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Abstract Many everyday life decisions require allocating finite resources, such as attention or 
time, to examine multiple available options, like choosing a food supplier online. In cases like these, 
resources can be spread across many options (breadth) or focused on a few of them (depth). Whilst 
theoretical work has described how finite resources should be allocated to maximize utility in these 
problems, evidence about how humans balance breadth and depth is currently lacking. We intro-
duce a novel experimental paradigm where humans make a many-alternative decision under finite 
resources. In an imaginary scenario, participants allocate a finite budget to sample amongst multiple 
apricot suppliers in order to estimate the quality of their fruits, and ultimately choose the best one. 
We found that at low budget capacity participants sample as many suppliers as possible, and thus 
prefer breadth, whereas at high capacities participants sample just a few chosen alternatives in 
depth, and intentionally ignore the rest. The number of alternatives sampled increases with capacity 
following a power law with an exponent close to 3/4. In richer environments, where good outcomes 
are more likely, humans further favour depth. Participants deviate from optimality and tend to allo-
cate capacity amongst the selected alternatives more homogeneously than it would be optimal, but 
the impact on the outcome is small. Overall, our results undercover a rich phenomenology of close-
to-optimal behaviour and biases in complex choices.

Editor's evaluation
The authors describe human behavior in a novel task to understand how humans seek information 
about uncertain options when having a limited sampling budget – the 'breadth-depth' trade-off. 
They show that human information search approximates the optimal allocation strategy, but deviates 
from it by favoring breadth in poor environments and depth in rich environments. This study will 
likely be of interest to a broad range of behavioral and cognitive neuroscientists.

Introduction
When choosing an online food supplier as we settle into a new area, we need to trade off the number 
of alternative shops that we check with the time or money that we want to invest in each of them to 
learn about the quality of their products. Distributing resources widely (breadth search) allows us to 
sample many suppliers but very superficially, thus limiting our ability to distinguish which one is best. 
Allocating our resources to check just a few suppliers (depth search) allow us to learn detailed infor-
mation but only from a few, at the risk of neglecting potentially much better ones. Striking the right 
balance between breadth and depth is critical in countless other endeavours such as when selecting 
which courses to register in college (Schwartz et  al., 2009) or developing marketing strategies 
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(Turner et al., 1955). Its implications are far reaching when it comes to understand behaviours on the 
internet, where breadth and depth search has been related to navigation through lists of search results 
(Klöckner et al., 2004) or web site menus (Miller, 1991).

Despite its relevance to understand how humans make decisions under finite resources, it is remark-
able that the breadth-depth (BD) dilemma has mostly been investigated outside cognitive neurosci-
ence (Moreno-Bote et  al., 2020), in contrast to other well-studied trade-offs like speed-accuracy 
and exploration-exploitation (Cohen et al., 2007; Costa et al., 2019; Daw et al., 2006; Ebitz et al., 
2018; Wilson et al., 2014). The BD dilemma underlies virtually all cognitive problems, from allocating 
attention amongst multiple alternatives in multi-choice decision making (Busemeyer et  al., 2019; 
Hick, 1958; Proctor and Schneider, 2018), splitting encoding precision to items in working memory 
(Joseph et al., 2016; Ma et al., 2014), to dividing cognitive effort into several ongoing subtasks 
(Feng et al., 2014; Musslick and Cohen, 2021; Shenhav et al., 2013). In all these problems, finite 
resources, such as attention, memory precision, or amount of control, need to be allocated amongst 
many potential options simultaneously, making the efficient balancing between breadth and depth a 
fundamental computational conundrum.

The dynamics of resource allocation can be very complex, and thus it has been studied in 
decision making in simplified cases with few alternatives (Callaway et  al., 2021b; Jang et  al., 
2021; Krajbich et al., 2010) or in multi-tasking using a low number of simultaneously active tasks 
(Musslick and Cohen, 2021; Sigman and Dehaene, 2005). In these and other cases, resource 
allocation can be changed on the fly if feedback is immediate or is available within very short 
delays. In some real-life situations, however, feedback about the quality of the allocation is neces-
sarily delayed. This happens for instance in problems such as investing (Blanchet-Scalliet et al., 
2008; Reilly et al., 2016), choosing college (Schwartz et al., 2009) or, in ant colonies, sending 
scouts for exploration (Pratt et al., 2002); feedback can come after seconds, days, or even years. 
As resources should then be allocated beforehand, the dynamic aspect of the allocation is less 
relevant. One-shot resource allocation is important in cognition as well, as building-in stable atten-
tional or control strategies that work in a plethora of situations could relieve the burden of solving 
a taxing BD dilemma for optimal resource allocation every time (Mastrogiuseppe and Moreno-
Bote, 2022).

Previous theoretical work has shown how to optimally trade off breadth and depth over multi-
alternative problems in the situations described above, where resources are allocated all at once 
before feedback is received (Mastrogiuseppe and Moreno-Bote, 2022; Moreno-Bote et al., 2020; 
Ramírez-Ruiz and Moreno-Bote, 2022). A central result is that the optimal trade-off depends on 
the search capacity of the agent: while at low capacity resources should be split in as many alterna-
tives as capacity permits (breadth), at high capacity resources should be focused on a relatively small 
number of selected alternatives so that available resources are more focused (depth) (Moreno-Bote 
et al., 2020). In rich environments, where finding options rendering good outcomes is more likely, 
depth should be further favoured. Despite of the existence of precise predictions describing ideal 
behaviours in these scenarios, how humans solve BD trade-offs in many-alternative decision making is 
largely unknown (Brown et al., 2008; Callaway et al., 2021a; Chau et al., 2014; Cohen et al., 2017; 
Hawkins et al., 2012; Moreno-Bote et al., 2020; Roe et al., 2001; Usher and McClelland, 2004; 
Vul et al., 2014).

To fill this gap, we designed a novel, many-alternative task where search capacity was parametri-
cally controlled on a trial-by-trial basis. Human participants are immersed in a context where they are 
asked to allocate finite search capacity over a large number (several dozens) of apricot suppliers with 
the goal to choose the best one. We compare human sampling behaviour to optimality (Moreno-
Bote et  al., 2020, see Materials and methods for more details) by using two different ranges of 
capacities to zoom in relevant regimes. Concerning the adaptation of the sampling strategy as a 
function of capacity, we expected a pure-breadth behaviour at low capacity followed by a sharp tran-
sition towards a trade-off between breadth and depth, characterized by an increase of the number of 
alternatives sampled with the square root of capacity. We also addressed the effect of environment 
richness (the overall probability of alternatives rendering good outcomes) on the sampling strategy. 
We used three different environments with either a majority of poor, neutral, or rich alternatives and 
expected sampling strategy to shift towards depth as the environment became richer. Finally, we 
looked at whether systematic deviations from optimality can be observed regarding how samples are 
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distributed amongst each sampled alternative. 
We employed model comparison to adjudicate 
between optimal and other heuristic models of 
behaviour.

Results
Humans switch from breadth to a 
BD balance as capacity increases
We developed a novel experimental approach, 
the ‘BD apricot task’, to study many-alternative 
decisions under uncertainty and limited resources 
by confronting participants with a BD dilemma. 
Participants played a gamified version of the task 
in which they were presented with several virtual 
apricot suppliers (10 or 32) having different, and 
unknown, probabilities of good-quality apricots 
(Materials and methods; see Video  1). These 
probabilities were independently generated for 
each supplier in each trial from a beta prior distri-
bution. At the beginning of each trial, participants 
received a budget of a few coins, which defined 
their sampling capacity in that trial. Each coin was 
used to buy one apricot from a selected supplier 
(Figure  1a). Once all coins had been spent 
(Figure 1b), participants discovered which of the 
sampled apricots were of good quality, and which 
ones were bad (Figure  1c), whose outcomes 
followed a Bernoulli process with the unknown 
probabilities of good-quality apricots for each 
supplier. These probabilities were sampled inde-
pendently for each supplier and trial from a beta 
distribution. Based on the observed outcomes, 
participants could estimate the probabilities from 

the sampled suppliers, and make a final purchase of 100 apricots from the one they considered to be 
the best (Figure 1d). Only one of the sampled alternatives could be selected for the final purchase. 
Their goal was to maximize the number of good-quality apricots collected throughout the experi-
ment through the implementation of an informative sampling strategy, adapted both to the sampling 
capacity and to the environment richness. The task was intuitive and easily grasped by most partici-
pants. No instructions about the underlying probability generative model was provided as the context 
was informative enough to aid task understanding (Schustek et al., 2019).

Two different ranges of sampling capacity, narrow (2–10 samples per trial) and wide (2–32), were 
tested to zoom-in relevant behavioural regimes (see Materials and methods and Table 1). For each 
range, we used three environments differing in the parameters of the beta distribution used to 
generate probabilities of good-quality apricots for each supplier. By increasing the average proba-
bility of good alternatives, we can increase the richness of the environment to move from a ‘poor’, to a 
‘neutral’, up to a ‘rich’ environment (beta prior means: poor, 0.25; neutral, 0.50; and rich, 0.75). While 
environments and capacity ranges were run in a block fashion, capacity in each was chosen randomly 
in each trial from the underlying range in that block. Environments were tested within and between 
subjects in two different sets of experiments, to address potential learning effects.

We observed in all environments that participants’ sampling behaviour of suppliers follows a pure-
breadth strategy at low capacity (Figure 2A–B), whereby they sample close to as many suppliers as 
coins they have. Indeed, at low capacity (‍C ∼ 2, 3‍) the number ‍M ‍ of sampled suppliers averaged over 
trials and participants is close to ‍C‍ (Figure 2A) and the ratio ‍M/C‍ reaches very close to 1 (Figure 2B). 
At higher capacities, sampling progressively evolves towards a trade-off between breadth and depth. 

Video 1. Demonstration video of the task (design 
W10).

https://elifesciences.org/articles/76985/figures#video1

https://doi.org/10.7554/eLife.76985
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Therefore, although participants could have sampled more suppliers to learn about, they preferred 
to focus sampling capacity on a rather small fraction of suppliers, as shown by the decline of the ratio 
‍M/C‍ towards values of around 0.4 at the highest capacities tested (Figure 2B; right panels). Although 
these are predicted features and thus signs of optimal behaviour, we did not observe a fast transition 
between the low- and high-capacity regimes, as previously predicted (Moreno-Bote et  al., 2020, 
see also Appendix 1—figure 1A). This could simply result from averaging over participants having 
different transition points, or by having allocation noise, which would smooth out fast transitions. As 
shown below, models with allocation noise account for the smoothness of this transitions and are 
better models in predicting the behaviour than the noise-free optimal model.

Richer environments promote depth
The effect of environmental richness was also clearly visible in our data, with richer environments 
typically causing a stronger preference for depth sampling (Figure 2A–B; different colours), consis-
tent with predictions. Therefore, as it becomes easier for the participant to find good options, they 
prefer to neglect an even larger number of suppliers and focus capacity to examine fewer ones. We 
also observed systematic deviations from optimality (Figure 2A; black lines). In particular, despite 
participants’ strategy was overall strongly dependent on environment richness, as predicted, this was 
mostly due to a strong effect of the poor environment (Figure 2A–B; red lines), whereas they were not 
sensitive to the difference between neutral and rich environments (green and blue lines).

Figure 1. The breadth-depth (BD) apricot task. Human participants allocate a finite search capacity (coins) to learn about the quality of good apricots 
in different suppliers (sampling phase) and then make a final purchase of 100 apricots from one of the sampled suppliers (purchase phase). Each black 
section of the wheel represents a different supplier. The number of coins represents the search capacity of the participants on each trial and varies 
randomly from trial to trial within a finite range (see Materials and methods). The available coins (panel a; yellow green dots) at any time during the trial 
are displayed within the centre of the wheel. To allocate the coins to suppliers, participants have first to click on the designated active coin displayed 
at the centre (green dot) and then select the supplier to sample from (panel a) – both touch screen events are indicated by a large grey dot. One of 
the inactive (yellow) coins is then automatically activated and displayed, in green, at the centre. This sequence repeats until all coins are allocated. 
Then, each of the allocated samples turn either orange, representing a good-quality apricot, or purple, representing a bad-quality apricot (panel c). 
Finally, after this information is revealed, the participant selects one of the sampled suppliers for the final purchase of 100 apricots (with a touch screen, 
indicated by a large grey dot) and the choice outcome is immediately displayed (panel d).

Table 1. Summary of the experimental designs.

Design Capacity N suppliers N trials N subject

W10 Within-subject 2–10 10 216 18

B10 Between-subject 2–10 10 72 45

W32 Within-subject 2,4,8,16,32 32 120 18

B32 Between-subject 2,4,8,16,32 32 40 45

https://doi.org/10.7554/eLife.76985
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To test quantitatively the effect of environmental richness on the BD trade-offs, we fitted partici-
pant’s individual data in each environment using three models. These models were chosen based both 
on our predictions and on previous observations. First, a piece-wise power-law model (W), having 
a fast transition at some arbitrary capacity value, was selected as it is the one anticipated by the 
ideal observer. Second, as previously said, we visually noticed that for a majority of participants the 
transition between pure-breadth and BD trade-off was gradual (see Figure  2), so we decided to 
capture their sampling strategy using two simpler models: a linear model (L) and a power-law model 
(P). Indeed, it has been predicted that once the BD trade-off established, the number of alternatives 
sampled ‍M ‍ approximately increases with a power-law behaviour (Moreno-Bote et  al., 2020). We 
observed that the power-law model (‍R

2
adj = 0.96 ± 0.04‍ mean ± s.d.) showed significantly better fits 

than the linear model (‍R
2
adj = 0.92 ± 0.06‍ mean ± s.d.‍; V = 404, p < 2.2 × 10−16

‍). Moreover, the linear 
piece-wise model was not significantly better than the power-law model for all participants in all envi-
ronments individually (ANOVAs, with ‍α = .05‍).

