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Abstract Information from the sensory periphery is conveyed to the cortex via structured projec-
tion pathways that spatially segregate stimulus features, providing a robust and efficient encoding 
strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the 
neocortex. However, the extent to which it influences cortical processing is unclear. In this study, 
we combine cortical circuit modeling with network theory to demonstrate that the sharpness of 
topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and 
representational precision across a modular network. By shifting the balance of excitation and inhibi-
tion, topographic modularity gradually increases task performance and improves the signal-to-noise 
ratio across the system. We demonstrate that in biologically constrained networks, such a denoising 
behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural 
feature that enables a broad range of behaviorally relevant operating regimes, and provide an 
in-depth theoretical analysis unraveling the dynamical principles underlying the mechanism.

Editor's evaluation
This manuscript puts forward a new idea that topography in neural networks helps to remove noise 
from inputs. The authors show that there is a critical level of topography that is needed for network 
to denoise inputs.

Introduction
Sensory inputs are often ambiguous, noisy, and imprecise. Due to volatility in the environment and 
inaccurate peripheral representations, the sensory signals that arrive at the neocortical circuitry are 
often incomplete or corrupt (Faisal et al., 2008; Renart and Machens, 2014). However, from these 
noisy input streams, the system is able to acquire reliable internal representations and extract relevant 
computable features at various degrees of abstraction (Friston, 2005; Okada et al., 2010; DiCarlo 
et al., 2012). Sensory perception in the mammalian neocortex thus relies on efficiently detecting the 
relevant input signals while minimizing the impact of noise.

Making sense of the environment also requires the estimation of features not explicitly represented 
by low-level sensory inputs. These inferential processes (Młynarski and Hermundstad, 2018; Parr 
et al., 2019) rely on the propagation of internal signals such as expectations and predictions, the 
accuracy of which must be evaluated against the ground truth, that is the sensory input stream. In a 
highly dynamic environment, this translates to a continuous process whose precision hinges on the 
fidelity with which external stimuli are encoded in the neural substrate. Additionally, as the system is 
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modular and hierarchical (strikingly so in the sensory and motor components; Meunier et al., 2010; 
Park and Friston, 2013), it is critical that the external signal permeates the different processing 
modules despite the increasing distance from the sensory periphery (the input source) and the various 
transformations it is exposed to along the way, which degrade the signal via the interference of task-
irrelevant and intrinsic, ongoing activity.

Accurate signal propagation can be achieved in a number of ways. One obvious solution is the 
direct routing and distribution of the signal, such that direct sensory input can be fed to different 
processing modules, which may be partially achieved through thalamocortical projections (Sherman 
and Guillery, 2002; Nakajima and Halassa, 2017). Another possibility, which we explore in this study, 
is to propagate the input signal through tailored pathways that route the information throughout 
the system, allowing different processing stages to retrieve it without incurring much representa-
tional loss. Throughout the mammalian neocortex, the existence and characteristics of structured 
projections (topographic maps) present a possible substrate for such signal routing. By preserving 
the relative organization of tuned neuronal populations, such maps imprint spatiotemporal features 
of (noisy) sensory inputs onto the cortex (Kaas, 1997; Bednar and Wilson, 2016; Wandell and 
Winawer, 2011). In a previous study (Zajzon et al., 2019), we discovered that structured projections 
can create feature-specific pathways that allow the external inputs to be faithfully represented and 
propagated throughout the system, but it remains unclear which connectivity properties are crit-
ical and what the underlying mechanism is. Moreover, beyond mere sensory representation, there 
is evidence that such structure-preserving mappings are also involved in more complex cognitive 
processes in associative and frontal areas (Hagler and Sereno, 2006; Silver and Kastner, 2009; 
Patel et al., 2014), suggesting that topographic maps are a prominent structural feature of cortical 
organization.

In this study, we hypothesize that structured projection pathways allow sensory stimuli to be 
accurately reconstructed as they permeate multiple processing modules. We demonstrate that, 
by modulating effective connectivity and regional E/I balance, topographic projections addition-
ally serve a denoising function, not merely allowing the faithful propagation of input signals, but 
systematically improving the system’s internal representations and increasing signal-to-noise ratio. 
We identify a critical threshold in the degree of modularity in topographic projections, beyond 
which the system behaves effectively as a denoising autoencoder (note that the parallel is estab-
lished here on conceptual, not formal, grounds as the system is capable of retrieving the original, 
uncorrupted input from a noisy source, but bears no formal similarity to denoising autoencoder 
algorithms). Additionally, we demonstrate that this phenomenon is robust, with the qualitative 
behavior persisting across very different models. Theoretical considerations and network simula-
tions show that it hinges solely on the modularity of topographic projections and the presence of 
recurrent inhibition, with the external input and single-neuron properties influencing where/when, 
but not if, denoising occurs. Our results suggest that modular structure in feedforward projection 
pathways can have a significant effect on the system’s qualitative behavior, enabling a wide range 
of behaviorally relevant and empirically supported dynamic regimes. This allows the system to: (1) 
maintain stable representations of multiple stimulus features (Andersen et al., 2008); (2) amplify 
features of interest while suppressing others through winner-takes-all (WTA) mechanisms (Douglas 
and Martin, 2004; Carandini and Heeger, 2011); and (3) dynamically represent different stimulus 
features as stable and metastable states and stochastically switch among active representations 
through a winnerless competition (WLC) effect (McCormick, 2005; Rabinovich et al., 2008; Rost 
et al., 2018).

Our key finding, that the modulation of information processing dynamics and the fidelity of stimulus/
feature representations results from the structure of topographic feedforward projections, provides 
new meaning and functional relevance to the pervasiveness of these projection maps throughout the 
mammalian neocortex. Beyond routing feature-specific information from sensory transducers through 
brainstem, thalamus, and into primary sensory cortices (notably tonotopic, retinotopic, and somato-
topic maps), their maintenance within the neocortex (Patel et al., 2014) ensures that even cortical 
regions that are not directly engaged with the sensory input (higher-order cortex), can receive faithful 
representations of it, and that these internal signals, emanating from lower-order cortical areas, can 
dramatically skew and modulate the circuit’s E/I balance and local functional connectivity, resulting in 
fundamental differences in the systems’ responsiveness.

https://doi.org/10.7554/eLife.77009
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Results
To investigate the role of structured pathways between processing modules in modulating the fidelity 
of stimulus representations, we study a network comprising up to six sequentially connected sub-
networks (SSNs, see Materials and methods and Figure 1a). Each SSN is a balanced random network 
(see e.g. Brunel, 2000) of 10,000, sparsely and randomly coupled leaky integrate-and-fire (LIF) neurons 
(80% excitatory and 20% inhibitory). In each SSN, neurons are assigned to sub-populations associated 
with a particular stimulus. Excitatory neurons belonging to such stimulus-specific sub-populations then 
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Figure 1. Sequential denoising spiking architecture. (a) A continuous step signal is used to drive the network. The input is spatially encoded in the first 
sub-network (SSN0), whereby each input channel is mapped exclusively onto a sub-population of stimulus-specific excitatory and inhibitory neurons 
(schematically illustrated by the colors; see also inset, top left). This exclusive encoding is retained to variable degrees across the network, through 
topographically structured feedforward projections (inset, top right) controlled by the modularity parameter ‍m‍ (see Materials and methods). This is 
illustrated explicitly for both topographic maps (purple and cyan arrows). Projections between SSNs are purely excitatory and target both excitatory 
and inhibitory neurons. (b) Signal reconstruction across the network. Single-trial illustration of target signal (black step function) and readout output 
(red curves) in three different SSNs, for ‍m = 0.75‍ and no added noise (‍σξ = 0‍). For simplicity, only two out of ten input channels are shown. (c) Signal 
reconstruction error in the different SSNs for the no-noise scenario shown in (b). Color shade denotes network depth, from SSN0 (lightest) to SSN5 
(darkest). The horizontal red line represents chance level, while the gray vertical line marks the transition (switching) point ‍mswitch ≈ 0.83‍ (see main text). 
Figure 1—figure supplement 1 shows the task performance for a broader range of parameters. (d) Performance gain across the network, relative to 
SSN0, for the setup illustrated in (b). (e) as in (b) but for ‍m = 0.9‍. (f) Reconstruction error in SSN5 for the different noise intensities. Horizontal and vertical 
dashed lines as in (c). (g) Performance gain in SSN5, relative to SSN0.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Code and data for Figure 1 and related figure supplements.

Figure supplement 1. Sequential denoising effect.

https://doi.org/10.7554/eLife.77009


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zajzon et al. eLife 2023;12:e77009. DOI: https://doi.org/10.7554/eLife.77009 � 4 of 37

project to the subsequent SSN with a varying degree of specificity. We refer to a set of stimulus-
specific sub-populations across the network and the structured feedforward projections among them 
as a topographic map. The specificity of the map is determined by the degree of modularity of the 
corresponding projections matrices (see e.g. Figure 1a). Modularity is thus defined as the relative 
density of connections within a stimulus-specific pathway (i.e., connecting sub-populations associated 
to the same stimulus; see Materials and methods and Figure 1a). In the following, we study the role 
of topographic specificity in modulating the system’s functional and representational dynamics and its 
ability to cope with noise-corrupted input signals.

Sequential denoising through structured projections
By systematically varying the degree of modular specialization in the feedforward projections (modu-
larity parameter, ‍m‍, see Materials and methods and Figure 1), we can control the segregation of 
stimulus-specific pathways across the network and investigate how it influences the characteristics of 
neural representations as the signal propagates. If the feedforward projections are unstructured or 
moderately structured (‍m ≲ 0.8‍), information about the input fails to permeate the network, resulting 
in a chance-level reconstruction accuracy in the last sub-network, SSN5, even in the absence of noise 
(see Figure 1b, c). However, as ‍m‍ approaches a switching value ‍mswitch ≈ 0.83‍, there is a qualitative 
transition in the system’s behavior, leading to a consistently higher reconstruction accuracy across the 
sub-networks (Figure 1b–e), regardless of the amount of noise added to the signal (Figure 1f, g).

Beyond this transition point, reconstruction accuracy improves with depth, that is the signal is 
more accurately represented in SSN5 than in the initial sub-network, SSN0, with an effective accuracy 
gain of over 40% (Figure 1d, g). While the addition of noise does impair the absolute reconstruction 
accuracy in all cases (see Figure 1—figure supplement 1), the denoising effect persists even if the 
input is severely corrupted (‍σξ = 3‍, see Figure 1f, g). This is a counter-intuitive result, suggesting that 
topographic modularity is not only necessary for reliable communication across multiple populations 
(see Zajzon et al., 2019), but also supports an effective denoising effect, whereby representational 
precision increases with depth, even if the signal is profoundly distorted by noise.

