the influence matrix (Appendix 1 
‘Methods’). While in WT networks the state strength was higher for terminal phenotypes, the same 
was not true in random networks (Figure 4—figure supplement 1A–C). Furthermore, the correlation 
between state strength and stability metrics was weak in random networks as compared to that of 
WT networks (Figure 4—figure supplement 1D), suggesting that the influence matrix alone is not 
enough to explain phenotypic stability.

To investigate the relationship between team structure and stability of the phenotypes, we defined 
a metric called team strength that quantifies the strength of teams in a given network (formula below 
Figure  4B). We first identified teams in random networks via hierarchical clustering of the corre-
sponding influence matrix and calculated the corresponding team strength. We find that the WT 
EMP networks have stronger teams than most (>98%) of their randomized counterparts (Figure 4C, 
Figure 4—figure supplement 2B), indicating that the team structure is a unique topological feature 
of the WT EMP networks.

We find that the influence matrix, when hierarchically clustered, can be divided into two teams of 
core nodes (Figure 4B, Figure 4—figure supplement 2A), similar to SCLC (Chauhan et al., 2021). 
A team here is defined as a collection of nodes that influence each other positively, and members 
belonging to different teams negatively influence one another. Furthermore, the two teams in WT 
EMP networks also had distinct biochemical characteristics. In the influence matrix depicted here, 
team 1 consists of mesenchymal core nodes (blue rectangle in Figure 4B, Figure 4—figure supple-
ment 2A), and team 2 consists of core epithelial nodes (red rectangle). These teams collectively have 
a negative influence on each other. Hence, the structure of the influence matrix considering only core 

https://doi.org/10.7554/eLife.76535
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nodes resembles a toggle switch with self- activation formed by the two teams, with each team oper-
ating as a single entity. Furthermore, the composition of teams coincides with the composition of the 
terminal phenotypes (epithelial and mesenchymal phenotypes, compare Figure 1D and Figure 4B), 
leading to the hypothesis that the team structure can contribute to a bimodal EMP landscape by 
stabilizing the terminal phenotypes.

We further explored the connection between teams of nodes in the influence matrix and the pheno-
typic landscape by calculating the pairwise correlation between the steady states of all pairs of nodes 

Figure 4. Epithelial–mesenchymal plasticity (EMP) networks consist of two well- coordinated teams. (A) Adjacency matrix of the 22N 82E network. Each 
row depicts the links originating from the node (i.e., input) corresponding to the row (y- axis) and all other nodes (x- axis, outputs). The color represents 
the nature of the edge: red for activating links, blue for inhibiting links, and white for no links. The formula for the conversion of adjacency matrix 

to influence matrix is given below the panel, where  Adj  is the adjacency matrix,  Adjmax  is the adjacency matrix with all –1s replaced with 1s.  Adjl  is 

the adjacency matrix raised to the power of  l . The division 
 

Adjl
Adjlmax  

 is element- wise.  lmax  is the maximum path length considered for calculating the 
influence. (B) The influence matrix for the 22N 82E network. The signal and output nodes (peripheral) are highlighted with a gray box, the mesenchymal 
nodes (team 1) are highlighted with a blue box, and the epithelial nodes (team 2) are highlighted with a red box. The formula for team strength (Ts) 
is given below the influence matrix. T1 and T2 represent the two teams of nodes in the network (epithelial and mesenchymal nodes, respectively). 

 nKL  is the number of cells in the rectangle  TKL  (C) (i) Distribution of team strength (Ts) for random networks of size 22N 82E. The Ts value for the 
corresponding wild- type (WT) EMP network has been highlighted using the red vertical line. (ii) Percentiles corresponding to the WT team strength 
in the corresponding distribution obtained from random networks for networks of all sizes (y- axis). (D) Correlation matrix for the expression levels of 
nodes of the 22N 82E network, as obtained by the Boolean formalism. (E) Same as (D) but for RAndom CIrcuit PErturbaiton (RACIPE). (F) Scatterplot 
of the difference between the influence matrix and Boolean correlation matrix (y- axis) and the mean group strength of the network (x- axis) for random 
networks of size 22N 82E. The wild- type EMP network is highlighted in red. Spearman’s correlation coefficient is reported. *p<0.05.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Influence matrices and correlation matrices for EMP networks.

Figure supplement 2. Steady- state frequency and state strength calculations for EMP networks.

https://doi.org/10.7554/eLife.76535
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from Boolean simulations across multiple random initial conditions (‘Methods’). We performed hier-
archical clustering on the correlation matrix thus obtained. The resultant matrix bore striking visual 
similarity to the influence matrix and showed the same two teams of nodes as that seen in the corre-
sponding influence matrix (compare Figure  4D with Figure  4B; Figure  4—figure supplement 2C 
with Figure 4—figure supplement 2A). Interestingly, the simulations of the network using an ODE- 
based, parameter agnostic method called RAndom CIrcuit PErturbaiton (RACIPE) (Huang et al., 2017, 
Appendix 1 ‘Methods’) also yielded a very similar correlation matrix (Figure  4E, Figure  4—figure 
supplement 2D), suggesting that the ‘teams’ identified in influence matrix (without performing any 
dynamic simulations) are conserved in the corresponding correlation matrix (identified after simulations).

We quantified the difference between the influence matrix and Boolean correlation matrix for the 
biological network (WT case) as well as the hypothetical networks (see ‘Methods’). Intriguingly, the 
difference between the matrices was lower for the biological networks as compared to that of the 
hypothetical networks. Also, the hypothetical networks that have a relatively higher team strength 
showed a lower difference between influence and correlation matrices, with an overall negative 
correlation between the difference and the team strength (Figure 4F, Figure 4—figure supplement 
2E). These results suggest a possible causative relationship between the existence of the team struc-
ture of nodes and the emergent dynamic phenotypes of a network. Furthermore, for all networks 
taken together (WT and random), the correlation matrix and influence matrix differ by a maximum of 
2–3%, suggesting that the influence matrix can be a good predictor of the correlation matrix, irrespec-
tive of the strength of teams observed in a given network.

Figure 5. Strong teams support the bimodal epithelial–mesenchymal plasticity (EMP) landscape. (A) Heatmap depicting the Spearman’s correlation of 
Ts with stability metrics and frustration metrics for random networks of all sizes (y- axis). Insignificant correlations (p>0.05) are marked by ‘X.’ (B) Violin 
plots depicting the effect of change in Ts against the maximum stability metrics. (i) Maximum steady- state frequency (SSF), (ii) maximum coherence, and 
(iii) coherence bimodality coefficient for random networks of size 22N 82E. The p- value for one- way ANOVA is reported. (C) Scatterplot showing the 
states of top 10 and bottom 10 (based on mean group strength) random networks of size 22N 82E.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Violin plots depicting the effect of change in Team Strength (Ts) against the maximum stability metrics.