We compared the exponent estimated from the power-law fits in each environment and exper-
imental design (Figure  3) using within- (W10 and 32) or between-subjects (B10 and 32) designs. 
The results demonstrated a significant effect of the environment on the exponent in all designs 
(one-way ANOVAs, B10: ‍F1 = 13.17, p = 7.51 × 10−4

‍ ; W10: ‍F1 = 31.05, p = 3.37 × 10−5
‍ ; W32: 

‍F1 = 15.12, p = .0012‍), except for the between-subjects design and the larger range of capacities tested 
(B32: ‍F1 = 0.82, p = .37‍). Overall, effect sizes were larger in designs with narrow (B10: ‍ω

2
G = .213‍, W10: 

‍ω
2
G = .121‍) compared to wide ranges of capacities (B32: ‍ω

2
G = −.004‍, W32: ‍ω

2
G = .072‍) and the non-

result observed may stem from an insufficient sample size (achieved power in B32 is 14.7%, against 

Figure 2. Number of sampled suppliers increases with capacity and is strongly sensitive to the richness of the environment, consistent with theoretical 
predictions. (A) Number of alternatives sampled ‍M ‍ as a function of capacity averaged across participants (points), for each of the three different 
environments (colours), for the low-capacity between-subject design (B10). Dashed lines indicate unit slope line. Optimal observer predictions are 
displayed in black and grey lines represent individual data. Error bars correspond to s.e.m. (B) Number of alternatives sampled ‍M ‍ divided by capacity as 
a function of capacity. Colour code as in panel A. Samples sizes per environment condition: designs B10 and B32: n=15, designs W10 and W32: n=18.

https://doi.org/10.7554/eLife.76985
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97.8% in W32, 95.2% in B10 and 94.7% in W10). As suggested by visual inspection above, there is no 
significant difference in the exponents between the neutral (median values, W10: ‍mneutral = 0.72‍, B10: 

‍mneutral = 0.68‍, W32: ‍mneutral = 0.70‍) and rich (W10: ‍mrich = 0.71‍, B10: ‍mrich = 0.66‍, W32: ‍mrich = 0.66‍) 
environments in any of the designs (t-tests with Bonferroni correction, W10: ‍t17 = 0.57, padj = 1‍, B10: 

‍t23.9 = 0.24, padj = 1‍, W32: ‍t17 = 2.04, padj = .17‍), although strong and significant differences were typi-
cally observed between rich and poor (W10: ‍mpoor = 0.82‍, B10: ‍mpoor = 0.84‍, W32: ‍mpoor = 0.75‍) environ-
ments (W10: ‍t17 = 5.57, padj = 1.01 × 10−4

‍ , B10: ‍t20.8 = 3.51, padj = .006‍, W32: ‍t17 = 3.89, padj = .004‍). 
Significant differences were also observed between poor and neutral environments in the designs 
with smaller capacities (W10: ‍t17 = 3.25, padj = .014‍ , B10: ‍t26.7 = 4.45, padj = 4.11 × 10−4

‍). Overall, we 
observed in the three designs mentioned a decrease of the exponent as the environment gets richer. 
This suggests an adaptation of participants’ sampling behaviour to the environment, with sampling 
depth increasing with the richness of environment.

Deviations from optimality
We have demonstrated that, as expected, participants’ sampling strategy is modulated by the envi-
ronment richness. We now investigate whether the strategy used coincides with the optimal sampling 
behaviour or if some deviations are observable. Pooling the data of the four experimental designs 
together, we confirmed our previous results and found a significant effect overall of the environ-
ment on the exponent of the power law (ANOVA, ‍F1 = 21.03, p = 8.23 × 10−6

‍). Importantly, there 

Figure 3. Participants’ strategy is modulated by the richness of the environment. Distribution of power factors extracted from fitting a linear model to 
values ‍M ‍ vs. capacity in a log-log scale. Colour dots represent subjects, black dots represent means across participants, and bars are 95% confidence 
intervals. Results of post hoc comparisons are displayed according to adjusted p-values (‘ns’: p>0.05, ‘**’: p<0.01, ‘***’: p<0.001). Samples sizes per 
environment condition: designs B10 and B32: n=15, designs W10 and W32: n=18.

Table 2. Participants’ sampling strategy significantly deviates from optimality.
Values of the factor ‍a‍ predicted (first row) or observed (averaged across participants ± s.d., second row) depending on capacity using 
a power-law function with free exponent and fixed intercept (see Materials and methods for more details). Results of comparisons 
between factors ‍a‍ using one-sample t-tests with Bonferroni corrections (third row) show that participants’ sampling strategy 
extracted from fitting the number of alternatives sampled is significantly tilted towards depth in the poor and neutral (tendency) 
environments compared to optimality, while in the rich environment participants are sampling in a breather way than predicted.

Environment 
Value of power factor ‍a‍ Poor Neutral Rich

Optimal (predicted) 0.877 0.732 0.612

Data (observed) 0.795±0.118 0.705±0.127 0.688±0.152

Comparison
‍t65 = −5.66,‍
‍padj = 3.72 × 10−7

‍
‍t65 = −1.74,‍
‍padj = .087‍

‍t65 = 4.06,‍
‍padj = 1.36 × 10−4

‍

https://doi.org/10.7554/eLife.76985
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was no significant effect of the experimental design (ANOVA, ‍F3 = 0.76, p = .52‍) nor a significant 
interaction between the environment and the experimental design (ANOVA, ‍F3 = 1.40, p = .24‍), thus 
confirming that the effect of the environment can be studied on the whole dataset independently 
of the experimental design. In order to quantify deviations of participants’ sampling strategies from 
the optimal strategy, we fitted the optimal values of the number ‍M ‍ of sampled suppliers for all 
capacities (‍C =

{
2 − 10, 16, 32

}
‍) using the power-law model previously described (see Materials and 

methods) and extracted the power-law exponent. Comparing the observed values of the exponent to 
the optimal ones (see Table 2), we observed that participants’ sampling strategy significantly shifted 
towards excessive depth in the poor environment (t-test, ‍t65 = −5.66, padj = 3.72 × 10−7

‍), and a similar 
tendency occurred in the neutral environment (t-test, ‍t65 = −1.74, padj = .087‍). In contrast, partici-
pants’ sampling strategy deviated significantly from optimality in the direction of excessive breadth in 
the rich environment (t-test, ‍t65 = 4.06, padj = 1.36 × 10−4

‍).
Looking in greater detail at which capacities these deviations occur, we computed the differ-

ences between the optimal number ‍Mopt‍ of sampled suppliers and the observed ‍M ‍ for each 
capacity and environment and observed again a significant effect of the environment on the differ-
ences (Scheirer-Ray-Hare test, ‍H2 = 159.67, p < 2.2 × 10−16

‍), but also a significant effect of capacity 
(‍H10 = 98.07, p = 2.2 × 10−16

‍) and a significant interaction between the environment and capacity 
(‍H10 = 84.08, p = 7.89 × 10−10

‍), showing that the participants' bias towards excessive depth or 
breadth varies with the environment and the capacity. In particular, we observed that at low capacity, 
the difference between ‍Mopt‍ and the observed ‍M ‍ tended to be positive, which is especially visible 
in the poor and neutral environments (Appendix 1—figure 1 and exhaustive analyses presented in 
Supplementary file 1). In contrast, at high capacity this difference tends to be negative, which is 
especially noticeable in the neutral and rich environments.

The results of these analyses indicate some deviations from optimality. Participants have a bias 
to sample more deeply than optimal at low capacities while this bias is reversed at high capacities. 
These overall biases could be accounted for by assuming that participants have a biased model of the 
richness of the environment, not estimating as much as they should the extreme nature of poor or rich 
environments (Schustek et al., 2019).

We next studied whether the deviations from optimality weakened over time or were persistent. 
We fitted the power-law model to individual BD trade-off in each environment (block) for the first 
and second halves of each block separately (median split, Figure 4, BD trade-offs are presented in 

Figure 4. Participants’ sampling strategy gets closer to the optimal breadth-depth (BD) trade-offs with experience. Distribution of the power factor ‍a‍ in 
the power-law model when fitting the number of alternatives sampled M as a function of the capacity in each environment, separately for each block’s 
half (median split on the number of trials). Each line connects a subject, black dots represent the power factor ‍a‍ when fitting the optimal BD trade-offs. 
Results of post hoc comparisons are displayed according to adjusted p-values (‘ns’: ‍padj‍ >0.1, ‘**’: ‍padj‍ <0.01). Lower and upper hinges correspond to the 
1st and 3rd quartiles and vertical lines represent the interquartile range (IQR) multipled by 1.5. Sample sizes n=66.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Participants’ sampling strategy gets closer to the optimal breadth-depth (BD) trade-offs as time passes within a block.

https://doi.org/10.7554/eLife.76985
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Figure 4—figure supplement 1). We observed that participants’ strategy significantly shifted towards 
the optimal regime from the first to the second half of the block, in the poor (‍V = 615, padj = .0085‍) and 
the rich environment (‍V = 1651, padj = .0015‍), but not in the neutral environment (‍V = 1271, padj = .88‍). 
Therefore, through experience within a block, participants become closer to optimal. The magnitude 
of this improvement was not significantly different in the rich compared to the poor environment 
(‍W = 2222, p = .84‍), suggesting that the amount of reward accumulated doesn’t influence performance.

Finally, we wondered whether the above deviations from optimality were more pronounced in 
the within-subject designs (W10 and W32), where it is possible that experience on one environ-
ment carried over the next experienced environment. We observe that in several cases sampling 
behaviours seem to shift towards breadth in environments directly following the presentation of a 
poorer environment, or towards depth if a richer environment was presented immediately before 
(Figure 5—figure supplement 2). For instance, participants’ sampling strategy in the neutral envi-
ronment (Figure 5—figure supplement 1 middle panels) seems to differ depending on whether it 
was presented first or not. If presented after the poor environment, we observe a clear deviation 
towards breadth, whereas a shift towards depth is observed if presented after the rich environ-
ment. To statistically test the presence of a sequential, or contamination effect, on participants’ 
sampling strategy, we compared the exponent estimated from fitting the number of observed and 
optimal alternatives sampled ‍M ‍ depending on the capacity using the power-law model (P) previ-
ously described (Figure 5). We observed significant positive deviations from optimality in the power 
factor after the presentation of a poor environment (deviation mean ± s.d.: 0.08±0.12, one-sample 
t-test, ‍t23 = 3.26, padj = .014‍), suggesting that participants sample with more breadth when previ-
ously presented with a poor environment. In contrast, we observed negative deviations after the 
presentation of a rich environment (–0.08±0.13, ‍t23 = −2.85, padj = .036‍), suggesting that partici-
pants sample more deeply when previously presented with a rich environment. Blocks presented 
first (in within-subject designs or independently in between-subject designs) or after a neutral envi-
ronment do not significantly deviate from optimality (first: –0.01±0.14, ‍t126 = −0.81, padj = 1‍, after 

Figure 5. Participants’ sampling strategy is affected by the previous environment presented. Distribution of the 
individual deviation from optimality (difference between power factors ‍a‍ fitting the data and the optimal BD 
trade-off) for each block’s history (presented first or independently, or after another environment). ’*’: p<0.05, ‘**’: 
p<0.01, ‘***’: p<0.001. Lower and upper hinges correspond to the 1st and 3rd quartiles and vertical lines represent 
IQR*1.5. Sample sizes: 'first': n=126, 'after poor/neutral/rich': n=24.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Participants’ sampling strategy seems to be influenced by the previous environment 
presented.

Figure supplement 2. Participants tend to be closer to optimal in the second compared to first part of the block 
but contamination effects due to the environment change do not fully dissipate.

https://doi.org/10.7554/eLife.76985
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neutral: –0.04±0.18, ‍t23 = −1.13, padj = 1‍). Overall, we observe a significant effect of block history 
on participants’ sampling strategy (measured by the difference between the observed and the 
optimal exponent: ‍aobserved − aoptimal‍) (ANOVA, ‍F3 = 5.23, p = .002‍). To confirm this, post hoc anal-
yses revealed that participants’ sampling strategies shifted towards depth in blocks presented after 
a poor environment compared to blocks presented after a neutral (t-test with Bonferroni correction: 

‍t24 = 2.79, padj = .048‍) and rich environments (‍t24 = 4.32, padj = 5.1 × 10−4
‍), and compared to blocks 

presented first (‍t = −3.27, padj = .014‍). No significant shift was found after being presented to a rich 
environment compared to blocks presented first (‍t = 2.21, padj = .20‍). Although based on explor-
atory analyses, these observations provide some evidence that participants’ sampling strategy was 
affected by the previous environment presented and that adaptation to a new environment requires 
to overcome the behavioural pattern implemented at earlier blocks.

To follow up on this history effects we further investigated if this overcoming from the previous 
strategy happens totally, partially or at all within the timescale of a block. We divided each block in 
two halves as a function of trial number (median split) and submitted the data to an ANOVA with expe-
rience (first or second block half) and environment context (poor, neutral, or rich) inside both block 
history types (with an environment change or not). First, we found a significant interaction between 
block half and environment in both cases (ANOVAs, blocks no-change: ‍F2 = 5.29, p = .0063‍, change: 

‍F2 = 3.95, p = .024‍) showing that participants seem to be closer to optimal in the second compared 
to the first half of the block (post hoc comparisons are reported in Supplementary file 2 and in 
Figure 5—figure supplement 2A). Additionally, when running an ANOVA over the whole data with 
experience, environment, and block history, we don’t observe any significant three-way interaction 
(‍F3 = 0.76, p = .52‍), suggesting that the magnitude of this improvement is not statistically different 
depending on the block’s history. However, the contamination effects observed in blocks presented 
after another environment (environment change) do not seem to dissipate as a function of experience 
(time) within a block, because the block’s history (presented first or after a poor, neutral, or rich envi-
ronment) still has a significant effect on the power factor ‍a‍ deviation from optimality (‍aobserved − aoptimal‍ 
in the second half of the block (median split on the number of trials, ANOVA: ‍F3 = 2.95, p = .039‍, post 

Figure 6. Participants’ sampling strategy is not affected by the outcome obtained in the previous trial. Distribution of the power factor ‍a‍ in the power-
law model when fitting the number of alternatives sampled M as a function of the capacity in each environment, depending on the magnitude of the 
reward obtained in the previous trial (median split on the trial reward inside capacity and environment conditions). Each line connects a subject, black 
dots represent the power factor ‍a‍ when fitting the optimal breadth-depth (BD) trade-offs. Results of post hoc comparisons are displayed according to 
adjusted p-values (‘ns’: ‍padj‍ >0.1). Lower and upper hinges correspond to the 1st and 3rd quartiles and vertical lines represent IQR*1.5. Sample sizes per 
environment condition: n=66.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Participants’ sampling strategy is not affected by the outcome obtained in the previous trial.

https://doi.org/10.7554/eLife.76985
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hoc comparisons are reported in Supplementary files 3 and 4 and in Figure 5—figure supplement 
2B). Therefore, the carryover effects from the previously used strategy are long-lived.