Noise suppression and response amplification
The sequential denoising effect observed beyond the transition point ‍mswitch ≈ 0.83‍ results in an increas-
ingly accurate input encoding through progressively more precise internal representations. In general, 
such a phenomenon could be achieved either through noise suppression, stimulus-specific response 
amplification or both. In this section, we examine these possibilities by analyzing and comparing the 
input-driven dynamics of the different sub-networks. The strict segregation of stimulus-specific sub-
populations in SSN0 is only fully preserved across the system if ‍m = 1‍, in which case signal encoding 
and transmission primarily rely on this spatial segregation. Spiking activity across the different SSNs 
(Figure 2a) demonstrates that the system gradually sharpens the segregation of stimulus-specific sub-
populations; indeed, in systems with fully modular feedforward projections, activity in the last sub-
network is concentrated predominantly in the stimulated sub-populations. This effect can be observed 
in both excitatory (E) and inhibitory (I) populations, as both are equally targeted by the feedforward 
excitatory projections. The sharpening effect consists of both noise suppression and response amplifi-
cation (Figure 2b), measured as the relative firing rates of the non-stimulated ‍ν

NS
5 /νNS

0 ‍ and stimulated 
sub-populations ‍ν

S
5 /νS

0 ‍, respectively. For ,‍m < mswitch‍. noise suppression is only marginal and responses 
within the stimulated pathways are not amplified (‍ν

S
5 /νS

0 < 1‍).
Mean-field analysis of the stationary network activity (see Materials and methods and Appendix 

B) predicts that the firing rates of the stimulus-specific sub-populations increase systematically with 
modularity, whereas the untuned neurons are gradually silenced (Figure 2c, left). At the transition 
point ‍mswitch ≈ 0.83‍, mean firing rates across the different sub-networks converge, which translates 
into a globally uniform signal encoding capacity, corresponding to the zero-gain convergence point 
in Figure 1d, g. As the degree of modularity increases beyond this point, the self-consistent state is 
lost again as the functional dynamics across the network shifts toward a gradual response sharpening, 
whereby the activity of stimulus-tuned neurons become increasingly dominant (Figure  2a–c). The 
effect is more pronounced for the deeper sub-networks. Note that the analytical results match well 
with those obtained by numerical simulation (Figure 2c, right).

https://doi.org/10.7554/eLife.77009
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In the limit of very deep networks (up to 50 SSNs, Figure 2d) the system becomes bistable, with 
rates converging to either a high-activity state associated with signal amplification or a low-activity 
state driven by the background input. The transition point is observed at a modularity value of 
‍m = 0.83‍, matching the results reported so far. Below this value, elevated activity in the stimulated 
sub-populations can be maintained across the initial sub-networks (<10), but eventually dies out; the 
rate of all neurons decays and information about the input cannot reach the deeper populations. 
Importantly, for ‍m = 0.83‍, the transition toward the high-activity state is slower. This allows the input 
signal to faithfully propagate across a large number of sub-networks (‍≈ 15‍), without being driven into 
implausible activity states.

E/I balance and asymmetric effective couplings
The departure from the balanced activity in the initial sub-networks can be better understood by 
zooming in at the synaptic level and analyzing how topography influences the synaptic input currents. 
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Figure 2. Activity modulation and representational precision. (a) One second of spiking activity observed across 1000 randomly chosen excitatory (blue) 
and inhibitory (red) neurons in SSN0, SSN2 and SSN5, for ‍σξ = 3‍ and ‍m = 0.75‍ (top) and ‍m = 1‍ (bottom). (b) Mean quotient of firing rates in SSN5 and 
SSN0 ‍(ν5/ν0)‍ for stimulated (S, left) and non-stimulated (NS, right) sub-populations for different input noise levels, describing response amplification 
and noise suppression, respectively. (c) Mean firing rates of the stimulated (top) and non-stimulated (bottom) excitatory sub-populations in the different 
SSNs (color shade as in Figure 1), for ‍σξ = 0‍. For modularity values facilitating an asynchronous irregular regime across the network, the firing rates 
predicted by mean-field theory (left) closely match the simulation data (right). (d) Mean-field predictions for the stationary firing rates of the stimulated 
(top) and non-stimulated (bottom) sub-populations, in a system with 50 sub-networks and ‍σξ = 0‍. Note that all reported simulation data correspond to 
the mean firing rates acquired over a period of 10 s and averaged across 5 trials per condition. Figure 2—figure supplement 1 shows the firing rates as 
a function of the input intensity ‍λ‍.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Code and data for Figure 2 and related figure supplements.

Figure supplement 1. Mean-field predictions for the gain in the firing rates of stimulated sub-populations.

https://doi.org/10.7554/eLife.77009
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The segregation of feedforward projections into stimulus-specific pathways breaks the symmetry 
between excitation and inhibition (see Figure 3a) that characterizes the balanced state (Haider et al., 
2006; Shadlen and Newsome, 1994), for which the first two sub-networks were tuned (see Materials 
and methods). E/I balance is thus systematically shifted toward excitation in the stimulated popula-
tions and inhibition in the non-stimulated ones. Neurons belonging to sub-populations associated 
with the active stimulus receive significantly more net overall excitation, whereas the other neurons 
become gradually more inhibited. This disparity grows not only with modularity but also with network 
depth. Overall, across the whole system, increasing modularity results in an increasingly inhibition-
dominated dynamical regime (inset in Figure 3a), whereby stronger effective inhibition silences non-
stimulated populations, thus sharpening stimulus/feature representations by concentrating activity in 
the stimulus-driven sub-populations.

To gain an intuitive understanding of these effects from a dynamical systems perspective, we 
linearize the network dynamics around the stationary working points of the individual populations 
(Tetzlaff et al., 2012) in order to obtain the effective connectivity ‍W ‍ of the system (see Materials 
and methods and Appendix B). The effective impact of a single spike from a presynaptic neuron ‍j‍ on 
the firing rate of a postsynaptic neuron ‍i‍ (the effective weight ‍wij ∈ W ‍) is determined not only by the 
synaptic efficacies ‍Jij‍, but also by the statistics of the synaptic input fluctuations to the target cell ‍i‍ that 
determine its excitability (see Materials and methods, Equation 6). This analysis reveals that there is 
an increase in the effective synaptic input onto neurons in the stimulated sub-populations as a function 
of modularity (Figure 3b). Conversely, non-stimulated neurons effectively receive weaker excitatory 
(and stronger inhibitory) drive and become increasingly less responsive (see Figure 3a, b). The role of 
topographic modularity in denoising can thus be understood as a transient, stimulus-specific change 
in effective connectivity.
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Figure 3. Asymmetric effective couplings modulate the E/I balance and support sequential denoising. (a) Mean synaptic input currents for neurons in 
the stimulated (solid curves) and non-stimulated (dashed curves) excitatory sub-populations in the different SSNs. To avoid clutter, data for SSN0 are only 
shown by markers (independent of ‍m‍). Inset shows the currents (in pA) averaged over all excitatory neurons in the different sub-networks; increasing 
modularity leads to a dominance of inhibition in the deeper sub-networks. Color shade represents depth, from SSN1 (light) to SSN5 (dark). (b) Mean-field 
approximation of the effective recurrent weights in SSN5. Curve shade and style as in (a). (c) Spectral radius of the effective connectivity matrices ‍ρ(W)‍ as 
a function of modularity. (d) Eigenvalue spectra for the effective coupling matrices in SSN5, for ‍m = 0.8‍ (top) and ‍m = 0.9‍ (bottom). The largest negative 
eigenvalue (outlier, see Materials and methods), characteristic of inhibition-dominated networks, is omitted for clarity.

The online version of this article includes the following source data for figure 3:

Source data 1. Code and data for Figure 3.

https://doi.org/10.7554/eLife.77009
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For low and moderate topographic precision (‍m ≲ 0.83‍), denoising does not occur as the effective 
weights are sufficiently similar to maintain a stable E/I balance across all populations and sub-networks 
(Figure 3a, b), resulting in a relatively uniform global dynamical state (indicated in Figure 3c by a 
constant spectral radius for ‍m ≲ 0.83‍, see also Materials and methods) and stable linearized dynamics 
(‍ρ(W) < 1‍).

However, as the feedforward projections become more structured, the system undergoes qualita-
tive changes: after a weak transient (‍0.83 ≲ m ≲ 0.85‍) the spectral radius ‍ρ‍ in the deep SSNs expands 
due to the increased effective coupling to the stimulated sub-population (Figure 3b); the spectral 
radius eventually (‍m ≳ 0.85‍) contracts with increasing modularity (Figure 3c, d). Given that ‍ρ‍ is deter-
mined by the variance of ‍W ‍, that is heterogeneity across connections (Rajan and Abbott, 2006), 
this behavior is expected: most weights are in the non-stimulated pathways, which decrease with 
larger ‍m‍ and network depth (Figure 3b). Strong inhibitory currents (Figure 3a) suppress the majority 
of neurons, thereby reducing noise, as demonstrated by the collapse of the bulk of the eigenvalues 
toward the center for larger ‍m‍ (Figure 3d). Indicative of a more constrained state space, this contrac-
tive effect suggests that population activity becomes gradually entrained by the spatially encoded 
input along the stimulated pathway, whereas the responses of the non-stimulated neurons have a 
diminishing influence on the overall behavior.

By biasing the effective connectivity of the system, precise topography can thus modulate the 
balance of excitation and inhibition in the different sub-networks, concentrating the activity along 
specific pathways. This results in both a systematic amplification of stimulus-specific responses and 
a systematic suppression of noise (Figure  2b). The sharpness/precision of topographic specificity 
along these pathways thus acts as a critical control parameter that largely determines the qualitative 
behavior of the system and can dramatically alter its responsiveness to external inputs.

Modulating inhibition
How can the system generate and maintain the elevated inhibition underlying such a noise-suppressing 
regime? On the one hand, feedforward excitatory input may increase the activity of certain excitatory 
neurons in ‍Ei‍ of sub-network ‍SSNi‍, which, in turn, can lead to increased mean inhibition through 
local recurrent connections. On the other hand, denoising could depend strongly on the concerted 
topographic projections onto ‍Ii‍. Such structured feedforward inhibition is known to play important 
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spikes/s, right). Figure 4—figure supplement 1 depicts the activity statistics in the last two modules, for the different scenarios.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Code and data for Figure 4 and related figure supplements.

Figure supplement 1. Spiking statistics for different feedforward wiring to inhibitory neurons.

https://doi.org/10.7554/eLife.77009
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functional roles in, for example, sharpening the spatial contrast of somatosensory stimuli (Mount-
castle and Powell, 1959) or enhancing coding precision throughout the ascending auditory pathways 
(Roberts et al., 2013).

To investigate whether recurrent activity alone can generate sufficiently strong inhibition for signal 
transmission and denoising, we maintained the modular structure between the excitatory populations 
and randomized the feedforward projections onto the inhibitory ones (‍m = 0‍ for ‍Ei → Ii+1‍, compare 
top panels of Figure 4a, b). This leads to unstable firing patterns in the downstream sub-networks, 
characterized by significant accumulation of synchrony and increased firing rates (see bottom panels 
of Figure 4a, b and Figure 4—figure supplement 1a, b). These effects, known to result from shared 
pre-synaptic excitatory inputs (see e.g. Shadlen and Newsome, 1998; Tetzlaff et al., 2003; Kumar 
et al., 2008a), are more pronounced for larger ‍m‍ and network depth (see Figure 4—figure supple-
ment 1). Compared with the baseline network, whose activity shows clear spatially encoded stimuli 
(sequential activation of stimulus-specific sub-populations [Figure  4a, bottom]), removing struc-
ture from the projections onto inhibitory neurons abolishes the effect and prevents accurate signal 
transmission.

These effects of unstructured inhibitory projections are so marked that they can be observed even 
if a single set of projections is modified: this can be seen in Figure 4c, where only the ‍E4 → I5‍ connec-
tions are randomized. It is worth noting, however, that the excessive synchronization that results from 
unstructured inhibitory projections (Figure  4c, bottom left, no additional input condition) can be 
easily counteracted by driving ‍I5‍ (the inhibitory population that receives only unstructured projections) 
with additional uncorrelated external input. If strong enough (‍ν

+
X ≈ 10spk/sec‍), this additional external 

drive pushes the inhibitory population into an asynchronous regime that restores the sharp, stimulus-
specific responses in the excitatory population of the corresponding sub-network (see Figure  4c, 
bottom right, and Figure 4—figure supplement 1c).

These results emphasize the control of inhibitory neurons’ responsiveness as the main causal mech-
anism behind the effects reported. Elevated local inhibition is strictly required, but whether this is 
achieved by tailored, stimulus-specific activation of inhibitory sub-populations, or by uncorrelated 
excitatory drive onto all inhibitory neurons appears to be irrelevant and both conditions result in 
sharp, stimulus-tuned responses in the excitatory populations.

A generalizable structural effect
We have demonstrated that, by controlling the different sub-networks’ operating point, the sharpness 
of feedforward projections allows the architecture to systematically improve the quality of internal 
representations and retrieve the input structure, even if profoundly corrupted by noise. In this section, 
we investigate the robustness of the phenomenon in order to determine whether it can be entirely 
ascribed to the topographic projections (a structural/architectural feature) or if the particular choices 
of models and model parameters for neuronal and synaptic dynamics contribute to the effect.

