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Abstract Neural circuits can generate many spike patterns, but only some are functional. The 
study of how circuits generate and maintain functional dynamics is hindered by a poverty of descrip-
tion of circuit dynamics across functional and dysfunctional states. For example, although the regular 
oscillation of a central pattern generator is well characterized by its frequency and the phase rela-
tionships between its neurons, these metrics are ineffective descriptors of the irregular and aperi-
odic dynamics that circuits can generate under perturbation or in disease states. By recording the 
circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features 
of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit 
under a variety of conditions. This approach captures both the variability of functional rhythms and 
the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different 
spike patterns hinting at different dynamic states in the circuit. State probability and the statistics 
of the transitions between states varied with environmental perturbations, removal of descending 
neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals 
strong mechanistically interpretable links between complex changes in the collective behavior 
of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how 
circuits generate functional dynamics despite variability in circuit architecture and environmental 
perturbations.

Editor's evaluation
This study applies an unsupervised dimensionality reduction (t-SNE) to characterize neural spiking 
dynamics in the pyloric circuit in the stomatogastric ganglion of the crab, an important system for 
mechanistic analysis of rhythmic circuit function. The application of unsupervised methods to charac-
terize qualitatively distinct regimes of spiking neural circuits is interesting and novel. The challenges 
and lessons learned in this study are of broader interest to those seeking to quantitatively charac-
terize large sets of neural data across many subjects. The method is demonstrated across hundreds 
of animal subjects and used to investigate circuit responses to a variety of perturbations.

Introduction
Neural circuits can generate a wide variety of spiking dynamics, but must constrain their dynamics to 
function appropriately. Cortical circuits maintain irregular spiking patterns through a balance of excit-
atory and inhibitory inputs (van Vreeswijk and Sompolinsky, 1996; Mariño et al., 2005; Brunel and 
Wang, 2003) and the loss of canonical dynamics is associated with neural diseases like channelopa-
thies and epilepsy (Marbán, 2002; Staley, 2015). Preserving functional dynamics can be a challenge 
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for neural circuits for the following reasons. The same spike pattern can be generated by diverse 
circuits with many different topologies and broadly distributed synaptic and cellular parameters (Prinz 
et  al., 2004; Golowasch et  al., 2002; Alonso and Marder, 2019; Memmesheimer and Timme, 
2006). Furthermore, neural circuits are constantly being reconfigured, with ion channel protein turn-
over, and homeostatic feedback mechanisms modifying conductance and synapse strengths contin-
uously (Turrigiano et al., 1994; Turrigiano et al., 1995; O’Leary et al., 2014; Franci et al., 2020). 
The problem of maintaining functional activity patterns is aggravated by the fact that functional circuit 
dynamics tend to lie within a low-dimensional subspace within the high-dimensional state space: of 
the numerous possible solutions, only a few are functional and are found in animals (Cunningham 
and Yu, 2014; Pang et al., 2016). How do neural circuits preserve functional dynamics despite these 
obstacles?

Answering this question requires, as a prerequisite, a quantitative description of the dynamics of 
neural circuits during function and dysfunction. When rhythms are regular, this is relatively simple, but 
when rhythms become irregular, classifying them becomes hard (Haddad and Marder, 2018; Tang 
et al., 2012; Haley et al., 2018). In this article, we study the dynamics of a well-studied central pattern 
generator, the pyloric circuit in the stomatogastric ganglion (STG) in Cancer borealis (Marder and 
Bucher, 2007). The pyloric circuit is small, in crabs consisting of 13 neurons coupled by inhibitory and 
electrical synapses. Its topology and cellular dynamics are well understood, and the circuit generates 
a clearly defined ‘functional’ collective behavior where bursts of spikes from three different cell types 
alternate rhythmically to generate a triphasic motor pattern. The stereotypy and periodicity of the 
motor pattern suggest that the baseline dynamics of the pyloric circuit are fundamentally low dimen-
sional. This has allowed for the effective parameterization of the rhythm by a small number of ad hoc 
descriptors such as the burst period, duty cycles, and phase of each neuron (Hartline and Maynard, 
1975; Eisen and Marder, 1984; Miller and Selverston, 1982).

In response to perturbations that span many cycles, pyloric circuit dynamics are not always peri-
odic, and descriptors that work well to characterize the canonical rhythm are inadequate to describe 
these atypical dynamic states. Efforts to study circuit dynamics under these regimes, and to char-
acterize how the circuit responds to, and recovers from perturbations, have been frustrated by the 
inability to quantitatively describe irregular and non-stationary dynamics (Haddad and Marder, 2018; 
Tang et al., 2012; Haley et al., 2018).

In this article, we set out to address the problem of quantitatively describing neural circuit dynamics 
under a variety of conditions. We reasoned that circuit dynamics lie on some lower-dimensional set 
within the full high-dimensional space of possible dynamics, even when circuits exhibit atypical and 
nonfunctional behavior, because even circuits generating dysfunctional dynamics are still constrained 
by cellular parameters and network topology. We therefore set out to find and visualize this subset 
of spike patterns using an unsupervised machine learning approach to visualize patterns in the high-
dimensional data in two dimensions. This method allows us to visualize the totality of a large and 
complex dataset of spike patterns, while being explicit about the assumptions and biases in the anal-
ysis. Using this method, we found nontrivial features in the distribution of the data that hinted at 
diverse, stereotyped responses to perturbations. Using this compact representation allowed us to 
efficiently manually classify these patterns and measure transitions between these patterns. We were 
thus able to characterize the diversity of circuit dynamics under baseline and perturbed conditions, 
and identify anecdotally observed atypical states within the full repertoire of spiking patterns for many 
hundreds of animals.

Results
Perturbations can destabilize the triphasic pyloric rhythm
Studies that measure the pyloric rhythm commonly involve recording from nerves from the STG in ex 
vivo preparations. Preparations typically also include the stomatogastric nerve (stn) that carries the 
axons of descending neuromodulatory neurons from the esophageal and commissural ganglia that 
project into the STG. Under baseline conditions (11°C, with the stn intact, Figure 1a), the periodic 
triphasic oscillation of the pyloric circuit can be measured by extracellular recordings of the lateral 
pyloric, pyloric dilator, and pyloric nerves (lpn, pdn, and pyn) (Figure 1a). Bursts of spikes from the 
pyloric dilator (PD) neurons on the pdn are followed by bursts of spikes from the lateral pyloric neuron 

https://doi.org/10.7554/eLife.76579
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(LP) on lpn and bursts of spikes from the pyloric neurons (PY) on pyn. Spikes from lateral posterior 
gastric (LPG) neurons are also found on the pyn nerve in these recordings and can be differentiated 
from PY spikes by their shape and timing (LPG is active during PD bursts). Under these control condi-
tions, where the rhythm is robust and spikes from these neurons are easily identifiable both by their 
location on the nerve and their phase in the cycle, the dual problems of identifying spikes from raw 
extracellular recordings and meaningfully describing circuit dynamics are easily resolvable.

In studies that characterize the changes in circuit dynamics to prolonged perturbations, spike identi-
fication and circuit dynamics characterization are less straightforward. For example, when descending 
neuromodulatory projections from the stn are cut (i.e., when the STG is decentralized, Figure 1b), the 
collective dynamics of the pyloric circuit can become less regular. This loss of regularity is concomitant 
with spikes being harder to reliably identify in extracellular recordings. While PD and LP neuron spikes 
can still be typically easily identified on the pdn and lpn nerves (Figure 1b), identifying PY on the pyn 
in the absence of a regular rhythm can be challenging. This problem is aggravated by the fact that 

Figure 1. The triphasic pyloric rhythm can become irregular and hard to characterize under perturbation. (a) Simplified schematic of part of the pyloric 
circuit (left). Filled circles indicate inhibitory synapses, solid lines are glutamatergic synapses, and dotted lines are cholinergic synapses. Resistor 
symbol indicates electrical coupling. The pyloric circuit is subject to descending neuromodulatory control from the stomatogastric nerve (stn). Right: 
simultaneous extracellular recordings from the lvn, lpn, pdn, and pyn motor nerves. Action potentials from lateral pyloric (LP), pyloric dilator (PD), and 
pyloric (PY) are visible on lpn, pdn, and pyn. Under these baseline conditions, PD, LP, and PY neurons burst in a triphasic pattern. The anterior burster 
(AB) neuron is an endogenous burster and is electrically coupled to PD neurons. (b) When the stn is cut, neuromodulatory input is removed and the 
circuit is ‘decentralized.’ In this case, the pyloric rhythm can become irregular and hard to characterize. In addition, spikes from multiple PY neurons can 
become harder to reliably identify on pyn.

https://doi.org/10.7554/eLife.76579
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spikes from the LPG neuron are frequently found on pyn, and because there are several copies of the 
PY neuron, whose spikes can range from perfect coincidence to slight offsets that can unpredictably 
change the amplitude and shape of PY spikes due to partial summation. For these reasons, some 
previous works studying the response of pyloric circuits to perturbations have consistently recorded 
from the lpn and pdn nerves, but not from the pyn (Hamood et al., 2015; Haley et al., 2018; Haddad 
and Marder, 2018; Rosenbaum and Marder, 2018). Therefore, in order to include the largest number 
of experiments in our analysis, we chose to characterize the dynamics of the LP and PD neurons.

Nonlinear dimensionality reduction allows for the visualization of 
diverse pyloric circuit dynamics
The regular pyloric rhythm involves out-of-phase bursts of spikes between LP and PD, and is observed 
under baseline conditions (Figure 2a1-3). Perturbations such as the removal of descending neuro-
modulatory inputs, changes in temperature, or changes in pH can qualitatively alter the rhythm, 
leading to a large variety of hard-to-characterize spiking patterns (Figure 2a4-6). Because these irreg-
ular states may lose the strong periodicity found in the canonical motor pattern, burst metrics such 
as burst period or phase offsets between bursts that work well to characterize the regular rhythm 
perform poorly. Efforts to characterize and quantify these atypical spike patterns must overcome 
the slow timescales in observed dynamics, the large quantity of data, and irregularity and variability 
in observed spike trains. Previous work used ad hoc categorization systems to assign observations 
of spike trains into one of a few groups (Haddad and Marder, 2018; Haley et al., 2018), but these 
categorization methods scaled poorly and relied on subjective annotations.

We sought instead to visualize the totality of pyloric circuit dynamics under all conditions using a 
method that did not rely on a priori identification of (non)canonical dynamic patterns. Such a data visu-
alization method, while descriptive, would generate a quantitative vocabulary to catalog the diversity 
of spike patterns observed both when these patterns were regular and also when they were irregular 
and aperiodic, thus allowing for the quantitative characterization of data previously inaccessible to 
traditional methods (Börner et al., 2005; Nguyen and Holmes, 2019).