Figure supplement 2. Violin plots depicting the effect of change in team strength (Ts) against the minimum stability metrics.

https://doi.org/10.7554/eLife.76535
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Strong teams of nodes stabilize terminal phenotypes in WT EMP 
networks
Our results demonstrate that the WT EMP networks show higher maximum global (measured by SSF) 
and local (measured by coherence) stability than most of their randomized counterparts (Figure 2H), 
quantities that correspond to the terminal phenotypes in WT EMP networks. However, the stability 
of phenotypes could not robustly be explained just by considering either the interaction matrix alone 
(frustration, Figure 3—figure supplement 1B and C) or the influence matrix alone (state strength, 
Figure 4—figure supplement 1) for random networks. Additionally, random networks showed weaker 
teams than the WT EMP networks. Together, these observations strengthen our hypothesis that teams 
of nodes lead to the stable terminal phenotypes observed in WT EMP networks. To quantify the rela-
tionship between team strength and phenotypic stability, we obtained the correlation of the stability 
metrics (SSF, coherence, and frustration) against the team strength of a given network (Figure 5A). 
Across all five EMP networks and their corresponding random counterparts, Ts correlate consistently 
positively with maximum coherence and negatively correlated with minimum frustration, suggesting 
that an increase in team strength increases the stability of the most dominant state emergent from 
the network.

We then generated violin plots between the stability metrics and team strength to understand the 
effect of teams on phenotypic stability better. We found that networks with high team strength consis-
tently had high values of maximum SSF and maximum coherence. As the team strength decreases, 
the maximum stability shows a distribution ranging from high values closer to the high team strength 
networks to a significantly lower value (Figure 5Bi,ii, Figure 5—figure supplement 1A and B). The 
effect of team strength on the minimum stability metrics, however, was negligible, with no trend to 
observe in the scatterplots either (Figure 5—figure supplement 2A and B).

While maximum and minimum stability metrics correspond only to a single emergent phenotype 
of a network, the bimodality coefficient in the stability metrics can serve well in quantifying the bimo-
dality of the phenotypic stability landscape. Hence, we generated similar plots as above for bimodality 
coefficients of the stability metrics (Figure 5Biii, , Figure 5—figure supplement 1C, Figure 5—figure 
supplement 2C). Similar to the maximum stability metrics, we see a positive correlation between the 
bimodality coefficient and team strength (Figure 5A). Furthermore, at high team strength, the emer-
gent phenotypic stability landscape is strongly bimodal, whereas, at low team strength, the networks 
are not necessarily bimodal.

To better visualize the effect of bimodality coefficient, we took 10 random networks each with the 
highest and lowest team strengths, and mapped the frustration and coherence of their steady states 
(Figure 5C, Figure 5—figure supplement 1D). For networks with high Ts (red points), we clearly 
see two groups of steady states based on the relative stability (high coherence – low frustration and 
low coherence – high frustration). While such distinction of two groups of steady states is lost in 
random networks of low Ts corresponding to 22N 82E, 18N 33E, and 20N 40E, it was maintained in 
26N 100E and 57N 113E random networks. This observation strengthens the trend that high team 
strength corresponds to a bimodal landscape, while at low team strength, bimodality of the pheno-
typic stability landscape remains unpredictable. Furthermore, strong teams improve the correlation 
between stability metrics (SSF and coherence) and frustration (Figure 5—figure supplement 2D and 
E), suggesting that the relationship between network topology and state stability is strengthened as 
the strength of teams increases.

Together, these results suggest that as team strength increases the stability of the most dominant 
states increases, thereby increasing the bimodality in the phenotypic stability landscape. Additionally, 
teams increase the agreement between the compositions of steady states and the network topology. 
However, as teams weaken, the trends do not hold in any particular direction. Hence, we can conclude 
from these results that teams are sufficient to maximize the phenotypic stability and the bimodality of 
the landscape of a network but might not be necessary.

Teams’ structure imparts unique transition characteristics to hybrid 
phenotypes
Having identified that the presence of ‘teams’ of nodes that cooperate with/activate each other can 
reinforce a given steady state when a perturbation to one of the node values was made (coherence), 
we next asked whether the positive reinforcement in a network offered by ‘teams’ can be extended 

https://doi.org/10.7554/eLife.76535
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to a scenario when more than one node is perturbed. First, we took a closer look at the coherence 
metric by analyzing the coherence patterns of the steady states when each node of the network is 
perturbed one at a time (Figure 6A, Figure 6—figure supplement 1A). As expected, the terminal 
phenotypes remained unchanged (coherence = 1) when any one core node (e.g., ZEB1, miR200c, 
miR34a in Figure 6A) was perturbed, but the hybrid phenotypes had a relatively smaller coherence for 
such cases. While perturbing signal nodes (miR9, miR30c, miR205 in Figure 6A) results in a coherence 

Figure 6. Teams of nodes impart distinct dynamic properties to terminal and hybrid phenotypes. (A) Heatmap depicting the mean coherence of 
the Boolean states of 22N 82E wild- type (WT) epithelial–mesenchymal plasticity (EMP) network when each node is individually perturbed. (B) Mean 
coherence of states of 22N 82E EMP network with multiple nodes perturbed at once (Level of perturbation). (C) The extent of perturbation required 
to bring the coherence of terminal phenotypes (x- axis) and hybrid phenotypes (y- axis) below 0.5. x = y line is shown. (D) (i) Representative mean 
Hamming distance plot of an epithelial state obtained from 22N 82E WT network. Three levels of perturbation are highlighted based on regions of the 
sigmoidal plot. (ii) Distribution of the Hamming distance from the starting state in (D) (i) at different levels of perturbation, colored by the phenotype. 
(E) (i) Representative mean Hamming distance plot comparing the dynamic transition of an epithelial state from WT and that from a random network. (ii) 
Corresponding distribution of Hamming distances for the random network.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Single and multinode perturbation of WT and random EMP networks.

Figure supplement 2. Coherence of calculated values for the core nodes upon perturbing signal nodes in wild- type (WT) epithelial–mesenchymal 
plasticity (EMP) networks.

https://doi.org/10.7554/eLife.76535
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of 0 for all states, it is because signal nodes do not have any inputs and hence cannot revert upon 
perturbation. However, the configuration of core nodes does not change in terminal phenotypes in 
such cases (see Methods 4.7.1). Similarly, output nodes (CDH1, VIM, TCF3, KLF8) are always restored 
back upon perturbation without any effect on the steady state as they do not influence any other node 
in the network. Next, we perturbed multiple nodes (randomly chosen) simultaneously and calculated 
the coherence of the steady states. While the terminal states show resilience up to 25% of nodes 
being perturbed, the hybrid states lose their identity (i.e., switch to another state) upon relatively 
minor perturbations (Figure 6B, Figure 6—figure supplement 1B).