To do so, we study two alternative model systems on the signal denoising task. These are struc-
tured similar to the baseline system explored so far, comprising separate sequential sub-networks 
with modular feedforward projections among them (see Figure 1 and Materials and methods), but 
vary in total size, neuronal and synaptic dynamics. In the first test case, only the models of synaptic 
transmission and corresponding parameters are altered. To increase biological verisimilitude and 
following Zajzon et al., 2019, synaptic transmission is modeled as a conductance-based process, with 
different kinetics for excitatory and inhibitory transmission, corresponding to the responses of ‍AMPA‍ 
and ‍GABAa‍ receptors, respectively, see Materials and methods and Supplementary file 3 for details. 
The results, illustrated in Figure 5a, demonstrate that task performance and population activity across 
the network follow a similar trend to the baseline model (Figures 1 and 2a, b). Despite severe noise 
corruption, the system is able to generate a clear, discernible representation of the input as early as 
SSN2 and can accurately reconstruct the signal. Importantly, the relative improvement with increasing 
modularity and network depth is retained. In comparison to the baseline model, the transition occurs 
for a slightly different topographic configuration, ‍mswitch ≈ 0.85‍, at which point the network dynamics 
converges toward a low-rate, stable asynchronous irregular regime across all populations, facilitating 
a linear firing rate propagation along the topographic maps (Figure 5—figure supplement 1).

The second test case is a smaller and simpler network of nonlinear rate neuron models (see 
Figure  5b and Materials and methods) which interact via continuous signals (rates) rather than 

https://doi.org/10.7554/eLife.77009
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discontinuities (spikes). Despite these profound differences in the neuronal and synaptic dynamics, the 
same behavior is observed, demonstrating that sequential denoising is a structural effect, dependent 
on the population firing rates and thus less sensitive to fluctuations in the precise spike times. More-
over, the robustness with respect to the network size suggests that denoising could also be performed 
in smaller, localized circuits, possibly operating in parallel on different features of the input stimuli.

Variable map sizes
Despite their ubiquity throughout the neocortex, the characteristics of structured projection pathways 
is far from uniform (Bednar and Wilson, 2016), exhibiting marked differences in spatial precision 
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Figure 5. Denoising through modular topography is a robust structural effect. (a) Signal reconstruction (top) and corresponding network activity 
(bottom) for a network with leaky integrate-and-fire (LIF) neurons and conductance-based synapses (see Materials and methods). Single-trial illustration 
of target signal (black step function) and readout output (red curves) in three different SSNs, for ‍m = 0.9‍ and strong noise corruption (‍σξ = 3‍). For 
simplicity, only two out of ten input channels are shown. Figure 5—figure supplement 1 shows additional activity statistics. (b) As in (a) for a rate-based 
model with ‍m = 1‍ and ‍σξ = 1‍ (see Materials and methods for details).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Code and data for Figure 5 and related figure supplements.

Figure supplement 1. Spiking statistics for the conductance-based model.

https://doi.org/10.7554/eLife.77009
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and specificity, aligned with macroscopic gradients of cortical organization. This non-uniformity may 
play an important functional role supporting feature aggregation (Hagler and Sereno, 2006) and the 
development of mixed representations (Patel et al., 2014) in higher (more anterior) cortical areas. 
Here, we consider two scenarios in the baseline (current-based) model to examine the robustness of 
our findings to more complex topographic configurations.

First, we varied the size of stimulus-tuned sub-populations (parametrized by ‍di‍, see Materials 
and methods) but kept them fixed across the network. For small sub-populations and intermediate 
degrees of topographic modularity, the activity along the stimulated pathway decays with network 
depth, suggesting that input information does not reach the deeper SSNs (see Figure  6a and 
Figure 6—figure supplement 1). These results place a lower bound on the size of stimulus-tuned sub-
populations below which no signal propagation can occur, as reflected by the negative gain in perfor-
mance for ‍d = 0.01‍ (Figure 6b). Whereas denoising is robust to variation around the baseline value of 
‍d = 0.1‍ that yielded perfect partitioning of the feedforward projections (see Supplementary Materials), 
an upper bound may emerge due to increasing overlap between the maps (‍d = 0.2‍ in Figure 6b). In 
this case, the activity may ‘spill over’ to other pathways than the stimulated one, corrupting the input 
representations and hindering accurate transmission and decoding. This can be alleviated by reduced 
or no overlap (as in Figure 6a), in which case signal propagation and denoising is successful for larger 
map sizes (‍ν

S
5 /νS

0 > 1‍ also for ‍d > 0.1‍). We thus observe a trade-off between map size, overlap and the 
degree of topographic precision that is required to accurately propagate stimulus representations 
(see Discussion).

Second, we took into account the fact that these structural features are known to vary with hierar-
chical depth resulting in increasingly larger sub-populations and, consequently, increasingly overlap-
ping stimulus selectivity (Smith et al., 2001; Patel et al., 2014; Bednar and Wilson, 2016). To capture 
this effect, we introduce a linear scaling of map size with depth (‍di+1 = δ + di‍ for ‍i ≥ 1‍, see Materials 
and methods). The ability of the circuit to gradually clean the signal’s representation is fully preserved, 
as illustrated in Figure 6c. In fact, for intermediate modularity (‍m < 0.9‍) broadening the projections 
can further sharpen the reconstruction precision (compare curves for ‍δ = 0.02‍ and ‍δ = 0‍).

Taken together, these observations demonstrate that a gradual denoising of stimulus inputs can 
occur entirely as a consequence of the modular wiring between the subsequent processing circuits. 

a b c x 10-1

d = 0.2

d = 0.01

d = 0.1 (baseline)

Figure 6. Variation in the map sizes. (a) Ratio of the firing rates of the stimulated sub-populations in the first and last sub-networks, ‍ν
S
5 /νS

0 ‍, as a function 
of modularity and map size (parameterized by ‍d ‍ and constant throughout the network, that is ‍δ = 0‍, see Materials and methods). Depicted values 
correspond to stationary firing rates predicted by mean-field theory, smoothed using a Lanczos filter. Note that, in order to ensure that every neuron 
was uniquely tuned, that is there is no overlap between stimulus-specific sub-populations, the number of sub-populations was igen chosen to be 
proportional to the map size (‍NC = 1/d ‍). (b, c) Performance gain in SSN5 relative to SSN0 (ten stimuli, as in Figure 1d, g), for varying properties of 
structural mappings: (b) fixed map size (‍δ = 0‍) with color shade denoting map size, and (c) linearly increasing map size (‍δ > 0‍) and a smaller initial map 
size ‍d0 = 0.04‍. The results depict the average performance gains measured across five trials, using the current-based model illustrated in Figure 1 (ten 
stimuli) and no input noise (‍σξ = 0‍). Figure 6—figure supplement 1 further illustrates how the activity varies across the modules as a function of the 
map size.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Code and data for Figure 6 and related figure supplements.

Figure supplement 1. Transition point in modularity decreases with larger map sizes.

https://doi.org/10.7554/eLife.77009
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Importantly, this effect generalizes well across diverse neuron and synapse models, as well as key 
system properties, making modular topography a potentially universal circuit feature for handling 
noisy data streams.

Modularity as a bifurcation parameter
The results so far indicate that the modular topographic projections, more so than the individual char-
acteristics of neurons and synapses, lead to a sequential denoising effect through a joint process of 
signal amplification and noise suppression. To better understand how the system transitions to such an 
operating regime, it is helpful to examine its macroscopic dynamics in the limit of many sub-networks 
(Toyoizumi, 2012; Cayco-Gajic and Shea-Brown, 2013; Kadmon and Sompolinsky, 2016). We apply 
standard mean-field techniques (Fourcaud and Brunel, 2002; Helias et al., 2013; Schuecker et al., 
2015) to find the asymptotic firing rates (fixed points across sub-networks) of the stimulated and non-
stimulated sub-populations as a function of topography (Figure 2d). For this, we can approximate the 
input μ to a group of neurons as a linear function of its firing rate ‍ν‍ with a slope ‍κ‍ that is determined 
by the coupling within the group and an offset given by inputs from other groups of neurons (orange 
line in Figure 7a). With an approximately sigmoidal rate transfer function, the self-consistent solutions 
are at the intersections marked in Figure 7a.

Formally, all neurons in the deep sub-networks of one topographic map form such a group as 
they share the same firing rate (asymptotic value). The coupling ‍κ‍ within this group comprises not 
only recurrent connections of one sub-network but also modular feedforward projections across sub-
networks. For small modularity, the group is in an inhibition-dominated regime (‍κ < 0‍) and we obtain 
only one fixed point at low activity (Figure 7a, left). Importantly, the firing rate of this fixed point is the 
same for stimulated and non-stimulated topographic maps. Any influence of input signals applied to 
SSN0 therefore vanishes in the deeper sub-networks and the signal cannot be reconstructed (fading 
regime). As topographic projections become more concentrated (larger ‍m‍), ‍κ‍ changes sign and grad-
ually leads to two additional fixed points (as conceptually illustrated in Figure 7a and quantified in 
Figure 7b by numerically solving the self-consistent mean-field equations, see also Appendix B): an 
unstable one (red) that eventually vanishes with increasing ‍m‍ and a stable high-activity fixed point 
(black). The bistability opens the possibility to distinguish between stimulated and non-stimulated 
topographic maps and thereby reconstruct the signal in deep sub-networks: in the active regime 
beyond the critical modularity threshold (here ‍m ≥ mcrit = 0.76‍), a sufficiently strong input signal can 
drive the activity along the stimulated map to the high-activity fixed point, such that it can permeate 
the system, while the non-stimulated sub-populations still converge to the low-activity fixed point. 
Note that this critical modularity represents the minimum modularity value for which bistability 
emerges. It typically differs from the actual switching point ‍mswitch‍, which additionally depends on the 
input intensity.

In the potential energy landscape ‍U ‍ (see Materials and methods), where stable fixed points corre-
spond to minima, the bistability that emerges for more structured topography ‍m ≥ mcrit = 0.76‍ can 
be understood as a transition from a single minimum at low rates (Figure  7c, inset) to a second 
minimum associated with the high-activity state (Figure 7c). Even though the full dynamics of the 
spiking network away from the fixed point cannot be entirely understood in this simplified poten-
tial picture (see Appendix B), qualitatively, more strongly modular networks cause deeper potential 
wells, corresponding to more attractive dynamical states and higher firing rates (see Figure 9—figure 
supplement 2).

Because the intensity of the input signal dictates the rate of different populations in the initial 
sub-network SSN0 (Figure 7d), it also determines, for any given modularity, whether the rate of the 
stimulated sub-population is in the basin of attraction of the high-activity (see Figure 7e, solid markers 
and arrows) or low-activity (dashed, blue marker and arrow) fixed point. Denoising, and therefore 
increasing signal reconstruction, is thus achieved by successively (across sub-networks) pushing the 
population states toward the self-consistent firing rates.