Short-term sequential effects are absent or weak
The above long timescale effects could be the result of learning or adaptation mechanisms that act 
on a much shorter timescale and that builds up or wanes over time. Therefore, we studied short-
term effects of the outcome and choices in one trial on the choices made by the participants in the 
following trial. In particular, the outcome on the previous trial might affect the BD trade-offs in the 
subsequent trial. We classified trials within each block depending on the reward obtained in the 
previous trial (median split, controlled for capacity) and again tested the individual BD trade-offs 
by fitting the power-law model (Figure 6, BD trade-offs are presented in Figure 6—figure supple-
ment 1). We found that participants’ sampling strategy was not significantly different following a low 
or high reward trial (paired Wilcoxon tests, poor: ‍V = 1065, padj = 1‍, neutral: ‍V = 1154, padj = 1‍, rich: 

‍V = 1324, padj = .50‍).
We then further investigated the impact of previously rewarded alternatives on the sampling 

in the next trial. We again split trials depending on the magnitude of the reward obtained in the 
previous trial (high vs. low median split, corrected for capacity). We observed a tendency for partic-
ipants to resample (allocate at least one sample) the previously chosen alternative more often after 
high reward than low reward (probability mean ± s.d. low: 0.46±0.21, high: 0.50±0.22, paired t-test, 

‍t125 = −3.5, p = 6.54 × 10−4
‍ , Figure 7A). The size of this effect is small (Cohen’s d: ‍d = .31‍) and is not 

significant when tested inside each environment individually (paired Wilcoxon tests with Bonferroni 
correction, poor: ‍V = 1829.5, p = .34‍, neutral: ‍V = 1956, p = .94‍, rich: ‍V = 1911, p = .68‍, Figure  7—
figure supplement 1A). A similar bias was observed when considering, at trial t+1, the fraction of 
samples allocated in the previously selected alternative, at trial t (corrected for the capacity available) 
(Figure 7B). Participants resampled more (allocate more samples to) the previously chosen alterna-
tive when it had been associated with a high reward (median split, mean ± s.d. low: 0.12±0.08, high: 
0.14±0.09, paired Wilcoxon test, ‍V = 2215, p = 1.39 × 10−5

‍). As before, the size of this effect was 
not large (Cohen’s d: ‍d = .41‍) and did not survive when testing each environment individually (paired 

Figure 7. Participants resample more often and with more samples the previously chosen alternative when it was associated with high reward but it has 
no impact on the breadth-depth (BD) trade-off adaptation to the environment richness. Fraction of trials for which the previously selected alternative (at 
trial t) was sampled on the consecutive trial (at trial t+1) (resampling fraction) (A) and fraction of the capacity allocated in this alternative (B), depending 
on its previous associated outcome (at trial t, median split: low and high) overall. Grey lines connect individual data. ‘***’: p<0.001. Lower and upper 
hinges correspond to the 1st and 3rd quartiles and vertical lines represent IQR*1.5. Sample size: n=126. (C) Averaged power factors extracted from 
fitting a linear model to values M vs. capacity in a log-log scale for participants showing a preference to resample previously rewarding alternatives (≥5%, 
‘biased’) or not (‘unbiased’). Errors bars represent s.e.m. Sample size for each experiment paradigm for the biased (B10: 23, W10: 10, B32: 15, W32: 12) 
and unbiased participants (B10: 22, W10: 8, B32: 30, W32: 6).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Participants’ resampling bias for highly rewarded alternatives is not found at the environment level.

https://doi.org/10.7554/eLife.76985
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Wilcoxon tests with Bonferroni correction, poor: ‍V = 1793, p = .24‍, neutral: ‍V = 1956, p = .94‍, rich: 

‍V = 1947, p = .88‍, Figure 7—figure supplement 1B).
Despite the previous analysis showed, overall, that the magnitude of the reward obtained in the 

previous trial influences whether and how much the previously chosen alternative will be sampled in a 
subsequent trial, this bias does not affect sampling strategies (ANOVA: ‍F1 = .11, p = .74‍) nor interacts 
with the effect of environment richness (between: ‍F1 = .74, p = .39‍, within: ‍F1 = .50, p = .48‍). It is not 
suboptimal either, as rewards are randomly assigned to each location at every trial. What is more, 
the main effect of interest, environment richness on the BD trade-off, remains significant (between: 

‍F1 = 7.43, p = .0074‍, within: ‍F1 = 33.71, p = 1.72 × 10−7
‍) even when run only on participants displaying 

the bias (difference in the fraction of resampling between high and low outcome associated alterna-
tive ≥0.05, N=60, between: ‍F1 = 4.98, p = .030‍, within: ‍F1 = 18.17, p = 1.08 × 10−4

‍ , Figure 7C).
We also detected preferences for sampling alternatives associated with slightly less costly motor 

actions (see Appendix 3—figure 1) but, as those previously associated with high reward, we have no 
evidence showing that these biases affect optimality.

Model comparison
To closer characterize the behavioural patterns, we generated quantitative predictions from a variety 
of models, including the optimal model and several heuristics, and tested which are better able to 
predict the empirical observations. We chose to represent extreme behaviours, such as full-breadth 
(‍M ‍ is always equal to capacity ‍C‍) or depth (‍M ‍ always equal to 2) as boundary models, as well as 
in-between behaviours which would represent the use of a trade-off between breadth and depth. 
Based on observations of the data and predictions (Moreno-Bote et al., 2020), we chose to model 
‍M ‍ as function of ‍C‍ using linear and power-law models. In the latter case, we used two versions of the 
power-law model: one where ‍M ‍ increases with the square root of capacity (exponent of 1/2) (Moreno-
Bote et al., 2020), and another where the exponent was free to vary (see Materials and methods 
for details of the models). To model realistic behavioural patterns, we injected noise into the model 
predictions that corrupts the chosen number of suppliers ‍M ‍. As noise models, we used binomial and 
discretized Gaussian distributed noise added to the model prediction of ‍M ‍. In the second case, the 
noise follows a normal distribution with a standard deviation that increased linearly with capacity. 
This choice was made based on the empirical observation that the variance of ‍M ‍ increases linearly 
with capacity (Kendall’s rank correlation test, ‍z = 11.26, tau = .87, p < 2.2 × 10−16

‍ , see Figure 8—
figure supplement 1). Data from the four experimental designs were analysed and are presented 
together. Fourfold cross-validated log-likelihoods (CVLL) are used to compare the models (Materials 
and methods; qualitatively identical results hold when using Akaike information criteria (AIC) instead, 
see Figure 8—figure supplements 3 and 4). Using binomial noise, the free power-law model outper-
forms all five other models (Figure 8A and Table 3). The optimal model, even though less efficient 
than the power model, is better at predicting participants’ sampling strategy than the pure breadth, 
depth, and square root models. The outcomes of model comparison are mostly equivalent when 
using the Gaussian noise model (for the results of this model, see Figure 8—figure supplement 2 
and Supplementary file 5), and therefore we restrict our discussion to the binomial noise model from 
now on. We just note that the only divergence between the noise models appeared in the pair-wise 
comparisons, with the hierarchy of models’ performance being more clearly statistically established in 
the binomial noise model compared to the Gaussian one.

We observed a significant interaction between the environment and the models on the CVLL 
(Scheirer-Ray-Hare test; ‍H5 = 24.70, p = 1.59 × 10−4

‍). The depth model is better at predicting 
the data in the rich compared to the poor environment (Wilcoxon test with Bonferroni correc-
tion, ‍W66 = 348, padj = 3.99 × 10−6

‍). The square root model is also shown to perform worst in 
the poor environment compared to the rich (‍W66 = 379, padj = 1.06 × 10−5

‍) and the neutral 
(‍W66 = 325, padj = 1.88 × 10−6

‍) environments. Additionally, the free power-law model once again 
outperforms any other models in all environments (Figure 8B).

As overall the free power-law model is best at predicting the empirical data, we chose to confirm the 
effect of the environment on participants’ sampling strategy (see Figure 3) comparing the exponents 
parameters estimated from the power-law model between environments (Figure 8C). This new anal-
ysis confirmed the results reported earlier (see Figure 3), with a significant effect of the environment 
on the exponent ‍w‍ in all designs B10 (Kruskal-Wallis test, ‍K − W χ2

2 = 14.43, p = 7.34 × 10−4
‍), W10 

https://doi.org/10.7554/eLife.76985
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(one-way ANOVA, ‍F1 = 26.47, p = 8.11 × 10−5
‍), and W32 (‍F1 = 12.81, p = .002‍), except for the design 

B32 (‍F1 = 0.84, p = .37‍). In all three designs W10, B10, and W32, we observed significant differences 
in the power exponent between the poor and the rich environment (t-tests with Bonferroni correc-
tions, W10: ‍t17 = 5.15, padj = 2.43 × 10−4

‍ , B10: ‍W15 = 182, padj = .012‍, W32: ‍t17 = 3.58, padj = .007‍). 

Figure 8. The free power-law model is better at predicted participants’ sampling strategy than both the optimal and other heuristic models (using 
binomial distributed noise). Averaged negative cross-validated log-likelihood (CVLL) across participants for each model overall (A) and in each 
environment (B). Results of pair-wise comparisons are displayed according to adjusted p-values (‘*’: p<0.05, ‘**’: p<0.01, ‘***’: p<0.001) and error bars 
correspond to s.e.m. Sample sizes (A): n=126, (B): n=66 for each environment condition. (C) Distribution of the power factor ‍w‍ in the free power model. 
Each colour dot represents a subject, black dots represent distribution means, and bars 95% confidence intervals. Results of post hoc comparisons are 
displayed according to adjusted p-values (‘ns’: p>0.05, ‘**’: p<0.01, ‘***’: p<0.001). Samples sizes per environment condition: designs B10 and B32: 
n=15, designs W10 and W32: n=18.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. The standard deviation of the number of alternatives sampled ‍M ‍ increases linearly with the capacity.

Figure supplement 2. The free power-law model is better at predicting participants’ sampling strategy than both the optimal and other heuristics 
models using Gaussian distributed noise.

Figure supplement 3. The free power-law model is better at predicting participants’ sampling strategy than both the optimal and other heuristics 
models using binomial distributed noise.

Figure supplement 4. The free power-law model is better at predicting participants’ sampling strategy than both the optimal and other heuristics 
models using Gaussian distributed noise.

https://doi.org/10.7554/eLife.76985
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We also observed significant differences between the poor and the neutral environment in the designs 
W10 (‍t17 = 3.16, padj = .017‍) and B10 (‍t15 = 200, padj = 8.37 × 10−4

‍) but not in the design W32 
(‍t17 = 2.14, padj = .142‍). Moreover, we did not find any significant difference in the power exponent ‍w‍ 
values between the neutral and rich environments in any of the designs (W10: ‍t17 = 0.42, padj = 1‍, B10: 

‍t15 = 127, padj = 1‍, W32: ‍t17 = 1.62, padj = .37‍).

Participants tend to sample homogeneously amongst alternatives
Above, we have presented analyses regarding how participants allocate the samples within the alter-
natives selected during sampling and compared it to optimal allocation of samples across capacities 
and environments. Deviations from the optimal strategy are clear, as shown both in the empirical data 
(which often deviates from the optimal allocation) and in the outcome of model comparison to fit 
these empirical data. This deviation is interesting because the difference from optimality is not exclu-
sively accounted for by unbiased noise introduced in the model comparison above, suggesting the 
existence of a source of systematic bias in human choice behaviour.

In order to better understand these deviations from optimality, we looked in more detail at the 
most frequent observed allocation of samples. We observed that participants frequently allocated the 
samples homogeneously across the selected alternatives, a sampling strategy which in most cases differs 
largely from optimal allocation (Figure 9A). To characterize this bias towards homogenous sampling, we 
computed the standard deviation of the ordered counts for each allocation of samples averaged for 
each participant and environment (Materials and methods) and compared it to the standard deviation 
of the optimal allocation (Figure 9B). We observed that the standard deviation of the sample alloca-
tions measured in the poor (Wilcoxon test with Bonferroni correction, ‍W66 = 529, padj = 7.01 × 10−4

‍), 
neutral (‍W66 = 295, padj = 6.87 × 10−7

‍), and rich (‍W66 = 48, padj = 4.38 × 10−11
‍) environments were all 

significantly lower than the standard deviation assuming optimal sample allocation. Moreover, we 
observed that the magnitude of these differences differed between environments (Kruskal-Wallis 
test, ‍K − W χ2

2 = 111.92, p < 2.2 × 10−16
‍). In fact, they increased with the environment richness, with 

larger differences observed in the rich compared to neutral (Wilcoxon test with Bonferroni correction, 

‍W66 = 4089, padj = 1.04 × 10−17
‍) and poor (‍W66 = 4183, padj = 2.20 × 10−19

‍) environments and larger 
differences in the neutral compared to the poor environment (‍W66 = 2922, padj = .002‍). That is, there 
was an overall bias towards homogenous sampling, and this bias was stronger as the environment 
was richer.