We quantified this difference in the EMP networks by measuring the extent of perturbation at 
which the coherence goes below 0.5 (termed as half- minimum perturbation) for the terminal as well as 
hybrid states (Figure 6C). As expected, the half- minimum value for the terminal states is always higher 
than the same for the hybrid states (all five EMP networks lie below the x = y diagonal in Figure 6C). 
Interestingly, the 57N113E network that had a lower team strength among the EMP networks showed 
slightly higher resilience for hybrid states as compared to the other EMP networks, suggesting that as 
the strength of teams decreases, the difference between hybrid and terminal states in their stability 
tends to reduce. This argument is further strengthened by analysis of random networks (with Ts often 
less than that in WT networks), showing a comparatively higher resilience of hybrid states (as visual-
ized by the distance from the x = y diagonal) (Figure 6—figure supplement 1C). Put together, these 
results endorse that ‘teams’ of nodes can also play a crucial role in maintaining a terminal phenotype, 
even when multiple nodes within a network are disrupted. Given the clear difference in the dynamic 
stability of hybrid and terminal phenotypes, we wanted to understand the biological implications of 
the dynamic stability characteristics and the presence of ‘teams.

The multinode perturbation experiment in Figure  6B can be perceived as a state transition- 
inducing signal. The higher the extent of perturbation, the stronger the signal. Given this interpre-
tation, we interrogated whether the transition trajectory/characteristics depend on the presence of 
teams in the network. To better quantify these dynamics, we performed an experiment mimicking 
a population of 100 cells exposed to a transitory signal. Each cell in the population starts from one 
steady state, and a random perturbation of a certain extent (varying from no node from perturbed [0] 
to all nodes being perturbed together [1]) is given to each cell. The state of the cell is then allowed 
to evolve until a steady state is reached. We repeat this experiment 10 times for each steady state of 
a network and perform statistical analysis. To measure the phenotypic transition, we made use of the 
Hamming distance between the initial (unperturbed) steady state and the steady state obtained after 
perturbation. The Hamming distance between two states is calculated as the fraction of nodes having 
different expression levels between the two states. The Hamming distance varies between 0 and 
1, where a Hamming distance of 0 indicates identical states and a Hamming distance of 1 indicates 
states with all nodes having opposite levels of expression. Therefore, the states belonging to the same 
biological phenotype will be separated by a relatively smaller Hamming distance (close to 0) due to 
the presence of ‘teams’.

The terminal phenotypes of EMP networks show a sigmoidal transition curve in terms of the mean 
Hamming distance across all replicates (Figure 6Di). In other words, at low levels of perturbation, the 
Hamming distance and change in EMT score remains low, suggesting that ‘teams’ offer ‘resistance’ 
to the signal, leading to a minimal change in the corresponding phenotype. Similarly, at high levels 
of perturbation, we see a complete change in the phenotype, as measured by the Hamming distance 
(being close to 1) and a drastic change in the EMT score. At intermediate levels of perturbation, a 
near- linear transition of phenotype is seen. We further quantified the phenotypic distribution (% of 
states corresponding to E, H, and M phenotypes) in these three levels of perturbation (as demarcated 
in Figure 6Di). As expected, for a population of cells starting from the epithelial phenotype, at low 
levels of perturbation, a majority of the cells remain epithelial, with a very small fraction converting to 
mesenchymal. At moderate levels of perturbation, we see an equal fraction of cells in epithelial and 
mesenchymal phenotypes, with a minor fraction switching to hybrid. At high levels, almost all cells 
turn mesenchymal. To identify how unique this sigmoidal pattern is to an EMP network (containing 
‘teams’ of nodes), we evaluated this transition trajectory for a hypothetical/random network with low 
team strength (Figure 6—figure supplement 1D). We classify the steady states of random networks 
as terminal if all the active core nodes in the state belong exclusively to one of the two teams observed 
in that network. A team in a random network is identified as epithelial if the number of microRNAs 

https://doi.org/10.7554/eLife.76535
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in the team is higher than that in the other team of the network. Unlike the case with EMP networks, 
the distinction between terminal and hybrid phenotypes in terms of their transition characteristics 
mostly disappears, and all the phenotypes have near- linear transition characteristics when perturbed 
(Figure 6Ei, Figure 6—figure supplement 1Ei,ii). Consistently, the corresponding phenotypic distri-
butions at low, medium, and high levels of perturbations look comparable, irrespective of the initial 
phenotype (Figure 6Eii, Figure 6—figure supplement 1Eiii). This difference between the behavior of 
WT networks and random networks indicates that the teams govern transition trajectories emanating 
from various terminal or hybrid phenotypes in a network.

To better understand the dependence of the transition dynamics on the team strength, we quan-
tified the area under the curve (AUC) for phenotypic distributions for various levels of perturbations 

Figure 7. Distinction between the transition dynamics of hybrid and terminal phenotypes is lost as teams weaken. (A) (i) Scatterplot between mean 
area under the curve (AUC) of epithelial states and mean AUC of hybrid states when starting from epithelial phenotype. Each dot is a random network, 
colored by its team strength. (ii) Heatmap depicting the Spearman’s correlation between team strength and AUC for the final phenotype (y- axis) and 
the regions in the sigmoidal plot (x- axis). (B) Same as (A), but for hybrid as the starting phenotypes. (C) (i) Depiction of cooperativity with a terminal and 
hybrid state of the wild- type (WT) epithelial–mesenchymal plasticity (EMP) network 22N 82E. (ii) Team strength vs. cooperativity for random and WT 
networks of size 22N 82E. Each dot represents the mean cooperativity for one network. The bars show standard deviation. (iii) Correlation between team 
strength and cooperativity for random networks corresponding to WT EMP networks of different sizes.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Dependence of perturbation coherence on team strength.

https://doi.org/10.7554/eLife.76535
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(for panels shown in Figure 6Dii,Eii). When starting from an epithelial phenotype, the networks with 
high team strength show low frequencies of the hybrid states as compared to the networks with low 
team strength, irrespective of the degree of perturbation made (Figure 7Ai), suggesting that the 
presence of ‘teams’ does not enhance the frequency of hybrid states. A quantification across the 
epithelial states for random networks as well revealed a negative correlation of the hybrid AUC with 
team strength at all levels of perturbation (Figure 7Aii). The correlation is positive with mesenchymal 
AUC at high perturbation and positive with epithelial AUC at high perturbation as expected since 
these are the dominant final (terminal) states in each case, respectively. Similar trends were seen for 
cells starting from mesenchymal phenotypes (Figure 7—figure supplement 1A).

The AUC analysis for cases with hybrid states as the initial conditions revealed similarly consistent 
trends. At low and high levels of perturbation, as the team strength of the network increases, the 
AUC of epithelial approaches 0.4 and that of hybrid approaches 0.1. At medium levels of pertur-
bation, epithelial AUC nears 0.5, and hybrid AUC nears 0 for the maximum team strength network 
(Figure  7Bi). Unlike the trajectories seen for terminal phenotypes, because there is no preferred 
phenotype here in terms of either epithelial or mesenchymal, team strength correlated positively with 
both epithelial and mesenchymal AUCs and negatively with hybrid AUC (Figure 7Bii). These trends 
between the AUC and team strength were consistently seen across networks of all sizes (Figure 7—
figure supplement 1B). Together, these observations indicate that the presence of two teams – one 
composed of epithelial master regulators and the other composed of mesenchymal master regulators 
– may reduce the frequency and stability of hybrid E/M phenotypes.

