
Calderon, Weiss, Beagan, et al. eLife 2022;11:e76539. DOI: https://​doi.​org/​10.​7554/​eLife.​76539 � 1 of 31

Cohesin-dependence of neuronal 
gene expression relates to chromatin 
loop length
Lesly Calderon1,2†, Felix D Weiss2†, Jonathan A Beagan3†, Marta S Oliveira1,2, 
Radina Georgieva1,2, Yi-Fang Wang1,2, Thomas S Carroll2, 
Gopuraja Dharmalingam1,2, Wanfeng Gong3, Kyoko Tossell2, Vincenzo de Paola2, 
Chad Whilding1,2, Mark A Ungless1,2, Amanda G Fisher1,2, 
Jennifer E Phillips-Cremins3,4,5*, Matthias Merkenschlager2*

1MRC London Institute of Medical Sciences, Imperial College London, London, 
United Kingdom; 2Institute of Clinical Sciences, Faculty of Medicine, Imperial College, 
London, United Kingdom; 3Department of Bioengineering, University of Pennsylvania, 
Philadelphia, United States; 4Epigenetics Program, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, United States; 5Department of Genetics, 
Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States

Abstract Cohesin and CTCF are major drivers of 3D genome organization, but their role in 
neurons is still emerging. Here, we show a prominent role for cohesin in the expression of genes 
that facilitate neuronal maturation and homeostasis. Unexpectedly, we observed two major classes 
of activity-regulated genes with distinct reliance on cohesin in mouse primary cortical neurons. 
Immediate early genes (IEGs) remained fully inducible by KCl and BDNF, and short-range enhancer-
promoter contacts at the IEGs Fos formed robustly in the absence of cohesin. In contrast, cohesin 
was required for full expression of a subset of secondary response genes characterized by long-
range chromatin contacts. Cohesin-dependence of constitutive neuronal genes with key functions 
in synaptic transmission and neurotransmitter signaling also scaled with chromatin loop length. 
Our data demonstrate that key genes required for the maturation and activation of primary cortical 
neurons depend on cohesin for their full expression, and that the degree to which these genes rely 
on cohesin scales with the genomic distance traversed by their chromatin contacts.

Editor's evaluation
Neurons use activity-responsive gene programs to shape cell-specific identity and respond appropri-
ately to environmental stimuli. By combining elegant protein degradation and cell-specific knockout 
approaches with transcriptional profiling and chromatin structure analysis, this manuscript delineates 
the contributions of cohesin (a key protein responsible for genome structure and organization), in 
developmental and activity-dependent gene expression programs as well as chromatin reorganiza-
tion. These results demonstrate that cohesin is required for the full expression of key genes required 
for the maturation and activation of cortical excitatory neurons, and reveal a tight correlation 
between cohesin effects and the genomic distance of higher-order chromatin loops.

Introduction
Mutations in cohesin and CTCF cause intellectual disability in humans (Deardorff et al., 2018; Gregor 
et  al., 2013; Rajarajan et  al., 2016), and defects in neuronal gene expression (Kawauchi et  al., 
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2009; Fujita et al., 2017; van den Berg et al., 2017; van den Berg et al., 2017; McGill et al., 2018; 
Yamada et al., 2019; Weiss et al., 2021), neuronal morphology (Fujita et al., 2017; McGill et al., 
2018; Sams et al., 2016), long-term potentiation (Sams et al., 2016; Kim et al., 2018a), learning, and 
memory (McGill et al., 2018; Yamada et al., 2019; Sams et al., 2016; Kim et al., 2018b) in animal 
models. In addition to mediating canonical functions in the cell cycle (Nasmyth and Haering, 2009), 
cohesin cooperates with CTCF to facilitate the spatial organization of the genome in the nucleus. 
Cohesin traverses chromosomal DNA in an ATP-dependent manner through a mechanism known 
as loop extrusion. This process generates self-interacting domains that are delimited by chromatin 
boundaries marked by CTCF and defined by an increased probability of chromatin contacts (Fuden-
berg et al., 2016; Rao et al., 2014; Rao et al., 2017; Nora et al., 2017; Schwarzer et al., 2017). The 
resulting organization of the genome into domains and loops is thought to contribute to the regu-
lation of gene expression by facilitating appropriate enhancer-promoter interactions (Dekker and 
Mirny, 2016; Merkenschlager and Nora, 2016; Beagan and Phillips-Cremins, 2020; McCord et al., 
2020) and its disruption can cause human disease (Lupiáñez et al., 2015; Spielmann et al., 2018; 
Sun et al., 2018), including neurodevelopmental disorders (Won et al., 2016). Recent studies which 
induced global cohesin loss on acute timescales resulted in the altered expression of only a small 
number of genes in a human cell line in vitro (Rao et al., 2017), while later time points after cohesin 
depletion in vivo revealed more pervasive disruption in expression (Schwarzer et  al., 2017). We 
recently reported that cohesin loss has modest effects on constitutive gene expression in uninduced 
macrophages, but severely disrupted the establishment of new gene expression programs upon the 
induction of a new macrophage state (Cuartero et al., 2018). These data support a model in which 
cohesin-mediated loop extrusion is more important for the establishment of new gene expression 
rather than maintenance of existing programs (Cuartero et al., 2018). However, the applicability of 
this model across other cell types remains unclear, and the extent to which deficits in cohesin function 
alter neuronal gene expression remains a critical underexplored question.

Activity-regulated neuronal genes (ARGs) are defined by transcriptional induction in response to 
neuronal activity, and are important for cellular morphology, the formation of synapses and circuits, 
and ultimately for learning and memory (Gallo et al., 2018; Kim et al., 2010; Malik et al., 2014; 
Greer and Greenberg, 2008; Tyssowski et al., 2018; Yap and Greenberg, 2018). ARG induction is 
accompanied by acetylation of H3K27, as well as the recruitment of RNA polymerase 2, cohesin, and 
other chromatin binding proteins at ARGs and their enhancers (Greer and Greenberg, 2008; Malik 
et al., 2014; Yamada et al., 2019; Yap and Greenberg, 2018; Tyssowski et al., 2018; Schaukowitch 
et al., 2014; Beagan et al., 2020). For a subset of ARGs, long-range contacts between enhancers and 
promoters increase upon stimulation of post-mitotic neurons (Schaukowitch et al., 2014; Sams et al., 
2016; Beagan et al., 2020). Among neuronal ARGs, IEGs and, late response genes (LRGs) are known 
to be activated on different time scales according to distinct mechanisms (Tyssowski et al., 2018). 
Moreover, IEGs and LRGs differ significantly in their looping landscape, as IEGs form fewer, shorter 
enhancer-promoter contacts compared to the complex, long-range interactions formed by many LRGs 
(Beagan et al., 2020). Given the importance of cohesin and regulatory looping interactions for brain 
function, there is a strong imperative to understand the functional role of cohesin-dependent loops 
in the establishment and maintenance of developmentally regulated and activity-stimulated neuronal 
gene expression programs.

Here, we establish an experimental system to address the role of cohesin in 3D genome organiza-
tion and gene expression in non-dividing, post-mitotic neurons, independently of essential cohesin 
functions in the cell cycle. We employ developmentally regulated expression of Cre recombinase 
under the control of the endogenous Neurod6 locus (referred to here as NexCre according to Goeb-
bels et al., 2006; Hirayama et al., 2012) to inducibly deplete the cohesin subunit RAD21 specifi-
cally in immature post-mitotic mouse neurons in vivo. Cohesin depletion in immature post-mitotic 
mouse neurons disrupted CTCF-based chromatin loops, and reduced the expression of neuronal 
genes related to synaptic transmission, neuronal development, adhesion, connectivity, and signaling, 
resulting in impaired neuronal maturation. Neuronal ARGs were pervasively deregulated in cohesin-
deficient neurons, consistent with a model in which the establishment of new gene expression 
programs in both macrophages and neurons is driven in part by cohesin-mediated enhancer-promoter 
contacts (Rajarajan et al., 2016; Yamada et al., 2019; Sams et al., 2016; Schaukowitch et al., 2014; 
Cuartero et al., 2018). The cohesin-dependence of ARGs was confirmed in an inducible system that 
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allows for proteolytic cohesin cleavage in primary neurons (Weiss et al., 2021), providing temporal 
control over cohesin levels on a time scale similar to the establishment of neuronal gene expression 
programs upon neural stimulation, thus allowing us to disentangle the role for cohesin-mediated 
chromatin contacts in the maintenance of existing transcriptional programs versus the establishment 
of new transcriptional programs in neural circuits. Surprisingly, despite pervasive deregulation at base-
line, most IEGs and a subset of LRGs remained fully inducible by KCl and BDNF stimulation after 
genetic or proteolytic depletion of cohesin.

Cohesin-dependent and -independent ARGs were distinguished not by the binding of cohesin 
or CTCF to their promoters (Schaukowitch et al., 2014; Sams et al., 2016), but instead by their 3D 
connectivity. LRGs that depended on cohesin for full inducibility engaged in longer chromatin loops 
than IEGs, or LRGs that remained fully inducible in the absence of cohesin. Unlike ARGs, the majority 
of neuronal genes that mediate synaptic transmission and neurotransmitter signaling are constitutively 
expressed. Nevertheless, as with ARGs, the reliance of these key neuronal genes on cohesin scaled 
with chromatin loop length. Consistent with a model where short-range enhancer-promoter loops 
can form in the absence of cohesin, we find that the enhancer activity and short-range enhancer-
promoter contacts at the IEG Fos remained robustly inducible in cohesin-depleted neurons. Finally, 
re-expression of RAD21 protein in cohesin-depleted neurons re-established lost chromatin loops and 
restored wild-type expression levels of disrupted LRGs, and of constitutive neuronal genes engaged 
in long-range loops. Together, our data support a model where key neuronal genes required for the 
maturation and activation of primary neurons require cohesin for their full expression. The degree to 
which neuronal genes rely on cohesin scales with the genomic distance traversed by their chromatin 
loops, including loops connecting promoters with activity-induced enhancers.

Results
Conditional deletion of cohesin in immature post-mitotic neurons
To explore the role of cohesin in post-mitotic neurons, we deleted the essential cohesin subunit 
RAD21 (Rad21lox, Seitan et al., 2011) in immature cortical and hippocampal neurons using NexCre 
(Goebbels et  al., 2006; Hirayama et  al., 2012). Explant cultures of wild type and Rad21lox/lox 
NexCre E17.5/18.5 cortex contained >95% MAP2+ neurons, with <1% GFAP+ astrocytes or IBA1+ 
microglia (Figure 1a). Immunofluorescence staining showed the loss of RAD21 protein specifically 
in GAD67- neurons (Figure 1b and c). This was expected, as NexCre is expressed by excitatory but 
not by inhibitory neurons (Goebbels et  al., 2006; Hirayama et  al., 2012). Consistent with the 
presence of ~80% of GAD67- and ~20% GAD67+ neurons in the explant cultures, Rad21 mRNA 
expression was reduced by 75–80% overall (Figure 1d, left). There was a corresponding reduc-
tion in RAD21 protein (Figure 1d, middle). To focus our analysis on cohesin-deficient neurons we 
combined NexCre-mediated deletion of Rad21 with NexCre-dependent expression of an epitope-
tagged ribosomal subunit (Rpl22-HA RiboTag; Sanz et al., 2009). We verified that NexCre-induced 
RPL22-HA expression was restricted to RAD21-depleted neurons (Figure 1—figure supplement 
1a) and performed high throughput sequencing of Rpl22-HA RiboTag-associated mRNA (RiboTag 
RNA-seq, Supplementary file 1). Comparison with total RNA-seq (Supplementary file 2) showed 
that NexCre RiboTag RNA-seq captured excitatory neuron-specific transcripts, such as Slc17a7 and 
Camk2a. Transcripts selectively expressed in astrocytes (Gfap, Aqp4, Mlc1), microglia (Aif1), and 
inhibitory neurons (Gad1, Gad2, Slc32a1) were depleted from NexCre RiboTag RNA-seq (Figure 1—
figure supplement 1b). RiboTag RNA-seq enabled an accurate estimate of residual Rad21 mRNA, 
which was  <5% in Rad21lox/lox NexCre cortical neurons (Figure  1d, right). These data show near-
complete loss of Rad21 mRNA and undetectable levels of RAD21 protein in NexCre-expressing 
Rad21lox/lox neurons. Analysis of chromatin conformation by Chromosome-Conformation-Capture-
Carbon-Copy (5 C) showed a substantial reduction in the strength of CTCF-based chromatin loops 
after genetic (Rad21lox/lox NexCre, Figure 1e) and after proteolytic cohesin depletion (RAD21-TEV, 
Figure 1—figure supplement 2; Weiss et al., 2021). Of note, restoration of RAD21 expression 
rescued CTCF-based chromatin loop formation (Figure  1—figure supplement 2). These data 
show that cohesin is directly linked to the strength of CTCF-based chromatin loops in primary in 
post-mitotic neurons.