The visualization was generated as follows: time-binned spike trains were converted into their 
equivalent interspike interval (ISI) and phase representations (Figure 2b, Materials and methods). For 
all analyses, we consider nonoverlapping 20 s time bins. We chose this time bin following inspection of 
circuit dynamics across many conditions in several animals. Because there can be an arbitrary number 
of spikes in a bin, there are an arbitrary number of ISIs and phases. This makes it challenging to find 
a basis to represent the entire dataset. Ideally, we want to represent the spike pattern in each 20 s 
bin with a point in some space of high but fixed dimensionality. To convert this into a vector of fixed 
length, we measured percentiles of ISIs and phases (Figure  2c). Together with other metrics (like 
ratios of ISIs, measures that capture discontinuities in ISI distributions, see Materials and methods for 
details), these percentiles were assembled into a fixed-length vector and each dimension was ‍z‍-scored 
across the entire dataset (Figure 2d). A collection of spike trains from an arbitrary number of neurons 
has thus been reduced to a matrix where each row consists of ‍z‍-scored percentiles of ISIs and other 
metrics. This matrix can be visualized using a nonlinear dimensionality reduction technique such as 
‍t‍-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008), which can 
generate a two-dimensional representation of the full dataset (Figure 2e).

In this representation, each dot corresponds to a single time bin of spike trains from both neurons. 
We found by manual inspection that spike trains that are visually similar (Figure 2a1-3) tend to occur 
close to each other in the embedding (Figure 2e1-3). Spike patterns that are qualitatively different 
from each other (Figure 2a4-6) tended to occur far from each other, often in clusters separated by 
regions of low data density (Figure 2e4-6, Supplementary file 1).

How useful is such a visualization and does it represent the variation in spike patterns in the data in 
a reasonable manner? We colored each point by classically defined features such as the burst period 
or the phase (Figure 2—figure supplement 1). We found that the embedding arranges data so that 
differences between clusters and within clusters had interpretable differences in various burst metrics. 
For example, clusters on the left edge of the map tended not to have defined LP phases, typically due 
to silent or very sparse LP firing (Figure 2—figure supplement 1b). Location of data in the largest 
cluster was correlated to firing rate in the PD neuron (Figure 2—figure supplement 1c). We observed 
that burst metrics, when they were defined, tended to vary smoothly across the map. To quantify this 

https://doi.org/10.7554/eLife.76579
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Figure 2. Visualization of diverse neural circuit dynamics. (a) Examples of canonical (1–3) and atypical (4–6) spike patterns of pyloric dilator (PD; blue) 
and lateral pyloric (LP; red) neurons. Rasters show 10 s of data. (b–d) Schematic of data analysis pipeline. (b) Spike rasters in (a2) can be equivalently 
represented by interspike intervals (ISIs) and phases. 20 s bins shown. Each 20 s bin contains a variable number of spikes/ISIs. (c) Summary statistics of 
ISI and phase sets in (d), showing tenth percentiles. Using percentiles converts the variable length sets in (b) to vectors of fixed length. (d) ‍z‍-scored data 
assembled into a single vector, together with some additional measures (Materials and methods). (e) Embedding of data matrix containing all vectors 
such as the one shown in (d) using t-distributed stochastic neighbor embedding (t-SNE). Each dot in this image corresponds to a single 20 s spike 
train from both LP and PD. Example spike patterns shown in (a) are highlighted in the map. ‍n = 94, 844‍ points from ‍N = 426‍ animals. In (a–d), features 
derived from LP spike times are shown in red, and features derived from PD spike times are shown in blue.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Burst metrics smoothly vary in map.

Figure supplement 2. Principal components analysis (PCA) and k-means to find clusters in feature vectors.

Figure supplement 3. Embedding arranges data so that neighbors tend to be similar.

Figure supplement 4. Effect of varying perplexity in t-distributed stochastic neighbor embedding (t-SNE) embedding.

Figure supplement 5. Validation of method using synthetic data.

https://doi.org/10.7554/eLife.76579


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Gorur-Shandilya et al. eLife 2022;11:e76579. DOI: https://doi.org/10.7554/eLife.76579 � 6 of 34

observation, we built a Delaunay triangulation (Materials and methods) on the embedded data and 
measured the triadic differences between PD burst periods and PD duty cycles (Figure 2—figure 
supplement 3). Triadic differences in these metrics were significantly smaller in the map than triadic 
differences in a projection of the first two principal components or a shuffled map (p<0.0001, Kolmog-
orov–Smirnv test), suggesting that the t-SNE cost function generates a useful embedding where spike 
features vary smoothly within clusters. Finally, to validate our approach, we generated a synthetic 
dataset with different classes of spike patterns (Materials and methods) and analyzed it similarly. 
Coloring points in the t-SNE embedding by the original class revealed that clusters in the t-SNE map 
corresponded to different classes in the synthetic data, suggesting that this method can identify and 
recover stereotyped spike patterns in neural data (Figure 2—figure supplement 5).

Visualization of circuit dynamics allows manual labeling and clustering 
of data
Previous studies have shown that regular oscillatory bursting activity of the pyloric circuit can qual-
itatively change on perturbation. Circuit dynamics can be highly variable and has been categorized 
into various states such as ‘atypical firing,’ ‘LP-01 spikes,’ or ‘atypical’ (Haddad and Marder, 2018; 
Haley et al., 2018). Both the process of constructing these categories and the process of classifying 
data into these categories are typically done manually, and therefore requires expert knowledge that 
is not explicitly captured and is impossible to reproduce. Because the embedding distributed data 
into clusters, we hypothesized that clusters corresponded to stereotyped dynamics that were largely 
similar, and different clusters represented the qualitatively different circuit dynamics identified by 
earlier studies.

We therefore manually inspected circuit dynamics at randomly chosen points in each apparent 
cluster and generated labels to describe the dynamics in that region (Figure 3). This process colored 

Figure 3. Map allows identification of distinct spiking dynamics. (a) Map of all pyloric dynamics in dataset where each point is colored by manually 
assigned labels. Each point corresponds to a 20 s paired spike train from lateral pyloric (LP) and pyloric dilator (PD) neurons. Each panel in (b) shows two 
randomly chosen points from that class. The number of points in each class is shown in parentheses above each panel. ‍n = 94, 844‍ points from ‍N = 426‍ 
animals. Labels are ordered by likelihood in the data.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Speed of trajectories through map.

Figure supplement 2. Embeddings with different initializations.

Figure supplement 3. Using Uniform Manifold Approximation and Projection (uMAP) instead of t-distributed stochastic neighbor embedding (t-SNE).

https://doi.org/10.7554/eLife.76579
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the map and segmented it into distinct regions that broadly followed, and were largely determined 
by, the distribution of the data in the embedding (Figure 3a). Most of the data (57%) were assigned 
the regular label, where both PD and LP neurons burst regularly in alternation with at least two spikes 
per burst, and all identified regular states occurred in a single contiguous region in the map (blue). 
In the LP-weak-skipped state, PD bursts regularly, but LP does not burst every cycle, or only fires a 
single spike per burst. Irregular-bursting states showed bursting activity on both neurons, which were 
interrupted or otherwise irregular. In contrast, the irregular state showed spiking that was more vari-
able and did not show strong signs of bursting at any point. LP-silent-PD-bursting states had regular 
bursting on PD, with no spikes on LP, while LP-silent states also had no spikes on LP, but activity on PD 
was more variable, and did not show regular bursting.

The time evolution of the pyloric dynamics of every preparation constitutes a trajectory in the map, 
and every point in the map is therefore associated with an instantaneous speed of motion in the map. 
We hypothesized that instantaneous speed could vary across the map, with points labeled regular 
moving more slowly through the map than points with labels corresponding to atypical states such as 
irregular because regular rhythms would vary less over time. Consistent with this, we found that points 
in the regular cluster tended to have smaller speeds than points in other clusters (Figure 3—figure 
supplement 1a). Speeds in the regular state were significantly lower than every other state except 
PD-silent-LP-bursting (p<0.004, permutation test), suggesting that atypical states were associated 
with increased variability in circuit dynamics (Figure 3—figure supplement 1b).

Do the clusters we see in the data, and the resultant categorization of the data, depend strongly 
on the details of the dimensionality reduction method we used (t-SNE)? We used an entirely different 
embedding algorithm (Uniform Manifold Approximation and Projection [uMAP], McInnes et al., 2018) 
to embed the feature vectors in two-dimensional space. The map generated by uMAP preserved the 
coarse feature of the t-SNE embedding, suggesting that the features in the map reflected the features 
of the distribution of the data more strongly than details of the dimensionality reduction method. 
Coloring points in the uMAP embedding (Figure 3—figure supplement 3) revealed a roughly similar 
organization of data in the embedding space, suggesting that our categorization method did not 
strongly depend on the details of the dimensionality reduction.

Variability in baseline circuit dynamics across a population of wild-
caught animals
Work on the pyloric circuit has used a wild-caught crustacean population. This uncontrolled envi-
ronmental and genetic variability serves as a window into the extant variability of a functional neural 
circuit in a wild population of animals. In addition, experimental and computational work has shown 
that similar rhythms can be generated by a wide variety of circuit architectures and cellular parameters 
(Prinz et al., 2003; Hamood and Marder, 2014; Alonso and Marder, 2019). We therefore set out 
to study the variability in baseline circuit dynamics in the 346 pyloric circuits recorded under baseline 
conditions in this dataset.

The burst period of the pyloric circuit in the lobster can vary two- to threefold under baseline 
conditions at 11°C across animals (Bucher et al., 2005). Despite this sizable variation, other burst 
metrics, such as the phase onset of follower neurons, or the duty cycles of individual neurons, are 
tightly constrained (Bucher et al., 2005), likely related to the fact that these circuits are under activity-
dependent feedback regulation (Turrigiano et  al., 1995; O’Leary et  al., 2014; Gorur-Shandilya 
et al., 2020) as they develop and grow. Activity-dependent regulation of diverse pyloric circuits could 
constrain variability in a single circuit across time to be smaller than variability across the population.

To test this hypothesis, we measured a number of burst metrics such as burst period and the phases 
and duty cycles of the two neurons across these 346 preparations in baseline conditions (Figure 4) 
when data are labeled regular because metrics are well-defined in this state. The mean values of 
each of these metrics were unimodally distributed (Figure 4a) and the coefficient of variation (CV) 
for all metrics was approximately 0.1 (Figure 4b). Using the mean CV in each individual as a proxy 
for the within-animal variability, and the CV of the individual means as a proxy for the across-animal 
variability, we found that every metric measured was more variable across animals than within animals 
(Figure  4c). Shuffling experimental labels generated null distributions for excess variability across 
animals and showed that across-animal variability was significantly greater than within-animal vari-
ability (Figure 4d, p<0.007, permutation test, Table 1).

https://doi.org/10.7554/eLife.76579
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It is reasonable to suppose that all baseline data exist in the regular cluster. While most baseline 
data are confined to the regular cluster (‍≈ 80%‍, Figure 4—figure supplement 1a), the remaining 
data, nominally recorded under baseline conditions, contains atypical circuit dynamics (Figure 4—
figure supplement 1b and c). What causes these atypical circuit dynamics in this large, unbiased 
survey of baseline pyloric activity? One possibility could be inadvertent damage to the preparation 
caused by dissection and preparation of the circuit for recording. Consistent with this, we found 
that the probability of observing regular states was significantly reduced when cells were recorded 
from intracellularly (Figure 4—figure supplement 2), which may be due to increase in leak currents 
owing to impaling cells with sharp electrodes (Cymbalyuk et  al., 2002) or due to cell dialysis 
(Hooper et al., 2015). No significant correlation was observed between sea surface temperatures 
(a proxy for environmental conditions for these wild-caught animals) and burst metrics (Figure 4—
figure supplement 3a–c) or the probability of observing a regular state (Figure 4—figure supple-
ment 3d). Taken together, these results underscore the importance of verifying that baseline or 
control data does not include uncontrolled technical variability that could mask biological effects 
of interest.