As reported above, for the baseline network and (standard) input (‍λ = 0.05‍) used in Figures 1 and 
2, the switching point between low and high activity is at ‍m = 0.83‍ (blue markers in Figure 7d, f). 
Stronger input signals move the switching point toward the minimal modularity ‍m = 0.76‍ of the active 
regime (black markers in Figure 7d, f), while weaker inputs only induce a switch at larger modularities 
(gray markers in Figure 7d, f).

https://doi.org/10.7554/eLife.77009
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Figure 7. Modularity changes the fixed point structure of the system. (a) Sketch for self-consistent solution (for the full derivation, see Appendix 
B) for the firing rate of the stimulated sub-population (blue curves) and the linear relation ‍κν = µ− I ‍ (orange lines), in the limit of infinitely deep 
networks. Squares denote stable (black) and unstable (red) fixed points where input and output rates are the same. (b) Bifurcation diagram obtained 
from numerical evaluation of the mean-field self-consistency equations, Equations 9 and 10 showing a single stable fixed point in the fading regime, 
and multiple stable (black) and unstable (red) fixed points in the active regime where denoising occurs. (c) Potential energy of the mean activity (see 
Materials and methods and Equation 22 in Appendix B) for increasing topographic modularity. A stable state, corresponding to local minimum in the 
potential, exists at a low non-zero rate in every case, including for ‍m ≤ 0.75‍ (gray dashed curves, inset). For ‍m ≥ 0.76‍ (colored solid curves), a second 
fixed point appears at progressively larger firing rates. (d) Theoretical predictions for the stationary firing rates of the stimulated and non-stimulated 
sub-populations in SSN0, as a function of stimulus intensity (‍λ‍, see Materials and methods). Low, standard, and high denote ‍λ‍ values of 0.01, 0.05 
(baseline value used in Figure 1), and 0.25, respectively. (e) Sketch of attractor basins in the potential for different values of ‍m‍. Markers correspond to 
the highlighted initial states in (d), with solid and dashed arrows indicating attraction toward the high- and low-activity state, respectively. (f) Firing rates 
of the stimulated sub-population as a function of modularity in the limit of infinite sub-networks, for the three different ‍λ‍ marked in (d). (g) Modularity 
threshold for the active regime shifts with increasing noise in the input, modeled as additional input to the non-stimulated sub-populations in SSN0. 
Figure 7—figure supplement 1 show the dependency of the effective feedforward couplings on different parameters. Note that all panels (except (a)) 
show theoretical predictions obtained from numerical evaluation of the mean-field self-consistency equations.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Code and data for Figure 7 and related figure supplements.

Figure supplement 1. Mean-field predictions for the gain in the firing rates of stimulated sub-populations.

https://doi.org/10.7554/eLife.77009
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Noise in the input simply shifts the transition point to the high-activity state in a similar manner, 
with more modular connectivity required to compensate for stronger jitter (Figure 7g). However, as 
long as the mean firing rate of the stimulated sub-population in SSN0 is slightly higher than that of the 
non-stimulated ones (up to 0.5 spks/sec), it is sufficient to position the system in the attracting basin 
of the high-rate fixed point and the system is able to clean the signal representation. This indicates a 
remarkably robust denoising mechanism.

Critical modularity for denoising
In addition to properties of the input, the critical modularity marking the onset of the active regime is 
also influenced by neuronal and connectivity features. To build some intuition, it is helpful to consider 
the sigmoidal activation function of spiking neurons (Figure  8a). The nonlinearity of this function 
prohibits us from obtaining quantitative, closed-form analytical expressions for the critical modu-
larity and requires a numerical solution of the self-consistency equations (Figure 7b). However, since 
the continuous rate model shows a qualitatively similar behavior to the spiking baseline model (see 
Section ‘A generalizable structural effect’), we can study a fully analytically tractable model with piece-
wise linear activation function (Figure 8a, b) to expose the dependence of the critical modularity on 
both neuron and network properties (see detailed derivations in Appendix B).

In this simple model, the output is zero for inputs below ‍µmin = 15‍ and at maximum rate ‍νmax = 150‍ 
for inputs above ‍µmax = 400‍. In between these two bounds, the output is linearly interpolated 

‍ν(µ) = νmax(µ− µmin)/(µmax − µmin)‍. As discussed before, successful denoising is achieved if the 
non-stimulated sub-populations are silent, ‍νNS = 0‍, and the stimulated sub-populations are active, 
‍νS > 0‍. Note that in the following we focus on this ideal scenario representing perfect denoising, but, 
in principle, intermediate solutions with ‍νS ≫ νNS > 0‍ may also occur and could still be considered 
as successful denoising. Analyzing for which neuron, network and input properties this scenario is 
achieved, we obtain multiple conditions for the modularity that need to be fulfilled.

The first condition illustrates the dependence of the critical modularity on the neuron model 
(Figure 8c, purple horizontal line)

	﻿‍ m ≥ (µmax−µmin)NC
(1−α)J νmax+(µmax−µmin)(NC−1) ,‍� (1)

where ‍NC‍ is the number of stimulus-specific sub-populations and ‍α ≤ 1‍ (typically with a value of 0.25) 
represents the (reduced) noise ratio in the deeper sub-networks, with ‍α‍ scaling the noise and ‍1 − α‍ 
scaling the feedforward connections (see Materials and methods). This is necessary to ensure that the 
total excitatory input to each neuron is consistent across the network. In particular, the critical modu-
larity depends on the dynamic range of input ‍µmax − µmin‍ and output ‍νmax‍. The condition represents a 
lower bound on the modularity required for denoising. Importantly, while it depends on the effective 
coupling strength ‍J ‍, the noise ratio ‍α‍ and the number of maps ‍NC‍ (see Materials and methods), it 
does not depend on the nature of the recurrent interactions (E/I ratio) and the strength of the external 
background input. In addition, we find two additional critical values of the modularity (cyan and green 
curves in Figure 8c–e), both of which do depend on the strength of the external background input ‍νX‍ 
and the recurrent connectivity (E/I ratio ‍γg‍):

	﻿‍
m = NC

NC−1 − 1
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µmax−αJ νX− J
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(
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	﻿‍
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(
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)
νmax

)
‍�

(3)

Depending on the external input strength ‍νX‍, these are either upper or lower bounds. In the denom-
inator of these expressions, the total input (recurrent and external) is compared to the limits of the 
dynamic range of the neuron model. The cancellation between recurrent and external inputs in the 
inhibition-dominated baseline model typically yields a total input within the dynamic range of the 
neuron, such that modularity in feedforward connections can decrease the input of the non-stimulated 
sub-populations to silence them, and increase the input of the stimulated sub-populations to support 
their activity. The competition between the excitatory and inhibitory contributions ensures that the 
total input does not lead to a saturating output activity. Thus, for inhibitory recurrence, denoising 
can be achieved at a moderate level of modularity over a large range of external background inputs 

https://doi.org/10.7554/eLife.77009
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Figure 8. Dependence of critical modularity on neuron and connectivity features. (a) Activation function ‍ν(µ,σ)‍ for leaky integrate-and-fire model as 
a function of the mean input μ for ‍σ = 1, 10, 50‍ (black to gray) and piecewise linear approximation with qualitatively similar shape (red). (b) Bifurcation 
diagram as in Figure 7b, but for piecewise linear activation function shown in inset. Low-activity fixed points at zero rate are not shown, which is 
the case throughout for the non-stimulated sub-populations. This panel corresponds to the cross-section marked by the gray dashed lines in (c), at 

‍νX = 12‍. Likewise, the vertical cyan bar corresponds to the lower bound on modularity depicted by the cyan curve in (c) for the same value ‍νX = 12‍. 
(c) Analytically derived bounds on modularity (purple line corresponds to Equation 1, cyan curve to Equation 2) as a function of external input for the 
baseline model with inhibition-dominated recurrent connectivity (‍g = −12‍). Shaded regions denote positions of stable (black) and unstable (red) fixed 
points with ‍0 < νS < νmax‍ and ‍νNS = 0‍. Hatched area represents region with stable fixed points at saturated rates. Denoising occurs in all areas with 
stable fixed points (hatched and black shaded regions). Negative values on the x-axis correspond to inhibitory external background input with rate ‍|νx|‍. 
(d) Same as panel (c) for networks with no recurrent connectivity within the SSNs (green curve defined by Equation 3). (e) Same as panel (c) for networks 
with excitation-dominated connectivity within SSNs (‍g = −3‍). (f) Same as Figure 7b, obtained through numerical evaluation of the mean-field self-
consistent equations for the spiking model. All non-zero fixed points are stable, with points representing stimulated (circle) and non-stimulated (cross) 
populations overlapping. (g) Mean firing rates across the SSNs in the current-based (baseline) model with no recurrent connections, obtained from 5 s of 
network simulations and averaged over five trials. (h, i) Same as (f, g) for networks with excitation-dominated connectivity.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Code and data for Figure 8 and related figure supplements.

Figure supplement 1. Influence of the activation function’s dynamic range on the bifurcation behavior in excitation-dominated networks (‍g = −3‍, see 
also Figure 8e).

Figure supplement 2. Firing rates in ‍SSN5‍ in the absence of external background noise ‍(νX = 0)‍.

https://doi.org/10.7554/eLife.77009
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(shaded black and hatched regions in Figure 8c), which demonstrates a robust denoising mechanism 
even in the presence of changes in the input environment.

In contrast, if recurrent connections are absent, strong inhibitory external background input is 
required to counteract the excitatory feedforward input and achieve a denoising scenario (Figure 8d). 
Fixed points at non-saturated activity ‍νS > 0‍ are also present for low excitatory external input, but 
unstable due to the positive recurrent feedback. This is because in networks without recurrence, 
there is no competition between the recurrent input and the external and feedforward inputs. As a 
result, the input to both the stimulated and non-stimulated sub-populations is typically high, such 
that modulation of the feedforward input via topography cannot lead to a strong distinction between 
the pathways as required for denoising. In these networks, one typically observes high activity in all 
populations. A similar behavior can be observed in excitation-dominated networks (Figure 8e), where 
the inhibitory external background input must be even stronger to compensate the excitatory feed-
forward and recurrent connectivity and reach a stable denoising regime.

Note that inhibitory external input is not in line with the excitatory nature of external inputs to 
local circuits in the brain and is therefore biologically implausible. One way to achieve denoising in 
excitation-dominated networks for excitatory background inputs would be to shift the dynamic range 
of the activation function (see Figure 8—figure supplement 1), which is, however, not consistent 
with the biophysical properties of real neurons (distance between threshold and rest as compared to 
typical strengths of postsynaptic potentials). In summary, we find that recurrent inhibition is crucial to 
achieve denoising in biologically plausible settings.

These results on the role of recurrence and external input can be transferred to the behavior of 
the spiking model. While details of the fixed point behavior depend on the specific choice of the 
activation function, Figure 8f, h shows that there is also no denoising regime for the spiking model 
in case of no or excitation-dominated recurrence and a biologically plausible level of external input. 
Instead, one finds high activity in both stimulated and non-stimulated sub-populations, as confirmed 
by network simulations (Figure 8g, i). Figure 8—figure supplement 2 further confirms that even 
reducing the external input to zero does not avoid this high-activity state in both stimulated and non-
stimulated sub-populations for ‍m < 1‍.

Input integration and multi-stability
The analysis considered in the sections above is restricted to a system driven with a single external 
stimulus. However, to adequately understand the system’s dynamics, we need to account for the 
fact that it can be concurrently driven by multiple input streams. If two simultaneously active stimuli 
drive the system (see illustration in Figure 9a), the qualitative behavior where the responses along 
the stimulated (non-stimulated) maps are enhanced (silenced) is retained if the strength of the two 
input channels is sufficiently different (Figure 9b, top panel). In this case, the weaker stimulus is not 
strong enough to drive the sub-population it stimulates toward the basin of attraction of the high-
activity fixed point. Consequently, the sub-population driven by this second stimulus behaves as a 
non-stimulated sub-population and the system remains responsive to only one of the two inputs, 
acting as a WTA circuit. If, however, the ratio of stimulus intensities varies, two active sub-populations 
may co-exist (Figure 9b, center) and/or compete (bottom panel), depending also on the degree of 
topographic modularity.

To quantify these variations in macroscopic behavior, we focus on the dynamics of SSN5 and 
measure the similarity (correlation coefficient) between the firing rates of the two stimulus-specific 
sub-populations as a function of modularity and ratio of input intensities ‍λ2/λ1‍ (see Materials and 
methods and Figure 9c). In the case that both inputs have similar intensities but the feedforward 
projections are not sufficiently modular, both sub-populations are activated simultaneously (Co-Ex, 
red area in Figure 9c). This is the dynamical regime that dominates the earlier sub-networks. However, 
this is a transient state, and the Co-Ex region gradually shrinks with network depth until it vanishes 
completely after approximately 9–10 SSNs (see Figure 9d).

For low modularity, the system settles in the single stable state associated with near-zero firing 
rates, as illustrated schematically in the energy landscape in Figure 9e, (1) (see Materials and methods, 
Appendix B, and Supplementary Materials for derivations and numerical simulations). Above the crit-
ical modularity value, the system enters one of two different regimes. For ‍m > 0.84‍ and an input 
ratio below 0.7 (Figure 9c, gray area), one stimulus dominates (WTA) and the responses in the two 

https://doi.org/10.7554/eLife.77009
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populations are uncorrelated (Figure 9b, top panel). Although the potential landscape contains two 
minima corresponding to either population being active, the system always settles in the high-activity 
attractor state corresponding to the dominating input (Figure 9e, (2)).