https://doi.org/10.7554/eLife.76539
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Figure 1. Conditional cohesin deletion in post-mitotic neurons. (a) E17.5–E18.5 cortices were dissociated and plated on poly-D-lysine. After 10 
days, cultures were stained for pan neuronal (MAP2), astrocyte (GFAP), and microglia (IBA1) markers, and cell type composition was determined by 
quantitative analysis of immunofluorescence images. Based on 6 Rad21+/+ NexCre and 8 Rad21lox/lox NexCre different samples analyzed in four independent 
experiments. (b) Immunofluorescence staining of Rad21+/+ NexCre and Rad21lox/lox NexCre neuronal explant cultures for RAD21 and MAP2 (left) and 
distribution of RAD21 expression by MAP+ neurons (right). Note the discontinuous distribution of RAD21 expression in Rad21lox/lox NexCre neurons. Three 
independent experiments per genotype. DAPI marks nuclei. Scale bar = 60 μm. (c) Immunofluorescence staining for RAD21, MAP2, and the marker 
of GABAergic inhibitory neurons, GAD67 (left). Distribution of RAD21 expression in GAD67+ and GAD67- neurons (right). Note that the discontinuous 
distribution of RAD21 expression in Rad21lox/lox NexCre neuronal explant cultures is due to GAD67+ GABAergic inhibitory neurons. Three independent 
experiments for Rad21+/+ NexCre and six independent experiments for Rad21lox/lox NexCre. DAPI marks nuclei. Scale bar = 20 μm. (d) Quantitative RT-
PCR analysis of Rad21 mRNA expression in Rad21+/+ NexCre and Rad21lox/lox NexCre cortical explant cultures (mean ± SEM, n=18). Hprt and Ubc were 
used for normalization (left). RAD21 protein expression in Rad21+/+ NexCre and Rad21lox/lox NexCre cortical explant cultures was quantified by fluorescent 
immunoblots (mean ± SEM, n=6, a representative blot is shown in Figure 1—figure supplement 1) and normalized to LaminB (center). NexCre RiboTag 
RNA-seq of analysis of Rad21 mRNA expression in Rad21+/+ NexCre and Rad21lox/lox NexCre cortical explant cultures (right, three independent biological 
replicates). (e) 5C heat maps of Rad21+/+ NexCre and Rad21lox/lox NexCre cortical explant cultures. Shown is a 1.72 Mb region covered by 5C analysis of 
chr2 107601077–110913077 (Beagan et al., 2020). One of two independent biological replicates with similar results. CTCF ChIP-seq in cortical neurons 
(Bonev et al., 2017) and mm9 coordinates are shown for reference. Arrowheads mark the position of CTCF-based loops. Results were consistent across 
two replicates and three chromosomal regions. Histograms below show the quantification of representative CTCF-based loops (arrowheads) in two 
independent biological replicates for control and Rad21lox/lox NexCre neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Figure 1: Conditional cohesin deletion in post-mitotic neurons.

Figure 1 continued on next page
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 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Neuroscience

Calderon, Weiss, Beagan, et al. eLife 2022;11:e76539. DOI: https://​doi.​org/​10.​7554/​eLife.​76539 � 5 of 31

Loss of cohesin from immature post-mitotic neurons perturbs neuronal 
gene expression
Using RiboTag RNA-seq to profile gene expression specifically in cohesin-depleted neurons we iden-
tified 1028 downregulated and 572 upregulated transcripts in Rad21lox/lox NexCre cortical neurons 
(Figure  2a, Figure  2—figure supplement 1a), with preferential deregulation of neuron-specific 
genes (p<2.2e-16, see methods). Gene ontology (Figure 2b) and gene set enrichment analysis (GSEA, 
Figure 2—figure supplement 1b) showed that downregulated genes in Rad21lox/lox NexCre neurons 
were enriched for synaptic transmission, neuronal development, adhesion, connectivity, and signaling 
(Supplementary file 3) and showed significant overlap with genes linked to human ASD (p=5.10E-15, 
Figure 2—figure supplement 1c; Banerjee-Basu and Packer, 2010). Upregulated genes showed 
no comparable functional enrichment (Figure 2b). Inducible ARGs such as Fos, Arc, and Bdnf are 
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Figure 2. Loss of cohesin from immature post-mitotic neurons perturbs neuronal gene expression. (a) Volcano plot representing log2 fold-change (FC) 
versus significance (-log10 of adjusted p values) of downregulated genes (1028) and upregulated genes (572) in RiboTag RNA-seq of Rad21lox/lox NexCre 
versus Rad21+/+ NexCre neurons (Supplementary file 1). Red marks Rad21. (b) Analysis of gene ontology of biological functions of deregulated genes in 
Rad21lox/lox NexCre neurons. Enrichment is calculated relative to expressed genes (Supplementary file 3). (c) The percentage of constitutive (adj. p>0.05 
in KCl 1 hr versus TTX and KCl 6 hr versus TTX, see methods) and activity-regulated genes Kim et al., 2010 found deregulated in Rad21lox/lox NexCre 
neurons in explant culture at baseline as determined by RiboTag RNA-seq. The p-value (Fisher Exact Test) and Odds ratio indicate that ARGs are more 
frequently deregulated than constitutive genes.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Figure 2: Loss of cohesin from immature post-mitotic neurons perturbs neuronal gene expression.

Figure supplement 1. Gene expression in Rad21lox/lox NexCre neurons.

Figure supplement 1. Rad21 NexCre RiboTag validation.

Figure supplement 2. Restoration of cohesin rescues chromatin loops.

Figure 1 continued
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activity-regulated by definition, and hence lowly expressed in basal conditions due to spontaneous 
synaptic activity. In Rad21lox/loxNexCre neurons, previously defined inducible ARGs (Kim et al., 2010) 
were more frequently downregulated than constitutively expressed genes (Figure 2c, p=1.03e-16, 
odds ratio = 3.27). These data show that immature post-mitotic neurons require cohesin to establish 
and/or maintain the correct level of expression of genes that support neuronal maturation, including 
the growth and guidance of axons, the development of dendrites and spines, and the assembly, func-
tion, and plasticity of synapses.

A role for cohesin in the maturation of post-mitotic neurons
We next set out to examine the impact of cohesin deletion on the maturation of immature post-
mitotic neurons. Rad21lox/loxNexCre embryos were found at the expected Mendelian ratios throughout 
gestation, however postnatal lethality was evident (Figure  3—figure supplement 1a). Rad21lox/lox 
NexCre cortical neurons did not show increased proliferation (Figure  3—figure supplement 1b), 
no upregulation of apoptosis markers or signs of DNA damage (Figure 3—figure supplement 1b) 
and no stress-related gene expression (Figure 3—figure supplement 1c). Brain weight (Figure 3—
figure supplement 1d) and cellularity (Figure 3—figure supplement 1e) were comparable between 
Rad21+/+ and Rad21lox/lox NexCre neocortex. The neuronal transcription factors TBR1, CTIP2, and CUX1 
were expressed beyond the boundaries of their expected layers in Rad21lox/lox NexCre cortices, and 
deeper cortical layers appeared disorganized (Figure  3a). While the total numbers of TBR1+ and 
CTIP2+ neurons were comparable in wild type and Rad21lox/lox cortices, TBR1+ and CTIP2+ neurons 
were reduced in the subplate and increased in layers 6 and 7 Rad21lox/lox NexCre cortices (Figure 3a). 
These findings are consistent with the reported cohesin-dependence of neuronal guidance molecule 
expression (Kawauchi et al., 2009; Remeseiro et al., 2012; Guo et al., 2015) and migration (van 
den Berg et al., 2017). To assess the impact of cohesin on morphological maturation, we cultured 
cortical neurons in the presence of wild type glia (Kaech and Banker, 2006). Compared to freshly 
explanted E18.5 neurons (Figure 3b), neurons acquired considerable morphological complexity after 
14 days in explant culture (Figure 3c). We sparsely labeled neurons with GFP to visualize processes 
of individual neurons (Figure  3d) and used Sholl analysis (Sholl, 1953) to quantitate the number 
of axonal crossings, the length of dendrites, the number of terminal points, the number of branch 
points and the number of spines in GAD67-negative Rad21+/+ NexCre and GAD67-negative Rad21lox/

lox NexCre neurons. Cohesin-deficient neurons displayed reduced morphological complexity across 
scales, with reduced numbers of axonal branch and terminal points (Figure 3c and d). In addition, 
Rad21lox/lox NexCre neurons showed reduced numbers of dendritic spines, the location of neuronal 
synapses (Figure 3e). Taken together, these data show that the changes in neuronal gene expression 
that accompany cohesin deficiency have a tangible impact on neuronal morphology, and that cohesin 
is required for neuronal maturation.

Activity-regulated gene expression is sensitive to acute depletion of 
cohesin
Neuronal maturation and ARG expression are closely connected. The expression of inducible ARGs 
promotes neuronal maturation, morphological complexity, synapse formation, and connectivity. In 
turn, neuronal maturation, morphological complexity, synapse formation, and connectivity facilitate 
ARG expression (Gallo et al., 2018; Kim et al., 2010; Malik et al., 2014; Greer and Greenberg, 
2008; Tyssowski et al., 2018; Yap and Greenberg, 2018). To address whether the downregulation 
of ARGs observed in Rad21lox/lox NexCre neurons was cause or consequence of impaired maturation we 
examined gene expression changes 24 hr after acute proteolytic degradation of RAD21-TEV deple-
tion in post-mitotic neurons (Weiss et al., 2021). RNA-seq showed highly significant overlap in gene 
expression between acute degradation of RAD21-TEV and genetic cohesin depletion in Rad21lox/lox 
NexCre neurons (p<2.22e-16, odds ratio = 8.24 for all deregulated genes, odds ratio = 23.81 for down-
regulated genes; Figure 4a). Differentially expressed genes were enriched for ontologies related to 
synapse function, cell adhesion, and neuronal/nervous system development, and showed expression 
changes that were correlated across cohesin depletion paradigms (Synapse: p<2.22e−16, odds ratio 
= 11.26, RS = 0.62; Adhesion: p<2.22e−16, odds ratio = 15.21, RS = 0.6; Neuronal and nervous system 
development: p<2.22e−16, odds ratio = 9.92, RS = 0.58; Figure 4b). Notably, ARGs were enriched 
among deregulated genes in response to acute RAD21-TEV cleavage (p<2.22e-16, Odds Ratio = 

https://doi.org/10.7554/eLife.76539
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Figure 3. Cohesin contributes to the maturation of post-mitotic neurons. (a) Top: Schema of cortical layers (Greig et al., 2013) showing subplate (SP), 
layer 6 (VI), layer 5 (V), the cortical plate (CP), and the marginal zone (MZ). Middle: Immunofluorescence analysis of the neuronal transcription factors 
CUX1, TBR1, and CTIP2 at E16.5. Scale bar = 100 μm. Representative of three biological replicates. Bottom: Quantification of TBR1+ and CTIP2+ neurons 
in the subplate (SP) and in layers 5 and 6 (LV and VI). Neuron counts per 150 × 300 μm field are shown for five comparable sections from two embryos 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.76539
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per genotype. Mean ± SE, *** adj. p<0.0001, two-way ANOVA with Sidak’s multiple comparisons test. (b) Morphology of E18.5 neurons after 1d in 
explant culture. Immunofluorescence staining for the pan-neuronal marker MAP2, tubulin beta 3 (TUBB3), and DAPI. Scale bar = 20 μm. (c) Morphology 
of Rad21+/+ NexCre and Rad21lox/lox NexCre cortical neurons in explant culture on rat glia (Kaech and Banker, 2006). Cultures were sparsely labeled with 
GFP to visualize individual cells and their processes, and stained for GAD67 to exclude GABAergic neurons. Dendritic traces of GFP+ neurons. Scale bar 
= 50 μm. (d) Sholl analysis of Rad21+/+ NexCre and Rad21lox/lox NexCre cortical neurons in explant cultures shown in (c). Shown is the number of crossings, 
dendritic length, terminal points, and branch points per 10 μm. Three independent experiments, 32 Rad21lox/lox NexCre and 28 Rad21+/+ NexCre neurons. 
* adj. p<0.05, ** adj. p<0.01, *** adj. p<0.001, **** adj. p<0.0001. Scale bar = 10 μm. (e) Quantification of spines per 10 μm for Rad21+/+ NexCre and 
Rad21lox/lox NexCre cortical neurons. Two independent experiments, 10 Rad21lox/lox NexCre and 10 Rad21+/+ NexCre neuron. **** adj. p<0.0001. Scale bar = 
10 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Figure 3: Cohesin contributes to the maturation of post-mitotic neurons.