Finally, we investigated whether the observed deviations from the optimal sample allocation impacted 
the average reward obtained by the participants in our task. In each trial, the reward or outcome is 
defined as the number of good-quality apricots among the 100 apricots bought. When computing 
the differences between the observed and optimal outcomes (the averaged outcome obtained when 
following the ideal observer), we observed significantly negative deviations from optimality in all three 

Table 3. Summary of the pair-wise comparisons (Wilcoxon matched pairs signed-ranks test) of the fourfolds averaged cross-validated 
log-likelihoods (CVLL) between all six models using binomial distributed noise.
p-Values are adjusted with Bonferroni corrections and significative differences (p<0.05) are highlighted in bold. Models are ordered 
from worst (depth) to best (free power law).

Pure breadth Square root Optimal Linear Power

Depth
‍V126 = 2796,‍
‍padj = .051‍

‍V126 = 2,‍
‍padj = 3.22 × 10−21

‍

‍V126 = 176,‍
‍padj = 1.91 × 10−19

‍

‍V126 = 65,‍

‍padj = 1.44 × 10−20
‍

‍V126 = 2,‍
‍padj = 6.90 × 10−21

‍

Pure breadth
‍V126 = 2926,‍
‍padj = .134‍

‍V126 = 1154,‍
‍padj = 6.35 × 10−11

‍

‍V126 = 4,‍
‍padj = 4.95 × 10−21

‍

‍V126 = 2,‍
‍padj = 3.22 × 10−21

‍

Square root
‍V126 = 1243,‍
‍padj = 2.86 × 10−10

‍

‍V126 = 746,‍
‍padj = 3.48 × 10−14

‍

‍V126 = 14,‍
‍padj = 1.98 × 10−20

‍

Optimal
‍V126 = 1510,‍
‍padj = 2.01 × 10−8

‍

‍V126 = 143,‍
‍padj = 8.92 × 10−20

‍

Linear
‍V126 = 259,‍
‍padj = 4.49 × 10−18

‍

https://doi.org/10.7554/eLife.76985
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environments (mean ± s.d. in poor: –8.74 ± 11.60%, neutral: –2.56 ± 4.23%, and rich: –2.39 ± 2.74%; 
two-way Wilcoxon tests with Bonferroni correction, poor: ‍W66 = 311, padj = 1.18 × 10−6

‍ , neutral: 

‍W66 = 457, padj = 1.04 × 10−4
‍ , rich: ‍W66 = 228, padj = 6.33 × 10−8

‍) (Figure 9C), showing that the bias 
observed in the sample allocation did have a deleterious impact on the outcome. The magnitude of 
these differences between optimal and actual outcome was modulated by the environment (Kruskal-
Wallis test, ‍K − W χ2

2 = 12.29, p = .002‍), and while the harmful effect of a suboptimal strategy was 
moderate in the poor environment, it was very small in the remaining two. Surprisingly, the direction 
of the effect of environment on outcome was opposite to the one observed on standard deviations, 
as more deviation from optimality in the rich environment did not affect performance as much as in 

Figure 9. Participants tend to allocate homogeneously the samples across the selected alternatives, which largely differs from the optimal allocation, 
and impacts the outcome. (A) Number of samples allocated to each sampled alternative depending on the sampling capacity ‍C‍. Upper panels: most 
frequent allocation of samples observed across participants in the rich environment (design B32) as a function of capacity. Lower panels: allocation of 
samples maximizing the reward (optimal). (B) Distributions of the differences between observed and optimal standard deviations of the distribution of 
samples among the selected alternatives in each environment (e.g. if ‍C = 4‍ and 2 samples are allocated in a first alternative while the last 2 samples 
are each allocated in a second and third alternative, the standard deviation of this sample allocation would correspond to ‍sd

({
2, 1, 1

})
≈ 0.577‍). Note 

that more homogeneous distributions tend to lead to lower standard deviations. (C) Distributions of the differences between observed and optimal 
outcomes in each environment. In the last two panels, dots represent participants and include all trials for which the optimal number of alternatives 
sampled was inferior to capacity (‍Mopt < C‍ – see Materials and methods for more details). Below each distribution are presented results of one-sample 
Wilcoxon tests (‘**’: ‍padj‍ <0.01, ‘***’: ‍padj‍ <0.001) and above are presented results of Wilcoxon tests between each environment (‘ns’: ‍padj‍ >0.05, ‘*’: 

‍padj‍ <0.05,‘**’: ‍padj‍ <0.01,‘***’: ‍padj‍ <0.001). All p-values have been adjusted with Bonferroni corrections. Sample sizes for each environment condition: 
n=66.

https://doi.org/10.7554/eLife.76985
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the poor environment. This inverted correlation is due to the nature of the environment itself. Indeed, 
a small deviation from the optimal strategy in the poor environment has a much larger impact on the 
outcome than in the rich environment, where a great majority of alternatives have a high probability 
of success. Indeed, we observed that the difference between the optimal and the observed outcomes 
seemed to decrease as the environment richness increased with differences in the poor environment 
being significantly higher than the ones in the neutral (Wilcoxon tests with Bonferroni correction, 

‍W66 = 1549, padj = .013‍) and rich environment (‍W66 = 1475, padj = .004‍). No significant difference was 
observed in between the neutral and rich environments (‍W66 = 2185, padj = 1‍).

Participants’ tendency to sample homogenously may also be one of the sources of deviation from 
optimality observed in the number of alternatives sampled ‍M ‍. Indeed, we observe that among the 
trials where participants did not use a pure breadth nor a pure depth strategy (‍M < C‍ and ‍M > 1‍), they 
first allocate all the samples in an alternative before sampling another one (depth-focused) on 39.9% 
of the trials. In contrast, they chose to first sample once all the alternatives ‍M ‍ before adding additional 
samples over them (breadth-focused) on 21.8% of the trials. While the first strategy prioritizes the 
number of samples per alternative, the second one focuses on the number of alternatives sampled. 
We investigated further how these strategies prevail depending on ‍C‍ and ‍M ‍ and observed that while 
the breadth-focused strategy is mostly present for trials with a shallow sample allocation (‍M ‍ close to 
‍C‍), the depth-focused strategy is present across all types of BD trade-offs (‍M/C‍ ratios) (Figure 10).

Optimal or close-to-optimal sampled alternatives are mostly chosen
In the normative model the optimal sampled alternative is the alternative ‍i‍ that maximizes the norma-

tive value ‍V
i
norm =

(∑
Os,i+α

)
Ni+α+β ‍, where ‍α‍ and ‍β‍ are the parameters describing the prior distribution of 

rewards in the current environment. We observed that participants select the optimal sampled alter-
native according to the above rule on 96.0 ± 4.34% (mean ± s.d.) of the trials. If we consider a 
different decision rule that selects the option with the highest proportional outcome ‍V

i
prop =

∑
Os,i

Ni ‍ 
(independently of the environment and thus independently of the parameters ‍α‍ and ‍β‍), we observe 
that participants select the best sampled alternative on 96.6 ± 4.11% (mean ±s.d.) of the trials. This is 
significantly larger than when considering the normative optimal alternative (Appendix 4—figure 1), 
paired Wilcoxon test, (‍V = 454, p = 6.83 × 10−4

‍), although very small in magnitude. Further, this effect 

Figure 10. Participants prefer the depth- over the breadth-focused strategy. The fraction of trials for which alternatives are sampled according to the 
depth- (dark-orange) vs. breadth-focused (light-orange) strategy is shown for each number of sampled alternatives (‍M ‍) and capacity (‍C‍). Example of 
a sampling sequence of alternatives {a,b,c,d} with ‍C = 7‍ and for ‍M = 4‍ in breadth-focused strategy: {a,a,b,c,c,d,d} and breadth-focused strategy: 
{a,b,c,d,d,a,c}. This analysis includes all trials for which  ‍M ‍>1 (no pure-depth) and ‍M ‍<C (no pure-breadth). Only combinations of ‍M, C‍ with at least 10 
trials (over all participants) were displayed.

https://doi.org/10.7554/eLife.76985
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is not homogenous amongst all environments (permutation ANOVA, ‍F = 4.03, p = .020‍) and is only 
significant in the poor (paired Wilcoxon test with Bonferroni correction, ‍V = 87.5, padj = 5.82 × 10−4

‍) 
and rich environments (‍V = 14.5, padj = 4.68 × 10−4

‍). No significant difference is found in the neutral 
environment (‍V = 175, padj = 1‍). These results may also reflect difficulties for participants to estimate 
the relative richness of the environmental context.

In few cases (3.40 ± 4.11% of trials) when participants did not select the highest proportional 
alternative (the one maximizing the proportional outcome ‍Vprop‍), we analysed what was the number of 
samples allocated in the selected alternative. We observe that, in such cases, the selected alternative 
had significantly more samples than the alternative maximizing the proportional outcome (mean ± s.d. 
of the difference in samples number: 1.78±1.51, Wilcoxon test: ‍V = 1303, p = 2.02 × 10−9

‍), suggesting 
that participants favour less uncertain alternatives.

Discussion
Finding the best way to balance opposite strategies is a ubiquitous problem in decision making. 
Dilemmas such as speed or accuracy (Fitts, 1966; Wickelgren, 2016), exploration or exploitation 
(March, 1991), breadth or depth, are zero-sum situations. Increasing one necessary comes to the 
detriment of the other, and maximizing overall expected utility requires to strike an optimal trade-off 
between them. For instance, in the classic EE dilemma exploiting a known reward option precludes 
exploring potentially better ones. The BD dilemma, studied here, is related to EE but has the crucial 
difference that a limited resource can be divided into several options simultaneously. Therefore, both 
exploration and exploitation could a priori be performed in parallel and interact with each other. The 
trade-off that arises in BD is twofold. First, given limited capacity, how much of it should be used for 
exploration and how much for exploitation. And second – and as we chose to focus on in this paper – 
during exploration the agent can further divide finite resources to learn much about few alternatives 
or little about many of them. These trade-offs do not naturally arise in the EE, as it is the divisibility of 
the agent’s resource, and thus a new degree of freedom, what results in a qualitatively new problem. 
By focusing on the latter, here we provide answers on how human participants manage the allocation 
of finite, but potentially large, resources.

Previous research has formalized the BD dilemma using rational decision theory under capacity 
constraints (Mastrogiuseppe and Moreno-Bote, 2022; Moreno-Bote et  al., 2020; Ramírez-Ruiz 
and Moreno-Bote, 2022). This research has described the optimal allocation of capacity over multiple 
alternatives as a function of both agent’s capacity and environmental richness. At low capacities, it 
is optimal to draw one sample per alternative (pure-breadth strategy), while for larger capacities, 
some alternatives are ignored (balancing breadth and depth), and the number of alternatives sampled 
roughly increases with the square root of capacity, independently of the richness of the environment. 
Additionally, the passage from pure breadth to a BD trade-off occurs with a sharp transition at a 
specific capacity which directly depends on the overall success probability of the alternatives. Indeed, 
the transition is shifted towards larger capacity values as the environment gets poorer. Finally, it is 
optimal to favour uneven allocations of samples among the considered alternatives, especially as 
capacity and environment richness increases. Rational decision theory provides us with a normative 
hypothesis about how humans ought to behave.

Experimentally, BD trade-offs have been studied outside cognitive neuroscience (Halpert, 1958; 
Schwartz et  al., 2009; Turner et  al., 1955), mostly by using choice menus of different nature. 
However, this research does not address whether allocation policies used by humans are rational nor 
they parametrically manipulate an agent’s capacity or the difficulty of the environment. To fill this gap, 
here we have introduced a novel experimental paradigm that allows us to compare human empir-
ical data with normative predictions under a BD dilemma. The BD apricot task is intuitive and easily 
grasped by the participants. Consistent with theoretical predictions, we observe that, at low capacity, 
a pure-breadth strategy is favoured (sampling as many alternatives as possible), while as capacity 
increases, participants progressively sample relatively fewer of them in more depth. Additionally, our 
results reveal that participants’ sampling strategy adapts to the environment with richer environments 
promoting depth over breadth.

We observe that human behaviour is close to, but systematically deviated, from optimality. 
Regarding the number of alternatives sampled as a function of capacity, we observe that participants’ 
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sampling strategy does not follow the predicted optimal model but is better captured by a power 
law. This strategy has the advantage to be continuous (no break point), which might contribute to 
reduce computational (hence, cognitive) cost, within a controlled loss of efficiency. Most likely is 
however an explanation based on the presence of sample allocation noise, which largely smooths the 
predicted sharp transitions between low and high capacity, noise for which we found some evidence 
(see Figure  4—figure supplement 1). We also demonstrated that, at low capacity, participants 
often sample deeper than optimal, whilst at high capacities the reverse pattern is observed, with 
participants sampling more shallowly than optimal. Additionally, the deviations towards depth at low 
capacities are especially observed in poorer environments, while deviations towards breadth at high 
capacities are more prevalent in richer environments. Given that environment richness is not known 
precisely by participants, such results may be explained by errors in the estimation of the environment 
richness (Drugowitsch et al., 2016; Schustek et al., 2019; Wyart and Koechlin, 2016). However, 
they could also have more complicated origin. Vul et al., 2014, showed that the optimal number of 
samples allocated per sampled alternative directly depends on the action/sample cost ratio in a way 
that a low action/sample cost ratio promotes depth over breadth. In our paradigm, the ratio between 
the gain in outcome (outcome received after sampling compared to chance) and the sampling cost 
(linearly increasing with the number of samples) is not constant over all capacities and environments. 
As a result, this change in ratio could also play a role in explaining why the amplitude of the deviations 
observed vary depending on the environment richness.