Figure 4. Variability of burst metrics under baseline conditions. (a) Variability of burst metrics in pyloric dilator (PD) and lateral pyloric (LP) neurons across 
a population of wild-caught animals. Metrics are only computed under baseline conditions and in the regular cluster. (b) Distribution of coefficient of 
variation (CV) of metrics in each animal across all data from that animal. In (a, b), each dot is from a single animal, and distributions show variability 
across the entire population. (c) Across-animal variability (CV of individual means, Δ) is greater than within-animal variation (mean of CV in each 
animal, Ο) for every metric. (d) Difference between across-animal variability and within-animal variability (colored dots). For each metric, gray dots and 
distribution show differences between across-animal and within-animal variability for shuffled data. ‍n = 18, 336‍ points from ‍N = 346‍ animals.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. State distribution under baseline conditions.

Figure supplement 2. Recording condition alters regular state probability.

Figure supplement 3. Effect of sea surface temperature on baseline circuit dynamics.

https://doi.org/10.7554/eLife.76579
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Perturbation modality alters state probability
The pyloric circuit and other circuits in the crab must exhibit robustness to the environmental pertur-
bations that these animals are likely to encounter. Previous studies have characterized the ability of 
crustacean circuits to be robust to environmental perturbations such as pH (Haley et al., 2018; Ratliff 
et al., 2021; Qadri et al., 2007), temperature (Tang et al., 2010; Tang et al., 2012; Rinberg et al., 
2013; Haddad and Marder, 2018; Kushinsky et al., 2019), oxygen levels (Clemens et al., 2001), 
and changes in extracellular ionic concentrations (He et al., 2020). Robustness to these perturba-
tions exists up to a limit, likely reflecting the bounds of the natural variation in these quantities that 
these circuits are evolved to function in. When challenged with extremes of any of these perturbation 
modalities, the pyloric rhythm breaks down, displaying irregular or aberrant states, and may even 
cease spiking entirely. Such states are commonly referred to as ‘crashes’ and can have many flavors 
(Haddad and Marder, 2018; Tang et al., 2010; Tang et al., 2012) and involve the loss of the charac-
teristic antiphase activity in the LP and PD neurons.

It remains unclear if extreme perturbations of different modalities share common pathways of 
destabilizing and disrupting the pyloric rhythm (Ratliff et al., 2021). In principle, these environmental 
perturbations can disrupt neuron and circuit function in qualitatively different ways: for example, 
changes in extracellular potassium concentration can alter the reversal potential of potassium (He 
et al., 2020) vs. changes in temperature can have varied effects on the timescales and conductances 
of all ion channels (Tang et  al., 2010; Caplan et  al., 2014). Because prior work was focused on 
studying the limits of robustness and lacked a detailed quantitative description of irregular behavior, 
the fine structure of the transition between functional dynamics and silent or ‘crashed’ states remain 
poorly characterized (Ratliff et al., 2021). We therefore set out to measure how pH, temperature, and 
extracellular potassium perturbations alter circuit state probability.

Where in the map are data under extreme environmental perturbations? Circuit spike patterns 
under high pH (>9.5), high temperature (>25°C), and high extracellular potassium (‍2.5 × [K+]‍) are 
distributed across a wide region of the map, spanning both regions in the regular cluster and other 
nonregular clusters (Figure 5a). Spike patterns observed under high-temperature conditions in the 
regular region were clustered in the lower extremity, in the region containing high firing rates and 
small burst periods of PD (Figure 2—figure supplement 1), consistent with earlier studies showing 
that elevated temperatures tend to speed up the pyloric rhythm (Tang et al., 2010; Tang et al., 2012).

Subjecting the pyloric circuit to extremes of pH, temperature, and extracellular potassium altered 
the distribution of observed states (Figure 5c). In all cases, the probability of observing regular was 

Table 1. ANOVA results and power analysis for Figure 4.
ANOVA results for burst metrics in baseline conditions. For each metric, each animal is treated as 
a group and the variability (mean square difference) is compared within and across group. ‍F‍ is the 
ratio of across-animal to within-animal mean square differences. N.99 is the estimate of the sample 
size required to reject the null hypothesis with a probability of 0.99 when the alternative hypothesis 
is true. ‍N = 346‍ animals.

Metric Across-animal MS Within-animal MS F N.99

LP delay off (s) 1.1391 0.010 956 103.97 6

LP delay on (s) 0.616 47 0.0111 55.54 6

LP durations (s) 0.363 86 0.012 366 29.424 4

LP duty cycle 0.159 86 0.001 309 3 122.09 10

LP phase off 0.234 06 0.007 227 9 32.383 11

LP phase on 0.216 55 0.008 811 5 24.576 9

PD burst period (s) 3.557 0.036 872 96.469 4

PD durations (s) 0.079 397 0.000 549 44 144.5 6

PD duty cycle 0.053 472 0.000 413 23 129.4 16

LP: lateral pyloric; PD: pyloric dilator.MS: mean square.

https://doi.org/10.7554/eLife.76579
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Figure 5. Effect of three different environmental perturbations. (a) Map showing regions that are more likely to contain data recorded under extreme 
environmental perturbations. (b) Treemaps showing probability distributions of states under baseline and perturbed conditions. (c) Probability 
distribution of states preceding silent state under perturbation. pH perturbations: ‍n = 4023‍ from 6 animals; ‍[K+]‍ perturbations: ‍n = 5526‍ from 20 
animals; temperature perturbations: ‍n = 80, 470‍ from 414 animals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Preparation-by-preparation response to pH perturbations.

https://doi.org/10.7554/eLife.76579
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significantly reduced (p<0.001, paired permutation test), and a variety of nonregular states were 
observed. We observed that high pH (>9.5) did not silence the preparation, but silent states were 
observed in low pH (<6.5), consistent with previously published manual annotation of this data (Haley 
et al., 2018). Silent states were also observed in ‍2.5 × [K+]‍, as reported earlier by He et al., 2020. 
Previous work has shown that the isolated pacemaker kernel (AB and PD neurons) has a stereotyped 
trajectory from bursting through tonic spiking to silence when subjected to pH perturbations (Ratliff 
et al., 2021), but moves through a different trajectory (bursting to weak bursting to silence) during 
temperature perturbations. Do pathways to silent states share similarities across perturbation modality 
in intact circuits? To answer this, we plotted the probability of observing states conditioned on the 
transition to silence in low pH, high temperature, and ‍2.5 × [K+]‍ (Figure 5d). In the ‍≈ 2000‍ transitions 
between states detected, we never observed a transition from regular to silent, suggesting that the 
timescales of silencing are slow, longer than the width of one data bin (20 s). Trajectories to silent 
states always transition through a few intermediate states such as sparse-irregular, LP-si-
lent, or PD-silent (Figure 5d).

Transitions between states during environmental perturbations
Changes in temperature, pH, and ‍[K+]‍ have different effects on the cells in the pyloric circuit and 
therefore can destabilize the rhythm in different ways. Increasing the extracellular ‍[K+]‍ changes the 
reversal potential of K+ ions, altering the currents flowing through potassium channels, and typically 
depolarizes the neuron (He et al., 2020). Ion channels can be differentially sensitive to changes in 
temperature or pH, and changes in these variables can have complex effects on ionic currents in 
neurons (Tang et al., 2010; Tang et al., 2012; Haley et al., 2018). We therefore asked if different 
environmental perturbations changed the way in which regular rhythms destabilized.

Our analysis mapped a time series of spike times from PD and LP neurons to a categorical time 
series of labels such as regular. We therefore could measure the transitions between states during 
different environmental perturbations (Materials and methods). We found that transition matrices 
between states shared commonalities across environmental perturbations (Figure 6a), such as likely 
transitions between regular and LP-weak-skipped states. PD-silent-LP-bursting states tended to be 
followed by PD-silent states, in which the LP neuron is spiking, but not bursting regularly. The LP 
neuron becomes less regular in both transitions, contributing to the loss of regular rhythms. We never 
observed a transition from regular rhythms LP-silent or PD-silent states, suggesting slow (>20 s) times-
cales of rhythm collapse. In high pH, every transition away from the regular state was to the LP-weak-
skipped state, hinting at increased sensitivity of the LP neuron to high pH. High pH perturbations 
also never silenced the circuit, as previously reported (Haley et al., 2018), and showed fewer and 
less varied transitions than other perturbations. Are some transitions over- or underrepresented in 
the transition matrix? To determine this, we constructed a null model where transitions occurred with 
probabilities that scaled with the marginal probability of final states (Materials and methods). Tran-
sitions that occurred significantly more often than predicted by the null model are shown with black 
borders and those that occurred significantly less often than predicted are shown with filled circles 
(Figure  6a). Transitions that never occurred but occurred at significantly nonzero rates in the null 
model are indicated with diamonds.

Earlier work has shown that transitions from regular bursting are preceded by an increase in 
variability in the voltage dynamics of bursting in PD neurons pharmacologically isolated from most 
of the pyloric circuit (Ratliff et al., 2021). Can we detect similar signatures of destabilization before 
transitions from regular states in the intact circuit? We measured the CV of the burst periods of PD 
and LP neurons in regular states just before transitions away from regular (Figure 6b). Because we 
restricted our measurement of variability to regular states, we could disambiguate true cycle-to-cycle 
jitter in the timing of bursts from the apparent variability in cycle period due to alternations between 
bursting and nonbursting dynamics. We found that transitions away from regular were correlated 
with a steady and almost monotonic increase in variability in PD and LP burst periods for low pH and 
high ‍[K+]‍ perturbations, but not for high pH and high-temperature perturbations (Spearman rank 
correlation test). This suggests mechanistically different underpinnings to the pathways of destabili-
zation between these sets of perturbations and is consistent with previous work showing that robust-
ness to perturbations in pH only moderately affects temperature robustness in the same neuron 
(Ratliff et al., 2021).

https://doi.org/10.7554/eLife.76579
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Decentralization elicits variable circuit dynamics
The pyloric circuit is modulated by a large and chemically diverse family of neuromodulators that it 
receives via the stomatogastric (stn) nerve (Marder, 2012). Decentralization, or the removal of this 
neuromodulatory input via transection and/or chemical block of the stn, has been shown to affect the 
pyloric rhythm in a number of ways (Russell, 1976). Decentralization can stop the rhythm temporarily, 
which can recover after a few days (Golowasch et al., 1999; Thoby-Brisson and Simmers, 1998). 
Decentralization slows down the pyloric rhythm (Eisen and Marder, 1982; Rosenbaum and Marder, 
2018) and makes the rhythm more variable (Hamood and Marder, 2014; Hamood et al., 2015). 
Decentralization can evoke variable circuit dynamics, sometimes with slow timescales (Figure  7—
figure supplement 1), and can lead to changes in ion channel expression (Mizrahi et al., 2001).