Figure supplement 1. Impact of cohesin loss in immature post-mitotic neurons in vivo.

Figure 3 continued
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Figure 4. Acute cohesin depletion deregulates ARG expression. (a) Western blot documenting acute RAD21 depletion by 4-OHT-inducible RAD-TEV 
cleavage (left). GSEA of the gene set downregulated (DEseq2, adj. p<0.05) in RAD21-TEV neurons in Rad21lox/lox NexCre neurons (center). GSEA of 
genes downregulated in Rad21lox/lox NexCre neurons (DEseq2, adj. p<0.05) in RAD21-TEV neurons (right). NES: normalized enrichment score. FDR: false 
discovery rate. (b) Scatter plots of gene expression within aggregate GO terms, comparing RAD21-TEV with Rad21lox/lox NexCre neurons. Genes that were 
found deregulated in at least one of the genotypes are shown. p-values and odds ratios refer to the probability of finding the observed patterns of co-
regulation by chance. RS: Spearman’s rank coefficient. (c) Deregulation of constitutive and activity-regulated genes 24 hr after acute cohesin depletion 
by inducible proteolytic cleavage of RAD21-TEV; adj. p<0.05 based on DEseq2 analysis of three RNA-seq replicates per experiment. Blue indicates 
downregulation and yellow indicates upregulation in RAD21-TEV versus wild type. Two independent experiments are shown (Weiss et al., 2021 and 
Supplementary file 4).
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6.48), and were preferentially downregulated (Figure 4c). Thus, we conclude that activity-regulated 
genes and genes that facilitate neuronal maturation and homeostasis are directly affected by the 
acute depletion of cohesin, and not just as a result of impaired neuronal maturation.

Activity-regulated gene classes differ with respect to their reliance on 
cohesin
The disruption of baseline ARG expression suggested that cohesin-deficient neurons may be unable 
to induce the same activity-dependent gene expression program as wild-type neurons. To address this 
possibility, we performed RNA-seq of neuronal explant cultures treated either with tetrodotoxin +D-
AP5 (TTX) alone to block neuronal signaling, or treated with TTX followed by 1 or 6 hr of sustained 
KCl exposure to induce neuronal depolarization. The fraction of constitutive genes deregulated in 
Rad21lox/lox NexCre versus control neurons remained similar across conditions (baseline, TTX, 1 hr and 
6 hr KCl, Figure 5a, top). By contrast, approximately 50% (154/305) of ARGs (Kim et al., 2010) were 
downregulated in Rad21lox/lox NexCre versus control neurons under baseline conditions (Figure  5—
figure supplement 1a). Of these, 76 were induced to control expression levels by KCl in Rad21lox/lox 
NexCre neurons, while 29% failed to reach control levels, and 16% were expressed at increased levels 
(Figure 5—figure supplement 1a). Multifactor analysis and hierarchical clustering (Figure 5—figure 
supplement 1b) showed that baseline ARG expression was more similar to TTX in Rad21lox/lox NexCre 
than in control neurons. This was confirmed by dendrogram distances (Figure 5—figure supplement 
1c) and principal component analysis (Figure 5—figure supplement 1d), and statistically validated by 
the fraction of ARGs that changed expression between baseline and TTX conditions (49.5% in control 
neurons versus 28.5% in Rad21lox/lox NexCre neurons; p=5.89e-11, Figure 5—figure supplement 1e). 
Taken together, these data show that ARG expression is reduced in Rad21lox/lox NexCre neurons under 
baseline conditions, but remains responsive to activation. Among neuronal ARG classes, IEGs and 
LRGs are known to differ in their 3D connectivity in that LRGs engage in longer-range chromatin 
contacts than IEGs in primary cortical neurons (Beagan et al., 2020; see methods for the definition 
of IEGs and LRGs). However, the functional consequences of this difference in 3D connectivity remain 
to be explored. We therefore asked whether IEGs and LRGs differ with respect to their reliance on 
cohesin. While IEGs were induced to at least wild-type levels in cohesin-deficient neurons by stimula-
tion with KCl (Figure 5a) or BDNF (Figure 5b), a substantial fraction of LRGs remained downregulated 
in cohesin-deficient neurons across conditions (Figure 5c). To test whether the expression of LRGs 
that remained downregulated in cohesin-deficient neurons across conditions was indeed cohesin-
dependent, we restored RAD21 levels following transient proteolytic cleavage of RAD21-TEV. We 
found that the expression of LRGs was rescued by restoration of RAD21 (Figure 5d). These data show 
that there are two classes of ARGs: (i) IEGs/LRGs that exhibit altered baseline expression but can 
fully regain expression in response to activation, and (ii) a subset of LRGs that remain deregulated in 
response to activation.

Cohesin-dependent neuronal genes have longer chromatin loops
To explore features that may explain why a subset of ARG requires cohesin for full expression we 
analyzed ChIP-seq data for cohesin and CTCF binding to ARG promoters in wild-type neurons. ARG 
promoters are enriched for binding of CTCF (OR = 1.621, p=0.022, two-tailed Fisher Exact Test), 
the cohesin subunit RAD21 (OR = 1.866, p=0.005), and cohesin in the absence of CTCF (cohesin-
non-CTCF, OR = 1.621, p=0.022) compared to non-ARGs expressed in cortical neurons. Within the 
ARG gene set, however, there were no significant differences in CTCF, RAD21, or RAD21-non-CTCF 
ChIP-seq binding at the promoters of IEGs (which as a group remained fully inducible in cohesin-
deficient neurons), the subset of LRGs that were downregulated across conditions in Rad21 NexCre 
neurons (both TTX and 6 hr KCl, adj p<0.05), and LRGs that remained fully inducible across condi-
tions in Rad21 NexCre neurons (both TTX and 6 hr KCl, adj p>0.05, Figure 6—figure supplement 
1a). Therefore, while ARG promoters are enriched for CTCF, RAD21, and cohesin-non-CTCF binding, 
this binding is not predictive of which ARGs remain fully inducible, and which are downregulated in 
cohesin-deficient neurons.

To test whether cohesin-dependence of ARG regulation might instead be linked to the genomic 
range of chromatin loops formed by these genes we analyzed high-resolution cortical neuron Hi-C 
data (Bonev et al., 2017). We found that the subset of LRGs that required cohesin for full expression 

https://doi.org/10.7554/eLife.76539
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Figure 5. Activity-regulated neuronal gene (ARG) classes differ in their reliance on cohesin. (a) Pie charts show the expression of constitutive genes (top), 
immediate early genes (IEGs) (center), and late response genes (LRGs) (bottom) in Rad21 NexCre neurons under four different conditions: baseline, TTX 
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Note that KCl stimulation normalizes the expression of most (10 out of 11) IEGs downregulated in TTX, but a fraction of LRGs remain downregulated. 

Figure 5 continued on next page
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in TTX and full induction by 6 hr KCl (adj p<0.05) formed significantly longer Hi-C loops than IEGs and 
LRGs that were not deregulated across conditions (TTX and 6 hr KCl, adj p>0.05) in Rad21 NexCre 
neurons (Figure 6a). Chromatin loops with CTCF binding at one or both loop anchors were also signifi-
cantly longer for cohesin-dependent LRGs than for IEGs and cohesin-independent LRGs (Figure 6a, 
red). Chromatin loops that connect promoters with inducible enhancers also tended to span larger 
genomic distances at downregulated LRGs compared to IEGs or non-deregulated LRGs, even though 
due to the limited numbers of enhancer-promoter loops associated with each LRG class, these trends 
do not reach statistical significance (Figure 6a, blue). Overall, the degree to which ARGs depend on 
cohesin for their correct expression correlates with the length of chromatin loops they form.

We next addressed whether cohesin/CTCF binding or chromatin loop length were important 
factors for the impact of cohesin on the expression of additional neuronal genes. We focused on the 
neuronal GO terms ‘synaptic transmission’ (GO:0007268) and ‘glutamate receptor signaling pathway’ 
(GO:0007215) because these gene ontologies were highly enriched among downregulated genes 
both in acute RAD21-TEV cleavage and genetic cohesin depletion, and remained enriched across 
conditions in Rad21 NexCre neurons (GO:0007268: 87 of 519 genes downregulated at 6 hr KCl, adj. 
p<0.05, p-value for enrichment = 2.99E-07; GO:0007215: 21 of 68 genes downregulated at 6 hr KCl, 
adj p<0.05, p-value for enrichment = 6.46E-06). The majority of synaptic transmission and glutamate 
receptor signaling genes are classified as constitutive (62.7% of expressed and 59.8% of downregu-
lated GO:0007268 and GO:0007215 genes across conditions), rather than activity-regulated (1.8% of 
expressed and 1.2% of downregulated GO:0007268 and GO:0007215 genes cross conditions), thus 
complementing the analysis of ARGs. Of note, restoration of RAD21 after transient depletion in the 
RAD21-TEV system rescued the expression of 90% (70 of 77) downregulated synaptic transmission 
and glutamate receptor signaling genes (Figure  6b), confirming that their expression was indeed 
dependent on cohesin.

As described above for ARGs, the TSSs of neuronal GO term genes related to synaptic transmis-
sion and glutamate receptor signaling were enriched for binding of CTCF (OR = 1.409, p<0.0001, 
two-tailed Fisher Exact Test), RAD21 (OR = 1.745, p<0.0001), and cohesin-non-CTCF (OR = 1.585, 
p<0.0001) cCompared to the remaining expressed genes in cortical neurons. However, and again as 
described above for ARGs, the binding of CTCF, RAD21, or cohesin-non-CTCF to the promoters of 
neuronal GO term genes did not predict which neuronal GO term genes remained expressed at wild-
type levels, and which were downregulated in Rad21 NexCre neurons (Figure 6—figure supplement 
1b).

Notably, however, synaptic transmission and glutamate receptor signaling genes that were down-
regulated in Rad21lox/lox NexCre neurons engaged in significantly longer-range chromatin loops than 
genes that were either not deregulated or upregulated (Figure 6c, black, strip plots show the expres-
sion of the depicted GO term genes in control and Rad21lox/lox NexCre neurons). As with ARGs, this 
pattern extended to Hi-C loops with CTCF binding at one or both loop anchors (Figure 6c, red). 
The subset of synaptic transmission and glutamate receptor signaling genes that were downregu-
lated in Rad21lox/lox NexCre neurons formed significantly longer Hi-C loops connecting promoters and 
enhancers than genes in the same gene ontologies that were not deregulated (p<0.0001) or upreg-
ulated (p<0.0001) in Rad21 NexCre neurons (Figure 6c, blue). These data extend the relationship 

p-values test the prevalence of deregulated genes in each class under each condition, two-sided Fisher exact test. (b) Pie charts show the expression 
of IEGs (top) and LRGs (bottom) in RAD21-TEV neurons under baseline conditions 24 hr after ERt2-TEV induction and in response to BDNF (120 min). 
RAD21-TEV cleavage led to the downregulation (adj. p<0.05) of 13 out of 18 expressed IEGs and of 23 out of 101 expressed LRGs. p-values test the 
prevalence of downregulated IEGs and LRGs with and without BDNF stimulation, two-tailed Fisher exact test. Note that BDNF stimulation reversed the 
downregulation of IEGs but not LRGs in cohesin-depleted neurons. (c) Strip plots depict the expression of IEGs, LRGs that are downregulated in Rad21 
NexCre neurons compared to control across conditions (TTX and 6 hr KCl), and LRGs that are not downregulated in Rad21 NexCre neurons compared 
to control across conditions. (d) Transient cohesin depletion and re-expression as in Figure 1—figure supplement 2. Pie charts show the expression 
of LRGs in RAD21-TEV relative to control neurons. 24 out of 97 LRGs expressed in RAD21-TEV neurons were downregulated 24 hr after Dox-dependent 
TEV induction (adj. p<0.05). The downregulation of LRGs was reversible upon Dox washout and restoration of RAD21 expression.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Figure 5: Activity-regulated neuronal gene (ARG) classes differ in their reliance on cohesin.