Regarding how samples are allocated across alternatives, we observe a participants’ tendency to 
sample alternatives homogenously. This distribution of samples deviates significantly from optimal 
behaviour but caused only a small reduction of outcome obtained compared to optimal (mean ± s.d. 
from optimality: –3.5 ± 6.24%). At a cognitive level, such bias towards an even distribution of samples 
may have various origins. It could emerge to simplify computations during sampling due to an even 
division of samples, which might be easier to remember and implement as a motor output. It can also 
emerge to simplify comparisons during choice in at least two ways. First, it is easier to compare frac-
tions with a common denominator, thus reducing cognitive load. Second, a homogeneous allocation 
of samples ensures that alternatives are equally risky, as they carry the same amount of information. 
Indeed, humans have shown a preference to sample (note, not choose) the most uncertain option 
(Alméras et al., 2021; Lewis, 1995; Schulz et al., 2019; Wilson et al., 2021), a heuristic strategy 
that has been called ‘uncertainty directed exploration’. In our study, with delayed feedback, sampling 
homogenously the alternatives renders equal uncertainty about all sampled alternatives. Homoge-
nous sampling could also have other sources, such as the human preference for symmetry (Attneave, 
1955). We tried to infer the thought processes that participants use while sampling through the 
identification of patterns in the sampling sequence and thus have a better understanding of the 
bias towards symmetric allocation. Our results suggest that participants focus more on the number 
of samples per alternative over the number of sampled alternatives (see Figure 10). Consequently, 
participants’ bias to sample homogenously may drive, at least in part, deviations from optimality 
observed in the number of sampled alternatives.

Such systematic deviations from optimality and biases can also emerge from individual traits. In 
our dataset, we did observe individual differences in the way participants adapt their strategy to both 
the resources available (capacity) and the environment richness (see Figure 2A) but we could not 
relate these differences to neither an effect of gender nor age (see section ‘Individual differences’ in 
the Materials and methods for a preliminary analysis). However, although the nature of our sample 
probably doesn’t allow to properly study a potential effect of age (75% of our participants are under 
30), we believe the BD apricot task give a great framework to specifically study how target popula-
tions manage limited search capacity. We also observed individual differences in the way participants’ 
sampling strategies deviate from optimality (see Results section ‘Deviations from optimality’). We 
hypothesize that deviations towards either breadth or depth may partially originate from a partici-
pants’ will to reduce uncertainty about either finding a ‘good’ alternative during the sampling phase 
(one with positive outcome(s)) or correctly estimating the reward during the purchase phase. On 
the one hand, deep sampling enables to better estimate the success probability of the sampled 
alternatives in order to find the best one but at the risk of not having any good one. This strategy is 
more reward centred and may be followed by individuals with low risk aversion. On the other hand, 
sampling broadly reduces the risk not to find any good alternative. Such a strategy might be more 
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cautious and may be followed by individuals with higher risk aversion profiles. This hypothesis will 
need to be tested in future studies, by estimating separately participants’ relation to risk, using self-
reported risk (Dohmen et al., 2005) and behavioural measures of risk taking (Eckel and Grossman, 
2008; Holt and Laury, 1958; Lejuez et al., 2002).

Finally, even though our paradigm was introduced using a real-life narrative to facilitate under-
standing and avoid using a mathematical or probabilistic-related vocabulary, we cannot exclude that 
mathematical knowledge has influenced the way participants comprehend and behave in the task. 
Gathering information about participants’ scientific background could help us to understand better 
some of the deviations from optimality observed. For example, although we believe participants 
have a sufficient understanding of the sampled alternatives’ statistics (participants select the optimal 
sampled alternative on more than 96% of the trials), we cannot exclude that having a better under-
standing of probabilities could be associated with a reduced homogenous allocation bias which may 
indirectly modulate the BD trade-off.

In general, even though participants engage in behaviours which deviate significantly from opti-
mality, the heuristics identified – continuous power-law sampling strategy and homogenous sampling 
– are associated with a lower cognitive effort compared to the optimal behaviour. Additionally, if 
following these biases impact significantly the outcome, the loss remains relatively small in our task. It 
is not clear whether these biases reflect participants’ computational limitations – bounded rationality 
(Simon, 1955) – or are the result of a compromise between the error in the sampling strategy and 
the cost associated with brain computations – bounded optimality (Russell and Subramanian, 2009) 
or resource rationality (Griffiths et al., 2015; Lieder et al., 2012). Importantly, none of the reported 
deviations can easily be explained by the presence of motor biases, as samples are allocated one by 
one and participants always must go to the screen centre to drag the next sample to a supplier, so 
that the distance to any supplier is identical and any motion direction asymmetry is the same sample 
to sample.

Further, despite the large number of alternatives presented in the apricot task (either 10 or 32), 
we did not find evidence that participants considered much fewer options than the optimal number, 
and therefore our study cannot be explained by – and offers a counter-example of – choice overload 
(Iyengar and Lepper, 2000; Kuksov and Villas-Boas, 2010; Sethi-Iyengar et al., 2003). Firstly, we 
observe that participants consider many alternatives, often more than 5 (43.3% of the trials with ‍C > 5‍) 
and up to 32 in some rare cases. Secondly, although we do observe that the number of sampled 
alternatives is sometimes inferior to the optimal number, this is predominant at rather low capacities 
(‍M < 8‍, see Appendix 2—figure 1) when few alternatives are actually considered. On the contrary, 
at larger capacities, participants tend to consider more alternatives than optimal. In our experimental 
setup, no information about any alternative was directly accessible to the participant before the 
outcome of the allocation was revealed, which may prevent perturbations and biases in the decision 
process by facilitating the a priori consideration of all alternatives on an equal footing.

Our novel experimental framework has demonstrated to be appropriate for studying human deci-
sions in the context of the DB dilemma, but it also raises some issues concerning the difficulty to test 
particular conditions. Concerning the effect of environment richness, we suspect contamination to 
happen in participants’ sampling strategy when presented with different environments consecutively. 
The use of between-subjects designs should be favoured to thwart this effect. We also observed that 
the use of very large capacities (‍C = 32‍) is very costly for the participants and may have a negative 
impact on their motivation to engage in the task and the pursue of an optimal strategy. Taking into 
consideration these observations, our framework has the advantage to be easily adapted to inves-
tigate future questions. We are particularly curious to test whether the results observed here stand 
when using a, more realistic, continuous rather than a discrete capacity (Ramírez-Ruiz and Moreno-
Bote, 2022) or investigate how participants manage to spend a limited capacity not over a single 
choice but over multiple ones. In addition, this design can be transposed to solve the BD dilemma 
in more complex choices, such as inside large decision trees (Mastrogiuseppe and Moreno-Bote, 
2022).

To conclude, we have developed the first thorough experimental study of the BD dilemma, which, 
benefiting from a large adaptability and capability to translate real-life situations, offers a promising 
framework to study many-alternative human decision making under finite resources. Already, our 
results reveal the use of close-to-optimal choice behaviours which are both sensitive to the capacity 
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and the environment and identify some of the heuristics used to simplify computations at the cost of 
optimality.

Materials and methods
Experimental design
We developed a protocol – the BD apricot task – to study how humans sample the environment using 
limited resources, to make economic choices. The task was programmed using Flutter development 
software (​flutter.​dev) as an application for smartphones or tablets. This allowed testing participants 
outside lab premises. Participants were initially introduced with a realistic narrative that provided a 
concrete context to aid understanding the task goals and constraints (for a demonstration video of 
the task, see Video 1). According to this narrative, in each trial the participant had to buy an order 
of apricots in bulk from one specific supplier, out of many available. The goal was to maximize the 
amount of good-quality apricots accumulated throughout the experiment. Because suppliers vary in 
the proportion of good-quality apricots they serve, participants were given the opportunity to learn 
about the suppliers’ overall quality by sampling: prior to the purchase, participants were asked to 
sample apricots from various suppliers of their choice using a fixed number of ‘free’ samples given to 
them. Based on this, they were to choose the supplier for the final purchase in the trial.

Specifically, each trial in the task was divided into a sampling phase and a final purchase phase. In 
the sampling phase (Figure 1a), the participant was given a number of coins (yellow dots) that varied 
from trial to trial. The number of coins determines the search capacity of the participant on each 
trial. We ran different designs, which varied in the range of available capacity throughout trials, with 
each capacity selected randomly and equiprobably, from the pre-established range. In low-capacity 
designs, the range of possible capacities ranged between 2 and 10, in steps of one, while in high-
capacity designs capacity took one of the values in the set {2,4,8,16,32}. In each trial, the coins could 
be freely allocated one by one to any of the suppliers by clicking the active coin in the middle of the 
display and then by clicking the desired supplier to sample from. Participants could arbitrarily allo-
cate the coins in a given trial (i.e. all coins to just one supplier, or each coin to a different supplier, or 
anything in between). The number of possible suppliers was always fixed to the maximum capacity of 
the design being tested. Once all the coins had been allocated (Figure 1b), the samples were revealed 
(Figure 1c) as either of good- (orange) or bad-quality (purple) apricots. The sampling outcomes ‍Xi‍ at 
each supplier ‍i‍ (given the range 1–10, or 1–32) followed a binomial distribution ‍Xi ∼ B

(
ni, pi

)
‍, where 

‍ni‍ is the number of samples allocated in supplier ‍i‍ and ‍pi‍ is the fraction of good-quality apricots in 
that supplier. While ‍ni‍ is chosen by the participants, ‍pi‍ is unknown to them. Based on the information 
collected, participants could estimate ‍pi‍ , and based on the estimation could choose amongst the 
sampled suppliers (and only the sampled ones) to perform a final bulk purchase of 100 apricots. The 
number of good-quality apricots contained in the purchase was revealed (Figure 1d), and the next 
trial (purchase cycle) started. The cumulative sum of good-quality apricots collected, as well as a bar 
informing participants about their progress, were displayed at the bottom of the screen throughout 
the experiment.

Independently in each trial and for each supplier ‍i‍, the fraction ‍pi‍ of good apricots was randomly 
drawn from a beta distribution (with parameters α, β). We considered three different environments, 
varying in the relative abundance of good apricots (‍pi‍), denoted poor (α=1/3, β=1), neutral (α=3, β=3), 
and rich (α=1, β=1/3). Participants were either presented to one environment throughout the experi-
ment (between-subject designs) or to the three environments in different blocks of the same experi-
ment with block order counterbalanced between participants (within-subject designs – see below for 
more details). In all cases, participants were verbally instructed about the relative richness of the envi-
ronment they are in (poor/neutral/rich: ‘a majority of suppliers have a low/average/high proportion 
of good-quality apricots’) and they are aware that even though alternatives are different in each trial, 
they are extracted from the same environment.

Four experimental designs were run varying in the number of environments presented and the 
sampling capacity (see Table 1 for summary). In the two between-subject (B) designs, participants 
were presented only with one environment (rich, neutral, or poor), and with one of two capacities, 
narrow capacity (up to 10 – design B10) or wide capacity (up to 32 – design B32). In the within-
subject (W) designs, participants were presented with all three environments (in blocks), either 
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with narrow capacity (up to 10 – design W10) or with wide capacity (up to 32 – design W32). In 
all designs, participants were presented with eight repetitions of each sampling capacity for each 
environment (one or three depending on the design). All participants were first presented with 
a practice block composed of 10 trials covering the whole range of sampling capacities in their 
design (these trials were excluded from the analyses). In the middle of the practice block, partici-
pants had to take a short quiz to assess their understanding of the task. They were then provided 
with feedback and in case of an insufficient score (less than six correct answers out of eight ques-
tions), they had to redo the quiz for their participation to be accepted. The whole experiment was 
self-paced, and opportunities were given to participants to rest in halfway through and after each 
block.

Participants
Participants were recruited through the online platform Prolific ( 2021 Prolific, https://www.prolific.​
co/), with the criteria of being fluent in English, and with age between 18 and 52 years of age. They 
were asked to perform the task using a touch screen device (smartphone or tablet for designs with 
10 alternatives, only tablet for designs with 32 alternatives). Participants received a fixed monetary 
compensation of 8€ per hour and, to increase their motivation, an additional reward was attributed 
depending on their final score at the task. In between-subject designs, participants who obtained 
the first and second top scores in each environment received respectively 20€ and 10€. In within-
subject designs, the players with the three top scores overall were rewarded with 20€, 10€, and 5€, 
respectively.

Participants were recruited until completing a valid final sample size of 45 participants in each of 
the between-subject designs (B10 and B32 – 15 participants for each environment), and 18 partici-
pants in each of the within-subject designs (W10 and W32). The final sample size included in the study 
was 126 (84 males, mean age ± s.d.: 25.7±6.9).

Sample size was decided before starting data collection. In between-subject designs, sample size 
was calculated (using GPower, Faul et al., 2009) to achieve a 95% power in discriminating participants 
strategy between environments and was based on the expected effect size (estimated at Cohen’s 
d=0.467) of the environment on the sampling strategy (M~C). This effect size was calculated based on 
the expected effect of the environment following the ideal observer (see below for more details) and 
the variance observed within each group (s.d.=0.3) in a previous pilot study. In within-subjects design, 
the expected effect size was harder to estimate due to a likely contamination in participants’ strat-
egies between environments. As we needed to counterbalance the presentation order of the three 
environments, the sample size had to be a multiple of 6 and thus simply we opted for 18 participants.

Data from an additional 26 participants were discarded before analysis based on pre-established 
criteria: the use of a wrong device (e.g. computer), insufficient score at the instructions quiz (less than 
six out of eight), a score not significantly higher than chance in the task, and the selection of the ‘worst 
supplier’ (the one presenting, after sampling, the smaller proportion of good-quality apricots) on 10% 
or more of the trials. We considered that such mistakes could occur when participants were confused 
and based their choice on the opposite colour or when they simply did not pay enough attention. As 
a result, three participants (in B32) were excluded because they used a wrong device, one participant 
(in W32) because s/he did not pass the instructions quiz, eight because of a score not significantly 
higher than chance (three in B10, one in W10, two in B32, and two in W32), 9 because of more than 
10% ‘worst choice’ (four in B10, three in W10, and two in W32), and five because they did not satisfy 
the two last criteria (one in W10, four in B32).