While the AUC analysis provided a good understanding of the transition properties, the mean 
Hamming distance plots intuitively demonstrated the difference in dynamic characteristics between 
the terminal and hybrid phenotypes of WT networks and that of random networks well. Hence, we 
quantified the sigmoidal nature of these transition curves by fitting them to a simple Hill’s function and 
calculating the coefficient of cooperativity (n) for each such fit (Figure 7Ci). We then compared the 

Figure 8. Reducing team strength leads to reduction in terminal phenotype stability. (A) (i) Lineplot to demonstrate the reduction of team strength with 
each edge perturbed. Change in (ii) minimum frustration, (iii) maximum coherence, and (iv) terminal state frequency with increase in team strength. 
(B) Mean cooperativity for the perturbed networks against the team strength. (C) Correlation between team strength and stability metrics for the 
perturbed networks (edge deleted one at a time sequentially as shown for 18N 33E network in panel A) obtained from all five epithelial–mesenchymal 
plasticity (EMP) networks.

https://doi.org/10.7554/eLife.76535
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mean cooperativity coefficient for trajectories obtained for terminal phenotypes and hybrid pheno-
types of all random and WT networks against the team strength of the networks. The cooperativity 
coefficient of terminal phenotypes increased with increasing team strength (Figure 7Cii). The correla-
tion of the mean cooperativity coefficient corresponding to terminal phenotypes with that of team 
strength was consistently positive across networks of different sizes, while no such trend was observed 
for hybrid phenotypes (Figure 7Ciii). The higher the value of n, the more step- like the corresponding 
sigmoidal function is. Thus these results endorse that the presence of teams makes the transition 
dynamics highly nonlinear and confers initial ‘resistance’ to exit a terminal phenotype (lag phase of 
sigmoidal curves).

Therefore, using the random networks as case studies, we were able to establish that the ‘teams‘’ 
structure supports the terminal phenotypes dynamically and leads to unique dynamic transition signa-
tures of the terminal and hybrid phenotypes in these different EMP networks.

Targeted reduction of team strength in a network can reduce stability 
and robustness of EMP phenotypes
We have established the connection between the ‘teams’’ structure and stability of terminal pheno-
types in a correlative manner across multiple EMP networks of varying sizes. To propose a causative 
connection, we performed in silico edge deletion experiments in the WT EMP networks. In a given 
network, we ranked different edges in terms of their deletion, being able to maximize a reduction in 
team strength after deleting that edge. Sequential deletion of edges in this manner was performed to 
bring down the team strength to lower values (Figure 8Ai). The networks thus obtained saw a reduc-
tion in the stability of the terminal phenotypes, as measured by minimum frustration (Figure 8Aii), 
maximum coherence (Figure 8Aiii), and the frequency of terminal phenotypes (Figure 8Aiv). The 
dependence of the stability of terminal phenotypes on team strength is especially prominent in the 
areas corresponding to the initial linear regime (number of edges deleted <5 in Figure 8Ai), where the 
team strength falls sharply. The estimated cooperativity coefficient (n in Hills function) of the transition 
dynamics of the terminal and hybrid phenotypes also showed expected trends: the higher the team 
strength, the higher the cooperativity (i.e., the more sigmoidal the curve) (Figure 8B). A summary 
of the correlations obtained between Ts and various metrics is given as a heatmap in Figure 8C. We 
see a positive correlation between Ts and measures of stability of terminal phenotypes (cooperativity, 
terminal state frequency). Maximum coherence and minimum frustration showed consistent trends 
(positive and negative correlation with Ts, respectively) in four and three out of five networks, respec-
tively. While the inconsistency for the 57N 113E network could be due to the low team strength of 
the network (Figure 4—figure supplement 2B), that in the 26N 100E network could possibly be due 
to the high frustration in the network (Figure 3—figure supplement 1D). These results suggest that 
as long as the structure of ‘teams’ is maintained, terminal phenotypes remain dominantly stable, and 
their stability can be predicted by the strength of ‘teams,’ which can be calculated from the influence 
matrix alone, without performing any dynamic simulations.

Teams stabilize terminal phenotypes in SCLC and melanoma networks 
as well
We next asked whether teams can be seen in other cell- fate decision networks. As mentioned earlier, 
we had seen such teams in the SCLC network (Chauhan et  al., 2021). Similarly, teams of nodes 
have been seen in a regulatory network underlying melanoma that has been shown to be capable 
of driving phenotypic heterogeneity in melanoma (Figure 9A, Pillai and Jolly, 2021). We wanted to 
check whether the effect of teams on the stability of phenotypes is extendable beyond EMP. First, we 
looked at the phenotypes emergent from SCLC and melanoma networks and found that in SCLC there 
are two classes of states, the terminal states with high stability and hybrid states with low stability. 
Interestingly, the melanoma network only resulted in terminal states (Figure 9—figure supplement 
1A and B). Similar to EMP networks, we generated random networks from the SCLC and melanoma 
networks. The team strength of the WT networks, while a lower value as compared to that of WT EMP 
networks, was higher than most of the corresponding random networks (Figure 9B). Furthermore, 
high team strength networks showed high maximum stability of the networks (Figure 9C). Further-
more, we studied an EMP network obtained by combining the five EMP networks analyzed here and 
another related EMP network (8N 17E, Hong et al., 2015). We were able to clearly identify teams in 
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Figure 9. Effect of teams on phenotypic landscape in small cell lung cancer (SCLC) and melanoma. (A) Influence matrices of (i) melanoma (17N 64E) and 
(ii) SCLC (33N 357E) networks, depicting the two team structure observed. (B) Comparison of team strength distributions obtained for random networks 
corresponding to (i) melanoma and (ii) SCLC, with the wild- type (WT) melanoma and SCLC team strengths labeled by red vertical line. (C) Scatterplots 
depicting the maximum coherence against the team strength of the random networks corresponding to (i) melanoma and (ii) SCLC. Spearman’s 

Figure 9 continued on next page
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this combined network (Figure 9—figure supplement 1C), and the influence matrix was very similar 
to the correlation matrix (Figure 9—figure supplement 1D). Again, the terminal phenotypes (charac-
terized based on the team structure) had high SSF (Figure 9—figure supplement 1E). Together, these 
observations imply that the role of teams of nodes in determining the stability landscape can be an 
extendable phenomenon to contexts other than EMP. Specifically, strong teams improve the stability 
of terminal phenotypes, leading to a strongly bimodal phenotypic stability landscape (Figure 9D).

Discussion
Cellular decision making often involves a limited number of specific fates the cells can switch among. 
However, the underlying regulatory systems appear disproportionately more complex in many cases. 
In this study, we show how having teams of nodes is one way the networks achieve this property of 
having a limited number of phenotypes despite their size and complexity.