Figure supplement 1. Gene expression and genotype interaction analysis.

Figure 5 continued
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Figure 6. The genomic distance traversed by chromatin contacts formed by neuronal genes predicts whether or not cohesin is required for their 
full expression. (a) The span of Hi-C loops (left), Hi-C loops with CTCF bound to at least one of the loop anchors (middle) and Hi-C loops between 
promoters and inducible enhancers (right) for Immediate early genes (IEGs) (n=18) and late response genes (LRGs) downregulated in Rad21 NexCre 
versus control neurons in both resting (TTX) and activation conditions (6 hr KCl, adj p<0.05 in both TTX and 6 hr KCl conditions, n=22, ‘Downreg. LRG’), 
and LRGs not deregulated in either resting (TTX) or activation conditions (6 hr KCl, adj p>0.05 in both TTX and 6 hr KCl conditions) in Rad21 NexCre 
relative to control neurons (adj. p>0.05, n=43, 'Non-dereg. LRG’). Box plots show the longest loop for each gene rather than average loop length, as 
Hi-C loop calling at 10 kb resolution precludes detection of loops <40 kb (Beagan et al., 2020). However, analysis of average loop length confirmed 
that downregulated genes form longer loops than non-deregulated genes among both ARGs and neuronal GO term genes (p=0.0056 and p<0.0001, 
respectively). Genes without loops are included except for analysis of enhancer loops. Box plots show the longest loop recorded for each gene. Boxes 
show upper and lower quartiles and whiskers show 1.5 of the interquartile range. p-values were determined by non-parametric Kolmogorov-Smirnov 
test. Strip plots depict the expression of IEGs, downregulated LRGs, and non-deregulated LRGs in wild-type and Rad21 NexCre neurons. (b) Transient 
cohesin depletion and re-expression as in Figure 1—figure supplement 2. Pie charts show the expression of neuronal genes related to synaptic 
transmission (GO:0007268) and glutamate receptor signaling pathway (GO:0007215). 77 out of 583 expressed genes in these GO terms (Neur. GO 
term genes) were downregulated 24 hr after Dox-dependent TEV induction (adj. p<0.05). The downregulation of 76 of 77 neuronal GO term genes 
was reversible upon Dox washout and restoration of RAD21 expression, an additional 6 genes were downregulated after Dox washout but not at 24 hr 
of TEV induction. (c) The span of Hi-C loops (left), Hi-C loops with CTCF bound to at least one of the loop anchors (middle) and Hi-C loops between 

Figure 6 continued on next page
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between chromatin loop length and cohesin-dependent expression from ARGs to constitutively 
expressed neuronal genes.

Cohesin is not essential for short-range loops between inducible 
enhancers and promoters at the activity-regulated Fos and Arc loci
Typical IEG enhancers such as Fos and Arc enhancers are fully accessible prior to stimulation (Carullo 
et al., 2020), and show increase H3K27ac and eRNA transcription in response to neuronal activation 
(Malik et al., 2014; Kim et al., 2010; Beagan et al., 2020; Joo et al., 2016; Carullo et al., 2020). 
To examine the contribution of enhancer activation and enhancer-promoter contacts to inducible 
ARG expression in Rad21lox/lox NexCre neurons we focused on the immediate early response gene Fos. 
Fos expression in Rad21lox/lox NexCre neurons was reduced at baseline and in the presence of TTX, but 
Fos expression remained fully inducible when Rad21lox/lox NexCre neurons were stimulated with KCl 
(Figure 7a) or with BDNF (Figure 7—figure supplement 1). The transcription of neuronal genes is 
controlled by neuronal enhancers (Rajarajan et al., 2016; Yamada et al., 2019; Sams et al., 2016; 
Kim et al., 2010; Malik et al., 2014; Schaukowitch et al., 2014; Beagan et al., 2020). Neuronal 
Fos enhancers in particular have been extensively characterized (Joo et al., 2016; Beagan et al., 
2020), and interference with Fos enhancers precludes full induction of Fos gene expression (Joo 
et al., 2016). Fos enhancers 1, 2, and 5 are known to undergo activation-induced acetylation of H3K27 
(H3K27ac) and active eRNA transcription in response to KCl stimulation (Joo et al., 2016). We found 
that activation-induced transcription of Fos enhancers did remain intact in Rad21lox/lox NexCre neurons 
(Figure 7b) and activation-induced H3K27ac of Fos enhancers was also preserved (Figure 7c).

Given that Fos can be fully induced, and Fos enhancers are activated in the absence of cohesin, we 
next set out to understand if Fos can form previously reported looping interactions with its activity-
stimulated enhancers (Beagan et al., 2020). We conducted 5 C to generate 10 kilobase resolution 
maps of chromatin loops around key IEGs and LRGs. Consistent with previous data (Beagan et al., 
2020), Fos enhancers 1 and 2, which are located ~18 and ~ 38.5 kb upstream of the Fos TSS, showed 
inducible chromatin contacts with the Fos promoter that formed rapidly in response to activation of 
wild-type neurons (Figure 7d). Unexpectedly, Rad21lox/lox NexCre neurons retained the ability to robustly 
and dynamically induce loops between the Fos promoter and Fos enhancers 1 and 2 (Figure 7d). 
Quantification showed that inducible enhancer-promoter contacts at the Fos locus were of compa-
rable strength in control and Rad21lox/lox NexCre neurons (Figure 7e, top and center), while a struc-
tural CTCF-based loop surrounding the Fos locus was substantially weakened (Figure 7e, bottom). 
Together these results reveal the surprising finding that the critical activity-stimulated IEG Fos can 
fully activate expression levels and form robust enhancer-promoter loops in the absence of cohesin.

We also examined the long-range regulatory landscape of the IEG Arc. The expression of the IEG 
Arc was reduced in Rad21lox/lox NexCre neurons at baseline, but, like Fos, Arc remained inducible by 
stimulation with KCl (Figure 7—figure supplement 2a, top) and BDNF (Figure 7—figure supple-
ment 2a, bottom). Stimulation of wild-type neurons is known to trigger the formation of chromatin 
contacts between the Arc promoter and an Arc-associated activity-induced enhancer located ~15 kb 
downstream of the Arc TSS (Beagan et al., 2020; Figure 7—figure supplement 2b). As observed for 
Fos, Arc promoter-enhancer contacts were retained in Rad21lox/lox NexCre neurons (Figure 7—figure 
supplement 2b, c), while CTCF-based loops surrounding the Arc locus were weakened (Figure 7—
figure supplement 2b, c). In contrast to control neurons, Arc promoter-enhancer contacts became at 

promoters and constitutive or inducible enhancers (right) for genes in the neuronal GO terms synaptic transmission and glutamate receptor signaling. 
Gene expression in Rad21 NexCre versus control neurons was assessed in both resting and activation conditions: not deregulated in TTX or 6 hr KCl, 
n=401, Downregulated in both TTX and 6 hr KCl, n=85, Upregulated in both TTX and 6 hr KCl, n=41. Genes do not form loops are included except for 
analysis of enhancer loops. Boxes show upper and lower quartiles and whiskers show 1.5 of the interquartile range. p-values were determined by non-
parametric Kolmogorov-Smirnov test. Strip plots show the expression of the depicted GO term genes in control and Rad21 NexCre neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Figure 6: The genomic distance traversed by chromatin contacts formed by neuronal genes predicts whether or not cohesin is required 
for their full expression.

Figure supplement 1. Promoter binding of CTCF or cohesin does not distinguish cohesin-dependent from cohesin-independent genes.

Figure 6 continued
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Figure 7. Fos enhancer-promoter contacts are robustly induced in cohesin-deficient neurons. (a) Expression of the immediate early genes (IEG) Fos 
at baseline, after TTX/D-AP5 (TTX), and KCl-stimulation (left, mean log2-transformed counts from 3 biological replicates, * adj. p<0.05). (b) Enhancer 
transcripts in control and Rad21lox/lox NexCre neurons were quantified based on normalized RNA-seq reads within 1 kb of the enhancer. An intergenic 
region on chr11 was used as a negative control (71.177.622–71.177.792) . (c) H3K27ac ChIP normalized to H3 in control and Rad21lox/lox NexCre neurons 
at a control site, Fos enhancer 1 and Fos enhancer 2 after TTX/D-AP5 (TTX) or 1 hr KCl (KCl). (d) Interaction frequency (top) and interaction score 
(bottom) heatmaps of the region immediately surrounding Fos obtained by 5C analysis of chr12 86201802–87697802 (Beagan et al., 2020). Black 
frames highlight interactions between the Fos gene and upstream enhancers 1 and 2. CTCF ChIP-seq in cortical neurons (Bonev et al., 2017) is 
shown for orientation and H3K27ac ChIP-seq in inactive (TTX-treated) and activated neurons is shown to annotate enhancer regions (Beagan and 
Phillips-Cremins, 2020; Beagan et al., 2020). RNA-seq in TTX-treated and 1 hr KCl-activated control and Rad21lox/lox NexCre neurons shows KCl-
inducible transcription of Fos enhancers in wild -type and cohesin-deficient neurons. Two independent biological replicates are shown in Figure 7—
figure supplement 3a. (e) Quantification of the interaction frequencies between the Fos promoter and Fos enhancer 1 (top), the Fos promoter and 
Fos enhancer 2 (middle), and CTCF-marked boundaries of the sub-TAD containing Fos (bottom, grey arrowhead). Two replicates per genotype and 
condition.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Figure 7: Fos enhancer-promoter contacts are robustly induced in cohesin-deficient neurons.

Figure supplement 1. Inducible gene expression in cohesin-deficient neurons.

Figure supplement 2. Contacts between the Arc promoter and an inducible enhancer in wild -type and cohesin-deficient neurons.

Figure supplement 3. Replicate 5 C experiments.

https://doi.org/10.7554/eLife.76539
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least partially independent of activation in Rad21lox/lox NexCre neurons (Figure 7—figure supplement 
2b, c). Hence, cohesin is required for the correct baseline expression of ARGs, but largely dispensable 
for inducible transcription and for specific enhancer-promoter contacts at the IEGs Fos and Arc.