If, however, the two inputs have comparable intensities and the topographic projections are sharp 
enough (‍m > 0.84‍), the system transitions into a different dynamical state where neither stimulus-
specific sub-population can maintain an elevated firing rate for extended periods of time. In the 
extreme case of nearly identical intensities (‍λ2/λ1 ≥ 0.9)‍ and high modularity, the responses become 
anti-correlated (Figure  9b, bottom panel), that is the activation of the two stimulus-specific sub-
populations switches, as they engage in a dynamic behavior reminiscent of WLC between multiple 
neuronal groups (Lagzi and Rotter, 2015; Rost et al., 2018). The switching between the two states is 
driven by stochastic fluctuations (Figure 9e, (3)). The depth of the wells and width of barrier (distance 
between fixed points) increase with modularity (see Figure 9e, (4) and Figure 9—figure supplement 
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Figure 9. For multiple input streams, topography may elicit a wide range of dynamical regimes. (a) Two active input channels with corresponding 
stimulus intensities ‍λ1‍ and ‍λ2‍, mapped onto non-overlapping sub-populations, drive the network simultaneously. Throughout this section, ‍λ1 = 0.05‍ 
is fixed to the previous baseline value. (b) Mean firing rates of the two stimulated sub-populations (purple and cyan), as well as the non-stimulated 
sub-populations (black) for three different combinations of ‍m‍ and ratios ‍λ2/λ1‍ (as marked in (c)). (c) Correlation-based similarity score shows three 
distinct dynamical regimes in SSN5 when considering the firing rates of two, simultaneously stimulated sub-populations associated with S1 and S2, 
respectively: coexisting (Co-Ex, red area), winner-takes-all (WTA, gray), and winnerless competition (WLC, blue). Curves mark the boundaries between 
the different regimes (see Materials and methods). Activity for marked parameter combinations shown in (b). (d) Evolution of the similarity score with 
increasing network depth, for ‍m = 0.83‍ and input ratio of 0.86. For deep networks, the Co-Ex region vanishes and the system converges to either WLC 
or WTA dynamics. (e) Schematic showing the influence of modularity and input intensity on the system’s potential energy landscape (see Materials and 
methods): (1) in the fading regime there is a single low-activity fixed point (minimum in the potential); (2) increasing modularity creates two high-activity 
fixed points associated with S1 and S2, with the dynamics always converging to the same minimum due to ‍λ1 ≫ λ2‍; (3) strengthening S2 balances 
the initial conditions, resulting in frequent, fluctuation-driven switching between the two states; (4) for larger ‍m‍ values, switching speed decreases as 
the wells become deeper and the barrier between the wells wider. (f) Switching frequency between the dominating sub-populations in SSN5 decays 
with increasing modularity. Data computed over 10 s, for ‍λ2/λ1 = 0.9‍. Figure 9—figure supplement 1 and Figure 9—figure supplement 2 show the 
evolution of the Co-Ex region over 12 modules and the potential landscape, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Code and data for Figure 9 and related figure supplements.

Figure supplement 1. Evolution of similarity score for 12 sub-networks.

Figure supplement 2. Potential landscape for two input streams.

https://doi.org/10.7554/eLife.77009
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2), suggesting a greater difficulty in moving between the two attractors and consequently fewer state 
changes. Numerical simulations confirm this slowdown in switching (Figure 9f).

We wish to emphasize that the different dynamical states arise primarily from the feedforward 
connectivity profile. Nevertheless, even though the synaptic weights are not directly modified, varying 
the topographic modularity does translate to a modification of the effective connectivity weights 
(Figure 3b). The ratio of stimulus intensities also plays a role in determining the dynamics, but there is 
a (narrow) range (approximately between 0.75 and 0.8) for which all 3 regions can be reached through 
sole modification of the modularity. Together, these results demonstrate that topography can not only 
lead to spatial denoising but also enable various, functionally important network operating points.

Reconstruction and denoising of dynamical inputs
Until now, we have considered continuous but piecewise constant, step signals, with each step lasting 
for a relatively long and fixed period of ‍200 ms‍. This may give the impression that the denoising effects 
we report only works for static or slowly changing inputs, whereas naturalistic stimuli are continuously 
varying. Nevertheless, sensory perception across modalities relies on varying degrees of temporal and 

Figure 10. Reconstruction of a dynamic, continuous input signal. (a) Sketch of the encoding and mapping of a sinusoidal input ‍x(t)‍ onto the current-
based network model. The signal is sampled at regular time intervals ‍dt‍, with each sample binned into one of ‍k‍ channels (which is then active for a 
duration of ‍dt‍). This yields a temporally and spatially discretized ‍k‍-dimensional binary signal ‍u(t)‍, from which we obtain the final noisy input ‍z(t)‍ similar 
to the baseline network (see Figure 1 and Materials and methods). Unlike the one-to-one mapping in Figure 1, here we decouple the number of 
channels ‍k = 40‍ from that of topographic maps, ‍NC = 20‍ (map size is unchanged, ‍Ci = 800‍). Because ‍NC < k‍, the channels project to evenly spaced 
but overlapping sub-populations in SSN0, while the maps themselves overlap significantly. (b) Discretized signal ‍z(t)‍ and rate encoding for input 

‍x(t) = sin(10t) + cos(3t)‍, with ‍dt = 1 ms‍ and no noise (‍σξ = 0‍). (c) Top panel shows the spiking activity of 500 randomly chosen excitatory (blue) and 
inhibitory (red) neurons in SSN0, SSN2, and SSN5, for ‍m = 0.9‍. Corresponding target signal ‍x(t)‍ (black) and readout output (red) are shown in bottom 
panel. (d) Relative gain in performance in SSN2 and SSN5 for ‍σξ = 0‍ (top). Color shade denotes network depth. Bottom panel shows relative gain in 
SSN5 for different levels of noise ‍σξ ∈ {0, 0.5, 1}‍. (e–g) Same as (b–d), but for a slowly varying signal (sampled at ‍dt = 20 ms‍), ‍σξ = 0.5‍ and ‍m = 1‍. 
Performance results are averaged across five trials. We used 20 s of data for training and 10 s for testing (activity sampled every 1 ms, irrespective of 
input discretization ‍dt‍).
The online version of this article includes the following source data and figure supplement(s) for figure 10:

Source data 1. Code and data for Figure 10 and related figure supplements.

Figure supplement 1. Limits of denoising for rapidly changing and noisy dynamical inputs.

https://doi.org/10.7554/eLife.77009
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spatial discretization (VanRullen and Koch, 2003), with individual (sub-)features of the input encoded 
by specific (sub-)populations of neurons in the early stages of the sensory hierarchy. In this section, we 
will demonstrate that denoising is robust to the temporal properties of the input and its encoding, as 
we relax many of the assumptions made in previous sections.

We consider a sinusoidal input signal, which we discretize and map onto the network according 
to the depiction in Figure 10a. This approach is similar to previous works, for instance it can mimic 
the movement of a light spot across the retina (Klos et al., 2018). By varying the sampling interval ‍dt‍ 
and number of channels ‍k‍, we can change the coarseness of the discretization from step-like signals 
to more continuous approximations of the input. If we choose a high sampling rate (‍dt = 1 ms‍) and 
sufficient channels (‍k = 40‍), we can accurately encode even fast changing signals (Figure 10b). Given 
that each input-driven  SSN is inhibition-dominated and therefore close to the balanced state, the 
network exhibits a fast tracking property (van Vreeswijk and Sompolinsky, 1996) and can accurately 
represent and denoise the underlying continuous signal in the spiking activity (Figure 10c, top). This is 
also captured by the readout, with the tracking precision increasing with network depth (Figure 10c, 
bottom). In this condition, there is a performance gain of up to 50% in the noiseless case (Figure 10d, 
top) and similar values for varying levels of noise (Figure 10d, bottom).

Note that due to the increased number of input channels (40 compared to 10) projecting to the 
same number of neurons in SSN0 as before ‍(800)‍, for the same ‍σξ‍ the effective amount of noise each 
neuron receives is, on average, four times larger than in the baseline network. Moreover, the task was 
made more difficult by the significant overlap between the maps (‍NC = 20‍) as well as the resulting 
decrease in neuronal input selectivity. Nevertheless, similar results were obtained for slower and more 
coarsely sampled signals (Figure 10e–g).

We found comparable denoising dynamics for a large range of parameter combinations involving 
the map size, number of maps, number of channels, and signal complexity. Although there are limits 
with respect to the frequencies (and noise intensity) the network can track (see Figure 10—figure 
supplement 1), these findings indicate a very robust and flexible phenomenon for denoising spatially 
encoded sensory stimuli.

Discussion
The presence of stimulus- or feature-tuned sub-populations of neurons in primary sensory cortices 
(as well as in downstream areas) provides an efficient spatial encoding strategy (Pouget et al., 1999; 
Seriès et al., 2004; Tkacik et al., 2010) that ensures the relevant computable features are accurately 
represented. Here, we propose that beyond primary sensory areas, modular topographic projec-
tions play a key role in preserving accurate representations of sensory inputs across many processing 
modules. Acting as a structural scaffold for a sequential denoising mechanism, we show how they 
simultaneously enhance relevant stimulus features and remove noisy interference. We demonstrate 
this phenomenon in a variety of network models and provide a theoretical analysis that indicates its 
robustness and generality.

When reconstructing a spatially encoded input signal corrupted by noise in a network of sequentially 
connected populations, we find that a convergent structure in the feedforward projections is not only 
critical for successfully solving the task, but that the performance increases significantly with network 
depth beyond a certain modularity (Figure 1). Through this mechanism, the response selectivity of 
the stimulated sub-populations is sharpened within each subsequent sub-network, while others are 
silenced (Figure 2). Such wiring may support efficient and robust information transmission from the 
thalamus to deeper cortical centers, retaining faithful representations even in the presence of strong 
noise. We demonstrate that this holds for a variety of signals, from approximately static (stepwise) to 
smoothly and rapidly changing dynamic inputs (Figure 10). Thanks to the balance of excitation and 
inhibition, the network is able to track spatially encoded signals on very short timescales, and is flex-
ible with respect to the level of spatial and temporal discretization. Accurate tracking and denoising 
requires that the encoding is locally static/semi-stationary for only a few tens of milliseconds, which is 
roughly in line with psychophysics studies on the limits of sensory perception (Borghuis et al., 2019).

More generally, topographic modularity, in conjunction with other top-down processes (Kok et al., 
2012), could provide the anatomical substrate for the implementation of a number of behaviorally 
relevant processes. For example, feedforward topographic projections on the visual pathway could 
contribute, together with various attentional control processes, to the widely observed pop-out effect 

https://doi.org/10.7554/eLife.77009
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in the later stages of the visual hierarchy (Brefczynski-Lewis et al., 2009; Itti et al., 1998). The pop-
out effect, at its core, assumes that in a given context some neurons exhibit sharper selectivity to their 
preferred stimulus feature than the neighboring regions, which can be achieved through a winner-
take-all (WTA) mechanism (see Figure 9 and Himberger et al., 2018).