One of our primary goals was to identify ‘teams’ of nodes in the network using unsupervised mech-
anisms, which we could accomplish by using hierarchical clustering on the influence matrix. We found 
that the team strength (Ts) was higher for the WT EMP networks than the corresponding random 
networks generated by shuffling the edges between the nodes. One way to interpret this trend is that 
the random networks are evolutionary alternatives that could have happened using the same nodes 
and edges. However, the biological networks were selected to optimize for the strength of ‘teams.’ 
Similar analysis has been employed while understanding other properties in previous studies (Hari 
et al., 2020; Tripathi et al., 2020b; Hebbar et al., 2022). The fact that the WT network topologies do 
not have the absolute highest values for these properties is a recurring theme: the reasons currently 
remain unclear (Hebbar et al., 2022; Hari et al., 2020).

We defined the stability of the steady states emergent from these networks in two ways: SSF as a 
measure of global stability and coherence as a measure of local stability. Additionally, we used frustra-
tion as a measure of the agreement of the network topology with a given state. Previous studies have 
shown that the epithelial and mesenchymal phenotypes show a higher SSF and lower frustration. In 
contrast, hybrid phenotypes show the opposite trend, and our results echo these findings (Font- Clos 
et al., 2018; Tripathi et al., 2020a). An important observation, however, was that this strong antag-
onistic relationship between SSF and frustration is only maintained in the presence of strong teams.

The ‘teams’ we found are reminiscent of modularity in large- scale networks identified in previous 
studies. Particularly, two definitions of modularity are relevant. One is the existence of communities 
of nodes in the network that each performs a unique set of functions and has limited interactions 
with the other communities in the network (Wang and Albert, 2013). The two teams found in EMP 
networks do perform unique functions by supporting two mutually exclusive phenotypes (epithelial 
and mesenchymal). However, extensive interactions between these teams are also present, enabling 
a strong toggle switch between the teams. Another instance of modularity is the presence of strongly 
connected components (Zañudo and Albert, 2013; Steinway et al., 2015). This structure enables an 
efficient transfer of information from the signal given to any of the nodes to all nodes, thereby showing 
coordinated expression of all components. While the teams do have the property of coordinated 
expression, connectedness is not a necessary condition. The nodes of the epithelial team in the 22N 
82E network in our study do not have any interaction within themselves but have coordinated expres-
sion only through the mutually inhibiting loops they form with the nodes of the mesenchymal teams. 
This apparent discrepancy can be attributed to the epithelial nodes constituting mostly microRNAs 
and the exclusion of recently reported molecular TFs such as KLF4 and ELF3 (Subbalakshmi et al., 
2022; Subbalakshmi et al., 2021).

One significant finding of our study is identifying terminal and hybrid phenotypes purely based on 
the network topology, that is, without having to simulate the network dynamics. While the biochemical 
composition of epithelial and mesenchymal phenotypes is relatively well defined across different cell 

correlation coefficient reported. *p<0.05. (D) Schematic showing the effect of team structure on the phenotypic stability landscape emergent from the 
network topology.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. SSF and correlation analysis of non- EMP netowrks.

Figure 9 continued
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types, the definition of hybrid phenotypes is quite context- dependent (Jolly et al., 2016; Steinway 
et al., 2015; Watanabe et al., 2019). One reason for this difference could be the nonuniformity in 
the gene lists used to identify these phenotypes from high- throughput data (Puram et al., 2017; 
Pastushenko et al., 2018). While our method of identification of hybrid phenotypes only considers 
the limited number of nodes available in the networks, the method itself depends on how these nodes 
interact and not the nodes themselves. Hence, if we can infer the regulatory network from a set of 
genes in a cell type, using the teams’ approach, we can better define hybrid phenotypic signatures.

While we specifically do not present any experimental evidence for teams in EMP, a recent anal-
ysis based on pairwise correlations between master regulators of EMT/MET has revealed that MET 
inducers positively correlate with one another but negatively with EMT inducers (Chakraborty et al., 
2021; Jia et al., 2020). Teams have also been seen in melanoma (Pillai and Jolly, 2021) and SCLC 
(Chauhan et al., 2021) where network topology and correlation matrices obtained from experimental 
data are quite consistent in decoding how nodes act together to decide certain phenotypes. Indeed, 
we find that teams contribute to the phenotypic landscape similarly to EMP networks. Thus, our 
results based on network topology can offer a possible mechanistic reason why such teams are seen 
in correlation matrices for both in vitro and in vivo data. Recent studies have started to identify the 
connections between different axes of plasticity underlying cancerous cells, such as EMP, drug resis-
tance, immune evasion, and dormancy. While, in most cases, these connections have been explored 
using small- scale networks, the presence of teams provides an intuitive way of reducing the complexity 
of large networks and therefore enables the coordination of multiple axes of plasticity at a large scale; 
for example, EMP and drug resistance (Sahoo et al., 2021).

Our analysis suggests that the hybrid phenotypes are ‘metastable,’ similar to previous reports 
(Font- Clos et al., 2018). Experimentally speaking, the frequency and stability of hybrid E/M pheno-
types seem to be quite varied (Pastushenko et al., 2018; Ruscetti et al., 2016; Jolly et al., 2016). This 
observation leads to a hypothesis whether a third team comprising factors driving a partial phenotype 
is required to stabilize hybrid E/M phenotypes, such as NP63 (Dang et al., 2015) and NRF2 (Bocci 
et al., 2019). Three teams of players have been proposed to give rise to three distinct phenotypes, 
for instance, in the case of CD4+ T cell differentiation, where the three master regulators (and their 
corresponding team members) inhibit each other, driving Th1, Th2, and Th17 phenotypes (Zhu et al., 
2010; Duddu et al., 2020). Another reason underlying the higher stability of hybrid E/M phenotypes 
may be cell–cell communication (Jolly et al., 2015) and/or epigenetic regulations (Jia et al., 2021), 
both of which have not been included in our analysis.

Teams of nodes forming a toggle switch can be an excellent way to explain the canalization prop-
erty observed in development. The presence of teams can make the cell- fate decision robust to 
multiple environmental fluctuations and biochemical cues (Figure 6). However, should teams be seen 
only in the most differentiated cell states in a lineage, or can they stabilize intermediate cell fates too? 
If so, are teams retained upon further differentiation or disrupted at a structural level? How would 
the teams at different levels of differentiation interact with each other? Furthermore, how do teams 
bifurcate upon sequential instances of cellular differentiation (Zhou and Huang, 2011)? If two teams 
of nodes determine the decision between phenotype A and phenotype B. When B further differenti-
ates to phenotypes C and D, do new teams supporting C and D emerge, or does team B break down 
into two sub- teams? Identifying changes in regulatory networks that would be required to implement 
these rearrangements will be an exciting future direction.