The variability in circuit dynamics elicited by decentralization and the animal-to-animal variability 
in response to decentralization have made a quantitative analysis of the effects of decentralization 

Figure 6. Effect of environmental perturbations on transitions between states. (a) Transition matrix between states during environmental perturbations. 
Each matrix shows the conditional probability of observing the final state in the next time step given an observation of the initial state. Probabilities 
in each row sum to 1. Size of disc scales with probability. Discs with dark borders are transitions that are significantly more likely than the null model 
(Materials and methods). Dark solid discs are transitions with nonzero probability that are significantly less likely than in the null model. ‍♢‍ are transitions 
that are never observed and are significantly less likely than in the null model. States are ordered from regular to silent. (b) Coefficient of variation (CV) 
of burst period of pyloric dilator (PD) (purple) and lateral pyloric (LP) (red) vs. time before transition away from the regular state. ‍ρ, p‍ are from Spearman 
test (on binned data, as plotted) to check if variability increases significantly before transition. Temperature perturbations: ‍n = 1035‍ transitions in 61 
animals; pH perturbations: ‍n = 90‍ transitions in 6 animals; ‍[K+]‍ perturbations: ‍n = 271‍ transitions in 20 animals.

https://doi.org/10.7554/eLife.76579
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difficult. We therefore set about to characterize the variable and invariant features of the changes 
in circuit spiking dynamics on removal of descending neuromodulation across a large (‍N = 141‍) 
population.

We first asked where in the map decentralized data were (Figure 7a). A large fraction (‍≈ 30%‍) of 
the data was found outside the regular cluster, suggesting the existence of atypical circuit dynamics 
on decentralization. Decentralization also changed probabilities of observing many states. The regular 
state was significantly less likely on decentralization, and several atypical states were significantly 
more likely (Figure 7b and c, Table 2, Figure 7—figure supplement 2).

Figure 7. Effect of decentralization. (a) Map occupancy conditional on decentralization. Shading shows all data, and bright colored dots indicate data 
when preparations are decentralized. (b) State probabilities before and after decentralization. (c) Fold change in state probabilities on decentralization. 
States marked n.s. are not significantly more or less likely after decentralization. All other states are (paired permutation test, p<0.00016). (a, 
b) ‍n = 10, 602‍ points from ‍N = 141‍ animals. (d) Transition matrix during decentralization. Probabilities in each row sum to 1. Size of disc scales with 
probability. Discs with dark borders are transitions that are significantly more likely than the null model (Materials and methods). Dark solid discs are 
transitions with nonzero probability that are significantly less likely than in the null model. ‍♢‍ are transitions that are never observed and are significantly 
less likely than in the null model. States are ordered from regular to silent. ‍n = 1933‍ transitions. (e) Coefficient of variation of pyloric dilator (PD, purple) 
and lateral pyloric (LP; red) burst periods before transition away from regular states. ‍ρ, p‍ from Spearman test. ‍n = 1332‍ points from ‍N = 79‍ animals.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Decentralization evokes variable dynamics.

Figure supplement 2. Effects of decentralization on state probabilities.

Figure supplement 3. Time course of effects of decentralization.

Figure supplement 4. Effects of decentralization do not correlate with seasonal effects.

https://doi.org/10.7554/eLife.76579
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How do preparations switch between different states when decentralized? The transition matrix 
during decentralization revealed many transitions between diverse states (Figure 7d), with the most 
likely transitions being significantly overrepresented compared to the null model (p<0.05, Materials 
and methods). Transitions away from regular included significantly more likely transitions into states 
where one of the neurons was irregular such as LP-weak-skipped and PD-weak-skipped. Similar to 
rhythm destabilization in high ‍[K+]‍ or low pH, transitions away from regular were associated with a 
near-monotonic increase in the variability of PD and LP burst periods before the transitions (Figure 7e, 

‍ρ ≈ .8‍, p<0.006, Spearman rank correlation test).
The time series of identified states on a preparation-by-preparation basis showed striking vari-

ability in the responses to decentralization (Figure 7—figure supplement 3a), with the probability 
of observing regular states decreasing immediately after decentralization (Figure 7—figure supple-
ment 3b). What causes the observed animal-to-animal variability in circuit dynamics on decentraliza-
tion? One possibility is that seasonal changes in environmental conditions alter the sensitivity of the 
pyloric circuit to neuromodulation. We tested this hypothesis by measuring the correlation between 
measures such as the probability of observing the regular state, the change in burst period, and the 
change in firing rate on decentralization and the sea surface temperature at the approximate location 
of these wild-caught animals (Figure 7—figure supplement 4). None of these measures was signifi-
cantly correlated with sea surface temperature (p>0.07, Spearman rank correlation test).

Stereotyped effects of decentralization on burst metrics
Despite the animal-to-animal variation in responses to decentralization, are there stereotyped 
responses to decentralization? Decentralization removes some unknown mixture of modulators 
that are released by the stn, which can vary from animal to animal. Previous work has shown that 
decentralization typically slows down the pyloric rhythm (Eisen and Marder, 1982; Rosenbaum and 
Marder, 2018) and (Figure 8—figure supplement 1), but a finer-grained analysis of rhythm metrics 
was confounded by the irregular dynamics that can arise when preparations are decentralized. For 
example, alteration between regular and atypical states could bias estimates of burst metrics that 
are not defined in atypical states. Because our analysis allows us to identify the subset of data where 
pyloric circuit dynamics are regular enough that burst metrics are well-defined, we measured the 
changes in a number of burst metrics like the burst period, duty cycle, and phases on decentralization 
(Figure 8a). Every metric measured was significantly changed except the phase at which LP bursts 

Table 2. State counts before and after decentralization for the data shown in Figure 7.
p-Values of change in probability of observing change estimated from paired permutation tests.

State ‍ncontrol‍ ‍ndec.‍ ‍p‍ ‍∆P(state)‍
Regular 7,967 5,791 lt0.001 -0.308 77

LP-silent 22 724 lt0.001 0.030 65

LP-silent-PD-bursting 14 577 lt0.001 0.045 926

PD-silent 11 140 4 0.018 51

PD-silent-LP-bursting 20 18 0.469 59 0.000 188 91

Aberrant-spikes 111 168 0.300 37 0.003 285 3

LP-weak-skipped 317 1,628 lt0.001 0.099 875

PD-weak-skipped 142 118 0.292 19 0.003 453 8

Sparse-irregular 4 154 lt0.001 0.013 263

Irregular 13 116 0.000 23 0.010 877

Silent 0 321 lt0.001 0.024 825

Irregular-bursting 72 753 lt0.001 0.057 913

LP: lateral pyloric; PD: pyloric dilator.

https://doi.org/10.7554/eLife.76579
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start (p<0.007, paired permutation test). Consistent with earlier studies, we found that the CV in every 
metric increased following decentralization (Figure 8b).

What are the dynamics of changes in burst metrics on decentralization? Firing rates of both LP 
and PD neurons decreased immediately on decentralization, roughly halving their pre-decentralized 
values (Figure 8c). This occurred together with a doubling of PD burst periods (Figure 8d), suggesting 
that the entire rhythm is slowing down. Intriguingly, decentralization led to significant advance in the 
phase of LP burst ends, but not starts (Figure 8e), leading to a large decrease in the duty cycle of the 
LP neuron (Figure 8f) that was significantly more than the decrease in PD’s duty cycle (p<10-8, paired 
t-test).

The stereotyped slowing of the rhythm on decentralization can also be quantified by looking at 
the distribution of the data in the regular cluster before and after decentralization (Figure 8—figure 
supplement 2). Data are concentrated in the upper-left edge of the regular cluster when decentralized, 
where burst periods are large and firing rates low (Figure 2—figure supplement 1a and c), suggesting 
that decentralization could elicit a more stereotyped rhythm for circuits that continue to burst regu-
larly, because circuits that do so tend to share a common, slow bursting dynamics. Counterintuitively, 

Figure 8. Effects of decentralization on burst metrics. (a) Change in mean burst metrics on decentralization. (b) Change in coefficient of variation of 
burst metrics on decentralization. In (a) and (b), each dot is a single preparation; * indicate distributions whose mean is significantly different from zero 
(p<0.007, paired permutation test). Firing rates (c), burst period (d), lateral pyloric (LP) phases (e), and duty cycles (f) vs. time since decentralization. In 
(c–f), thick lines indicate population means, and shading indicates the standard error of the mean. ‍n = 13, 898‍ points from ‍N = 141‍ preparations.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Example rasters showing effect of decentralization.

Figure supplement 2. Effects of decentralization on regular rhythms.

https://doi.org/10.7554/eLife.76579
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it may appear that regular rhythms in baseline conditions are more variable than regular rhythms after 
decentralization. To test this hypothesis, we measured the dispersion of each preparation in the map 
(Figure  8—figure supplement 2b) before and after decentralization. Dynamics before decentral-
ization were significantly more dispersed in the regular cluster than dynamics after decentralization 
(Figure 8—figure supplement 2c, ‍p = 0.0016‍, paired t-test) because they then tended to be concen-
trated in the upper-left edge of that cluster. To first approximation, our analysis shows that there are 
many ways to manifest a regular rhythm under baseline conditions, but regular rhythms on decentral-
ization are typically slow, and stereotyped in comparison.

Neuromodulators differentially affect state probabilities
The crustacean STG is modulated by more than 30 substances (Harris-Warrick and Marder, 1991; 
Marder, 2012) that tune neuronal properties at an intermediate timescale between feedback homeo-
stasis and intrinsic cellular properties (Daur et al., 2016). Earlier work has focused on understanding 
the effect modulators have on restoring (or destabilizing) the canonical rhythm, in part because the 
restoration of regular oscillatory dynamics is a common feature of neuromodulator action. Other 
effects that neuromodulators might have on pyloric circuit dynamics are harder to investigate and 
are hindered by the difficulty in characterizing circuit dynamics when nonregular. Here, we set out 
to systematically characterize the effects of neuromodulators on dynamic states identified in the full 
space of circuit behaviors (Figure 3).