The WTA behavior underlying the denoising is caused by a re-shaping of the E/I balance across 
the network (see Figure 3). As the excitatory feedforward projections become more focused, they 
modulate the system’s effective connectivity and thereby the gain on the stimulus-specific path-
ways, gating or allowing (and even enhancing) signal propagation. This change renders the stimu-
lated pathway excitatory in the active regime (see Figure 7), leading to multiple fixed points such 
as those observed in networks with local recurrent excitation (Renart et al., 2007; Litwin-Kumar 
and Doiron, 2012). While the high-activity fixed point of such clustered networks is reached over 
time, in our model it unfolds progressively in space, across multiple populations. Importantly, in 
the range of biologically plausible numbers of cortical areas relevant for signal transmission (up 
to 10 for some visual stimuli, see Felleman and Van Essen, 1991; Hegdé and Felleman, 2007) 
and intermediate modularity, the firing rates remain within experimentally observed limits and do 
not saturate. The basic principle is similar to other approaches that alter the gain on specific path-
ways to facilitate stimulus propagation, for example through stronger synaptic weights (Vogels 
and Abbott, 2005), stronger nonlinearity (Toyoizumi, 2012), tuning of connectivity strength, 
and neuronal thresholds (Cayco-Gajic and Shea-Brown, 2013), via detailed balance of local exci-
tation and inhibition (amplitude gating; Vogels and Abbott, 2009) or with additional subcortical 
structures (Cortes and van Vreeswijk, 2015). Additionally, our model also displays some activity 
characteristics reported previously, such as the response sharpening observed for synfire chains 
(Diesmann et al., 1999) or (almost) linear firing rate propagation (Kumar et al., 2010) (for inter-
mediate modularity).

However, due to the reliance on increasing inhibitory activity at every stage, we speculate that 
denoising, as studied here, would not occur in such a system containing a single, shared inhibitory 
pool with homogeneous connectivity. In this case, inhibition would affect all excitatory populations 
uniformly, with stronger activity potentially preventing accurate stimulus transmission from the initial 
sub-networks. Nevertheless, this problem could be alleviated using a more realistic, localized spatial 
connectivity profile as in Kumar et  al., 2008a, or by adding shadow pools (groups of inhibitory 
neurons) for each layer of the network, carefully wired in a recurrent or feedforward manner (Aviel 
et al., 2003; Aviel et al., 2005; Vogels and Abbott, 2009). In such networks with non-random or 
spatially dependent connectivity, structured (modular) topographic projections onto the inhibitory 
populations will likely be necessary to maintain stable dynamics and attain the appropriate inhibition-
dominated regimes (Figure 3). Alternatively, these could be achieved through additional, targeted 
inputs from other areas (Figure 4), with feedforward inhibition known to provide a possible mecha-
nism for context-dependent gating or selective enhancement of certain stimulus features (Ferrante 
et al., 2009; Roberts et al., 2013).

While our findings build on the above results, we here show that the experimentally observed 
topographic maps may serve as a structural denoising mechanism for sensory stimuli. In contrast to 
most works on signal propagation where noise mainly serves to stabilize the dynamics and is typically 
avoided in the input, here the system is driven by a continuous signal severely corrupted by noise. 
Taking a more functional approach, this input is reconstructed using linear combinations of the full 
network responses, rather than evaluating the correlation structure of the activity or relying on precise 
firing rates. Focusing on the modularity of such maps in recurrent spiking networks, our model also 
differs from previous studies exploring optimal connectivity profiles for minimizing information loss in 
purely feedforward networks (Renart and van Rossum, 2012; Zylberberg et al., 2017), also in the 
context of sequential denoising autoencoders (Kadmon and Sompolinsky, 2016) and stimulus classi-
fication (Babadi and Sompolinsky, 2014), which used simplified neuron models or shallow networks, 
made no distinction between excitatory and inhibitory connections, or relied on specific, trained 
connection patterns (e.g., chosen by the pseudo-inverse model). Although the bistability underlying 
denoising can, in principle, also be achieved in such feedforward or networks without inhibition, our 
theoretical predictions and network simulations indicate that for biologically constrained circuits 
(i.e., where the background and long-range feedforward input is excitatory), inhibitory recurrence is 
indispensable for the spatial denoising studied here (see Section ‘Critical modularity for denoising’). 

https://doi.org/10.7554/eLife.77009
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Recurrent inhibition compensates for the feedforward and external excitation, generating compe-
tition between the topographic pathways and allowing the populations to rapidly track their input.

Moreover, our findings provide an explanation for how low-intensity stimuli (1–2 spks/sec above 
background activity, see Figure 2 and Supplementary Materials) could be amplified across the cortex 
despite significant noise corruption, and relies on a generic principle that persists across different 
network models (Figure  5) while also being robust to variations in the map size (Figure  6). We 
demonstrated both the existence of a lower and upper (due to increased overlap) bound on their 
spatial extent for signal transmission, as well as an optimal region for which denoising was most 
pronounced. These results indicate a trade-off between modularity and map size, with larger maps 
sustaining stimulus propagation at lower modularity values, whereas smaller maps must compen-
sate through increased topographic density (see Figure 6a and Supplementary Materials). In the 
case of smaller maps, progressively enlarging the receptive fields enhanced the denoising effect 
and improved task performance (Figure 6c), suggesting a functional benefit for the anatomically 
observed decrease in topographic specificity with hierarchical depth (Bednar and Wilson, 2016; 
Smith et al., 2001). One advantage of such a wiring could be spatial efficiency in the initial stages of 
the sensory hierarchy due to anatomical constraints, for instance the retina or the lateral geniculate 
nucleus. While we get a good qualitative description of how the spatial variation of topographic 
maps influences the system’s computational properties, the numerical values in general are not 
necessarily representative. Cortical maps are highly dynamic and exhibit more complex patterning, 
making (currently scarce) precise anatomical data a prerequisite for more detailed investigations. For 
instance, despite abundant information on the size of receptive fields (Smith et al., 2001; Liu et al., 
2016; Keliris et al., 2019), there is relatively little data on the connectivity between neurons tuned 
to related or different stimulus features across distinct cortical circuits. Should such experiments 
become feasible in the future, our model provides a testable prediction: the projections must be 
denser (or stronger) between smaller maps to allow robust communication whereas for larger maps 
fewer connections may be sufficient.

Finally, our model relates topographic connectivity to competition-based network dynamics. For 
two input signals of comparable intensities, moderately structured projections allow both represen-
tations to coexist in a decodable manner up to a certain network depth, whereas strongly modular 
connections elicit WLC like behavior characterized by stochastic switching between the two stimuli 
(see Figure  9). Computation by switching is a functionally relevant principle (McCormick, 2005; 
Schittler Neves and Timme, 2012), which relies on fluctuation- or input-driven competition between 
different metastable (unstable) or stable attractor states. In the model studied here, modular topog-
raphy induced multi-stability (uncertainty) in representations, alternating between two stable fixed 
points corresponding to the two input signals. Structured projections may thus partially explain the 
experimentally observed competition between multiple stimulus representations across the visual 
pathway (Li et al., 2016), and is conceptually similar to an attractor-based model of perceptual bista-
bility (Moreno-Bote et al., 2007). Moreover, this multi-stability across sub-networks can be ‘exploited’ 
at any stage by control signals, that is additional modulation (inihibitory) could suppress one and 
amplify (bias) another.

Importantly, all these different dynamical regimes emerge progressively through the hierarchy and 
are not discernible in the initial modules. Previous studies reporting on similar dynamical states have 
usually considered either the synaptic weights as the main control parameter (Lagzi and Rotter, 
2015; Lagzi et al., 2019; Vogels and Abbott, 2005) or studied specific architectures with clustered 
connectivity (Schaub et al., 2015; Litwin-Kumar and Doiron, 2012; Rost et al., 2018). Our findings 
suggest that in a hierarchical circuit a similar palette of behaviors can be also obtained given appro-
priate effective connectivity patterns modulated exclusively through modular topography. Although 
we used fixed projections throughout this study, these could also be learned and shaped continuously 
through various forms of synaptic plasticity (see e.g. Tomasello et al., 2018). To achieve such a variety 
of dynamics, cortical circuits most likely rely on a combination of all these mechanisms, that is, pre-
wired modular connections (within and between distant modules) and heterogeneous gain adaptation 
through plasticity, along with more complex processes such as targeted inhibitory gating.

Overall, our results highlight a novel functional role for topographically structured projection path-
ways in constructing reliable representations from noisy sensory signals, and accurately routing them 
across the cortical circuitry despite the plethora of noise sources along each processing stage.

https://doi.org/10.7554/eLife.77009
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Materials and methods
Network architecture
We consider a feedforward network architecture where each sub-network (SSN) is a balanced random 
network (Brunel, 2000) composed of ‍N = 10000‍ homogeneous LIF neurons, grouped into a popu-
lation of ‍NE = 0.8N ‍ excitatory and ‍NI = 0.2N ‍ inhibitory units. Within each sub-network, neurons are 
connected randomly and sparsely, with a fixed number of ‍KE = ϵNE

‍ local excitatory and ‍KI = ϵNI
‍ 

local inhibitory inputs per neuron. The sub-networks are arranged sequentially, that is the excitatory 
neurons ‍Ei‍ in ‍SSNi‍ project to both ‍Ei+1‍ and ‍Ii+1‍ populations in the subsequent sub-network ‍SSNi+1‍ 
(for an illustrative example, see Figure 1a). There are no inhibitory feedforward projections. Although 
projections between sub-networks have a specific, non-uniform structure (see next section), each 
neuron in ‍SSNi+1‍ receives the same total number of synapses from the previous SSN, ‍KFF‍.

In addition, all neurons receive ‍KX‍ inputs from an external source representing stochastic back-
ground noise. For the first sub-network, we set ‍KX = KE‍, as it is commonly assumed that the number 
of background input synapses modeling local and distant cortical input is in the same range as the 
number of recurrent excitatory connections (see e.g. Brunel, 2000; Kumar et al., 2008b; Duarte 
and Morrison, 2014). To ensure that the total excitatory input to each neuron is consistent across the 
network, we scale ‍KX‍ by a factor of ‍α = 0.25‍ for the deeper SSNs and set ‍KFF = (1 − α)KE‍, resulting in 
a ratio of 3:1 between the number of feedforward and background synapses.

Modular feedforward projections
Within each SSN, each neuron is assigned to one or more of ‍NC‍ sub-populations SP associated with 
a specific stimulus (‍NC = 10‍ unless otherwise stated). This is illustrated in Figure 1a for ‍NC = 2‍. We 
choose these sub-populations so as to minimize their overlap within each ‍SSNi‍, and control their effec-
tive size ‍C

β
i = diNβ ,β ∈ [E, I]‍, through the scaling parameter ‍di ∈ [0, 1]‍. Depending on the size and 

number of sub-populations, it is possible that some neurons are not part of any or that some neurons 
belong to multiple such sub-populations (overlap).

Map size
In what follows, a topographic map refers to the sequence of sub-populations in the different sub-
networks associated with the same stimulus. To enable a flexible manipulation of the map sizes, we 
constrain the scaling factor ‍di‍ by introducing a step-wise linear increment ‍δ‍, such that ‍di = d0 + iδ, i ≥ 1‍. 
Unless otherwise stated, we set ‍d0 = 0.1‍ and ‍δ = 0‍. Note that all SPs within a given SSN have the same 
size. In this study, we will only explore values in the range ‍0 ≤ δ ≤ 0.02‍ to ensure consistent map sizes 
across the system, that is, ‍0 ≤ di ≤ 1‍ for all ‍SSNi‍ (see constraints in Appendix A).

Modularity
To systematically modify the degree of modular segregation in the topographic projections, we define 
a modularity parameter that determines the relative probability for feedforward connections from a 
given SP in ‍SSNi‍ to target the corresponding SP in ‍SSNi+1‍. Specifically, we follow (Newman, 2009; 
Pradhan et al., 2011) and define ‍m = 1 − p0

pc
∈ [0, 1]‍ as the ratio of the feedforward projection prob-

abilities between neurons belonging to different SPs ‍(p0)‍ and between neurons on the same topo-
graphic map ‍(pc)‍. According to the above definition, the feedforward connectivity matrix is random 
and homogeneous (Erdős-Rényi graph) if ‍m = 0‍ or ‍di = 1‍ (see Figure 1a). For ‍m = 1‍ it is a block-diagonal 
matrix, where the individual SPs overlap only when ‍di > 1/NC‍. In order to isolate the effects on the 
network dynamics and computational performance attributable exclusively to the topographic struc-
ture, the overall density of the feedforward connectivity matrix is kept constant at ‍(1 − α) ∗ ϵ = 0.075‍ 
(see also previous section). We note that, while providing the flexibility to implement the variations 
studied in this manuscript, this formalism has limitations (see Appendix A).