Analyses
Analyses were run using R and MATLAB. Normality of the data was tested using Shapiro tests and 
homoscedasticity was tested using F tests or Bartlett tests (for more than two  samples). In cases 
where it was possible, parametric tests were preferred, otherwise non-parametric tests were used. 
One-sample Wilcoxon tests against the environment averaged outcome (25, 50, and 75 respectively 
for the poor, neutral, and rich environment) were used to test whether participant’s final score was 
significantly different than chance.
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Sampling strategy
Our objective is to investigate how humans allocate limited resources to gather information about 
alternatives whose probability of success is unknown a priori. The resources are represented in our 
study by the number of samples available (sampling capacity, or coins) on a trial-by-trial basis. We first 
focus on how this limited capacity influences the number of alternatives participants chose to sample. 
To do so we introduce the notion of ‘sampling strategy’ characterized as the number of alternatives 
sampled (‍M ‍) depending on the sampling capacity (‍C‍) available (Figure 2). The lower the ratios of M/C, 
the more the strategy tends to depth, whereas a ratio of 1 indicates pure breadth. We observe how 
closely empirical behaviour relates to the optimal strategy predicted theoretically (see Moreno-Bote 
et al., 2020) and whether it is affected by contextual parameters such as the overall probability of 
success (environment richness).

Optimal sampling strategy
The optimal sampling strategy is modelled after Moreno-Bote et al., 2020, and we provide here the 
details. The assumptions of the framework are characterized by normative agents who don’t show any 
memory leak and are aware of the environment priors (‍α‍ and ‍β‍). More precisely, normative agents are 
set to maximize expected reward and to select the sampled alternatives which maximize the norma-

tive value 
‍
Vi =

( s∑
1

Os,i + α

)
/
(

Ni + α + β
)
‍
 , where ‍Os,i‍ is the outcome of each sample ‍s‍ (1 or 0) allo-

cated in the alternative ‍i‍, ‍Ni‍ is the total number of samples allocated, and ‍α‍ and ‍β‍ are the parameters 
that describe the beta distribution from where rewards in the environment are drawn. The normative 
strategy is described at two levels depending on both the resources available (capacity ‍C‍) and the 
environment richness. Firstly, at the trial level, it predicts how many alternatives should be sampled 
(BD trade-off, Appendix 1—figure 1A). At low capacity (e.g. ‍C < 6‍ for the poor environment), the 
optimal model predicts a pure breadth, meaning that each resource sample should be allocated in a 
different alternative. As capacity increases, we observe an abrupt change of regime with the optimal 
number of sampled alternatives being close to a power law of the capacity (Moreno-Bote et  al., 
2020). Intuitively, when the agent has more resources, it is best to focus samples on a few alternatives, 
rather than spreading them over too many, as the latter strategy will allow for very little discrimin-
ability between the quality of the sampled alternatives. The capacity at which the transition between 
pure breadth and BD trade-off happens directly depends on the richness of the environment, the 
poorer the environment is and the later (at higher capacity) the transition will occur. Secondly, the 
normative model predicts how many samples should be allocated in each of the sampled alternatives 
(Appendix 1—figure 1B). In deep allocations and rich environments especially, the optimal behaviour 
is defined by non-homogenous allocations of samples to break ties.

Individual differences
We did not observe any effect of participants’ gender on the BD trade-off (ANOVA: ‍F1 = .21, p = .65‍) 
nor an interaction between gender and environment richness effects (between: ‍F1 = .31, p = .58‍, within: 

‍F1 = .29, p = .60‍). We did not observe either any effect of participants’ age (median split: 18–23 
vs. 24–52  years of age) on the BD trade-off (‍F1 = 1.45, p = .23‍). Additionally, no significant inter-
action between age and environment richness was found (between: ‍F1 = 3.20, p = .076‍, within: 

‍F1 = .10, p = .78‍).

Effect of environment on sampling strategy
In order to characterize how participants’ sampling strategies might differ depending on the richness 
of the environment, we decided to test three models to fit ‍M ‍ as a function of capacity ‍C‍ separately to 
data from each participant and environment:

1. A piece-wise power-law model (W): 

‍

M
(
C
)

=




Ca1 if C ≤ B

Ca2 + b if C > B




‍

, where ‍B‍ corresponds to 

the breakpoint with ‍B ∈
{

3, 4, . . . , 9
}
‍ in narrow-capacity designs, and ‍B ∈

{
3, 4, . . . , 16

}
‍ in wide-

capacity designs.
2. A linear model (L): ‍M

(
C
)

= aC + b‍.
3. A power-law model (P): ‍M

(
C
)

= Ca
‍.
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Linear and power-law models were compared using a paired Wilcoxon test on individual R-squared 
adjusted while power-law and piece-wise power law models were compared using ANOVA (with 
‍α = .05‍) at the participant and environment levels. The power-law model captured the empirical rela-
tionship between ‍C‍ and ‍M ‍ best.

Given the results of the model comparisons, the effect of the environment on participants’ sampling 
strategies was therefore tested using the power-law model. We compared the power factor ‍a‍ extracted 
from power-law fits in each environment using within (designs W10 and W32) or between (designs 
B10 and B32) one-way ANOVA. Post hoc comparisons between environments were conducted using 
t-tests with Bonferroni correction for multiple comparisons. The four experimental designs were anal-
ysed individually, in order to account for the structure of the data (within- or between-subjects).

Observed vs. optimal sampling strategy
Fitting ‍M ‍ as a function of capacity, we previously observed that even when participants’ sampling 
strategy falls close to the predicted optimal one (see Figure 2), they do not coincide completely. 
To better characterize participants’ deviations from optimality we first describe them overall, inde-
pendently from the capacity, by fitting the optimal number of alternatives sampled (‍Mopt‍) as a function 
of capacity using the power-law model (described above) as it was the one better accounting for our 
data. We compared both power factors ‍a‍ using one-sample t-tests in each environment individually, 
correcting for multiple comparisons, and observed significant differences, going in counter-directions 
depending on the environment. To further understand these deviations, we investigate if capacity 
could be a cause of modulations. To do so, we computed the differences between the number of 
alternatives observed ‍M ‍ and ‍Mopt‍ for each capacity and environment (Appendix 2—figure 1) and 
tested for marginal effects of the capacity and the environment, as well as for an interaction between 
capacity and environment using a Sheirer-Ray-Hare test. All effects were found significant and post 
hoc analyses were performed using one-sample Wilcoxon tests (against the null hypothesis ‍mu = 0‍, 
see Supplementary file 1) in order to better understand how both capacity and environment richness 
affect the nature and directions of participants’ sampling deviations from optimality.

Model comparison
The BD dilemma can be solved using extreme behaviours (pure-depth or pure-breadth) but also 
trade-offs which establish a balance between breadth and depth and often lead to more optimal 
choices. In the current study, we quantitatively assess which strategy describes best the individual 
participants’ sampling behaviour by comparing the ability of the optimal and heuristic models (char-
acterizing both extreme and trade-off behaviours) to predict the data. The number of vendors ‍M ‍ that 
participant k chose in trial j, denoted ‍M

k
j ‍ , was predicted by using one of three models, corrupted by 

either Gaussian or binomial noise. Each model predicts the mean 
‍
M

(
Ck

j

)
‍
 number of selected vendors 

given that capacity was ‍C
k
j ‍ . We use the following models:

1.	 Optimal model: ‍M
(
C
)
‍ follows the ideal observer ‍Mopt

(
C
)
‍

      ‍M
(
C
)

= Mopt
(
C
)
‍.

The ideal observer corresponds to the sample allocation that would maximize expected reward 
for each capacity in each environment. It describes the optimal number of suppliers to be 
sampled M, as well as the distribution of samples per supplier. The ideal observer was described 
in a previous theoretical paper (Moreno-Bote et al., 2020) and here has been calculated with 
Monte-Carlo simulations.

2.	 Linear models: We used three variants of linear model:
a.	 Depth model: ‍M

(
C
)
‍ is constant and independent of capacity ‍C‍, with ‍M ‍ following an almost 

pure-depth strategy,

        ‍M
(
C
)

= 2 .‍
b.	 Pure-breadth model: always equals to ,

        ‍M
(
C
)

= C .‍
c.	 Free-slope linear model: ‍M

(
C
)
‍ increases with capacity ‍C‍ with a free factor ‍d‍,

        ‍M
(
C
)

= dC .‍
3.	 Power-law model: We used two variants of this model:

a.	 Square root model: ‍M
(
C
)
‍ increases with the square root of capacity ‍C‍.
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        ‍M
(
C
)

=
√

C .‍
b.	 Free power-law model: ‍M

(
C
)
‍ increases with capacity ‍C‍ to the ‍w‍ th power,

        ‍M
(
C
)

= Cw .‍
For each model, to compute the likelihood of the data ‍M

k
j ‍ for each trial j and participant k, we 

assume a noise model that is either Gaussian or binomial. In the Gaussian noise model, we assume 

that 
‍
Mk

j = M
(

Ck
j

)
+ σk

j zk
j ‍
 , where ‍z

k
j ‍ is independently and identically distributed standard normal noise, 

and ‍σ
k
j = ak + bkCk

j ‍ . In all cases we obtained that the best fit parameters obeyed ‍ak ̸= 0, bk ̸= 0‍, so 

that 
‍
σk

j ̸= 0 and
(
σk

j

)2
> 0

‍
 for all values of ‍C‍. The per-participant likelihood of the model is the sum of 

individual trial-by-trial likelihoods

	﻿‍
LN

(
ak, bk

)
=
∑

j

(
− log

(√
2π

)
− log

(
σk

j
2
)
−

(
Mk

j −M
(

Ck
j

)
−µk

)2

2σk
j

2

)

‍.�

In the binomial case, we assume that the observed ‍M
k
j ‍ follows a binomial distribution 

‍
Mk

j ∼ B
(

nk, pk
)
‍
 

with ‍p
k ∈

[
0, 1

]
‍ and

	﻿‍ nk =
M
(

Ck
j

)
+ µk

pk , nk = 1, 2, . . . , N and nk ≥ Mk
j ‍�

so that the expectation of ‍M ‍ equals the desired model’s expectation ‍M
(
C
)
‍. In this case, the per-

participant likelihood of the data under the model and binomial noise is

	﻿‍
LB

(
pk
)

=
∑

j

(
log

(
nk!

Mk
j !
(

nk−Mk
j

)
!

)
+ Mk

j log
(

pk
)

+
(

nk − Mk
j

)
log

(
1 − pk

) )

‍�

The overall log likelihood of each model was the sum of log likelihoods across trials, participants, 
and environments.

Each model (1–3 above) with each noise model (Gaussian or binomial) was fit and tested to 
each participant and environment (in the case of within-subjects designs) individually using fourfold 
cross-validation. Specifically, in onefold, 75% of the data in each participant was used to fit the per-
participant model parameters by maximizing their individual log likelihoods. The remaining 25% of 
the data was used to measure the quality of the fit. This was quantified as the log likelihood of the 
model with its fitted parameters in the test set, and summed across participants, and averaged over 
the fourfolds (four different ways of taking 25% non-overlapping trials for testing and the remaining 
for training). We call the resulting average CVLL. In the binomial noise model, the log likelihood of the 
test set becomes minus infinity in trials when ‍n < M ‍, which is an impossible event. This concerned a 
small set of trials in 27 participants in the square root model, 31 in the optimal model, 16 in the depth 
model, 69 in the free power-law model, and 48 in the linear model. However, in all cases it affected 
only one out of the fourfolds, so the averaged log likelihood could be computed across the three 
remaining folds. Model comparison was performed by comparing the CVLL across models and noise 
models using Wilcoxon matched pairs signed-ranks tests with Bonferroni correction. In order to ascer-
tain the results of the log likelihood-based model comparisons, the models were also compared using 
AIC (Akaike, 1977), which were computed on the whole dataset. Both methods provide qualitatively 
identical results (compare Figure 8 with Figure 8—figure supplement 3 for binomial noise models 
and Figure 8—figure supplement 1 with Figure 8—figure supplement 4 for Gaussian noise models). 
Free parameter ‍a‍ was optimized on a grid from –3 to –1 and ‍b‍ on a grid from –1 to –1, both with a 
step of 0.05 in the Gaussian noise model and the parameter ‍p‍ in the binomial noise model which was 
optimized on grid from 0 to 1 with a step of 0.01. The free parameter ‍w‍ was optimized on a grid from 
0.05 to 1.1 with a step of 0.05 in both Gaussian and binomial noise models.

Exploring how samples are dispatched within the alternatives sampled 
(splits)
To descript more precisely participants’ sampling strategy, we studied how the samples are allocated 
inside the selected suppliers. Indeed, for an identical number of alternatives sampled ‍M ‍ and capacity 

https://doi.org/10.7554/eLife.76985
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‍C‍, we can observe various allocations of samples. For example, ‍M = 2‍ and ‍C = 4‍ can result in the allo-
cation of 2 samples in two different alternatives each; {2,2}, or in the allocation of 3 samples in a first 
alternative and 1 sample in a second; {3,1}. Visually, we observe that participants have a tendency to 
allocate the samples homogeneously across the sampled alternatives (e.g. {2,2}) (see Figure 9A). In 
order to statistically capture this putative bias, we computed the standard deviations of the sample 
allocations. An homogenous allocation of samples would result in a standard deviations close to 0 (e.g. 
s.d.({2,2})=0) whereas a more heterogeneous allocation of samples would be associated with higher 
standard deviations (e.g. s.d.({1,3}) ≈ 1.41). We computed the standard deviation of each sample 
allocation and compared it to the standard deviation of the optimal allocation of samples (predicted 
by Moreno-Bote et al., 2020) in each environment using Wilcoxon tests with Bonferroni corrections 
to adjust for the multiple comparisons. We tested the effect of the environment on the magnitude of 
these differences using a Kruskal-Wallis test and performed post hoc analyses using Wilcoxon tests 
with Bonferroni corrections.

We also computed the differences between the outcomes observed in our data with the ones 
obtained when following the ideal observer strategy. A Kruskal test was performed to test the signifi-
cant effect of the environment on the outcome differences and one-sample Wilcoxon tests with Bonfer-
roni corrections were then used to assess whether observed outcomes were significantly different than 
optimal outcomes inside each environment condition.