We focused our analysis on the effect of four neuromodulators: red pigment-concentrating hormone 
(RPCH), proctolin, oxotremorine, and serotonin. In the experiments analyzed, these neuromodulators 
were added to decentralized preparations so that endogenous effects of these (and other) neuromod-
ulators were minimized. We therefore first characterized the distribution of states in decentralized 
preparations where neuromodulators were subsequently added (Figure 9a).

RPCH is a neuropeptide that targets a number of cells in the circuit (Nusbaum and Marder, 1988; 
Swensen and Marder, 2001) and has been shown to increase the number of spikes per burst in 
PD and LP (Dickinson et  al., 2001; Thirumalai and Marder, 2002), though it has little effect on 
the pyloric period (Thirumalai et  al., 2006). RPCH increased the probability of the regular state, 
suggesting stabilization of the triphasic rhythm, and decreased the probability of most other atypical 
states (Figure 9b, Table 3, p<0.004, paired permutation test). Consistent with earlier studies that 
reported that RPCH can activate rhythms in silent preparations (Nusbaum and Marder, 1988), the 
probability of observing the silent state was driven to 0 in the presence of RPCH, together with other 
atypical states such as LP-silent and LP-silent-PD-bursting (Figure 9b).

Proctolin also targets a number of cells in the circuit (Swensen and Marder, 2001) and strengthens 
the pyloric rhythm through various mechanisms: by increasing the amplitude of slow oscillations in 
AB and LP (Hooper and Marder, 1987; Nusbaum and Marder, 1989), depolarizing the LP neuron 
(Golowasch and Marder, 1992; Turrigiano and Marder, 1993), and increasing the number of spikes 
per burst in LP and PD (Hooper and Marder, 1987; Marder et  al., 1986; Hooper and Marder, 
1984). Oxotremorine, a muscarinic agonist, has also been shown to enhance the robustness of 
the pyloric rhythm (Bal et al., 1994; Haddad and Marder, 2018; Rosenbaum and Marder, 2018). 
Similar to RPCH, both proctolin and oxotremorine significantly increase the probability of the regular 
state (Figure 9b, Table 3, p<0.004, paired permutation test), and the regular state is the only one 
significantly more likely when the neuromodulator is added. The strengthening effects of RPCH and 
oxotremorine are also manifested in the significantly lower probabilities of observing atypical and 
dysfunctional states such as silent, LP-silent, PD-silent, and sparse-irregular (Table 3).

Serotonin can have variable effects on the pyloric circuit, varying from animal to animal, and can 
either speed up or slow down the rhythm (Beltz et  al., 1984; Spitzer et  al., 2008). In Panularis, 
serotonin depolarizes LP in culture, but hyperpolarizes LP in situ, unlike other neuromodulators that 
typically have the same effect in situ and in culture (Turrigiano and Marder, 1993). Consistent with 
earlier work in C. borealis showing that serotonin destabilizes the rhythm in decentralized prepara-
tions (Haddad and Marder, 2018), we found that the probability of regular states was significantly 
lower on addition of serotonin (Figure 9b, Table 3, p<0.004, paired permutation test), together with 
a significantly higher probability of atypical dysfunctional states such as LP-silent, aberrant-spikes, 
PD-silent-LP-bursting, and irregular, suggesting loss of coordination between the many neurons in the 
pyloric circuit with serotonin receptors (Clark et al., 2004).

https://doi.org/10.7554/eLife.76579
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Figure 9. Effect of bath-applied modulators. (a) State distribution in decentralized preparations. (b) State distribution in bath application of 
neuromodulators. Change percentages show difference in probability of regular state from decentralized to addition of neuromodulator. (c) Probability 
distribution of states conditional on transition to (for red pigment-concentrating hormone [RPCH], proctolin, and oxotremorine) or from (for serotonin) 
the regular state. ‍n‍ is the number of data points, and ‍N ‍ is the number of animals.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Raw traces during proctolin application.

Figure supplement 2. Neuromodulators affect map occupancy. 

https://doi.org/10.7554/eLife.76579
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Do these modulators share common features in how they (de)stabilize the rhythm? We computed 
the probability distribution of states conditional on transitions to the regular state for RPCH, proctolin, 
and oxotremorine, and conditional on transitions from the regular state for serotonin (Figure 9c). 
For all four neuromodulators, the conditional state distribution predominantly comprised these three 
states: LP-weak-skipped, irregular-bursting, and aberrant-spikes, suggesting that trajectories of 
recovery or destabilization of the regular rhythm share common features. Serotonin destabilizes the 
rhythm, decreasing the likelihood of observing regular states, similar to environmental perturbations 
(Figure 5) and decentralization (Figure 7).

Different neuromodulators activate different forms of the rhythm (Marder and Weimann, 1992; 
Marder et al., 1985; Marder, 2012), partly because different neuron types express different receptors 
to varying extents (Garcia et al., 2015). Moreover, similar rhythmic motor patterns can be produced 
by qualitatively different mechanisms, such as one that depends on voltage-gated sodium channel 
activity, and one that can persist in their absence (Harris-Warrick and Flamm, 1987; Epstein and 
Marder, 1990; Rosenbaum and Marder, 2018). To determine if different neuromodulators elicit 
regular rhythms that occupy different parts of the map, we plotted the location of data elicited by 
various neuromodulators in the full map (Figure 9—figure supplement 2). Regular data elicited by 
different neuromodulators tended to lie in clusters, whose distribution in the map was significantly 
different between serotonin and CCAP (Crustacean cardioactive peptide), and proctolin and every 
other neuromodulator tested (p<0.05, two-dimensional Kolmogorov–Smirnov test, using the method 
of Peacock, 1983). The differential clustering of regular states in the map with neuromodulator 
suggests that neuromodulators can elicit characteristic, distinct rhythms.

Neuromodulators differentially affect transition between states
RPCH, proctolin, and oxotremorine activate a common voltage-dependent modulatory current, ‍IMI ‍ 
(Swensen and Marder, 2001), but can differentially affect neurons in the STG because different cell 
types express receptors to these modulators to different degrees. For example, RPCH activates ‍IMI ‍ 
strongly in LP neurons, but the effects of oxotremorine and proctolin are more broadly observed in the 
circuit (Swensen and Marder, 2000; Swensen and Marder, 2001). Though these three modulators 
strengthen the slow-wave oscillations in pyloric neurons, only oscillations elicited by oxotremorine 
and RPCH persist in tetrodotoxin, and proctolin rhythms do not, hinting that qualitatively different 
mechanisms underlie the generation of these seemingly similar oscillations (Rosenbaum and Marder, 
2018). We therefore measured the transition rates between states during neuromodulator application 
to how similar or different trajectories towards recovery were.

Table 3. Probability distribution of states during modulator application, as shown in Figure 9.

State Decentralized RPCH Proctolin Oxotremorine Serotonin

Regular 0.39 0.73 0.69 0.78 0.27

LP-silent 0.06 0 0.02 0 0.07

LP-silent-PD-bursting 0.09 0 0.07 0 0.1

PD-silent 0.07 0 0 0 0.04

PD-silent-LP-bursting 0.01 0 0 0 0.03

Aberrant-spikes 0.01 0.04 0.01 0.01 0.03

LP-weak-skipped 0.14 0.11 0.07 0.17 0.19

PD-weak-skipped 0.02 0.05 0 0 0

Sparse-irregular 0.03 0 0.01 0 0.02

Irregular 0.02 0.02 0.01 0 0.07

Silent 0.07 0 0 0 0.01

Irregular-bursting 0.1 0.04 0.11 0.03 0.17

LP: lateral pyloric; PD: pyloric dilator.

https://doi.org/10.7554/eLife.76579
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In RPCH, proctolin, and oxotremorine application, ≈100 transitions were observed between states 
(Figure 10). Transitions could not always be predicted by a null model assuming that transition prob-
abilities scaled with the conditional probability of observing states after a transition. For example, 
some transitions, such as the transition from irregular to regular, were never observed in RPCH, a 
significant deviation from the expected number of transitions given the likelihood of observing regular 
states after transitions (Materials and methods). Others, such as the transition LP-silent to LP-silent-
PD-bursting in proctolin and oxotremorine, were observed at rates significantly higher than expected 
from the null model. Transitions into regular state are distributed across aberrant-spikes, LP-weak-
skipped, and irregular-bursting states for all three, but no invariant feature emerges in the rest of the 
transition matrix.

Serotonin destabilizes the rhythm in decentralized preparations, and the transition matrix under 
serotonin reveals several features of the irregularity behavior observed under serotonin (Figure 10). 
A number of irregular and low-firing states from silent to irregular never transition into the regular 

Figure 10. Effect of red pigment-concentrating hormone (RPCH), proctolin, oxotremorine, and serotonin on transition probabilities. Each matrix shows 
the conditional probability of observing the final state in the next time step given an observation of the initial state during bath application of that 
neuromodulator. Probabilities in each row sum to 1. Size of disc scales with probability. Discs with dark borders are transitions that are significantly more 
likely than the null model (Materials and methods). Dark solid discs are transitions with nonzero probability that are significantly less likely than in the 
null model. ‍♢‍ are transitions that are never observed and are significantly less likely than in the null model. States are ordered from regular to silent. Bar 
graphics show the coefficient of variability (CV) of pyloric dilator (PD) and lateral pyloric (LP) burst periods before transition away from regular states. 

‍ρ, p‍ from Spearman rank correlation test. RPCH: ‍n = 148‍ transitions in ‍N = 33‍ animals; proctolin: ‍n = 155‍ transitions in ‍N = 59‍ animals; oxotremorine: 
‍n = 102‍ transitions in ‍N = 21‍ animals; serotonin: ‍n = 263‍ transitions in ‍N = 23‍ animals. Bar graphs show the CV of burst periods of PD and LP vs. time 
before a transition away from regular states during serotonin application. ‍ρ, p‍ from Spearman rank correlation test.
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state, which is unlikely in the null model (p<0.05, Materials and methods). Transitions between pairs 
of states are symmetric and occur at rates significantly larger than in the null model, such as between 
LP-silent and LP-silent-PD-bursting. Intriguingly, destabilizing transitions from regular to LP-weak-
skipped, aberrant-spikes, and irregular-bursting are observed at rates significantly higher than in the 
null model. These three abnormal states are also observed immediately preceding regular states in 
RPCH, proctolin, and oxotremorine (Figure 9c), suggesting that the mechanisms for both stabilization 
and destabilization of the rhythm share stereotyped trajectories.

Are transitions away from regular states also associated with increases in variability of burst periods? 
Similar to preparations in high ‍[K+]‍ and low pH, and when decentralized, transitions away from regular 
states in serotonin were associated with significantly rising variability in the burst periods of PD and LP 
neurons (Figure 10, p<0.05, Spearman rank correlation test).