Here, we see teams in terms of intracellular regulatory networks. However, this framework of iden-
tifying the composition of two (or more) teams acting together to reinforce each other in scenarios of 
competing outcomes can be applied more broadly, particularly in multicellularity. The emergence of 
multicellularity (e.g., development of tissues and organs) has been proposed via the establishment of 
biochemical cooperation between individual cells (Kaneko, 2016). Such multicellularity and cooper-
ation are often observed in cancer. As tumors grow in size, the cells in different spatial locations start 
specializing in different functionalities such as metabolism or cell division to compensate for hurdles 
such as hypoxia, leading to the survival of the tumor as a whole. Different cells in a microenvironment 
can also form teams with pro- tumor and anti- tumor influence (Capp et al., 2021). Similarly, cancer 
cells undergoing metastasis form clusters that lead to better survival than that of individual CTCs, 
owing to the heterogeneity in the clustered CTCs equipped to deal with different hurdles, providing 
the cluster a better chance of survival (Aceto et al., 2014; Hong et al., 2016). All of these scenarios 
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can be viewed as multiple teams/groups of cells interacting with each other, each specializing in one 
or the other functionality essential for the survival of the population as a whole. Extending our ideas 
of team strength, we would expect populations with stronger interactions to have better chances of 
survival. However, extensive analysis is needed to make such claims as there are apparent differences 
in the formalisms that must be addressed. First, in most cases of multicellularity, the participating 
cells exhibit plasticity, such that they can change their phenotype/identity dynamically depending on 
the environment (Xiao et al., 2022; Bhattacharya et al., 2021). Such plasticity has been theorized 
to be instrumental in the emergence and survival of multicellular beings (Alvarez et al., 2022). In our 
analysis, the nature of the nodes has been conserved, and hence the impact of such dynamism on 
network structure is unclear. Second, the number of cells keeps changing, adding another dynamic 
aspect to the network structure. Third, it is not clear what kind of interactions happen within a team 
of cells, which is a part of the team strength inferred in GRNs. Furthermore, the interaction across 
teams also need not always be cooperation. In the emergence of therapy resistance, studies have 
shown in certain contexts in the absence of therapy that resistant cells support the growth of sensitive 
cells while sensitive cells inhibit the growth of resistant cells (Nam et al., 2021). The dynamic network 
issues can be addressed by considering a network with nodes as homogeneous subpopulations (i.e., 
teams) within a population rather than individual cells. The level of activity of a node will then be the 
number of cells in the subpopulation. This interpretation does assume that the team acts as a single 
component, which has to be validated for different biochemical and spatial interactions of cells within 
a team.

Overall, our study highlights that despite their apparent complexity, design principles are hidden in 
the topology of cell- fate decision- making biological networks that can canalize phenotypic repertoire 
and shape the corresponding emergent phenotypic landscape (Figure 9D). Insights gained from such 
network topology and/or geometric approaches (Sáez et al., 2022; Rand et al., 2021) to studying 
gene regulatory networks can contribute to accurately identifying the underlying landscape and 
modulating it for cellular reprogramming purposes.

Methods
Notations
The following notations are followed throughout the article unless mentioned otherwise:

•  N :  number of nodes in a network
•  E :  number of edges in a network
•  Adj :  adjecency matrix; also referred to as the interaction matrix
•  Infl :  influence matrix
•  i, j :  indices that refer to the nodes in the corresponding positions in adjacency or influence 

matrices
•  Adjij :  the interaction strength of the edge from ith node to the jth node

 

Adjij =





+1, i − > j

−1, i − | j

0, otherwise  

(1)

Similarly,  Inflij  is the influence of the ith node on the jth node
•  S(t) :  state of a network at time  t 
•  si(t) ∈ {−1, 1}  state/activity of a node of a network at time  t 

 S(t) = {si(t)}; i ∈ 1, 2, ..., N   (2)

•  Sig :  the set of signal nodes.
•  Out :  the set of output nodes
•  Core :  the set of core nodes

https://doi.org/10.7554/eLife.76535
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Figure 1 

Network visualization
Cytoscape 3.9.0 (Shannon et  al., 2003) was used to visualize the networks studied. Edges were 
colored based on the sign (inhibiting and activating), and nodes were colored based on their nature 
(epithelial, mesenchymal, and peripheral).

Boolean simulations
Boolean modeling is a logic- based, simple and discrete system for capturing the dynamics of biolog-
ical networks. The framework describes each node of the network as a binary variable (–1 or 1) by 
considering a threshold value or quantity of the molecule that can elicit the necessary downstream 
function. In the framework used in this study (Font- Clos et al., 2018), a state of a network is defined 
by a binary string of variables si, which gives information about which node is active/ON  (si = 1)  or 
inactive/OFF  (si = −1) . The interactions between the nodes are represented using the nonsymmetric 
adjacency matrix  Adj , where each element of the matrix,  Adjij , is the interaction strength of the edge 
from ith to jth node of the network. All activations are given a weight of 1, and all inhibitions are given 
weight of –1. The simulations are conducted asynchronously (one randomly chosen node is updated 
at each iteration). The state of the system is updated using a majority rule given below:

 

si(t + 1) =





+1,
∑

j Adjijsj(t) > 0

−1,
∑

j Adjijsj(t) < 0

si(t),
∑

j Adjijsj(t) = 0  

(3)

Simulations are carried out until either of the two conditions is reached: (1) t > 1000  or 
(2) si(t + 1) = si(t) ∀ i ∈ {1, ..., N} . The latter condition implies that a steady state has been reached.  S(t)  
is identified as the steady state.

Steady-state frequency (SSF)
To obtain SSF, we simulate the network with multiple randomly chosen initial states and count the 
fraction of such simulations that end in a given steady state.

Random network generation
The generation of random networks is an important technique that enables us to analyze the simi-
larities and/or differences between biological networks and networks that do not occur in nature 
(essentially ‘random’). To create random networks, we start with a biological network, select a pair of 
edges randomly in the network, and swap the nature of the edges (see Figure 1B). This exercise was 
repeated k times to create random networks. We found that larger values of k lead to the random 
networks having very low team strength. Hence, to capture networks with moderate levels of team 
strengths as well, we chose k = 10. This scheme conserves node degree, activatory and inhibitory 
contacts, and the number of nodes activated and inhibited.

Figure 2
Coherence
Coherence is calculated by perturbing the node expression levels in a state. ‘Perturbation’ in the 
context of Boolean networks corresponds to essentially flipping or reversing a state. For instance, if 
the level of  Si  is ON (1), then perturbing it entails switching it to OFF (–1). The general form is given 
below:

 

spert
i =





1, si = −1

−1, si = 1
  

(4)

where  n
pert
i   is the perturbed node. Node perturbations were done for every node in every steady 

state one at a time. For a steady state S, coherence is defined as the probability that simulation 
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followed by a single node perturbation of that state would result in the original steady state. To 
calculate the coherence of a steady state, we perturb the state at one node at a time to simulate the 
network with the perturbed state as the initial condition. For each simulation, we assign a score of 
1 if the original state is achieved, and 0 if it is not. We repeat these simulations for each node in the 
network for K = 100 iterations and define coherence as the average of the assigned scores over all 
simulations as follows:

 
CoherenceS =

∑100
k=1

∑N
i=1





1, Spert = S

0, Spert ̸= S

N ∗ K   

(5)

where  S
pert
i   is the steady state obtained after simulation of the perturbed steady state, and N is the 

number of nodes in the network.