Neuron and synapse model
We study networks composed of LIF neurons with fixed voltage threshold and static synapses with 
exponentially decaying postsynaptic currents or conductances. The sub-threshold membrane poten-
tial dynamics of such a neuron evolves according to:

https://doi.org/10.7554/eLife.77009
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dV(t)
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Vrest − V(t)

)
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(
IE(t) + II(t) + IX(t)

)
‍� (4)

where ‍τm‍ is the membrane time constant, and ‍RIβ‍ is the total synaptic input from population ‍β ∈ [E, I]‍. 
The background input ‍IX‍ is assumed to be excitatory and stochastic, modeled as a homogeneous 
Poisson process with constant rate ‍νX‍. Synaptic weights ‍Jij‍, representing the efficacy of interaction 
from presynaptic neuron ‍j‍ to postsynaptic neuron ‍i‍, are equal for all realized connections of a given 
type, that is, ‍JEE = JIE = J ‍ for excitatory and ‍JEI = JII = gJ ‍ for inhibitory synapses. All synaptic delays 
and time constants are equal in this setup. For a complete, tabular description of the models and 
model parameters used throughout this study, see Supplementary files 1–5.

Following previous works (Zajzon et al., 2019; Duarte and Morrison, 2014), we choose the inten-
sity of the stochastic input ‍νX‍ and the E–I ratio ‍g‍ such that the first two sub-networks operate in a 
balanced, asynchronous irregular regime when driven solely by background input. This is achieved 
with ‍νX = 12 spikes/s‍ and ‍g = −12‍, resulting in average firing rates of ‍∼ 3 spikes/s‍, coefficient of varia-
tion (‍CVISI‍) in the interval ‍[1.0, 1.5]‍ and Pearson cross-correlation (CC) ≤0.01 in ‍SSN0‍ and ‍SSN1‍.

In Section ‘A generalizable structural effect’ we consider two additional systems, a network of 
LIF neurons with conductance-based synapses and a continuous firing rate model. The LIF network 
is described in detail in Zajzon et al., 2019. Spike-triggered synaptic conductances are modeled as 
exponential functions, with fixed and equal conduction delays for all synapses. Key differences to the 
current-based model include, in addition to the biologically more plausible synapse model, longer 
synaptic time constants and stronger input (see also Zajzon et al., 2019 and Supplementary file 3 
for the numerical values of all parameters).

The continuous rate model contains ‍N = 3000‍ nonlinear units, the dynamics of which are governed 
by:

	﻿‍

τx
dx
dt = −x + Jr + Jinu − brec +

√
2τxσXξ

r = 0.5(1 + tanh
(
x)
)

‍�

(5)

where ‍x‍ represents the activation and ‍r‍ the output of all units, commonly interpreted as the synaptic 
current variable and the firing rate estimate, respectively. The rates ‍ri‍ are obtained by applying the 
nonlinear transfer function ‍tanh(xi)‍, modified here to constrain the rates to the interval ‍[0, 1]‍ is the 
neuronal time constant, ‍brec‍ is a vector of individual neuronal bias terms (i.e., a baseline activation), 
and ‍J ‍ and ‍Jin‍ are the recurrent (including feedforward) and input weight matrices, respectively. These 
are constructed in the same manner as for the spiking networks, such that the overall connectivity, 
including the input mapping onto ‍SSN0‍, is identical for all three models. Input weights are drawn from 
a uniform distribution, while the rest follow a normal distribution. Finally, ‍ξ‍ is a vector of ‍N ‍ indepen-
dent realizations of Gaussian white noise with zero mean and variance scaled by ‍σX‍. The differential 
equations are integrated numerically, using the Euler–Maruyama method with step ‍δt = 1 ms‍, with 
specific parameter values given in Supplementary file 5.

Signal reconstruction task
We evaluate the system’s ability to recover a simple, continuous step signal from a noisy variation 
using linear combinations of the population responses in the different SSNs (Maass et al., 2002). This 
is equivalent to probing the network’s ability to function as a denoising autoencoder (Bengio et al., 
2013).

To generate the ‍NC‍-dimensional input signal ‍u(t)‍, we randomly draw stimuli from a predefined 
set ‍S = {S1, S2, ..., SNC }‍ and set the corresponding channel to active for a fixed duration of 200 ms 
(Figure 1a, left). This binary step signal ‍u(t)‍ is also the target signal to be reconstructed. The effective 
input is obtained by adding a Gaussian white noise process with zero mean and variance ‍σ

2
ξ‍ to ‍u(t)‍, 

and scaling the sum with the input rate ‍νin‍. Rectifying the resulting signal leads to the final form of 
the continuous input signal ‍z(t) = [νin(u(t) + ξ(t))]+‍. This allows us to control the amount of noise in the 
input, and thus the task difficulty, through a single parameter ‍σξ‍.

To deliver the input to the circuit, the analog signal ‍z(t)‍ is converted into spike trains, with its 
amplitude serving as the rate of an inhomogeneous Poisson process generating independent spike 
trains. We set the scaling amplitude to ‍νin = KEλνX‍, modeling stochastic input with fixed rate ‍λνX‍ from 
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‍KE = 800‍ neurons. If not otherwise specified, ‍λ = 0.05‍ holds, resulting in a mean firing rate below 8 
spks/sec in ‍SSN0‍ (see Figure 2c).

Each input channel ‍k‍ is mapped onto one of the ‍NC‍ stimulus-specific sub-populations of excit-
atory and inhibitory neurons in the first (input) sub-network ‍SSN0‍, chosen according to the procedure 
described above (see also Figure 1a). This way, each stimulus ‍Sk‍ is mapped onto a specific set of sub-
populations in the different sub-networks, that is, the topographic map associated with ‍Sk‍.

For each stimulus in the sequence, we sample the responses of the excitatory population in each 

‍SSNi‍ at fixed time points (once every ms) relative to stimulus onset. We record from the membrane 
potentials ‍Vm‍ as they represent a parameter-free and direct measure of the population state 
(Duarte et al., 2018; Uhlmann et al., 2017). The activity vectors are then gathered in a state matrix 

‍XSSNi ∈ RNE×T
‍, which is then used to train a linear readout to approximate the target output of the 

task (Lukoševičius and Jaeger, 2009). We divide the input data, containing a total of 100 stimulus 
presentations (yielding ‍T = 20, 000‍ samples), into a training and a testing set (80/20%), and perform 
the training using ridge regression (L2 regularization), with the regularization parameter chosen by 
leave-one-out cross-validation on the training dataset.

Reconstruction performance is measured using the normalized root mean squared error (NRMSE). 
For this particular task, the effective delay in the build-up of optimal stimulus representations varies 
greatly across the sub-networks. In order to close in on the optimal delay for each ‍SSNi‍, we train the 
state matrix ‍XSSNi‍ on a larger interval of delays and choose the one that minimizes the error, averaged 
across multiple trials.

In Section ‘Reconstruction and denoising of dynamical inputs’, we generalize the input to a sinu-
soidal signal ‍x(t) = sin(a · t) + cos(b · t)‍, with parameters ‍a‍ and ‍b‍. From this, we obtain ‍u(t)‍ through the 
sampling and discretization process described in the respective section, and compute the final input 

‍z(t) = [νin(u(t) + ξ(t))]+‍ as above.

Effective connectivity and stability analysis
To better understand the role of structural variations on the network’s dynamics, we determine the 
network’s effective connectivity matrix ‍W ‍ analytically by linear stability analysis around the system’s 
stationary working points (see Appendix B for the complete derivations). The elements ‍wij ∈ W ‍ repre-
sent the integrated linear response of a target neuron ‍i‍, with stationary rate ‍νi‍, to a small perturbation 
in the input rate ‍νj‍ caused by a spike from presynaptic neuron ‍j‍. In other words, ‍wij‍ measures the 
average number of additional spikes emitted by a target neuron ‍i‍ in response to a spike from the 
presynaptic neuron ‍j‍, and its relation to the synaptic weights is defined by Tetzlaff et al., 2012; Helias 
et al., 2013:

	﻿‍

wij = ∂νi
∂νj

= �αJij + �βJ2
ij

with �α =
√
π
(
τmνi

)2 1
σi

(
f(yθ) − f(yr)

)

and β̃ =
√
π
(
τmνi

)2 1
2σ2

i

(
f(yθ)yθ − f(yr)yr

)
.
‍�

(6)

Note that in Figure 3 we ignore the contribution ‍̃β‍ resulting from the modulation in the input vari-
ance ‍σ

2
j ‍ which is significantly smaller due to the additional factor ‍1/σi ∼ O(1/

√
N)‍. Importantly, the 

effective connectivity matrix ‍W ‍ allows us to gain insights into the stability of the system by eigen-
value decomposition. For large random coupling matrices, the effective weight matrix has a spectral 
radius ‍ρ = maxk

(
Re{λk}

)
‍ which is determined by the variances of ‍W ‍ (Rajan and Abbott, 2006). For 

inhibition-dominated systems, such as those we consider, there is a single negative outlier representing 
the mean effective weight, given the eigenvalue ‍λ

∗
k‍ associated with the unit vector. The stability of the 

system is thus uniquely determined by the spectral radius ‍ρ‍: values smaller than unity indicate stable 
dynamics, whereas ‍ρ > 1‍ lead to unstable linearized dynamics.

Fixed point analysis
For the mean-field analysis, the ‍NC‍ sub-populations in each sub-network can be reduced to only two 
groups of neurons, the first one comprising all neurons of the stimulated SPs and the second one 
comprising all neurons in all non-stimulated SPs. This is possible because (1) the firing rates of the 
excitatory and inhibitory neurons within one SP are identical, owing to homogeneous neuron param-
eters and matching incoming connection statistics, and (2) all neurons in non-stimulated SPs have the 

https://doi.org/10.7554/eLife.77009


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zajzon et al. eLife 2023;12:e77009. DOI: https://doi.org/10.7554/eLife.77009 � 24 of 37

same rate ‍νNS‍ that is in general different from the rate of the stimulated SP ‍νS‍. Here we only sketch 
the main steps, with a detailed derivation given in Appendix B.

The mean inputs to the first sub-network can be obtained via

	﻿‍

µS = (1 + λ)J νx + 1
NC

J
(
1 + γg

)
νS + NC−1

NC
J

(
1 + γg

)
νNS ,

µNS = J νx + 1
NC

J
(
1 + γg

)
νS + NC−1

NC
J

(
1 + γg

)
νNS

‍�
(7)

where ‍γ = KI/KE‍ and ‍J = τmKEJ ‍. Both equations are of the form

	﻿‍ κν = µ− I ‍� (8)

where ‍κ‍ is the effective self-coupling of a group of neurons with rate ‍ν‍ and input μ, and ‍I ‍ denotes the 
external inputs from other groups. Equation 8 describes a linear relationship between the rate ‍ν‍ and 
the input μ. To find a self-consistent solution for the rates ‍νS‍ and ‍νNS‍, the above equations need to be 
solved numerically, taking into account in addition the f–I curve ‍ν(µ)‍ of the neurons that in the case of 
LIF model neurons also depends on the variance ‍σ2‍ of inputs. The latter can be obtained analogous 
to the mean input μ (see Appendix B). Note that for general nonlinearity ‍ν(µ)‍ there is no analytical 
closed-form solution for the fixed points.