Discussion
Advances in neural recording technology have made it possible to generate increasingly large data-
sets, and an ongoing challenge is in developing computational tools to find structure in the neural 
haystack (Pachitariu et  al., 2016). Nonlinear dimensionality reduction algorithms such as t-SNE 
can create a useful representation of datasets that are too large to visualize in their entirety using 
traditional methods. We combined domain-specific expert knowledge with an unsupervised dimen-
sionality reduction process (t-SNE) by manually segmenting and labeling clusters of dynamics repre-
senting biologically significant behavior. This approach conferred two advantages: it allowed for a 
more accurate measure of traditional metrics such as burst phases in large datasets (Figures 4 and 
8), and it allowed for the analysis of irregular dynamics that are typically intractable with conventional 
analysis methods (e.g., Figure 9), with the disadvantage of not being fully automated, and requiring 
human intervention to inspect data in the embedding and draw cluster boundaries. Our work hints at 
a possibility to characterize nonregular spike patterns in small neural circuits and can thus provide a 
deeper understanding of circuit activity under baseline conditions and in response to perturbations. 
Our approach makes limited assumptions of the dynamics of the circuit, yet provides a formal frame-
work based on domain-specific knowledge for characterizing circuit activity. Additionally, this way of 
analyzing neural spike data can readily be adapted to other circuits and systems.

Reliable identification of regular rhythms allows for accurate, 
interpretable analysis of rhythm metrics
Characterizing the statistics of neural oscillations has several subtle challenges. For example, varia-
tions in cycle period arising from cycle-to-cycle fluctuations are not distinguished from those arising 
from alteration between epochs of regular oscillations interrupted by spans of irregular activity where 
metrics like cycle period are undefined. One way to disambiguate the two is to construct elaborate 
checks to make sure that the spike pattern being measured meets certain criteria. However, edge 
cases abound, and this is a challenging and subjective approach. A fortuitous consequence of the 
embedding method we used is to reliably identify when rhythms were regular, and we found that burst 
metrics were well defined for this subset of data (blue region in Figure 3). We were therefore able to 
measure the mean and variability of various burst metrics (Figure 4) only in stretches of data where it 
made sense to do so, and thus the measured variability stemmed almost entirely from cycle-to-cycle 
variations.

Consistent with previous studies (Bucher et  al., 2005; Hamood and Marder, 2014; Hamood 
et al., 2015), our results (Figure 4) show that within-animal variability in pyloric burst metrics is lower 
than across-animal variability. Our results are from an analysis of data from several experimenters from 
different laboratories, collected over a span of 10 years. It is therefore an ideal dataset in which to 
measure variability. We find that the CV of all burst metrics measured is ‍≈ 0.1‍ (Figure 4b), which can 
now be used as a standard for regular baseline pyloric oscillations. Measuring burst metrics on decen-
tralization (Figure 8) also allowed us to characterize how regular rhythms change, while still being 
recognizably regular. In addition to recapitulating well-understood phenomena such as the slowing 
down and increased variability in rhythms, we found that the phase of LP burst onset did not change 
significantly, but the phase of LP burst termination did, suggesting that features of the rhythm are 
differentially robust to the removal of neuromodulation.

https://doi.org/10.7554/eLife.76579
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Earlier work categorized the varied dynamics of the pyloric circuit during perturbations (Haddad 
and Marder, 2018; Haley et al., 2018; Ratliff et al., 2021). In those studies, categories were typi-
cally constructed by hand and were not rigorously shown to be mutually exclusive. Categories in this 
work, while manually chosen, emerge naturally from the distribution of the data in the reduced space 
(Figure 3) and no segment of data can have more than one label because it can exist only at a single 
point in the map. For instance, earlier work categorized rhythms that were labeled regular into two 
categories, ‘normal triphasic’ and ‘normal triphasic slow’ (Haddad and Marder, 2018), while we did 
not observe a distinctly bimodal distribution of burst periods. In contrast, the catch-all ‘atypical firing’ 
state was separated here into a number of states (irregular, irregular-bursting, sparse-irregular) that 
span several well-separated clusters in the map (Figure 3). In summary, this work recapitulates every 
label constructed to categorize spike patterns from PD and LP neurons in earlier work, and addition-
ally finds new spike patterns that were either not detected or not identified as distinct because they 
are hard to detect by manual inspection.

Diversity and stereotypy in trajectories from functional to crash states
Are there preferred paths to go from regular rhythms to crash? Diversity in the solution space of 
functional circuits, and the varied effects of perturbations on these circuits, argues for an assort-
ment of trajectories from functional dynamics to irregular or silent states. While transition matrices 
measured during different perturbations were varied (Figure 6), we did observe universal features in 
transition matrices measured during environmental perturbations, decentralization, and addition of 
neuromodulators (Figures 6, 7 and 10). The destabilizing transition from regular → LP-weak-skipped 
was overrepresented in every transition matrix, suggesting that the weakening of the LP neuron is a 
crucial step in the trajectories towards destabilization, perhaps because there is only one copy of LP 
in the circuit. Earlier work studying trajectories of destabilization of regular bursting in the isolated 
pacemaker kernel also found a conserved motif in trajectories towards destabilization: from regular 
bursting to tonic spiking to silence in response to pH perturbations, and another conserved motif 
(bursting to weak bursting to silence) in response to temperature perturbations (Ratliff et al., 2021). 
Transitions away from regular rhythms were also associated with increased variability in burst periods 
during all perturbations except high temperature and low pH (Figures 6, 7 and 10). An increase in 
variability in PD voltage dynamics before transitions from regular bursting has been observed in the 
isolated pacemaker kernel (Ratliff et al., 2021), similar to the effect we observed in the intact circuit.

The structure of the transitions between states also hints at features of the circuit that are crit-
ical for rhythm (de)stabilization. Unsurprisingly, PD-silent states precede silent states in low pH, high 
temperature, and high ‍[K+]‍ perturbations (Figure 6). This makes sense because PD cells are electri-
cally coupled to the endogenous burster AB in the pacemaker kernel, and silencing the pacemaker 
kernel can cause the circuit to go silent. Though the states are determined purely from clusters in 
the embedding (Figure  2), and thus from statistical features of spike times, some states may be 
identified predominantly with cell-specific features (e.g., LP-weak-skipped where the LP neuron fails 
to burst regularly, but the PD neurons continue to burst regularly), or with circuit-level features (e.g., 
aberrant-spikes where one or both neurons fire spikes outside the main burst, which may be caused 
by incomplete inhibition). Decentralization elicits the largest number of transition types, with ‍≈ 80%‍ 
of all transition types observed, which could be a consequence of the complex change in the neuro-
modulator milieu following transection of descending nerves.

Linking circuit output to circuit mechanisms
A large body of work has shown that there is more than one way to make a neural circuit with similar 
patterns of activity (Prinz et al., 2003; Prinz et al., 2004; Gutierrez et al., 2013). Several combinations 
of circuit parameters such as synapse strengths, ion channel conductances, and network topology can 
be found in circuits that generate similar emergent collective dynamics (Gonçalves et al., 2020). The 
dimensionality of the space of neuronal and synaptic parameters in a neural circuit is much larger than 
the dimensionality of the circuit output (Marder and Bucher, 2007). This disparity in dimensionality 
leads to an inherently many-to-one mapping from the space of circuit architecture to the space of 
circuit dynamics. Circuits can therefore exhibit ‘cryptic’ architectural variability (Haddad and Marder, 
2018), where the diversity of topologies and neuronal parameters is masked by the relatively low-
dimensional nature of the observed circuit outputs. However, perturbations can reveal differences 
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between seemingly identical circuits. For instance, current injections in an oscillator network can shift 
phases, thus revealing connection weights between individual neurons (Timme, 2007). This work 
reveals a path towards analysis that can reveal cryptic variability and build mechanistic links from 
circuit architecture to function. By characterizing the totality of circuit dynamics under a variety of 
conditions, our framework provides a way to fit biophysically detailed models of the pyloric circuit 
to diverse circuit dynamics under baseline conditions and perturbations. From the large diversity of 
neuron and circuit parameters that can reproduce a snapshot of activity, only a subset of models could 
potentially recapitulate the diverse irregular behavior seen under extreme perturbations. Recent work 
that reproduced how circuits change cycle periods with temperature (Alonso and Marder, 2020) can 
be extended to find parameter sets that also generate the irregular states characterized in this study 
at the rates observed in the data. Crucially, the characterization of the pyloric circuit dynamics in this 
work can be used to rule out models and parameter sets that generate irregular activity that is qualita-
tively dissimilar to any of the irregular states observed in the pyloric circuit. Future experimental work 
can pair data analysis methods such as this work with quantitative measurements of cellular and circuit 
parameters using emerging techniques (Schulz et al., 2006; Schulz et al., 2007; Tobin et al., 2009) 
to find parameter sets that generate robust rhythms and irregular states.

Applicability to other systems
The analysis method in this study is well-suited for large datasets of neural recordings from iden-
tified neurons. Data where the identity of each neuron is not or cannot be known, such as large-
scale mammalian brain recordings, would require modifications to the analysis pipeline described 
in Figure 2. First, it would no longer be possible to construct a data vector of fixed length because 
ordering of the different neurons would not be meaningful. Each data point would instead be an 
unordered set of spike times from each neuron, and a distance function that operated on spike times 
(Christen et al., 2006; Victor and Purpura, 2009; Schreiber et al., 2003; van Rossum, 2001) could 
be used to generate a distance matrix between raw data points, which would be the input to the 
embedding algorithm. In our analysis, we included features such as the ‘spike phase’ (Figure 2b and 
c) because the neurons in this circuit interact with one another strongly in each cycle of oscillations. 
The analysis of neural circuits that do not show such strong intrinsically phase-controlled behavior 
could use other features more suitable to those systems.

Comparison with other methods
Visualization and other forms of analysis of large neural datasets rely on dimensionality reduction 
(Nguyen and Holmes, 2019). Here, we used the t-SNE algorithm as a core method to reduce the 
dimensionality of the dataset and visualize our data. t-SNE has been widely used in the unsupervised 
analysis of many types of biological data (Berman et al., 2014; Kollmorgen et al., 2020; Chen et al., 
2021; Macosko et al., 2015; Kobak and Berens, 2019; Leelatian et al., 2020), including neural 
recordings (Dimitriadis et al., 2018). t-SNE is a technique that allows high-dimensional data to be 
visualized in a lower-dimensional space (Van der Maaten and Hinton, 2008; Linderman and Stein-
erberger, 2019), and works by preserving pairwise distances between points in the high-dimensional 
space and the low-dimensional embedding, within a certain neighborhood. This feature makes t-SNE 
an attractive tool to try to visualize large, structured datasets, such as those examined in this study, 
because it can demonstrate how similar spike patterns are to each other (Dimitriadis et al., 2018). 
t-SNE has been shown rigorously to be capable of recovering well-separated data clusters (Linderman 
and Steinerberger, 2019). In our application, t-SNE generated embeddings where spike patterns in 
different regions could be described as qualitatively different. For example, spike patterns in the top-
most cluster (colored green in Figure 3) all had weak PD spiking, but regular and strong LP spiking. 
This was qualitatively different from the two closest clusters LP-weak-skipped and irregular. In regions 
of the map where clusters were not cleanly separated (e.g., in the connection between the regular 
and irregular-bursting clusters), manual inspection revealed a number of intermediate states. The 
clustered or not-clustered regions of the map are therefore informative of the underlying distribution 
of spike patterns and emerge robustly from the embedding.

t-SNE is widely used in the analysis and visualization of high-dimensional data, but is important to 
acknowledge its limitations. t-SNE can generate embeddings that appear to have clusters from purely 
randomly distributed data, can distort sizes of clusters, and can fail to preserve large-scale topological 
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features of the data in some embeddings (Wattenberg et al., 2016). The visualization we generated 
was useful in that it guided manual clustering and made feasible a previously intractable task, that of 
classifying hundreds of hours of spike patterns from hundreds of animals.