These analyses were performed for all trials (from all experimental designs) where the optimal 
number of alternatives sampled was strictly inferior to the capacity (‍Mopt < C‍) (see Figure 9B–C). This 
condition has been introduced because when ‍Mopt = C‍, the optimal sample allocation follows a pure-
breadth strategy, and its associated standard deviation is 0. Therefore, the standard deviation of the 
sample allocation observed in the data can only be superior to the optimal sample allocation which 
impairs the observation of participants’ bias to sample homogenously the alternatives.

Acknowledgements
This work is supported by the Howard Hughes Medical Institute (HHMI, Ref: 55008742), MINECO 
(Spain; BFU2017-85936-P), ICREA Academia (2016) and Ministerio de Ciencia e Innovación (Ref: 
PID2020-114196GB-I00/AEI) to RM-B. SS-. is funded by Ministerio de Ciencia e Innovación (Ref: 
PID2019-108531GB-I00 AEI/FEDER) and the FEDER/ERDF Operative Programme for Catalunya 2014-
2020. AV is supported by a FI fellowship from the AGAUR (2019FI_B 00302). We would like to thank 
Pierre Marais for his precious help in setting up the Flutter application and coding the experimental 
task.

Additional information

Funding

Funder Grant reference number Author

Howard Hughes Medical 
Institute

55008742 Rubén Moreno-Bote

Institució Catalana de 
Recerca i Estudis Avançats

2016 Rubén Moreno-Bote

Ministerio de Ciencia e 
Innovación

PID2019-108531GB-I00 
AEI/FEDER

Salvador Soto-Faraco

European Regional 
Development Fund

Operative Programme for 
Catalunya 2014-2020

Salvador Soto-Faraco

Agència de Gestió d'Ajuts 
Universitaris i de Recerca

2019FI_B 00302 Alice Vidal

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

https://doi.org/10.7554/eLife.76985


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Vidal et al. eLife 2022;11:e76985. DOI: https://doi.org/10.7554/eLife.76985 � 25 of 32

Author contributions
Alice Vidal, Conceptualization, Data curation, Software, Formal analysis, Investigation, Visualization, 
Methodology, Writing - original draft, Writing – review and editing; Salvador Soto-Faraco, Rubén 
Moreno-Bote, Conceptualization, Supervision, Funding acquisition, Methodology, Writing – review 
and editing

Author ORCIDs
Alice Vidal ‍ ‍ http://orcid.org/0000-0003-4477-510X
Salvador Soto-Faraco ‍ ‍ http://orcid.org/0000-0002-4799-3762

Ethics
Human subjects: Before starting the experiment, participants had to give their informed consent. 
This study was part of the project 'IMC: INTEGRACIÓN MULTISENSORIAL Y CONFLICTO' (PID2019-
108531GB-I00) for which an ethical approval was obtained.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.76985.sa1
Author response https://doi.org/10.7554/eLife.76985.sa2

Additional files
Supplementary files
•  Transparent reporting form 

•  Supplementary file 1. Participants’ sampling strategy deviates from optimality and tends to be 
tilted toward depth at low capacity and breadth at high capacity.

•  Supplementary file 2. Post-hoc comparisons between deviations from optimality in power factors 
extracted from fitting the power law model to BD trade-offs in first and second halves of blocks 
separately.

•  Supplementary file 3. Post-hoc analyses of the deviations from optimality in power factors 
extracted from fitting the power law model to BD trade-offs in first and second halves of blocks 
separately.

•  Supplementary file 4. Post-hoc comparisons between deviations from optimality in power factors 
extracted from fitting the power law model to BD trade-offs in first and second halves of blocks 
separately.

•  Supplementary file 5. Summary of the pair-wise comparisons of the 4-folds averaged CVLL 
between all six models using Gaussian distributed noise.

•  Supplementary file 6. Summary of the comparisons between the averaged individual 4-fold CVLL 
in each environment and experimental design using Gaussian distributed noise.

•  Supplementary file 7. Summary of the pair-wise comparisons of the individual AIC between all six 
models using Binomial distributed noise.

•  Supplementary file 8. Summary of the comparisons between the individual AIC in each 
environment and experimental design using Binomial distributed noise.

•  Supplementary file 9. Summary of the pair-wise comparisons of the individual AIC between all six 
models using Gaussian distributed noise.

•  Supplementary file 10. Summary of the comparisons between the individual AIC in each 
environment and experimental design using Gaussian distributed noise.

Data availability
The data and analysis scripts have been deposited in an OSF repository available here https://osf.io/​
kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad.

https://doi.org/10.7554/eLife.76985
http://orcid.org/0000-0003-4477-510X
http://orcid.org/0000-0002-4799-3762
https://doi.org/10.7554/eLife.76985.sa1
https://doi.org/10.7554/eLife.76985.sa2
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Vidal et al. eLife 2022;11:e76985. DOI: https://doi.org/10.7554/eLife.76985 � 26 of 32

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Vidal A, Soto-Faraco 
S, Moreno-Bote R

2021 Humans balance breadth 
and depth: Near-optimal 
performance in many-
alternative decision making

https://​osf.​io/​kdbqs/?​
view_​only=​386d​3bde​
4939​4e6b​b88d​247a​
dc52b9ad

Open Science Framework, 
kdbqs

References
Akaike H. 1977. On entropy maximization principle. Krishnaiah PR (Ed). Application of Statistics. North-Holland. 

p. 27–41.
Alméras C, Chambon V, Wyart V. 2021. Competing Cognitive Pressures on Human Exploration in the Absence of 

Trade-off with Exploitation. PsyArXiv. https://​psyarxiv.​com/​9qpuz/
Attneave F. 1955. Symmetry, information, and memory for patterns. The American Journal of Psychology 

68:209–222 PMID: 14376682. 
Blanchet-Scalliet C, El Karoui N, Jeanblanc M, Martellini L. 2008. Optimal investment decisions when time-

horizon is uncertain. Journal of Mathematical Economics 44:1100–1113. DOI: https://doi.org/10.1016/j.​
jmateco.2007.09.004

Brown S, Steyvers M, Wagenmakers EJ. 2008. Observing evidence accumulation during multi-alternative 
decisions. Journal of Mathematical Psychology 53:453–462. DOI: https://doi.org/10.1016/j.jmp.2009.09.002

Busemeyer JR, Gluth S, Rieskamp J, Turner BM. 2019. Cognitive and neural bases of multi-attribute, multi-
alternative, value-based decisions. Trends in Cognitive Sciences 23:251–263. DOI: https://doi.org/10.1016/j.​
tics.2018.12.003, PMID: 30630672

Callaway F, van Opheusden B, Gul S, Das P, Krueger P, Lieder F, Griffiths TL. 2021a. Human Planning as Optimal 
Information Seeking. PsyArXiv. DOI: https://doi.org/10.31234/osf.io/byaqd

Callaway F, Rangel A, Griffiths TL. 2021b. Fixation patterns in simple choice reflect optimal information 
sampling. PLOS Computational Biology 17:e1008863. DOI: https://doi.org/10.1371/journal.pcbi.1008863, 
PMID: 33770069

Chau BKH, Kolling N, Hunt LT, Walton ME, Rushworth MFS. 2014. A neural mechanism underlying failure of 
optimal choice with multiple alternatives. Nature Neuroscience 17:463–470. DOI: https://doi.org/10.1038/nn.​
3649, PMID: 24509428

Cohen JD, McClure SM, Yu AJ. 2007. Should I stay or should I go? how the human brain manages the trade-off 
between exploitation and exploration. Philosophical Transactions of the Royal Society of London. Series B, 
Biological Sciences 362:933–942. DOI: https://doi.org/10.1098/rstb.2007.2098, PMID: 17395573

Cohen AL, Kang N, Leise TL. 2017. Multi-attribute, multi-alternative models of choice: choice, reaction time, and 
process tracing. Cognitive Psychology 98:45–72. DOI: https://doi.org/10.1016/j.cogpsych.2017.08.001, PMID: 
28843070

Costa VD, Mitz AR, Averbeck BB. 2019. Subcortical substrates of explore-exploit decisions in primates. Neuron 
103:533–545. DOI: https://doi.org/10.1016/j.neuron.2019.05.017, PMID: 31196672

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. 2006. Cortical substrates for exploratory decisions in 
humans. Nature 441:876–879. DOI: https://doi.org/10.1038/nature04766, PMID: 16778890

Dohmen TJ, Falk A, Huffman D, Sunde U, Schupp J, Wagner GG. 2005. Individual risk attitudes: new evidence 
from a large, representative, experimentally-validated survey. SSRN Electronic Journal 1:e807408. DOI: https://​
doi.org/10.2139/ssrn.807408

Drugowitsch J, Wyart V, Devauchelle AD, Koechlin E. 2016. Computational precision of mental inference as 
critical source of human choice suboptimality. Neuron 92:1398–1411. DOI: https://doi.org/10.1016/j.neuron.​
2016.11.005, PMID: 27916454

Ebitz RB, Albarran E, Moore T. 2018. Exploration disrupts choice-predictive signals and alters dynamics in 
prefrontal cortex. Neuron 97:475. DOI: https://doi.org/10.1016/j.neuron.2018.01.011, PMID: 29346756

Eckel CC, Grossman PJ. 2008. Forecasting risk attitudes: an experimental study using actual and forecast gamble 
choices. Journal of Economic Behavior & Organization 68:1–17. DOI: https://doi.org/10.1016/j.jebo.2008.04.​
006

Faul F, Erdfelder E, Buchner A, Lang AG. 2009. Statistical power analyses using G*power 3.1: tests for 
correlation and regression analyses. Behavior Research Methods 41:1149–1160. DOI: https://doi.org/10.3758/​
BRM.41.4.1149, PMID: 19897823

Feng SF, Schwemmer M, Gershman SJ, Cohen JD. 2014. Multitasking versus multiplexing: toward a normative 
account of limitations in the simultaneous execution of control-demanding behaviors. Cognitive, Affective & 
Behavioral Neuroscience 14:129–146. DOI: https://doi.org/10.3758/s13415-013-0236-9, PMID: 24481850

Fitts PM. 1966. Cognitive aspects of information processing. 3. set for speed versus accuracy. Journal of 
Experimental Psychology 71:849–857. DOI: https://doi.org/10.1037/h0023232, PMID: 5939364

Griffiths TL, Lieder F, Goodman ND. 2015. Rational use of cognitive resources: levels of analysis between the 
computational and the algorithmic. Topics in Cognitive Science 7:217–229. DOI: https://doi.org/10.1111/tops.​
12142, PMID: 25898807

https://doi.org/10.7554/eLife.76985
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
https://osf.io/kdbqs/?view_only=386d3bde49394e6bb88d247adc52b9ad
http://www.ncbi.nlm.nih.gov/pubmed/14376682
https://doi.org/10.1016/j.jmateco.2007.09.004
https://doi.org/10.1016/j.jmateco.2007.09.004
https://doi.org/10.1016/j.jmp.2009.09.002
https://doi.org/10.1016/j.tics.2018.12.003
https://doi.org/10.1016/j.tics.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/30630672
https://doi.org/10.31234/osf.io/byaqd
https://doi.org/10.1371/journal.pcbi.1008863
http://www.ncbi.nlm.nih.gov/pubmed/33770069
https://doi.org/10.1038/nn.3649
https://doi.org/10.1038/nn.3649
http://www.ncbi.nlm.nih.gov/pubmed/24509428
https://doi.org/10.1098/rstb.2007.2098
http://www.ncbi.nlm.nih.gov/pubmed/17395573
https://doi.org/10.1016/j.cogpsych.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/28843070
https://doi.org/10.1016/j.neuron.2019.05.017
http://www.ncbi.nlm.nih.gov/pubmed/31196672
https://doi.org/10.1038/nature04766
http://www.ncbi.nlm.nih.gov/pubmed/16778890
https://doi.org/10.2139/ssrn.807408
https://doi.org/10.2139/ssrn.807408
https://doi.org/10.1016/j.neuron.2016.11.005
https://doi.org/10.1016/j.neuron.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27916454
https://doi.org/10.1016/j.neuron.2018.01.011
http://www.ncbi.nlm.nih.gov/pubmed/29346756
https://doi.org/10.1016/j.jebo.2008.04.006
https://doi.org/10.1016/j.jebo.2008.04.006
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
http://www.ncbi.nlm.nih.gov/pubmed/19897823
https://doi.org/10.3758/s13415-013-0236-9
http://www.ncbi.nlm.nih.gov/pubmed/24481850
https://doi.org/10.1037/h0023232
http://www.ncbi.nlm.nih.gov/pubmed/5939364
https://doi.org/10.1111/tops.12142
https://doi.org/10.1111/tops.12142
http://www.ncbi.nlm.nih.gov/pubmed/25898807


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Vidal et al. eLife 2022;11:e76985. DOI: https://doi.org/10.7554/eLife.76985 � 27 of 32

Halpert H. 1958. Folklore: breadth versus depth. The Journal of American Folklore 71:97. DOI: https://doi.org/​
10.2307/537679

Hawkins G, Brown SD, Steyvers M, Wagenmakers EJ. 2012. Context effects in multi-alternative decision making: 
empirical data and a Bayesian model. Cognitive Science 36:498–516. DOI: https://doi.org/10.1111/j.1551-​
6709.2011.01221.x, PMID: 22257112

Hick WE. 1958. On the rate of gain of information. Quarterly Journal of Experimental Psychology 4:11–26. DOI: 
https://doi.org/10.1080/17470215208416600

Holt CA, Laury SK. 1958. Risk aversion and incentive effects. American Economic Review 92:1644–1655. DOI: 
https://doi.org/10.1257/000282802762024700

Iyengar SS, Lepper MR. 2000. When choice is demotivating: can one desire too much of a good thing? Journal 
of Personality and Social Psychology 79:995–1006. DOI: https://doi.org/10.1037//0022-3514.79.6.995, PMID: 
11138768

Jang AI, Sharma R, Drugowitsch J. 2021. Optimal policy for attention-modulated decisions explains human 
fixation behavior. eLife 10:e63436. DOI: https://doi.org/10.7554/eLife.63436, PMID: 33769284

Joseph S, Teki S, Kumar S, Husain M, Griffiths TD. 2016. Resource allocation models of auditory working 
memory. Brain Research 1640:183–192. DOI: https://doi.org/10.1016/j.brainres.2016.01.044, PMID: 26835560

Klöckner K, Wirschum N, Jameson A. 2004. Depth-and Breadth-First Processing of Search Result Lists. WH 
Freeman.