Cohesin-dependent long-range looping at the Bdnf locus
In contrast to IEGs Fos and Arc, the LRG Bdnf has at least eight promoters that initiate transcription 
of distinct mRNA transcripts, all of which contain the entire open reading frame for the BDNF protein 
(Aid et  al., 2007). Bdnf promoter IV is specifically required for the neuronal activity-dependent 
component of Bdnf transcription in mouse cortical neurons (Hong et al., 2008). While overall Bdnf 
transcript levels were significantly reduced in Rad21lox/lox NexCre neurons only at baseline (log 2 FC = 
–1.16 adj p=0.003, Figure 8), Bdnf transcripts from the activity-dependent Bdnf promoter IV were 
specifically reduced in cohesin-deficient cortical neurons after 6 hr activation with KCl (log 2 FC = 
–1.26 adj p=9.24e-05) as well as baseline conditions (log 2 FC = –1.39 adj p=1.19e-05, Figure 8b). 
Bdnf promoter IV is located in the immediate vicinity of a strong CTCF peak in cortical neurons 
(Bonev et al., 2017; Figure 8c, bottom track). This CTCF peak forms the base of a constitutive loop 
between Bdnf promoter IV and an activity-induced enhancer located ~2 Mb upstream of the Bdnf 
gene (Figure 8c). The strength of this loop was substantially reduced in cohesin-deficient neurons 
(Figure 8c, quantification in Figure 8d). Hence, while the CTCF-based looping of Bdnf promoter IV to 
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Figure 8. Bdnf enhancer-promoter contacts are weakened in the absence of cohesin. (a) Total Bdnf transcripts at baseline, after TTX/D-AP5 (TTX), and 
KCl-stimulation (left, mean log2-transformed counts from three biological replicates, * adj. p<0.05). (b) Bdnf promoter IV transcripts at baseline, after 
TTX/D-AP5 (TTX), and KCl-stimulation (left, mean log2-transformed counts from three biological replicates, * adj. p<0.05). (c) Interaction frequency 
(top) and interaction score (bottom) heatmaps of the Bdnf region obtained by 5C analysis of chr2 107601077-110913077 (Beagan et al., 2020). CTCF 
ChIP-seq in cortical neurons (Bonev et al., 2017) and the position of Bdnf are displayed (top). Below: Zoom-in of constitutive Bdnf enhancer-promoter 
loop (gray frame). Shown on the side is H3K27ac ChIP-seq in resting and activated neurons, marking an activity-dependent enhancer, and CTCF 
ChIP-seq. RNA-seq in resting and activated wild-type and cohesin deficient neurons and CTCF ChIP-seq are shown underneath. A circle marks an 
inducible 1.68Mb 5C loop between Bdnf and an activity-induced enhancer (Bdnf enhancer 1 in Beagan et al., 2020). (d) Quantification of 5C interaction 
frequencies between Bdnf promoter IV and the activity-dependent enhancer. (e) Quantification of inducible 5C loop between Bdnf and Bdnf enhancer 1 
(Beagan et al., 2020).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Quantification of observed and distance-corrected loop strength.

https://doi.org/10.7554/eLife.76539
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a distant inducible enhancer is cohesin-dependent, the activity-regulated expression of the IEGs Fos 
and Arc is linked to enhancer-promoter loops that span limited genomic distances ( <40 kb) and can 
form independently of cohesin.

The formation of full-strength inducible loops at the Bdnf locus requires extended stimulation 
(6 hr, Beagan et al., 2020), which was not performed here. Formation of an inducible Bdnf loop was 
nevertheless discernible 1 hr after KCl stimulation (Figure 8c and e). Quantification shows that the 
inducible Bdnf loop increases in strength in response to KCl in wild-type but not in cohesin-deficient 
neurons (Figure 8c and e), indicating that formation of this loop requires cohesin. With ~1.68 Mb, 
the inducible Bdnf loop spans a substantially larger genomic distance than the enhancer-promoter 
loops at the IEGs Fos and Arc (Beagan et al., 2020). Because longer loops can be more difficult 
to detect due to distance-dependent background signal, we also analyzed loop strength corrected 
for the distance-dependent background signal. This analysis confirmed the cohesin-dependence of 
longer loops (Figure 8—figure supplement 1). The finding that long-range inducible loop formation 
at the Bdnf locus is cohesin-dependent supports the model that cohesin is required for the formation 
of longer chromatin loops.

Discussion
Given that mutations in cohesin and CTCF cause intellectual disability in humans (Deardorff et al., 
2018; Gregor et  al., 2013; Rajarajan et  al., 2016), the extent to which deficits in cohesin func-
tion alter neuronal gene expression remains a critical underexplored question. To define the role of 
cohesin in immature post-mitotic neurons we use experimental deletion of the cohesin subunit Rad21 
during a precise developmental window of terminal neuronal differentiation in vivo. We find impaired 
neuronal maturation and extensive downregulation of genes related to synaptic transmission, connec-
tivity, neuronal development, and signaling in Rad21lox/lox NexCre neurons. Such gene classes are central 
to neuronal identity, and their wide-spread downregulation is likely to contribute to the observed 
maturation defects of Rad21lox/lox NexCre neurons. Acute proteolysis of RAD21-TEV corroborated a 
prominent role for cohesin in the expression of genes that facilitate neuronal maturation, homeostasis, 
and activation.

We have recently shown that cohesin loss in macrophages results in severe disruption of anti-
microbial gene expression programs in response to macrophage activation (Cuartero et al., 2018). 
By contrast, cohesin loss only moderately affected genes constitutively expressed in uninduced and 
induced macrophages, supporting a model where cohesin-mediated loop extrusion is more important 
for the establishment of new gene expression than the maintenance of existing programs (Cuar-
tero et al., 2018). Here, we extend this model to post-mitotic neurons in the murine brain. The two 
major ARG classes, IEGs, and LRGs, were broadly downregulated in cohesin-deficient neurons at 
baseline. However, IEGs and a subset of LRGs remained fully inducible by KCl and BDNF stimulation 
in the absence of cohesin. IEG-encoded transcription factors such as the AP1 members encoded by 
Fos, FosB, and JunB facilitate the induction of LRGs (Malik et al., 2014). Our data show that IEG-
encoded transcription factors remain fully inducible in cohesin-deficient neurons. The failure to induce 
a subset of LRGs to wild-type levels is therefore not explained by a lack of IEG-encoded factors. This 
is in marked contrast to inducible gene expression in cohesin-deficient macrophages. A substantial 
number of LRGs in macrophages rely on the expression of early-induced interferons (IFN), which act 
in an autocrine and paracrine manner to support LRG induction (Glass and Natoli, 2016). Expression 
of IFN-dependent LRGs can be partially rescued by provision of exogenous IFN to cohesin-deficient 
macrophages (Cuartero et al., 2018).

The reliance of ARGs on cohesin for full activity-induced expression was linked to the scale of 
chromatin interactions as quantified by the analysis of Hi-C loops. The subset of LRGs that exhibit 
defects in inducibility in the absence of cohesin is characterized by longer-range chromatin loops 
than either IEGs or LRGs that remain fully inducible in the absence of cohesin. In addition to defective 
chromatin architecture, deregulated expression of a particular gene may also arise from disturbances 
in upstream regulatory mechanisms, such as the activity of specific signaling pathways, or the expres-
sion of particular transcription factors. We are not aware of signaling pathways that would unambig-
uously distinguish the subset of neuronal LRGs that are fully induced in the absence of cohesin from 
the subset of neuronal LRGs that remain deregulated in the absence of cohesin. As discussed above, 

https://doi.org/10.7554/eLife.76539
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TFs encoded by IEGs are required for the induction of LRGs. Of note, these IEGs are fully induced in 
cohesin-deficient neurons.

The relationship between loop length and cohesin-dependence of neuronal gene expression 
extends to constitutively expressed cell type-specific neuronal genes. Neuronal genes related to 
synaptic transmission and glutamate receptor signaling that were downregulated in cohesin-deficient 
neurons also engaged in significantly longer chromatin loops than genes in the same GO terms that 
were not deregulated.

A subset of looping interactions made by ARGs and neuron-specific genes involve distal enhancers, 
suggesting that one role for cohesin in the expression of these genes may be to facilitate enhancer-
promoter contacts. Our data indicate that specific enhancer-promoter loops at the key neuronal IEGs 
Fos and Arc can occur independently of cohesin in primary neurons. Fos enhancer-promoter loops 
remained responsive to environmental signals. Of note, Fos and Arc enhancer-promoter loops that 
were robust to cohesin depletion are relatively short-range ( <40 kb). By contrast, an inducible 1.68 Mb 
enhancer-promoter loop at the Bdnf locus, a constitutive chromatin loop between Bdnf promoter IV 
and an activity-induced enhancer, and all CTCF-based loops examined were substantial weakened in 
the absence of cohesin. While longer loops are inherently weaker than shorter loops, the observed 
differences in loop strength were robust to correction for the distance-dependent background signal. 
This indicates that our 5 C approach reliably quantifies the strength of both long and short loops.

In earlier studies, we found that contacts between the Lefty1 promoter and the +8 kb enhancer, and 
between Klf4 and enhancers at +53 kb remained intact in acutely cohesin-depleted ES cells (Lavag-
nolli et al., 2015). Synthetic activation of a Shh enhancer ~100 kb upstream of the TSS supported 
transcriptional activation of cohesin, while activation of a + 850 kb enhancer did not (Kane et al., 
2021). Analysis of engineered enhancer landscapes in K562 cells indicates graded distance effects: 
Enhancers at ≥100 kb and 47 kb were highly and moderately dependent on cohesin, respectively, while 
loss of cohesin actually increased target gene transcription for enhancer distances ≤11 kb (Rinzema 
et al., 2021). Finally, promoter capture Hi-C in cohesin-depleted HeLa cells indicates ranges of 104–
105 bp for retained and 105–106 bp for lost interactions (Thiecke et al., 2020). While these studies 
suggest that cohesin-dependence of chromatin contacts relates to genomic distance, they fail to link 
this observation to physiologically relevant gene expression. The new data described here demon-
strate scaling of cohesin-dependence with genomic distance in primary neurons, and, importantly, 
link this finding to critical genome functions, specifically the implementation of cell type-specific gene 
expression programs during neuronal maturation and activation.

An open question concerns the mechanisms of enhancer-promoter contacts in the absence of 
cohesin. Current models of 3D genome folding posit competition between two forces, cohesin-
mediated loop extrusion and condensate-driven compartmentalization (Rao et al., 2017; Nora et al., 
2017; Schwarzer et al., 2017; Beagan and Phillips-Cremins, 2020). RNAP2, Mediator, the transacti-
vation domains of sequence-specific transcription factors, and the C-terminal domain of the chromatin 
reader BRD4 are thought to support the formation of molecular condensates enriched for compo-
nents of the transcriptional machinery (Sabari et al., 2018; Boija et al., 2018; Rowley and Corces, 
2018; Hsieh et  al., 2020). The activation of inducible ARG enhancers involves dynamic H3K27ac 
(Beagan et al., 2020), recruitment of RNA polymerases, and active transcription (Joo et al., 2016). 
Our data show that H3K27ac and transcription remain inducible at Fos enhancers in Rad21lox/lox NexCre 
neurons, which could potentially contribute to loop formation. At the Arc locus, the persistence of an 
enhancer-promoter loop in unstimulated cohesin-deficient neurons would be consistent with a role for 
cohesin-mediated loop extrusion in chromatin state mixing, and the separation of enhancer contacts 
(Rao et al., 2017). Notably, enhancer-promoter contacts resist the inhibition of BET proteins (Crump 
et  al., 2021), selective degradation of BRD4 (Crump et  al., 2021), Mediator (El Khattabi et  al., 
2019; Crump et al., 2021), RNA Polymerase II (Thiecke et al., 2020), or inhibition of transcription (El 
Khattabi et al., 2019). These observations suggest that numerous components of the transcriptional 
machinery may redundantly support associations between active genes and regulatory elements 
(Sabari et al., 2018; Boija et al., 2018). Nevertheless, phase separation-like forces provide an attrac-
tive hypothesis for the manner by which cohesin-independent enhancer-promoter loops may form.