A variety of other dimensional reduction techniques, including multidimensional scaling (Cox and 
Cox, 2008), convolutional non-negative matrix factorization (Mackevicius et  al., 2019) and their 
extensions (Williams et al., 2020), tensor component analysis (Williams et al., 2018), and dynamical 
component analysis (Clark et al., 2019), have been developed that aid in visualizing and analysis of 
large neural datasets. Methods based on neural networks offer powerful tools to analyze unstructured 
neural data by modeling the data with a recurrent neural net and then analyzing that model (Vyas 
et  al., 2020). Topological autoencoders are one such technique that combine autoencoders with 
methods from topological data analysis to produce representation in lower-dimensional spaces (Moor 
et al., 2019). These methods are similar in spirit to the analysis presented here, but use sophisticated 
neural nets whose parameters yield the lower-dimensional representation. Other analysis methods 
include SOM-VAE, which combines self-organizing maps (SOMs) and variational auto-encoders (VAEs) 
(Fortuin et al., 2018) to analyze high-dimensional time series and find transitions between states, 
and deep temporal clustering, which combines dimensionality reduction and temporal clustering 
(Madiraju et al., 2018).

Technical considerations
In this study, we have used the activity of the LP and PD neurons as a proxy for the pyloric circuit. 
However, the pyloric circuit contains other neurons: AB (which is electrically coupled to PD neurons), 
PY neurons (which are anti-phase to both PD and LP), and VD and IC neurons. A richer description 
of the dynamics of the pyloric circuit would include spikes from these neurons, and the methods we 
have described here can be scaled up to include these neurons. It is likely that we are underestimating 
the number of states, and thus, transitions between states, because we do not have access to the 
dynamics of these neurons. Datasets that contain recordings from all pyloric neurons as preparations 
are subjected to the perturbations studied here and are not available for large numbers of animals. 
We therefore chose to focus on the functional antagonists LP and PD. Additionally, neurons in the 
pyloric circuit are coupled using graded synapses, and the circuit can generate coordinated activity 
even when spiking is abolished (Rosenbaum and Marder, 2018), suggesting that subthreshold oscil-
lations may be an important feature we are not measuring by only recording spikes. However, the data 
required necessitates substantially harder to perform experiments because intracellular electrodes 
must be used. Furthermore, the signal to the muscles – arguably the physiologically and functionally 
relevant signal – is the spike signal, suggesting that spike patterns from the pyloric circuit are a useful 
feature to measure.

The unit of data we operated on was a time series of spikes from the LP and PD neurons. In order 
to describe what the dynamics of these neurons is at a given point in time, we chose to look at a 
neighborhood in time. In this article, we chose 20 s nonoverlapping bins, based on inspection of the 
data by eye. Choosing a time bin imposes certain tradeoffs in the analysis of time series: changes in 
dynamics on timescales smaller than the bin are counted as different states, and changes in dynamics 
on timescales longer than the bin size are counted as transitions between states. The statistics of the 
transitions we measure are therefore dependent on the bin size we chose. We note that dwell times in 
each state are almost always in excess of null model predictions generated by shuffling states (transi-
tion matrices in Figures 6, 7 and 10), supporting the validity of our choice of 20 s bins.

Conclusion and outlook
Our work provides a way to characterize nonregular spike patterns in small neural circuits. It thus 
provides a bridge between experimental or simulation work grounded in the biophysical detail of 
ion channels and synaptic currents; and the rich body of observations of circuits under baseline and 
perturbed conditions. The methods we have employed can easily be adapted to other circuits and 
systems, make limited assumptions of the dynamics of the circuit, yet provide a robust framework on 
which to hang a large volume of previously ineffable expert domain knowledge.

Prior to this work, crashes in the pyloric circuit and irregular dynamics in a normally regular circuit 
were difficult to characterize. We present a method to tame the complexity of the distribution of irreg-
ular states by exploiting the fact that pyloric dynamics are not unbounded even in their irregularity. By 
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using a t-SNE in conjunction with manual inspection of reduced data and manual clustering, we have 
made this previously intractable problem feasible and found undiscovered spike patterns and transi-
tions. Our approach was successful because we used a dataset with long recordings from identified 
neurons in a circuit that can be subjected to many different perturbations, which is one of the advan-
tages of using the STG system. It will be interesting to see if this can be applied to other systems with 
identified neurons in a functional circuit to characterize their function and failure modes.

In intact pyloric circuits, and in the presence of modulatory input from the stn, almost all networks 
are ‘normal’ and exhibit regular rhythms. Decentralization can generate more variable dynamics, 
presumably because the underlying differences in network structure that were compensated by modu-
lator action now manifest as different collective dynamics in the network. Although it may appear that 
modulators can have similar effects when added to a decentralized network, they are in fact distin-
guishable when looking at how they influence the totality of circuit dynamics, not just the regular state.

A major unanswered question was whether crashes triggered by different perturbations share 
dynamical mechanisms and common pathways. Earlier work looking at a simpler subset of the pyloric 
circuit argued that different perturbations led to stereotyped but diverse transitions before crash, 
and we have extended this result in the intact circuit. We show that different perturbations can have 
different trajectories to crash, but the stereotypy observed in the simpler system was not observed, 
presumably due to the larger number of pathways accessible to the intact circuit. The new insight 
from this work stems from the fact that this is the first time transitions through multiple physiolog-
ical conditions in so many modalities have been characterized and shows that there are many paths 
through possible circuit dynamical states from canonical states to crash. Several studies focus on one 
perturbation at a time. By studying a number of perturbations together, we compare responses to 
different kinds of perturbations on the same physiological network.

Materials and methods
Animals and experimental methods
Adult male Jonah crabs (C. borealis) were obtained from Commercial Lobster (Boston, MA), Seabra’s 
Market (Newark, NJ), and Garden Farm Market (Newark, NJ). Dissections were carried out as previ-
ously described (Gutierrez and Grashow, 2009). Decentralization was carried out either by cutting 
the stn or by additionally constructing a well on the stn and adding sucrose and TTX (tetrodotoxin) 
as described in Haddad and Marder, 2018. Temperature was controlled as described in Tang et al., 
2010; Tang et al., 2012; Haddad and Marder, 2018. Extracellular potassium concentrations were 
varied as described in He et al., 2020. pH perturbations are described in Haley et al., 2018.

Data selection and curation
Our goal was to include as much data as possible to create as complete a description of pyloric 
dynamics as possible. Following our strategy of including only the LP and PD neurons, we used every 
available dataset that recorded from these neurons from the Marder lab. We also included available 
datasets from the Nadim and Bucher labs. No dataset was explicitly excluded for reasons linked to 
the activity of the pyloric circuit in those datasets. Data where crucial metadata was not recorded 
(e.g., if the temperature of the preparation was not recorded) was excluded. Data where only lvn was 
recorded from was only included in cases of exceptional data quality, where it was judged that PD and 
LP could be reliably identified.

Spike identification and sorting
Spikes are identified from extracellular recordings of motor nerves or from intracellular recordings. LP 
spikes were identified from intracellular recordings, lvn, lpn, and gpn nerves (in descending order of 
likelihood). PD spikes were identified from pdn, intracellular recordings, and lvn. We used a custom-
designed spike identification and sorting software (called ‘crabsort’) that we have made freely avail-
able at https://github.com/sg-s/crabsort (copy archived at swh:1:rev:6a67e765e90caa536e6a11f67d
9d4737d059af50; Gorur-Shandilya, 2021), previously described in Powell et al., 2021. Spikes are 
identified using a fully connected neural network that learns spike shapes from small labeled datasets. 
A new network is typically initialized for every preparation. Predictions from the neural network also 
indicate the confidence of the network in these predictions, and uncertain predictions are inspected 
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and labeled and the neural network learns from these using an active learning framework (Settles, 
2009).

Data curation and data model
Each file was split into 20  s nonoverlapping bins, and spike times, together with metadata, were 
assembled into a single immutable instance of a custom-built class (embedding.DataStore). The data 
store had the following attributes:

•	 Spike times containing LP and PD spike times.
•	 ISIs containing ISIs and spike phases
•	 Labels categorical data containing manually generated labels from Figure 3
•	 Metadata such as concentration of modulators, pH, temperature, whether the preparation was 

decentralized or not, etc.

Using an immutable data structure, reduced risks of accidental data alteration during analysis. 
Every attribute was defined for every data point.

Embedding
ISI and phase representation (Figure 2b)
Each data point is a 20 s bin containing spike times from LP and PD neurons (Figure 2a). For each data 
point, spike times are converted into ISIs. A set of spike times uniquely identifies a set of (ordered) 
ISIs. The set of LP spike times generates a set of LP ISIs, and the set of PD spike times generates a set 
of PD ISIs (Figure 2b).

For every spike in PD or LP, a ‘spike phase’ can be calculated as follows. Spike phases are not 
defined when either LP or PD are silent in that data point, or for LP/PD spikes with no spikes from 
the other neuron before or after that spike. Thus, the ‘spike phase’ of the ith spike on neuron X w.r.t. 
neuron Y is given by

	﻿‍
tXi −tYi,−
tYi,+−tYi,−

∈ [0, 1]
‍�

where ‍t
X
i ‍ is the time of the ith spike on neuron ‍X ‍, ‍t

Y
i,−‍ is the time of the last spike on ‍Y ‍ before ‍t

X
i ‍, 

and ‍t
Y
i,+‍ is the time of the first spike after ‍t

X
i ‍. Note that this definition can be generalized to ‍N ‍ neurons, 

though the number of spike phases grows combinatorially with ‍N ‍.

Construction of vectorized data frame (Figure 2c and d)
Each data point can contain an arbitrary number of spikes, and thus an arbitrary number of ISIs and 
spike phases. Ideally, each data point is a data frame of fixed length (a point in some fixed high-
dimensional space). To do so, we computed percentiles ISIs and spike phases (Figure 2c). We chose 
10 bins per ISI type (deciles). The end result is not strongly dependent on the number of bins chosen 
as long as there are sufficiently many bins to capture the distinctly bimodal distribution in ISIs during 
bursting.