Bimodality coefficient
Bimodality coefficients have been calculated using the following formula (Knapp, 2007):

 
BC =

m2
3 + 1

m4 + 3 (n−1)2

(n−2)(n−3)   
(6)

where  n  is the number of observations, m3 is the skewness, and m4 is the kurtosis of the distribution 
of the metric of interest.

Figure 3 

Frustration
Frustration is a measure of the agreement between the network topology and a given steady state. 
For a given network and state, the frustration is calculated as follows:

 

∑N
i,j=1





1, Adjijsisj < 0

0, otherwise

E   

(7)

where  E  is the number of edges in the network.

Figure 4 

Influence matrix
The influence matrix, as the name suggests, is a matrix where each element at (i,j) position records 
the influence of ith node on the jth node in the network. This influence is mediated through one or 
more serially connected edges that form a path from the ith node to the jth node in the network. Path 
length ( l ) is defined as the length of such paths being considered for the calculation of influence. As a 
result, for a path length of 1, the influence matrix is equivalent to the adjacency matrix  Adj . For a path 
length of  l , the influence is calculated as  Adjl . Similarly, the influence is calculated for all path lengths 
up to a maximum path length of  lmax = 10  edges. Finally, the influence matrix for a path length of  lmax  
is calculated by the following equation (Chauhan et al., 2021):

 
Inflmax =

∑lmax
l=1

Adjl

Adjllmax

lmax   
(8)

where  Adjmax  is derived by setting all nonzero entries of the adjacency matrix to 1, and is thus 

utilized as the normalizing factor. The division 
 

Adjl
Adjlmax  

 is element- wise:
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Adjl

Adjlmax
(i, j) =




0, Adjlmax(i, j) = 0
Adjl(i,j)

Adjlmax(i,j) , otherwise
  

(9)

The division with  lmax  ensures that the elements of  Inflmax  are constrained between –1 and 1.

Identifying teams and calculating team strength
In a given network, a set of ‘core’ nodes  T   are said to be a team if

 Inflij > 0∀i, j ∈ T   

Additionally, we find that nodes belonging to different teams influence each other negatively. The 
algorithm used to identify such teams in the influence matrix is as follows:

Once the two teams are obtained, the team strength of a network is calculated as follows:

 Tkl =
∑

i∈Tk , j∈Tl
Inflij

nkl
, k, l ∈ {1, 2}  (10)

 TS =
∑

k,l∈{1,2} |Tkl |
4   (11)

where T1 and T2 are the two teams of nodes identified using hierarchical clustering, and  nkl  is the 
product of the number of nodes in  Tk  and  Tl . To classify the teams as epithelial or mesenchymal, we 
counted the number of microRNAs present in each team. Because the microRNAs in the five EMP 
networks considered here are exclusively epithelial, we labeled the team that has the highest number 
of microRNAs as the epithelial team.

Distance between influence and interaction matrices
The distance between influence and correlation matrices was calculated using the following formula:

 
d =

N∑
i=1

N∑
j=1

|Corij − Inflij|
2N2

  
(12)

where  Cor  is the correlation matrix obtained over Boolean simulations.

State strength
The strength of a state S is similar to frustration in that it calculates the support of the influence matrix 
to the state and is calculated using the following formula:

 
StrengthS =

N∑
i,j=1

Inflijsisj, si, sj ∈ {0, 1}
  

(13)

Figure 6 

Single-node perturbation
For single- node coherence (Figure 6A), we perturb the steady states one node at a time, resulting in 
the following calculation:

 
CoherenceSi =

∑100
k=1





1, Spert = S

0, Spert ̸= S

K   

(14)

where  CoherenceSi  is the coherence of steady state  S  when node  i  is perturbed. We further calcu-
late the coherence specific to a set of core nodes upon perturbing signal nodes (Figure 6—figure 
supplement 2).
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CoherenceSi =

∑100
k=1





1, Spert
Core = SCore

0, Spert
Core ̸= SCore

K
, i ∈ Sig

  

(15)

where,  SCore  is the configuration of core nodes in the state  S .

Multinode perturbation
We performed experiments to characterize the stability of terminal and hybrid steady states over ‘n’ 
node perturbations, ‘n’ ranging from 1 to N (total number of nodes in a given network). Essentially, 
this means perturbing ‘n’ nodes at a time for each steady state, instead of perturbing just one node as 
seen for coherence calculations. For simplicity, the number of such perturbations for a particular value 
of ‘n’ was decided by the following rule:

 Number of perturbations = min(100,
(N

n
)
)  (16)

The perturbed steady states were then simulated using Boolean formalism for 1000 time steps, 
with 10 repeats to accommodate the fact that asynchronous Boolean simulations can allow a single 
initial condition to converge to multiple steady states. The final state obtained is compared with the 
original steady state by employing coherence and Hamming distance measures. The latter entails 
comparing these two states by considering the number of bit positions in which the two bits are 
different. The EMT score is also calculated for the final state obtained. We repeat these simulations 
for each ‘n’ number of perturbations in the network for K = 100 iterations and take the average of the 
final coherence, Hamming, and EMT score values for each original steady state.

Statistical tests
Percentile calculation
We calculate the percentile of the WT networks in the corresponding random network distribution for 
many metrics in this study. For a list of numbers  v  that holds the measures of a given metric for random 
networks, and  W   being the corresponding measure for the WT network, we calculate the fraction of 
members of  v  less than  w  and multiply the fraction with 100 to get the percentile.

Correlations
All correlation analyses were done using Spearman’s correlation method using ‘ cor. test’ function in 
R 4.1.2. The corresponding statistical significance values are represented by ‘*’s, to be translated as 
*p<0.05.

ANOVA

Data and code availability
The codes used for generating the data (random networks and simulation), analyzing the data, and 
generating figures are made available as an R package at https://github.com/askhari139/Teams (Hari 
et al., 2022 copy archived at swh:1:rev:fdf4f636f6762e6d2193d1bc71944d20a087bf3a). A detailed 
description of the codes has been included for ease of reproducibility.
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Appendix 1
Methods
RAndom CIrcuit PErturbaiton (RACIPE)
RACIPE (Huang et al., 2017) is a tool that simulates transcriptional regulatory networks (TRNs) in 
a continuous manner. Given a TRN, it constructs a system of ordinary differential equations (ODEs) 
representing the network. For a given node  T   and a set of input nodes  Pi  and  Nj  that activate and 
inhibit  T  , respectively, the corresponding differential equation is given as Equation 17.