In summary, our data demonstrate that the extent to which the establishment of activity-dependent 
neuronal gene expression programs relies on cohesin-mediated loop extrusion depends at least in 
part on the genomic distances traversed by their long-range chromatin contacts.

https://doi.org/10.7554/eLife.76539
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Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus 
musculus)

Rad21lox

Rad21tm1.1Mmk DOI: 10.1038/nature10312 MGI:5293824

Genetic reagent (Mus 
musculus)

NexCre

Neurod6tm1(cre)Kan DOI: 10.1002/dvg.20256 MGI:2668659

Genetic reagent (Mus 
musculus)

Rpl22(HA)lox (RiboTag)
Rpl22tm1.1Psam DOI: 10.1073/pnas.0907143106 MGI:4355967

Genetic reagent (Mus 
musculus)

Rad21tev

Rad21tm1.1Kktk DOI: 10.1101/gad.605910 MGI:4840469

antibody anti-RAD21 (rabbit polyclonal) Abcam Cat #. ab154769
WB: (dilution 1:1000)
IF: (dilution 1:500)

antibody anti-LAMIN B (goat polyclonal) Santa Cruz Biotechnology Cat #. sc-6216 WB: (dilution 1:10,000)

antibody
anti-rabbit IgG (H + L) Alexa Fluor 680 (goat 
polyclonal) ThermoFisher Scientific Cat #. A-21109 WB: (dilution 1:10,000)

antibody
anti-goat IgG (H + L) Alexa Fluor 680 (donkey 
polyclonal) ThermoFisher Scientific Cat #. A-21084 WB: (dilution 1:10,000)

antibody anti-HA (rabbit polyclonal) Sigma Cat #. H6908 polysome immunoprecipitation

antibody anti-GFAP (rabbit polyclonal) Wako Cat #. Z0334 IF: (dilution 1:500)

antibody anti-MAP2 (chicken polyclonal) Abcam Cat #. ab611203 IF: (dilution 1:5000)

antibody anti-GAD67 (mouse monoclonal) Millipore Cat #. MAB5406 IF: (dilution 1:500)

antibody anti-HA (mouse monoclonal) Covance Cat #. MMS-101R IF: (dilution 1:1000)

antibody IBA1 (rabbit polyclonal) Wako Cat #. 019–19741 IF: (dilution 1:250)

antibody anti-TUBB3 (Tuj1, mouse monoclonal) Biolegend Cat #. 801,202 IF: (dilution 1:500)

antibody anti-gamma-H2AX (rabbit polyclonal) Bethyl Laboratories Cat #. A300-081A IF: (dilution 1:3000)

antibody
anti-Cleaved Caspase-3 (Asp175) (rabbit 
polyclonal) Cell signalling Cat #. 9,661 IF: (dilution 1:400)

antibody anti-TBR1 (rabbit polyclonal) Abcam Cat #. ab31940 IF: (dilution 1:1000)

antibody anti-CTIP2 (25B6, rat monoclonal) Abcam Cat #. ab18465 IF: (dilution 1:500)

antibody anti-CUX-1 (rabbit polyclonal) Santa Cruz Biotechnology Cat #. sc-13024 IF: (dilution 1:400)

antibody
anti–Phospho-Histone H3 S10 Alexa Fluor 647 
conjugate (rabbit polyclonal) Cell signalling Cat #. 9,716 IF: (dilution 1:50)

antibody
anti-rabbit IgG (H + L) Alexa Fluor 647 (goat 
polyclonal) ThermoFisher Scientific Cat #. A-21244 IF: (dilution 1:500)

antibody
anti-Rabbit IgG (H + L) Alexa Fluor 568 (goat 
polyclonal) ThermoFisher Scientific Cat #. A-11011 IF: (dilution 1:500)

antibody
goat anti-mouse IgG (H + L) Alexa Fluor 488 
(goat polyclonal) ThermoFisher Scientific A-11001 IF: (dilution 1:500)

antibody
anti-chicken IgY (H + L) Alexa Fluor 568 (goat 
polyclonal) Abcam ab175711 IF: (dilution 1:500)

Software, algorithm ImageJ software (http://imagej.nih.gov/ij/)

Software, algorithm GraphPad Prism software (https://graphpad.com)

Software, algorithm
FilamentTracer,
Imaris software, Bitplane AG https://imaris.oxinst.com

Software, algorithm GSEA Desktop v3.0 https://www.gsea-msigdb.org/gsea/index.jsp

Software, algorithm
Leica Application Suite X (LAS X, v2.7) 
software

https://www.leica-microsystems.com/​
products/microscope-software/p/leica-las-​
x-ls/

https://doi.org/10.7554/eLife.76539
https://doi.org/10.1038/nature10312
https://doi.org/10.1002/dvg.20256
https://doi.org/10.1073/pnas.0907143106
https://doi.org/10.1101/gad.605910
http://imagej.nih.gov/ij/
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm CellProfiler v2.2 https://cellprofiler.org

Software, algorithm Image Studio Software (v5.2)
Li-cor Image Studio https://www.licor.com/​
bio/image-studio/

 Continued

Mice
Mouse work was done under a UK Home Office project license and according to the Animals (Scientific 
Procedures) Act. Mice carrying the floxed Rad21 allele (Rad21lox, Seitan et al., 2011), in combination 
with the Cre recombinase in the Nex locus (Goebbels et al., 2006) and where indicated Rpl22(HA)lox/

lox RiboTag (Sanz et al., 2009) were on a mixed C57BL/129 background. For timed pregnancies the 
day of the vaginal plug was counted as day 0.5. Genotypes were determined by PCR as previously 
reported (Seitan et al., 2011; Sanz et al., 2009). Rad21tev/tev mice have been described (Tachibana-
Konwalski et al., 2010; Weiss et al., 2021).

Neuronal cultures
For NexCre experiments, mouse cortices were dissected and dissociated from individual E17.5–E18.5 
mouse embryos as described (Beaudoin et al., 2012) with minor modifications. Dissociated neurons 
were maintained in Neurobasal medium with B27 supplement (Invitrogen), 1 mM L-glutamine, and 
100 U/mL penicillin/streptomycin for 10 days in vitro. Cells were plated at a density of 0.8 × 106 cells 
per well on six-well plates pre-coated overnight with 0.1  mg/ml poly-D-lysine (Millipore) and one 
third of the media in each well was replaced every 3 days. Cultures were treated with 5 μM Cytosine 
β-D-arabinofuranoside (Ara-C, Sigma) from day 2–4. For immunofluorescence staining neurons were 
plated on 12 mm coverslips (VWR) coated with poly-D-lysine at a density of 0.1 × 106 cells per cover-
slip. For cell-type-specific isolation of ribosome-associated mRNA, neurons from both cortices from 
each individual mouse embryo were seeded in a 10 cm dish.

For RAD21-TEV experiments, mouse cortices were dissected and dissociated on E14.5–15.5 as 
described (Weiss et al., 2021). Neurons were maintained in Neurobasal medium with B27 supple-
ment (Invitrogen), 1 mM L-glutamine, and 100 U/ml penicillin/streptomycin. Cells were plated at a 
density of 1.25 × 105 /cm2 on 0.1 mg/ml poly-D-lysine (Millipore) coated plates, and half the media was 
replaced every 3 days. Cultures were treated with 5 μM Ara-C at day 5. For cleavage of RAD21-TEV, 
neurons were plated as described above and transduced at day 3 with lentivirus containing ERt2-TEV 
at a multiplicity of infection of one. For ERt2-TEV dependent RAD21-TEV degradation, neurons were 
treated on culture day 10 with 500 nM 4-hydroxytamoxifen (4-OHT) or vehicle (ethanol) for 24 hr.

For KCl depolarization experiments, neuronal cultures were pre-treated with 1 μM tetrodotoxin 
(TTX, Tocris) and 100  μM D-(-)–2-Amino-5-phosphonopentanoic acid (D-AP5, Tocris) overnight to 
reduce endogenous neuronal activity prior to stimulation. Neurons were membrane depolarized with 
55 mM extracellular KCl by addition of prewarmed depolarization buffer (170 mM KCl, 2 mM CaCl2, 
1 mM MgCl2, 10 mM HEPES pH 7.5) to a proportion of 0.43 volumes per 1 ml volume of neuronal 
culture medium in the well. For BDNF induction experiments, neuronal cultures were treated with 
BDNF (50 ng/ml) for the indicated period of time at 10 days in vitro.

For Sholl analysis, dissociated cortical neurons were cultured as described (Greig et al., 2013). 
Astroglial monolayers were adhered to culture dishes and cortical neurons to coverslips, which were 
then suspended above the glia. Primary cultures of glial cells were prepared from newborn rat cortices. 
Four days before neuronal culture preparation, glial cells were seeded in 12-well plates at a density of 
1 × 104 cells per well and one day before, the medium from the glial feeder cultures was removed and 
changed to neuronal maintenance medium for preconditioning. Mouse cortices were dissected from 
E17.5/E18.5 mouse embryos and kept up to 24 hr in 2 mL of Hibernate-E Medium (ThermoFisher) 
containing B27 supplement (Invitrogen) and 1 mM L-glutamine in the dark at 4 °C. Embryos were 
genotyped and the cortices from the desired genotypes were used to prepare neuronal cultures as 
described before. Neurons were plated on 24-well plates containing poly-D-lysine precoated 12 mm 
coverslips (VWR) at a density of 0.1 × 106 cells per well. Wax dots were applied to the coverslips, which 
served as ‘feet’ to suspend the coverslips above the glial feeder layer. 4 hr after neuronal seeding, 
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each coverslip containing the attached neurons was transferred upside down into a well of the 12-well 
dishes with the glial feeder. Cultures were treated with 5 μM Ara-C from day 2–4 and subsequently 
one third of the media was replaced every 3 days. For sparse neuronal GFP labeling, cortical neurons 
were transfected using 1 μg of peGFP-N1 plasmid along with 2 μl per well of Lipofectamine 2000 
(Invitrogen) after 12 days in culture. Cultures were maintained for 14 days in vitro before fixation.

RNA extraction and RT-qPCR
RNA was extracted with QIAshredder and RNeasy minikit (Qiagen). Residual DNA was eliminated 
using DNA-free kit (Ambion) and reverse-transcribed using the SuperScript first-strand synthesis 
system (Invitrogen). RT-PCR was performed on a CFX96 Real-Time System (Bio-Rad) with SYBR Green 
Master Mix (Bio-Rad) as per the manufacturer’s protocol and normalized to Ubc and Hprt mRNA 
levels. Relative level of the target sequence against the reference sequences was calculated using the 
ΔΔ cycle threshold method. RT–PCR primer sequences:

Gene Forward (5’- 3’) Reverse (5’- 3’)

Ubc ​AGGA​GGCT​GATG​AAGG​AGCTTGA ​TGGT​TTGA​ATGG​ATAC​TCTG​CTGGA

Hprt ​CCTG​CTAA​TTTT​ACTG​GCAA​CATCAACA ​TTGA​AATT​CCAG​ACAA​GTTT​GTTGTTGG

Rad21 ​AGCACCAGCAACCTGAATGA ​GATCGTCAAAGATGCCACCA

Arc ​TACC​GTTA​GCCC​CTAT​GCCATC ​TGAT​ATTG​CTGA​GCCT​CAACTG

Fos ​AATG​GTGA​AGAC​CGTG​TCAGGA ​TTGA​TCTG​TCTC​CGCT​TGGAGTGT

Cdkn1a ​GCAGACCAGCCTGACAGATT GAGGGCTAAGGCCGAAGA

Mdm2 ​TGTGTGAGCTGAGGGAGATG ​CACTTACGCCATCGTCAAGA

Cdkn2a AATCTCCGCGAGGAAAGC GTCTGCAGCGGACTCCAT

Cdkn2b ​AGACTGCAAGCACGAAGAGG ​TTGT​CTTA​CTGG​GTAG​GGTTCAA

Protein analysis
Whole cell extracts were prepared by resuspending cells in PBS with complete proteinase inhibitor 
(Roche, Cat#18970600), centrifugation, and resuspension in protein sample buffer (50 mM Tris-HCl 
pH 6.8, 1% SDS, 10% glycerol) followed by quantification using Qubit. Following quantification 
0.001% Bromophenol blue and 5% beta-mercaptoethanol were added. Sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) was carried out with the Bio-Rad minigel system. 
20 μg of protein sample and the benchmark pre-stained protein ladder (Biorad, #161–0374) were 
loaded on to a precast 10% polyacrylamide gel (Biorad, #456–1036). Resolved gels were blotted 
to a polyninylidene fluoride transfer membrane (Millipore, #IPVH00010) in transfer buffer (48  mM 
Trizma base, 39 mM glycine, 0.037% SDS, and 20% methanol) using the trans-blot semi-dry electro-
phoretic transfer apparatus (BioRad). Membranes were incubated for 1 hr with fluorescent blocker 
(Millipore, HC-08) followed by primary antibody incubation diluted in blocker at an appropriate dilu-
tion for 2 hr or at room temperature or overnight at 4 °C. Primary antibodies were rabbit polyclonal 
to RAD21 (1:1000; ab154769, Abcam), goat polyclonal to LAMIN B (1:10,000; sc-6216; Santa Cruz 
Biotechnology), mouse monoclonal anti-myc tag (1:500, SC-40, Santa Cruz Biotechnology). Secondary 
antibodies were goat anti-rabbit IgG (H + L) Alexa Fluor 680 (1:10,000; A-21109, ThermoFisher), 
goat anti-mouse IgG, Alexa Fluor 680 1:10,000, and donkey anti-goat IgG (H + L) Alexa Fluor 680 
(1:10,000; A-21084, ThermoFisher). Immobilon-FL PVDF membranes (Millipore) were imaged on an 
Odyssey instrument (LICOR).