We included four other features to help separate spike patterns that appeared qualitatively 
different. First, firing rates of LP and PD neurons. Second, the ratios of second-order to first-order 
ISIs, defined as

	﻿‍
max I(2)

max I(1) ‍�

where ‍I(n)‍ is the nth order set of ISIs computed as the time between n spikes. ‍I(1)‍ is the simple set of 
ISIs defined between subsequent spikes. This measure is included because it captures the difference 
between single spike bursts and normal bursts well. Third, the ratio between the largest and second-
largest ISIs for each neuron.

Finally, we also included a metric defined as follows:

	﻿‍
max diff(s)

smax ‍�
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where ‍s‍ is a vector of sorted ISIs, and ‍smax‍ is the sorted ISI for which the difference between it and 
the previous sorted ISI is maximum. This metric was included as it captures to a first approximation 
how ‘burst-like’ a spike train is. Intuitively, this metric is high for spike trains with bimodal ISI distribu-
tions, as is the case during bursts.

All these features were combined into a single data frame and ‍z‍-scored (Figure 2d).
In some cases, these features were not defined, for example, when there are no spikes on either 

neuron, the concepts of spike phases or ISIs are meaningless. In these cases, ‘filler’ values were used 
that were located well off the extremes of the distribution of the metric when defined. For example, 
ISIs were filled with values of 20 s (the size of the bin) when no spikes were observed. The overall 
results and shape of the embedding did not depend sensitively on the value of the filler values used.

These features were chosen to capture various modes of spiking and bursting that have been previ-
ously identified by manual inspection (Haddad and Marder, 2018; Tang et al., 2012; Haley et al., 
2018). Other features may be more appropriate in other systems where spike patterns span different 
axes of variability. However, we note that these features while being appropriate for this data were not 
‘fine-tuned’ to specialize in features that are exclusively found in spike patterns from the pyloric circuit. 
For example, these features do not explicitly measure bursting, the dominant feature of the pyloric 
rhythm, but instead use distributions of ISIs that are sufficiently descriptive to capture the variability in 
bursting and transitions from bursting to other spiking.

Embedding using t-SNE
So far, we have described how we converted a 20 s snippet containing spike times from LP and PD into 
a data frame (a vector). We did this for every 20 s snippet in the dataset. Data that did not fit into any 
bin was discarded (e.g., data at the trailing end of an experiment shorter than 20 s). Thus, our entire 
dataset is represented by ‍M × N ‍ matrix, where ‍M ‍ is the number of features in the data frame and ‍N ‍ 
is the number of data points.

We used the t-SNE algorithm (Van der Maaten and Hinton, 2008) to visualize the vectorized 
data matrix in two dimensions. Our dataset contained ‍≈ 105‍ points and was therefore too large for 
easy use of the original t-SNE algorithm. We used the FI-t-SNE approximate algorithm (Linderman 
et al., 2019) to generate these embeddings. We used a perplexity of ‍P = 100‍ to generate these 
embeddings. Varying perplexity caused the embedding to change in ways consistent with what 
is expected for t-SNE embeddings, and the coarse features of the embedding did not sensitively 
depend on this choice of perplexity (Figure 2—figure supplement 4). t-SNE is often used with 
random initialization, and different random initializations can lead to different embeddings with 
clusters located at different positions in the map. The importance of meaningful initializations has 
recently been highlighted (Kobak and Linderman, 2021), and we used a fixed initialization where 
the x-axis corresponded to the shortest ISI in each data point and the y-axis corresponded to 
the maximum ratio of second-order to first-order ISI ratios (described above). For completeness, 
we also generated embeddings using other initializations (Figure 3—figure supplement 2). For 
both random initializations (Figure 3—figure supplement 2a–d) and initializations based on ISIs 
(Figure 3—figure supplement 2e and f), we observed that regular states tended to occur in a 
single region, surrounded by clusters that were dominated by a single color corresponding to irreg-
ular states. Thus, the precise location of different clusters can vary with the initialization, but the 
overall structure of the embedding, and the identity of points that tend to co-occur in a cluster, does 
not vary substantially with initialization.

Manual clustering and annotation of data
Once the feature vectors were embedded using t-SNE, we manually inspected these points to get 
a sense of the spike patterns in each point cloud. To do so, we built an interactive tool that visual-
ized spike patterns that corresponded to each point when clicked on. Random points within regions 
of high density were sampled to check that interior points had similar spike patterns. Points were 
assigned labels by drawing boundaries around them and labeling all points within that boundary. 
Finally, we generated plots of ISIs and rasters from points in clusters to ensure that patterns of spiking 
were visually similar.

https://doi.org/10.7554/eLife.76579


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Gorur-Shandilya et al. eLife 2022;11:e76579. DOI: https://doi.org/10.7554/eLife.76579 � 27 of 34

Triangulation and triadic differences (Figure 2—figure supplement 3)
The output of the embedding algorithm is a set of points in two dimensions. We built a Delaunay trian-
gulation on these points. For each triangle in the triangulation, we computed the maximum difference 
between some burst metric (e.g., burst period of PD neurons) across the three vertices of that triangle. 
These triadic differences are represented colored dots, where the dots are located at the incenters of 
each triangle in the triangulation.

Time-series analysis
Measuring burst metrics (Figure 4)
Burst metrics were measured following previous definitions (Prinz et al., 2004; Bucher et al., 2005). 
Briefly, bursts were identified by observing that ISI distributions were bimodal, with smaller ISIs corre-
sponding to ISIs within a burst, and longer ISIs corresponding to inter-burst intervals. This allowed us 
to threshold ISIs, and this identifies burst starts and burst ends. From here, burst periods could be 
calculated, which allowed us to measure phases and delays relative to the start of the PD burst.

Measuring transition matrices (Figures 6, 7 and 10)
The transition matrix is a square matrix of size ‍N ‍ that describes the probability of transitioning from 
one to another of ‍N ‍ possible states. The transition matrix we report is the right stochastic matrix, 
where rows sum to 1. Each element of the matrix ‍Tij‍ corresponds to the conditional probability that 
we observe state ‍j‍ given state ‍‍. To compute this, we iterate over the sequence of states and compare 
the current state to the state in the next state. Breakpoints in the sequence are identified by disconti-
nuities in the timestamps of that sequence and are ignored. We then zeroed the diagonal of the matrix 
and normalized each row by the sum.

Measuring variability before transitions away from regular states (Figures 6 
and 7)
We first identified continuous segments that corresponded to uninterrupted recordings from the same 
preparation at the appropriate condition. For each segment, we found all transitions away from the 
regular state. We therefore computed a vector as long as the segment containing the time to the next 
transition. We then collected points corresponding to time to next transition ranging from ‍t = −200s‍ 
to ‍t = 0s‍. For each time bin, we measured the CV of the burst period by dividing the standard devia-
tion of the burst period in that datum by the mean in that datum.

Data visualization
Raincloud plots (Figure 4)
Raincloud plots (Allen et al., 2019) are used to visualize a univariate distribution. Individual points 
are plotted as dots, and a shaded region indicates the overall shape of the distribution. This shape 
is obtained by estimating a kernel smoothing function estimate over the data. Individual points are 
randomly jittered along the vertical axis for visibility.

Occupancy maps (Figures 5 and 7)
To visualize where in the map data from a certain condition occurred, the full embedding is first 
plotted with colors corresponding to the state each point belongs to. The full dataset is made semi-
transparent and plotted with larger dots to emphasize the data of interest. Data in the condition of 
interest is then plotted as usual. Each bright point in these plots corresponds to a 20 s snippet of data 
in the condition indicated.

Treemaps (Figures 7 and 9)
Treemaps (Shneiderman and Wattenberg, 2001) were used to visualize state probabilities in a given 
experimental condition. For each preparation, the probability of each state was computed, and the 
mean probability of a given state was computed by averaging across all preparations. Thus, each 
preparation contributes equally. The area of the region in the treemap scales with the probability of 
that state.

https://doi.org/10.7554/eLife.76579
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Transition matrices (Figures 6, 7 and 10)
Transition matrices were visualized as in Corver et al., 2021. Initial states are shown along the left 
edge, and final states are shown along the bottom edge of each matrix. Lines are colored by origin 
(horizontal lines) or destination (vertical) states. The size of each disc at the intersection of each line 
scales with the conditional probability of moving from the initial state to the final state. Note that the 
size of all discs is offset by a constant to make small discs visible.

Statistics
Comparing within-group to across-group variability (Figure 4)
To compare the variability of various burst metrics within each animal and across animals, we first 
measured the means and CVs of each burst metrics in every animal. We then used the mean of the 
coefficients of variations as a proxy for the within-animal variability and used the CV of the means as a 
proxy for the across-animal variability. Note that both measures are dimensionless. They can therefore 
be directly compared.

To test if the within-animal variability was significantly less than the across-animal variability, we 
performed a permutation test. We shuffled the labels identifying the animal to which each data 
point belonged to and measured a new ‘within-animal’ and ‘across-animal’ variability measure using 
these shuffled labels. We repeated this process 1000 times to obtain a null distribution of differ-
ences between within- and across-animal variability. Identifying where in the null distribution the data 
occurred allowed us to estimate a p-value for the measured difference. For example, if the measured 
difference between within- and across-animal variability in metric X was greater than 99% of the null 
distribution obtained by shuffling labels, we conclude that the p-value is 0.01. The significance level 
of 0.05 was divided by the number of burst metrics we tested to determine if any one metric was 
significantly more or less variable across animals.

Measuring trends in variability in regular rhythms before transitions 
(Figures 6b, 7f and 9d)
To determine if variability significantly increased in the 200 s preceding a transition away from regular, 
we measured the Spearman rank correlation between time before transition (x-axis) and mean vari-
ability. The Spearman rank correlation ‍ρ‍ is 1 if quantities monotonically increase.

Measuring transition rate significance (Figures 6a, 7e and 10)
In the empirical transition matrices, certain transitions never occur, and certain transitions occur with 
relatively high probability. Each element of the transition matrix ‍Tij‍ corresponds to the conditional 
probability ‍P(final|initial)‍. Our null model assumes that transitions occur at random between states, 
and therefore the probability of observing any transition ‍i → j‍ scales with the marginal probability of 
observing state ‍j‍ after transitions. We therefore built a null distribution of transition rates by sampling 
with replacement from the marginal counts of states after transitions. The fraction of this null distribu-
tion that was above or below the empirical transition rate was interpreted to be the p-value and thus 
determined significance.

Code availability
Table 4 lists the code used in this article. The code can be downloaded by prefixing https://github.​
com/ to the project name.

Table 4. Code availability.

Project Notes

sg-s/crabsort Interactive toolbox to sort spikes from extracellular data

sg-s/stg-embedding Contains all scripts used to generate every figure in this article

KlugerLab/FIt-SNE
Fast interpolation-based t-distributed stochastic neighbor embedding, 
used to make embedding

sg-s/SeaSurfaceTemperature Wrapper to scrape NOAA databases

https://doi.org/10.7554/eLife.76579
https://github.com/
https://github.com/
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