 

dT
dt

= GT ∗
∏

i

HS+(Pi, Pi
0
T, nPi,T,λPi,T)
λPi,T

∗
∏

j
HS−(Nj, Ni

0
T, nNj,T,λNj,T) − kT ∗ T

  
(17)

Here,  T  ,  Pi , and  Nj  represent the concentrations of the species.  GT   and  kT   denote the production 
and degradation rates, respectively.  Pi

0
T   is the threshold value of  Pi  concentration at which the 

nonlinearity in the dynamics of  T   due to  Pi  is seen.  n  is termed as Hill coefficient and represents the 
extent of nonlinearity in the regulation.  λ  represents the fold change in the target node concentration 
upon overexpression of regulating node. Finally, the functions  HS+  and  HS−  are known as shifted Hill 
functions (Lu2013) and represent the regulation of the target node by the regulatory node (Equation 
18).

 
HS+/−(B, B0

A, nB,A,λB,A) =
B0

A
nB,A

B0
A

nB,A + BnB,A
+ λ ∗ BnB,A

B0
A

nB,A + BnB,A   
(18)

Note that, for high values of the regulatory node concentration,  HS+/−  approaches  λ . For the 
model generated in this way, RACIPE randomly samples parameter sets from a predefined set of 
parameter ranges estimated from BioNumbers (Milo et  al., 2010). The default ranges used by 
RACIPE (Huang et al., 2017) are listed in Appendix 1—table 1.

Appendix 1—table 1. Parameter ranges for RACIPE simulations.

Parameters Minimum Maximum

Production rate (G) 1 100

Degradation rate (k) 0.1 1

Fold Change (Inhibition λ) 0.01 1

Fold Change (Activation λ) 1 100

Hill coefficient 1 6

Threshold The ranges depend on inward regulation - half functional rule

Discretization of RACIPE output and calculating the state frequency
For a given network with  i = [1, n]  nodes, the steady- state expression levels of the nodes were 
normalized about the mean and standard deviation across all parameter sets.

 
Zi = Ei − Ei

σi   
(19)

where, for the ith node,  Ei  is the steady- state expression level  Ei   is the combined mean and  σi  
is the combined standard deviation. The z- scores are then classified based on whether they are 
negative or positive into 0 (low) and 1 (high) expression levels, respectively. Each steady state of the 
network is thus labeled with a string of 1s and 0s, discretizing the continuous steady- state levels. 
We then calculate the total frequency of each discrete state by counting the occurrence in all the 
parameter sets. For parameter sets with n steady states, the count of each steady state is taken as 
1/n, invoking the assumption that all the states are equally stable.

Quantitative convergence
To estimate the optimal sample size of parameter sets for RACIPE and that of initial conditions for 
Boolean models, all networks were simulated at different sample sizes in triplicates and the mean 
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and variance of the SSF distribution was calculated. 10,000 was estimated as the ideal sample sizes 
for both methods as it was the smallest sample size for which the variance in steady- state frequencies 
was minimum and the mean of the same was consistently similar to that of higher sample sizes.

Relation between frustration and stability of a state
In the ising Boolean formalism, the update rules are defined as follows:

 

si(t + 1) =





+1,
∑

j Adjijsj(t) > 0

−1,
∑

j Adjijsj(t) < 0

si(t),
∑

j Adjijsj(t) = 0  

(20)

with standard definitions of all involved terms. The update rules indicate that, for the activity of a 
node to remain conserved in the next time step,

 

si(t + 1) =




∑
j Adjijsj(t) >= 0, si(t) = +1

∑
j Adjijsj(t) <= 0, si(t) = −1  

(21)

In other words,

 si(t + 1) = si(t)if
∑

j Adjijsj(t)si(t) >= 0  (22)

An edge  ij  is said to be frustrated for a given state (not necessarily steady state), if

 Adjijsi(t)sj(t) < 0  (23)

Note the similarity of the expressions in Equation 22 and Equation 23. Now, consider the 
following two extreme cases of states:

• All edges are frustrated, that is,  Frustration = 1 . In this case, since  Adjijsi(t)sj(t) < 0  for all  i, j , the 
condition in 22 is never satisfied. Hence, none of the nodes in the state can retain their activity, 
and therefore the state cannot be a steady state.

• No edge is frustrated, that is,  Frustration = 0 . In this case, the condition in 22 is satisfied for all 

 i, j  and hence for all nodes, making the state steady.
These extreme cases hence seem to indicate that higher the frustration, lesser the chance of a state 
being steady. However, having the frustration value as 1 is seldom possible due to the presence of 
signal nodes (not influenced by any other node in the network and therefore can retain any activity), 
negative feedback, and feed- forward loops. Therefore, we need to understand the upper limit of 
frustration allowed for a steady state of a given network.

For a state to be steady, the condition  
∑

j Adjijsj(t)si(t) >= 0  must be satisfied for all nodes in the 
network. Note that the magnitude of the term  Adjijsi(t)sj(t)  is always 1. Therefore, for a node’s activity 
to be retained, the number of frustrated incoming edges must always be less than or equal to the 
number of nonfrustrated incoming edges. Hence, frustration corresponding to a given node must be 
less than or equal to 0.5, a condition that directly extends to the frustration of a state.

State strength
Given the strong similarity between influence matrix and the correlation matrix for all random 
networks, we asked whether influence matrix, which takes into account indirect interactions between 
nodes as well, is enough to explain the stability of the observed phenotypes. To answer this, we 
defined the strength of states – as a measure of how well a state is supported by the influence matrix 
– as follows:

 
StrengthS =

N∑
i,j=1

Inflijsisj; si, sj ∈ {0, 1}
  

where  Inflij  is the  (i, j)th  element of the influence matrix and si and sj are the activities of the ith and 
jth node in the steady- state  S  of interest. For WT EMP networks, the strength of terminal phenotypes 
is much higher (since all epithelial nodes have a positive influence on each other and so on) than the 
hybrid phenotypes (Figure 4—figure supplement 2B and C). If the influence matrix is sufficient to 
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explain the phenotypic stability, the correlation between strength and the stability metrics should 
be strongly positive for all networks (Figure  4—figure supplement 2Di). However, we find that 
the 57N 113E network that has the weakest teams among the WT EMP networks shows weak 
correlation between state strength and stability (Figure 4—figure supplement 2Dii). We calculated 
these correlation values for random networks and compared them against the corresponding team 
strengths (Figure 4—figure supplement 2Diii). Three out of five network sizes showed a positive 
correlation between the team strength and calculated correlations, indicating that the influence 
matrix can explain phenotypic stability better when team structure is strong.

At each parameter set, RACIPE integrates the model from multiple initial conditions and obtains 
steady states in the initial condition space. The output, hence, comprises of the collection of 
parameter sets and corresponding steady states obtained from the model. For the current analysis, 
we used a sample size of 10,000 for parameter sets and 100 for initial conditions. The parameters 
were sampled via a uniform distribution and the ODE integration was carried out using Euler’s 
method of numerical integration.
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