Cell-type-specific isolation of ribosome-associated mRNA
For polysome immunoprecipitation experiments, homogenates from 10 day cortical explant cultures 
were prepared as described (Sanz et  al., 2009) with minor modifications. Cells were first washed 
two times on ice with 10 ml of PBS containing 100 μg/mL cycloheximide (Sigma). Cells were lysed in 
50 mM Tris pH 7.5, 100 mM KCl, 12 mM MgCl2 (ThermoFisher), 1% IGEPAL CA-630 (Sigma), 1 mM 
DTT (Sigma), 200 U/mL RNasin (ThermoFisher), 1 mg/mL heparin (Sigma), 100 μg/mL cycloheximide, 
1 x Protease inhibitor (Sigma) and homogenization with a motor-driven grinder and pestle for about 
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2 min. Samples were then centrifuged at 10,000 g for 10 min to create a postmitochondrial superna-
tant. For immunoprecipitations, 100 μL of Dynabeads Protein G (Invitrogen) were coupled directly to 
10 μL of rabbit anti-HA antibody (Sigma, H6908). After polysome immunoprecipitation, total RNA was 
prepared using a RNeasy Plus Mini kit (Qiagen).

RNAseq analysis
Total RNA was obtained in parallel from 10  day explant cultures of dissociated cortical neurons 
without stimulation (baseline); after overnight treatment with TTX and D-AP5 (TTX); and after over-
night treatment with TTX and D-AP5 and depolarization with KCl for 1 hr (KCl1h) or 6 hr (KCl6h). 
RNA was extracted with QIAshredder and RNeasy mini kit (Qiagen). RNA-seq libraries were prepared 
from 600 ng of total RNA (RNA integrity number (RIN) >8.0) with TruSeq Stranded Total RNA Human/
Mouse/Rat kit (Illumina). For polysome immunoprecipitation experiments, 300 ng of total RNA was 
used for library preparation (RIN >9.0). RNA from Rad21-TEV neurons was purified with a PicoPure 
RNA Isolation kit (Applied Biosystems KIT0204), and 200 ng of total RNA was used to prepare libraries 
using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (polyA enrichment), following 
the manufacturer recommendations. Library quality and quantity were assessed on a Bioanalayser and 
Qubit respectively. Libraries were sequenced on an Illumina Hiseq2500 (v4 chemistry) and at least 
40 million paired end 100 bp reads per sample were generated per library and mapped against the 
mouse (mm9) genome. The quality of RNA-seq reads was checked by Fastqc (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/) and aligned to mouse genome mm9 using Tophat version 
2.0.11 (Kim et  al., 2013) with parameters ‘library-type = fr-first-strand’. Gene coordinates from 
Ensembl version 67 were used as gene model for alignment. Quality metrics for the RNA-Seq align-
ment were computed using Picard tools verion 1.90 (https://broadinstitute.github.io/picard/) (Picard 
Toolkit, 2018). Genome wide coverage for each sample was generated using bedtools genomeCov-
erageBed and converted to bigwig files using bedGraphToBigWig application from UCSC Genome 
Browser. Bigwig files were visualised using IGV. After alignment, number of reads on the genes were 
summarized using HTSeq-count (version 0.5.4; Anders et  al., 2015). All downstream analysis was 
carried out in R (version 3.4.0). Differentially expressed genes between condition were determined 
using DESEq2 (Love et al., 2014). p-values calculated by DESeq2 were subjected to multiple testing 
correction using Benjamini-Hochberg method. Adjusted p-value of 0.05 was used to select the differ-
entially expressed genes. Principal Component Analysis (PCA) and hierarchical clustering of samples 
were done on the normalized read counts (rlog) computed using DESeq2. KCl-inducible genes were 
defined as genes in Rad21+/+ neurons with adjusted p<0.05 and log2 fold change ≥1 in KCl1h versus 
TTX or KCl6h versus TTX. As reference we used previously defined activity dependent genes (Kim 
et  al., 2010). Constitutive genes were defined as expressed genes in wild-type neurons with adj. 
p≥0.05 in KCl1h versus TTX and KCl6h versus TTX.

Definition of ARGs and ARG classes
Our initial analysis used inducible ARGs described (Kim et  al., 2010). The number of ARGs with 
assigned p-values across RNA-seq conditions was n=298 in the RiboTag RNA-seq of Rad21 NexCre 
neurons and n=305 in the RNA-seq analysis of Rad21 NexCre neurons. For the definition of ARG 
classes we used previously curated gene sets (Tyssowski et al., 2018). We refer to rapidly induced, 
translation-independent ARGs as early-induced IEGs (called rIEGs in Tyssowski et  al., 2018) and 
late-induced LRGs (LRGs are called translation-independent delayed PRGs and translation-dependent 
SRGs by Tyssowski et al., 2018; Beagan and Phillips-Cremins, 2020; Beagan et al., 2020). The 
number of IEGs is n=19 (Tyssowski et al., 2018, their Supplementary Table 5). Of these, n=18 had 
assigned p-values in all conditions of our RNA-seq analysis, as well as informative Hi-C data, and were 
included in our analysis. The number of fully annotated LRGs as defined by Tyssowski et al., 2018 
(their Supplementary Table 5) is n=149 (comprised of 113 delayed translation-independent PRGs and 
n=36 translation-dependent SRGs). Of these, the number of LRGs with assigned p-values across RNA-
seq conditions were n=107 in the RNA-seq analysis of Rad21 NexCre neurons, n=101 in the RNA-seq 
analysis of RAD21-TEV neurons, and n=99 in the RNA-seq analysis of transiently RAD21-depleted 
and subsequently reconstituted neurons. For inclusion in the comparison of chromatin loop length 
versus gene expression in cohesin-deficient neurons, ARGs had to meet the following criteria: (i) 
assigned p-values across RNA-seq conditions, (ii) downregulation or no deregulation across TTX and 
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KCl conditions (ARGs that were downregulated in either TTX or KCl but not in both were excluded), 
and (iii) informative Hi-C data had to be available for the genomic region of each gene. These condi-
tions were met by n=18 IEGs, n=22 downregulated LRGs, and n=43 non-deregulated LRGs.

GO term analysis
GO terms enriched among differentially expressed genes were identified using goseq R package 
(Young et  al., 2010) using all expressed genes in each comparison as background. GSEA was 
performed as described (Subramanian et al., 2005) using GSEA Desktop v3.0 (http://www.broadin-
stitute.org/gsea). ‘Wald statistics’ from DESeq2 differential expression analysis were used to rank the 
genes for GSEA. The gene set collections C2 (curated; KEGG 186 gene sets) and C5 (GO ontolo-
gies; 5,917 gene sets) were obtained from Molecular Signature Database (MSigDB version 6.1; Broad 
Institute, http://www.broadinstitute.org/gsea/msigdb). Neuron-specific genes were identified using 
Neutools (Gao et al., 2018).

Chromatin immunoprecipitation
ChIP was performed as described with minor modifications. Briefly, cells were cross-linked for 10 min 
at room temperature with rotation using 1% formaldehyde in cross-linking buffer (0.1 M NaCl, 1 mM 
EDTA, 0.5 mM EGTA and 25 mM HEPES-KOH, pH 8.0). The reaction was quenched using 125 mM 
glycine for 5 min with rotation and the cells were washed three times using ice-cold PBS containing 
complete protease inhibitor cocktail tablets (Roche). Cells were resuspended in lysis buffer (1% SDS, 
50 mM Tris-HCl pH 8.1, 10 mM EDTA pH 8) with EDTA-free protease inhibitor cocktail and incubated 
for 30 min on ice. Cell lysates were then sonicated 20 times at 4 °C (Bioruptor Plus, Diagenode, 30/30 
cycles) and centrifuged at 14,000 rpm for 1 min at 4 °C to remove cellular debris. 10% of total volume 
was taken as input. Input samples were reverse crosslinked overnight at 65 °C, then incubated for 1 hr 
with 9 mM EDTA pH 8, 3.6 mM Tris-HCl pH 6.8 and 36 μg/mL proteinase K at 45 °C. Input chromatin 
purification was performed using phenol-chloroform at 4 °C. Total chromatin was pre-cleared for 1 hr 
at 4 °C with rotation using protein A sepharose beads (P9424, Merck). 3 µg of anti-histone H3 (Abcam, 
ab1791) and 5 µg of anti-H3K27Ac (Active Motif, 39133) were added overnight at 4 °C with rotation. 
100 μL of protein A sepharose beads were added to each IP for at least 4 hr before being washed with 
low salt buffer (150 mM NaCl, 2 mM Tris pH 8.1, 0.1% SDS, 1% Triton X-100 and 2 mM EDTA pH 8), 
high salt buffer (500 mM NaCl, 20 mM Tris pH 8.1, 0.1% SDS, 1% Triton X-100 and 2 mM EDTA pH 
8), LiCl salt buffer (0.25 mM LiCl, 10 mM Tris pH 8.1, 1% NP-40, 1% sodium deoxycholate and 1 mM 
EDTA pH 8) and Tris-EDTA buffer (10 mM Tris pH 8.1 and 1 mM EDTA pH 8). Chelex-100 (Bio-Rad, 
catalog number #1421253) was added to the samples, which were then boiled and incubated for 1 hr 
at 55 °C with 36 μg/mL proteinase K and boiled once again. Samples were centrifuged at 12,000 rpm 
for 1 min and the beads washed once with nuclease-free water. The following PCR primers were used: 
Control region chr11: 71.177.622–71.177.792: forward, 5’-​CATT​​CCAG​​GGCA​​ACTC​​CACT​-3′, reverse, 
5’-​CAGG​​GGCT​​CCTG​​TACT​​ACCT​-3′; Fos enhancer 1 forward, 5′-​TCCG​​GTAA​​GGGC​​ATTG​​TAAG​-3′, 
reverse, 5′-​CAAA​​GCCA​​GACC​​CTCA​​TGTT​-3′; Fos enhancer forward, 5′-​TGCA​​GCTC​​TGCT​​CCTA​​CTGA​
-3′, reverse, 5′-​GAGG​​AGCA​​AGAC​​TCCC​​ACAG​-3′.

3C template generation
Neuronal cultures were fixed in 1% formaldehyde for 10 min (room temp) via the addition (1:10 vol/
vol) of the following fixation solution: 50  mM Hepes-KOH (pH 7.5), 100  mM NaCl, 1  mM EDTA, 
0.5 mM EGTA, 11% Formaldehyde. Fixation was quenched via the addition of 2.5 M glycine (1:20 vol/
vol) and scraped into pellets. Each pellet was washed once with cold PBS, flash frozen, and stored 
at –80 °C. For each condition, in situ 3 C was performed on two replicates of 4–5 million cells as 
described (Beagan et al., 2020). Briefly, cells were thawed on ice and resuspended (gently) in 250 μL 
of lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% Igepal CA630) with 50 μL protease inhibitors 
(Sigma P8340). Cell suspension was incubated on ice for 15 min and pelleted. Pelleted nuclei were 
washed once in lysis buffer (resuspension and spin), then resuspended and incubated in 50 μL of 0.5% 
SDS at 62 °C for 10 min. SDS was inactivated via the addition of 145 μL H2O, 25 uL 10% Triton X-100, 
and incubation at 37 °C for 15 min. Subsequently, chromatin was digested overnight at 37 °C with 
the addition of 25 μL 10 X NEBuffer2 and 100 U (5 μL) of HindIII (NEB, R0104S), followed by 20 min 
incubation at 62 °C to inactivate the HindIII. Chromatin was re-ligated via the addition of 100 μL 10% 
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Triton X-100, 120 μL NEB T4 DNA Ligation buffer (NEB B0202S), 12 μL 10 mg/mL BSA, 718 μL H2O, 
and 2000 U (5 μL) of T4 DNA Ligase (NEB M0202S) and incubation at 16 °C for 2 hr. Following ligation 
nuclei were pelleted, resuspended in 300 μL of 10 mM Tris-HCl (pH 8.0), 0.5 M NaCl, 1% SDS, plus 
25 μL of 20 mg/mL proteinase K (NEB P8107), and incubated at 65 °C for 4 hr at which point an addi-
tional 25 μL of proteinase K was added and incubated overnight. 3 C templates were isolated next 
day via RNaseA treatment, phenol-chloroform extraction, ethanol precipitation, and Amicon filtration 
(Millipore MFC5030BKS). Template size distribution and quantity were assessed with a 0.8% agarose 
gel.