Krajbich I, Armel C, Rangel A. 2010. Visual fixations and the computation and comparison of value in simple 
choice. Nature Neuroscience 13:1292–1298. DOI: https://doi.org/10.1038/nn.2635, PMID: 20835253

Kuksov D, Villas-Boas JM. 2010. When more alternatives lead to less choice. Marketing Science 29:507–524. 
DOI: https://doi.org/10.1287/mksc.1090.0535

Lejuez CW, Read JP, Kahler CW, Richards JB, Ramsey SE, Stuart GL, Strong DR, Brown RA. 2002. Evaluation of a 
behavioral measure of risk taking: the balloon analogue risk task (BART). Journal of Experimental Psychology. 
Applied 8:75–84. DOI: https://doi.org/10.1037//1076-898x.8.2.75, PMID: 12075692

Lewis DD. 1995. A sequential algorithm for training text classifiers: corrigendum and additional data. ACM SIGIR 
Forum 29:13–19. DOI: https://doi.org/10.1145/219587.219592

Lieder F, Griffiths TL, Goodman ND. 2012. Burn-in, bias, and the rationality of anchoring. Advances in Neural 
Information Processing Systems. 2690–2698.

Ma WJ, Husain M, Bays PM. 2014. Changing concepts of working memory. Nature Neuroscience 17:347–356. 
DOI: https://doi.org/10.1038/nn.3655, PMID: 24569831

March JG. 1991. Exploration and exploitation in organizational learning. Organization Science 2:71–87. DOI: 
https://doi.org/10.1287/orsc.2.1.71

Mastrogiuseppe C, Moreno-Bote R. 2022. Deep imagination is a close to optimal policy for planning in large 
decision trees under limited resources. Scientific Reports 12:10411. DOI: https://doi.org/10.1038/s41598-022-​
13862-2, PMID: 35729320

Miller DP. 1991. The depth/breadth tradeoff in hierarchical computer menus. Proceedings of the Human Factors 
Society Annual Meeting. 296–300. DOI: https://doi.org/10.1177/107118138102500179

Moreno-Bote R, Ramírez-Ruiz J, Drugowitsch J, Hayden BY. 2020. Heuristics and optimal solutions to the 
breadth-depth dilemma. PNAS 117:19799–19808. DOI: https://doi.org/10.1073/pnas.2004929117, PMID: 
32759219

Musslick S, Cohen JD. 2021. Rationalizing constraints on the capacity for cognitive control. Trends in Cognitive 
Sciences 25:757–775. DOI: https://doi.org/10.1016/j.tics.2021.06.001, PMID: 34332856

Pratt SC, Mallon EB, Sumpter DJT, Franks NR. 2002. Quorum sensing, recruitment, and collective decision-
making during colony emigration by the ant leptothorax albipennis. Behavioral Ecology and Sociobiology 
52:117–127. DOI: https://doi.org/10.1007/s00265-002-0487-x

Proctor RW, Schneider DW. 2018. Hick ’ S law for choice reaction time: a review. Quarterly Journal of 
Experimental Psychology 71:1281–1299. DOI: https://doi.org/10.1080/17470218.2017.1322622, PMID: 
28434379

Ramírez-Ruiz J, Moreno-Bote R. 2022. Optimal allocation of finite sampling capacity in accumulator models of 
multialternative decision making. Cognitive Science 46:e13143. DOI: https://doi.org/10.1111/cogs.13143, 
PMID: 35523123

Reilly G, Souder D, Ranucci R. 2016. Time horizon of investments in the resource allocation process: review and 
framework for next steps. Journal of Management 42:1169–1194. DOI: https://doi.org/10.1177/​
0149206316630381

Roe RM, Busemeyer JR, Townsend JT. 2001. Multialternative decision field theory: a dynamic connectionist 
model of decision making. Psychological Review 108:370–392. DOI: https://doi.org/10.1037/0033-295x.108.2.​
370, PMID: 11381834

Russell SJ, Subramanian D. 2009. Provably bounded-optimal agents. Journal of Artificial Intelligence Research 
2:575–609. DOI: https://doi.org/10.1613/jair.133

Schulz E, Bhui R, Love BC, Brier B, Todd MT, Gershman SJ. 2019. Structured, uncertainty-driven exploration in 
real-world consumer choice. PNAS 116:13903–13908. DOI: https://doi.org/10.1073/pnas.1821028116, PMID: 
31235598

Schustek P, Hyafil A, Moreno-Bote R. 2019. Human confidence judgments reflect reliability-based hierarchical 
integration of contextual information. Nature Communications 10:1–15. DOI: https://doi.org/10.1038/​
s41467-019-13472-z, PMID: 31780659

https://doi.org/10.7554/eLife.76985
https://doi.org/10.2307/537679
https://doi.org/10.2307/537679
https://doi.org/10.1111/j.1551-6709.2011.01221.x
https://doi.org/10.1111/j.1551-6709.2011.01221.x
http://www.ncbi.nlm.nih.gov/pubmed/22257112
https://doi.org/10.1080/17470215208416600
https://doi.org/10.1257/000282802762024700
https://doi.org/10.1037//0022-3514.79.6.995
http://www.ncbi.nlm.nih.gov/pubmed/11138768
https://doi.org/10.7554/eLife.63436
http://www.ncbi.nlm.nih.gov/pubmed/33769284
https://doi.org/10.1016/j.brainres.2016.01.044
http://www.ncbi.nlm.nih.gov/pubmed/26835560
https://doi.org/10.1038/nn.2635
http://www.ncbi.nlm.nih.gov/pubmed/20835253
https://doi.org/10.1287/mksc.1090.0535
https://doi.org/10.1037//1076-898x.8.2.75
http://www.ncbi.nlm.nih.gov/pubmed/12075692
https://doi.org/10.1145/219587.219592
https://doi.org/10.1038/nn.3655
http://www.ncbi.nlm.nih.gov/pubmed/24569831
https://doi.org/10.1287/orsc.2.1.71
https://doi.org/10.1038/s41598-022-13862-2
https://doi.org/10.1038/s41598-022-13862-2
http://www.ncbi.nlm.nih.gov/pubmed/35729320
https://doi.org/10.1177/107118138102500179
https://doi.org/10.1073/pnas.2004929117
http://www.ncbi.nlm.nih.gov/pubmed/32759219
https://doi.org/10.1016/j.tics.2021.06.001
http://www.ncbi.nlm.nih.gov/pubmed/34332856
https://doi.org/10.1007/s00265-002-0487-x
https://doi.org/10.1080/17470218.2017.1322622
http://www.ncbi.nlm.nih.gov/pubmed/28434379
https://doi.org/10.1111/cogs.13143
http://www.ncbi.nlm.nih.gov/pubmed/35523123
https://doi.org/10.1177/0149206316630381
https://doi.org/10.1177/0149206316630381
https://doi.org/10.1037/0033-295x.108.2.370
https://doi.org/10.1037/0033-295x.108.2.370
http://www.ncbi.nlm.nih.gov/pubmed/11381834
https://doi.org/10.1613/jair.133
https://doi.org/10.1073/pnas.1821028116
http://www.ncbi.nlm.nih.gov/pubmed/31235598
https://doi.org/10.1038/s41467-019-13472-z
https://doi.org/10.1038/s41467-019-13472-z
http://www.ncbi.nlm.nih.gov/pubmed/31780659


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Vidal et al. eLife 2022;11:e76985. DOI: https://doi.org/10.7554/eLife.76985 � 28 of 32

Schwartz MS, Sadler PM, Sonnert G, Tai RH. 2009. Depth versus breadth: how content coverage in high school 
science courses relates to later success in college science coursework. Science Education 93:798–826. DOI: 
https://doi.org/10.1002/sce.20328

Sethi-Iyengar S, Huberman G, Jiang W, Sethi-Iyengar S, Huberman G. 2003. How Much Choice is Too Much?: 
Contributions to 401(k) Retirement Plans. https://repository.upenn.edu/prc_papers/426 [Accessed July 30, 2021].

Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior cingulate 
cortex function. Neuron 79:217–240. DOI: https://doi.org/10.1016/j.neuron.2013.07.007, PMID: 23889930

Sigman M, Dehaene S. 2005. Parsing a cognitive task: a characterization of the mind ’ S bottleneck. PLOS 
Biology 3:e37. DOI: https://doi.org/10.1371/journal.pbio.0030037, PMID: 15719056

Simon HA. 1955. A behavioral model of rational choice. The Quarterly Journal of Economics 69:99. DOI: https://​
doi.org/10.2307/1884852

Turner SF, Bettis RA, Burton RM. 1955. Exploring depth versus breadth in knowledge management strategies. 
Computational & Mathematical Organization Theory 8:49–73. DOI: https://doi.org/10.1023/A:1015180220717

Usher M, McClelland JL. 2004. Loss aversion and inhibition in dynamical models of multialternative choice. 
Psychological Review 111:757–769. DOI: https://doi.org/10.1037/0033-295X.111.3.757, PMID: 15250782

Vul E, Goodman N, Griffiths TL, Tenenbaum JB. 2014. One and done? optimal decisions from very few samples. 
Cognitive Science 38:599–637. DOI: https://doi.org/10.1111/cogs.12101, PMID: 24467492

Wickelgren WA. 2016. Speed-Accuracy tradeoff and information processing dynamics. Acta Psychologica 
41:67–85. DOI: https://doi.org/10.1016/0001-6918(77)90012-9

Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. 2014. Humans use directed and random exploration to 
solve the explore-exploit dilemma. Journal of Experimental Psychology. General 143:2074–2081. DOI: https://​
doi.org/10.1037/a0038199, PMID: 25347535

Wilson RC, Bonawitz E, Costa VD, Ebitz RB. 2021. Balancing exploration and exploitation with information and 
randomization. Current Opinion in Behavioral Sciences 38:49–56. DOI: https://doi.org/10.1016/j.cobeha.2020.​
10.001, PMID: 33184605

Wyart V, Koechlin E. 2016. Choice variability and suboptimality in uncertain environments. Current Opinion in 
Behavioral Sciences 11:109–115. DOI: https://doi.org/10.1016/j.cobeha.2016.07.003

https://doi.org/10.7554/eLife.76985
https://doi.org/10.1002/sce.20328
https://repository.upenn.edu/prc_papers/426
https://doi.org/10.1016/j.neuron.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23889930
https://doi.org/10.1371/journal.pbio.0030037
http://www.ncbi.nlm.nih.gov/pubmed/15719056
https://doi.org/10.2307/1884852
https://doi.org/10.2307/1884852
https://doi.org/10.1023/A:1015180220717
https://doi.org/10.1037/0033-295X.111.3.757
http://www.ncbi.nlm.nih.gov/pubmed/15250782
https://doi.org/10.1111/cogs.12101
http://www.ncbi.nlm.nih.gov/pubmed/24467492
https://doi.org/10.1016/0001-6918(77)90012-9
https://doi.org/10.1037/a0038199
https://doi.org/10.1037/a0038199
http://www.ncbi.nlm.nih.gov/pubmed/25347535
https://doi.org/10.1016/j.cobeha.2020.10.001
https://doi.org/10.1016/j.cobeha.2020.10.001
http://www.ncbi.nlm.nih.gov/pubmed/33184605
https://doi.org/10.1016/j.cobeha.2016.07.003


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Vidal et al. eLife 2022;11:e76985. DOI: https://doi.org/10.7554/eLife.76985 � 29 of 32

Appendix 1

Appendix 1—figure 1. Optimal strategies as a function of both capacity and environment richness. (A) Optimal number of alternatives sampled ‍M ‍ 
as a function of the capacity for each of the three environments (colours). Dashed line indicates unit slope line (pure breadth). (B) Optimal number of 
samples allocated to each sampled alternative depending on the sampling capacity ‍C‍ and the environment richness.

https://doi.org/10.7554/eLife.76985
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Appendix 2

Appendix 2—figure 1. Participants’ sampling strategy deviates from optimality and tends to be tilted toward 
depth at low capacity and breadth at high capacity. Difference between the optimal (‍Mopt‍) and the observed (‍M ‍) 
number of alternatives sampled averaged across all participants for each capacity and environment (coloured 
lines). Error bars represent the standard error of the mean and significant deviations from 0 (dashed line) are 
marked as follows: ‘*’: ‍padj < .05‍, ‘**’: ‍padj < .01‍, ‘***’: ‍padj < .001‍, ‘****’: ‍padj < .0001‍.

https://doi.org/10.7554/eLife.76985
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Appendix 3

Appendix 3—figure 1. Participants present a motor bias when sampling. (A–B) Fraction of samples allocated in 
each alternative, in the designs with 10 alternatives (W10 and B10, A) and 32 alternatives (W32 and B32, B). Bars 
represent s.e.m.

https://doi.org/10.7554/eLife.76985
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Appendix 4

Appendix 4—figure 1. Participants select more often the best sampled alternative independently, compared to 
dependently, on the priors of the environment. Frequency of selection of the best sampled alternative calculated 
based on the normative outcome (depends on the environment richness) and the proportional outcome. Grey 
lines connect individual data. Lower and upper hinges correspond to the 1st and 3rd quartiles and vertical black 
lines represent IQR*1.5. `***`: p<0.001. Sample sizes per condition: n=126.

https://doi.org/10.7554/eLife.76985
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