5C library preparation
5 C primers which allow for the query of genome folding at ultra-high resolution but on a reduced subset 
of the genome were designed according to the double-alternating design scheme (Kim et al., 2018b; 
Beagan et al., 2020) using My5C primer design (Lajoie et al., 2009; http://my5c.umassmed.edu/​
my5Cprimers/5C.php) with universal ‘Emulsion’ primer tails. Regions were designed to capture TAD 
structures immediately surrounding the genes of interest in published mouse cortex Hi-C data (Bonev 
et al., 2017). The following regions were analyzed in this paper: chr2 107601077–110913077, chr10 
107002896–109474896, chr12 86201802–87697802, chr15 73376037–74580037, chr17 89772409–
92148409, chrX 97543400–98835400. 5 C reactions were carried out as previously described (Beagan 
et al., 2020). 600 ng (~200,000 genome copies) of 3 C template for each replicate was mixed with 
1 fmole of each 5 C primer and 0.9 ug of salmon sperm DNA in 1 x NEB4 buffer, denatured at 95 °C for 
5 min, then incubated at 55 °C for 16 hr. Primers which had then annealed in adjacent positions were 
ligated through the addition of 10 U (20 μL) Taq ligase (NEB M0208L) and incubation at 55 °C for 1 hr 
then 75 °C for 10 min. Successfully ligated primer-primer pairs were amplified using primers designed 
to the universal tails (FOR = CCTC​TC T​ATGG​GCAG​TCGG​TGAT​, REV = ​CTGC​​CCCG​​GGTT​​CCTC​​ATTC​​
TCT) across 30 PCR cycles using Phusion High-Fidelity Polymerase. Presence of a single PCR product 
at 100 bp was confirmed via agarose gel, then residual DNA <100 bp was removed through Ampu-
reXP bead cleanup at a ratio of 2:1 beads: DNA (vol/vol). 100 ng of the resulting 5 C product was 
prepared for sequencing on the Illumina NextSeq 500 using the NEBNext Ultra DNA Library Prep Kit 
(NEB E7370) following the manufacturer’s instructions with the following parameter selections: during 
size selection, 70 μL of AMPure beads was added at the first step and 25 at the second step; linkered 
fragments were amplified using eight PCR cycles. A single band at 220 bp in each final library was 
confirmed using an Agilent DNA 1000 Bioanalyzer chip, and library concentration was determined 
using the KAPA Illumina Library Quantification Kit (#KK4835). Finally, libraries were evenly pooled and 
sequenced on the Illumina NextSeq 500 using 37 bp paired-end reads to read depths of between 11 
and 30 million reads per replicate.

5C interaction analysis
5  C analysis steps were performed as described (Gilgenast and Phillips-Cremins, 2019; Beagan 
et  al., 2020; Fernandez et  al., 2020). Briefly, paired-end reads were aligned to the 5  C primer 
pseudo-genome using Bowtie, allowing only reads with one unique alignment to pass filtering. Only 
reads for which one paired end mapped to a forward/left-forward primer and the other end mapped 
to a reverse/left-reverse primer were tallied as true counts. Primer-primer pairs with outlier count 
totals, resulting primarily from PCR bias, were identified as those with a count at least 8-fold higher 
(100-fold for the lower-quality Arc region) than the median count of the 5 × 5 subset of the counts 
matrix centered at the primer-primer pair in question; outlier counts were removed.

Primer-primer pair counts were then converted to fragment-fragment interaction counts by aver-
aging the primer-primer counts that mapped to each fragment-fragment pair (max of 2 if both a 
forward/left-forward and a reverse/left-reverse primer were able to be designed to both fragments 
and were not trimmed during outlier removal). We then divided our 5 C regions into adjacent 4 kb 
bins and computed the relative interaction frequency of two bins (i, j) by summing the counts of all 
fragment-fragment interactions for which the coordinates of one of the constituent fragments over-
lapped (at least partially) a 12 kb window surrounding the center of the 4 kb ith bin and the other 
constituent fragment overlapped the 12 kb window surrounding the center of the jth bin. Binned count 
matrices were then matrix balanced using the ICE algorithm69,71 and quantile normalized across all eight 
replicates (two per condition) within each experimental set (neuronal activation and cohesin-rescue 
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experimental datasets were quantile normalized separately) as previously described (Beagan et al., 
2020), at which point we considered each entry (i, j) to represent the Observed Interaction Frequency 
of the 4 kb bins i and j. Finally, the background contact domain ‘expected’ signal was calculated using 
the donut background mode (Su et al., 2017) and used to normalize the relative interaction frequency 
data for the background interaction frequency present at each bin-bin pair. The resulting background-
normalized interaction frequency (‘observed over expected’) counts were fit with a logistic distribution 
from which p-values were computed for each bin-bin pair and converted into ‘Background-corrected 
Interaction Scores’ (interaction score = –10*log2(p-value)), which have previously shown to be informa-
tively comparable across replicates and conditions (Beagan et al., 2020).

Identification of neuronal enhancers
H3K27Ac ChIP-Seq and corresponding input datasets (Malik et  al., 2014) were from NCBI GEO 
using accession GSE60192. The sra files were converted to fastq using sratoolkit and aligned to 
mouse genome mm9 using bowtie version 0.12.8 with default parameters (Langmead et al., 2009). 
Sequencing reads aligned to multiple positions in the genome were discarded. Duplicate reads were 
identified using Picard tools v 1.90 and removed from the downstream analysis. H3K27Ac peaks were 
identified using macs2 with ‘broad’ parameters (Zhang et al., 2008). Gene coordinates were obtained 
from Ensembl using ‘biomaRt’ R package (Durinck et  al., 2009) and enhancers were assigned to 
nearest genes using ‘nearest’ function from GenomicRanges R package (Lawrence et  al., 2013). 
Enhancers at Hi-C loop anchors were defined as reported previously (Beagan et al., 2020) and are 
provided there in Table S11.

Hi-C loop span analysis
Loops were called on mouse cortical neuron Hi-C data (Bonev et al., 2017) as described (Beagan 
et al., 2020, loop calls are provided as Table S16 in Beagan et al., 2020). Cortical neuron CTCF 
ChIP-seq (Bonev et  al., 2017) reads were downloaded from GEO accessions GSM2533876 and 
GSM2533877, merged, and aligned to the mm9 genome using Bowtie v0.12.7. Reads with more 
than two possible alignments were removed (-m2 flag utilized). Peaks were identified using MACS2 
version 2.1.1.20160309 with a p value cutoff parameter of 10−4. Loops were classified as ‘CTCF loops’ 
if a CTCF peak fell within at least one anchor of the loop. Loops were classified as enhancer-promoter 
loops if the TSS of a gene of interest fell within one loop anchor and the other anchor of the same 
loop contained an activity-induced enhancer (for ARGs) or a constitutive or activity-induced enhancer 
(for neuronal genes related to synaptic transmission and glutamate receptor signaling; Table S11 in 
Beagan et al., 2020). The span of loops with an anchor that contained the TSS of a gene of interest 
was quantified by calculating the genomic distance between the midpoint of the loop’s two anchors.

Immunocytochemistry
Neurons plated on coverslips were fixed with warmed to 37 °C PBS containing 4% paraformaldehyde 
and 4% sucrose for 10 min at room temperature. Neurons were then permeabilized with 0.3% Triton 
X-100 for 10 min and treated with blocking solution (10% normal goat serum, 0.1% Triton X-100 in PBS) 
for 1 hr. Primary and secondary antibodies were diluted in 0.1% Triton X-100, 2% normal goat serum 
in PBS. Appropriate primary antibodies were incubated with samples for 2 hr at room temperature or 
overnight at 4 °C. Primary antibodies used were specific to RAD21 (1:500; rabbit polyclonal ab154769, 
Abcam), MAP2 (1:5000; chicken polyclonal ab611203, Abcam), GAD67 (1:500; mouse monoclonal 
MAB5406, Millipore), HA (1:1000; mouse monoclonal MMS-101R, Covance), GFAP (1:500; rabbit 
polyclonal Z0334, Dako), or IBA1 (1:250; rabbit polyclonal 019–19741, Wako). Secondary antibodies 
were incubated for 1 hr at room temperature. Goat anti-rabbit IgG (H + L) Alexa Fluor 647 (A-21244, 
ThermoFisher), Goat anti-Rabbit IgG (H + L) Alexa Fluor 568 (A-11011, ThermoFisher), goat anti-
mouse IgG (H + L) Alexa Fluor 488 (A-11001, ThermoFisher), goat anti-chicken IgY (H + L) Alexa Fluor 
568 (ab175711, Abcam) conjugates were used at a 1:500 dilution. Cells were mounted in Vectashield 
medium containing DAPI (Vector Labs).

Embryonic brains were fixed for 4 hr in 4% paraformaldehyde in PBS, washed in PBS, transferred to 
15% sucrose in PBS for cryopreservation, embedded in OCT and stored at −80 °C until use. Coronal 
sections of 10 μm were cut with a Leica cryostat and mounted on glass slides. The sections were 
washed two times for 10 min in PBS, blocked with 0.3% TritonX-100, 5% normal goat serum in PBS, 

https://doi.org/10.7554/eLife.76539


 Research article﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Neuroscience

Calderon, Weiss, Beagan, et al. eLife 2022;11:e76539. DOI: https://​doi.​org/​10.​7554/​eLife.​76539 � 25 of 31

at room temperature and incubated overnight with the primary antibody solution. Sections were then 
washed three times for 10 min each in PBS and were incubated for 1 hr in the dark with the secondary 
antibody solution. The primary antibodies were specific to RAD21 (1:500; rabbit polyclonal ab154769, 
Abcam), anti-gamma-H2AX (1:3000; rabbit polyclonal A300-081A, Bethyl Laboratories), Cleaved 
Caspase-3 (Asp175) (1:400; rabbit polyclonal 9661, Cell signalling), TBR1 (1:1000; rabbit polyclonal 
ab31940, Abcam), CTIP2 (1:500; rat monoclonal [25B6] ab18465, Abcam), CUX-1 (1:400; rabbit poly-
clonal sc-13024, Santa Cruz), and anti phospho-histone H3 (Ser10) Alexa Fluor 647 conjugate (1:50; 
rabbit polyclonal 9716, Cell signalling). The secondary antibodies used are described in the previous 
section. Sections were mounted with Vectashield medium containing DAPI.

Confocal image analysis and quantification
For quantification analysis of RAD21 negative neurons and inhibitory neurons (GAD67+) images (1024 
× 1024 pixels) were acquired using TCS SP5 confocal microscope (Leica Microsystems), using a HCX PL 
APO CS 40 x/1.25 lens at zoom factor 1 (373 nm/pixel). Images were acquired with identical settings 
for laser power, detector gain, and amplifier offset, with pinhole diameters set for one airy unit. DAPI-
identified nuclei that colocalized with the GAD67 signal, or without RAD21 signal were counted as 
inhibitory or RAD21 negative neurons, respectively; and were quantified using a processing pipeline 
developed in CellProfiler (version 2.2, Broad Institute, Harvard, Cambridge, MA, USA, https://cellpro-
filer.org/). For astrocytes (GFAP+) and microglia (IBA1+) quantification in dissociated cortical neuronal 
cultures, the entire coverslips were imaged using a IX70 Olympus microscope equipped with a 4 × 
0.1 NA Plan-Neofluar lens (1.60 μm/pixel) and the number of astrocytes and microglia were counted. 
The analysis and quantification of different cell types were done for three different experiments, each 
experiment containing at least two different samples of each genotype.

For Sholl analysis of dissociated cortical neurons, samples were imaged using a TCS SP8 confocal 
microscope, a HC PL APO CS2 40 x/1.30 lens at zoom factor 0.75 with a resolution of 2048 × 2048 pixel 
(189 nm/pixel, 0.5 μm/stack). Images were acquired with identical settings for laser power, detector 
gain, and amplifier offset, with pinhole diameters set for one airy unit. Approximately 10 neurons 
were imaged per sample and at least two different samples per genotype in each experiment; each 
experiment was performed three times. GFP +neurons were traced using the FilamentTracer package 
in Imaris software (Bitplane AG). Statistical significance was assessed using a repeat measures ANOVA 
with a Bonferroni Post Test (Prism-GraphPad Software).
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