Starting from ‍SSN1‍, networks are connected in a fixed pattern such that the rate ‍νi‍ in ‍SSNi‍ also 
depends on the excitatory input from the previous sub-network ‍SSNi−1‍ with rate ‍νi−1‍. For a fixed 
point, we have ‍νi = νi−1‍ (Toyoizumi, 2012). In this case, we can effectively group together stimulated/
non-stimulated neurons in successive sub-networks and re-group equations for the mean input in the 
limit of many sub-networks, obtaining the simplified description (details see Appendix B)

	﻿‍ µS = αJ νx + κS,S νS + κS,NS νNS
‍� (9)

	﻿‍ µNS = αJ νx + κNS,S νS + κNS,NS νNS
‍� (10)

The scaling terms of the firing rates incorporate the recurrent and feedforward contributions from 
the stimulated and non-stimulated groups of neurons. They depend solely on some fixed parameters 
of the system, including modularity ‍m‍ (see Appendix B). Importantly, Equations 9 and 10 and have 
the same linear form as (Equation 8) Equation 8 and can be solved numerically as described above. 
Again, for general nonlinear ‍ν(µ)‍ there is no closed-form analytical solution, but see below for a 
piecewise linear activation function ‍ν(µ)‍. The numerical solutions for fixed points are obtained using 
the root finding algorithm root of the scipy.optimize package (Virtanen et al., 2020). The stability of 
the fixed points is obtained by inserting the corresponding firing rates into the effective connectivity 
Equation 6. On the level of stimulated and non-stimulated sub-populations, the effective connectivity 
matrix reads

	﻿‍

1
τm


 κS,S(m)α̃(νS) κS,NS(m)α̃(νNS)

κNS,S(m)α̃(νS) κNS,NS(m)α̃(νNS)




‍�
(11)

from which we obtain the maximum eigenvalue ‍ρ‍, which for stable fixed points must be smaller than 1.
The structure of fixed points for the stimulated sub-population (see discussion in ‘Modularity as a 

bifurcation parameter’) can furthermore be intuitively understood by studying the potential landscape 
of the system. The potential ‍U ‍ is thereby defined via the conservative force ‍F = − dU

dνS = −νS + ν(µ,σ2)‍ 
that drives the system toward its fixed points via the equation of motion ‍

dνS

dt = F‍ (Wong and Wang, 
2006; Litwin-Kumar and Doiron, 2012; Schuecker et al., 2017). Note that μ and ‍σ2‍ are again func-
tions of ‍νS‍ and ‍νNS‍, where the latter is the self-consistent rate of the non-stimulated sub-populations 
for given rate ‍νS‍ of the stimulated sub-population, ‍ν

NS = νNS(νS)‍ (details see Appendix B).

Multiple inputs and correlation-based similarity score
In Figure 9, we consider two stimuli ‍S1‍ and ‍S2‍ to be active simultaneously for 10 s. Let ‍SP1‍ and ‍SP2‍ 
be the two corresponding SPs in each sub-network. The firing rate of each SP is estimated from spike 
counts in time bins of 10 ms and smoothed with a Savitzky-Golay filter (length 21 and polynomial 
order 4). We compute a similarity score based on the correlation between these rates, scaled by 
the ratio of the input intensities ‍λ2/λ1‍ (with ‍λ1‍ fixed). This scaling is meant to introduce a gradient in 
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the similarity score based on the firing rate differences, ensuring that high (absolute) scores require 
comparable activity levels in addition to strong correlations. To ensure that both stimuli are decod-
able where appropriate, we set the score to 0 when the difference between the rate of ‍SP2‍ and the 
non-stimulated SPs was <1 spks/sec (‍SP1‍ had significantly higher rates). The curves in Figure 9c mark 
the regime boundaries: coexisting (Co-Ex) where score is >0.1 (red curve); WLC where score is <−0.1 
(blue); WTA (gray) and where the score is in the interval (−0.1, 0.1), and either ‍λ2/λ1 < 0.5‍ holds or the 
score is 0. While the Co-Ex region is a dynamical regime that only occurs in the initial sub-networks 
(Figure 9d), the WTA and WLC regimes persist and can be understood again with the help of a poten-
tial ‍U ‍, which is in this case a function of the rates of the two SPs (details see Appendix B).

Numerical simulations and analysis
All numerical simulations were conducted using the Neural Microcircuit Simulation and Analysis 
Toolkit (NMSAT) v0.2 (Duarte et al., 2017), a high-level Python framework for creating, simulating 
and evaluating complex, spiking neural microcircuits in a modular fashion. It builds on the PyNEST 
interface for NEST (Gewaltig and Diesmann, 2007), which provides the core simulation engine. To 
ensure the reproduction of all the numerical experiments and figures presented in this study, and 
abide by the recommendations proposed in Pauli et al., 2018, we provide a complete code package 
that implements project-specific functionality within NMSAT (see Data availability) using NEST 2.18.0 
(Jordan et al., 2019).
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Appendix A
Constraints on feedforward connectivity
This section expands on the limitations arising from the definitions of topographic modularity and 
map sizes used in this study. By imposing a fixed connection density on the feedforward connection 
matrices, the projection probabilities between neurons tuned to the same ‍(pc)‍ and different ‍(p0)‍ 
stimuli are uniquely determined by the modularity ‍m‍ and the parameter ‍d0‍ and ‍δ‍, which control the 
size of stimulus-specific sub-populations (see Materials and methods). For notational simplicity, here 
we consider the merged excitatory and inhibitory sub-populations tuned to a particular stimulus in a 
given sub-network ‍SSNi‍, with a total size ‍Ci = CE

i + CI
i‍.

Under the constraints applied in this work, the total density of a feedforward adjacency matrix 
between ‍SSNi‍ and ‍SSNi+1‍ can be computed as:

	﻿‍ σi = pcUi
c+p0Ui

0
N2 ‍� (12)

where ‍U
i
0‍ and ‍Ui

c‍ are the number of realizable connections between similarly and differently tuned 
sub-populations, respectively. Since ‍U

i
c = N2 − Ui

0‍, we can simplify the notation and focus only on 

‍U
i
0‍. We distinguish between the cases of non-overlapping and overlapping stimulus-specific sub-

populations:

	﻿‍

Ui
0 =





N2 − NCCiCi+1 if di < 1
NC

NC
NC−1 (N − Ci)(N − Ci+1) if di ≥ 1

NC

,

‍�

where each potential synapse is counted only once, regardless of whether the involved neurons 
belong to any or multiple overlapping sub-populations. This ensures consistency with the definitions 
of the probabilities ‍pc‍ and ‍p0‍. Alternatively, we can express ‍U

i
0‍ as:

	﻿‍ Ui
0 = N2Nstim

Nstim−1 (1 − iδ − d0)(1 − (i − 1)δ − d0)‍�

For the case with no overlap, we can derive an additional constraint on the minimum sub-
populations size ‍Ci‍ for the required density ‍σi‍ to be satisfied, which we define in relation to the total 
number of sub-populations ‍NC‍:

	﻿‍
di ≥

√
σi
NC ‍� (13)

The equality holds in the case of ‍m = 1‍ and all-to-all feedforward connectivity between similarly 
tuned sub-populations, that is, ‍pc = 1‍.

https://doi.org/10.7554/eLife.77009
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Appendix B
Mean-field analysis of network dynamics
For an analytical investigation of the role of topographic modularity on the network dynamics, we 
used mean-field theory (Fourcaud and Brunel, 2002; Helias et al., 2013; Schuecker et al., 2015). 
Under the assumptions that each neuron receives a large number of small amplitude inputs at every 
time step, the synaptic time constants ‍τs‍ are small compared to the membrane time constant ‍τm‍, and 
that the network activity is sufficiently asynchronous and irregular, we can make use of theoretical 
results obtained from the diffusion approximation of the LIF neuron model to determine the 
stationary population dynamics. The equations in this section were partially solved using a modified 
version of the LIF Meanfield Tools library (Layer et al., 2020).

Stationary firing rates and fixed points
In the circumstances described above, the total synaptic input to each neuron can be replaced by 
a Gaussian white noise process (independent across neurons) with mean ‍µ(t)‍ and variance ‍σ

2(t)‍. 
In the stationary state, these quantities, along with the firing rates of each afferent, can be well 
approximated by their constant time average. The stationary firing rate of the LIF neuron in response 
to such input is:

	﻿‍
ν =

(
τref +

√
πτeff

ˆ yθ

yr

exp(u2)
[
1 + erf

(
u
)]

du
)−1

‍�
(14)

where erf is the error function and the integration limits are defined as ‍yr = (Vreset − µ)/σ + q
2
√
τs/τeff ‍ 

and ‍yθ = (θ − µ)/σ + q
2
√
τs/τeff ‍, with ‍q =

√
2|ζ(1/2)|‍ and Riemann zeta function ‍ζ‍ (see Fourcaud and 

Brunel, 2002, Eq. 4.33). As we will see below, the mean μ and variance ‍σ2‍ of the input also depend 
on the stationary firing rate ‍ν‍, rendering Equation 14 an implicit equation that needs to be solved 
self-consistently using fixed-point iteration.

For simplicity, throughout the mean-field analyses we consider perfectly partitioned networks 
where each neuron belongs to exactly one topographic map, that is, to one of the ‍NC‍ stimulus-
specific, identically sized sub-populations SP (no overlap condition). We denote the firing rate of 
a neuron in the currently stimulated SP (receiving stimulus input in ‍SSN0‍) in sub-network ‍SSNi‍ by 

‍ν
S
i ‍, and by ‍ν

NS
i ‍ that of neurons not associated with the stimulated pathway. Since the firing rates 

of excitatory and inhibitory neurons are equal (due to identical synaptic time constants and input 
statistics), we can write the constant mean synaptic input to neurons in the input sub-network as

	﻿‍

µS
0 =




noise︷ ︸︸ ︷
KXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

0 +
stimulus︷ ︸︸ ︷
JXνin


 τm

µNS
0 =




noise︷ ︸︸ ︷
KXJXνX +

rec. stimulated︷ ︸︸ ︷
( 1
NC

KEJE + 1
NC

KIJI)νS
0 +

rec. non-stimulated︷ ︸︸ ︷
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

0


 τm

‍�

(15)

The variances ‍(σ
S
0 )2

‍ and ‍(σ
NS
0 )2

‍ can be obtained by squaring each weight ‍J ‍ in the above equation. 
To derive these equations for the deeper sub-networks ‍SSNi>0‍, it is helpful to include auxiliary 
variables ‍KS‍ and ‍KNS‍, representing the number of feedforward inputs to a neuron in ‍SSNi‍ from its 
own SP in ‍SSNi−1‍, and from one different SP (there are ‍NC − 1‍ such sub-populations), respectively. 
Both ‍KS‍ and ‍KNS‍ are uniquely defined by the modularity ‍m‍ and projection density ‍d‍, and 
‍KNS = (1 − m)KS = (1 − m)(1 − α)KE‍ holds as well. The mean synaptic inputs to the neurons in the 
deeper sub-networks can thus be written as:

https://doi.org/10.7554/eLife.77009
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	﻿‍

µS
i =




noise� �� �
αKXJXνX +

rec. stimulated� �� �
( 1
NC

KEJE + 1
NC

KIJI)νS
i

+

rec. non-stimulated� �� �
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

i

+

stimulated FF� �� �
KSJEν

S
i−1 +

non-stimulated FF� �� �
(NC − 1)KNSJEν

NS
i−1


 τm

µNS
i =




noise� �� �
αKXJXνX +

rec. stimulated� �� �
( 1
NC

KEJE + 1
NC

KIJI)νS
i

+

rec. non-stimulated� �� �
(NC − 1)( 1

NC
KEJE + 1

NC
KIJI)νNS

i

+KNSJEν
S
1 + ((NC − 2)KNS + KS)JEν

NS
i−1

)
τm‍�

(16)

Again, one can obtain the variances by squaring each weight ‍J ‍. The stationary firing rates for the 
stimulated and non-stimulated sub-populations in all sub-networks are then found by first solving 
Equations 14 and 15 for the first sub-network and then (Equation 16) Equations 14 and 16 
successively for deeper sub-networks.

For very deep networks, one can ask the question, whether firing rates approach fixed points 
across sub-networks. If there are multiple fixed points, the initial condition, that is the externally 
stimulated activity of sub-populations in the first sub-network, decides in which of the fixed points 
the rates evolve, in a similar spirit as in recurrent networks after a start-up transient. For a fixed point, 
we have ‍νi−1 = νi‍. In effect, we can re-group terms in Equation 16 that have the same rates such that 
formally we obtain an effective new group of neurons from the excitatory and inhibitory SPs of the 
current sub-network and the corresponding excitatory SPs of the previous sub-network, as indicated 
by the square brackets in the following formulas:

	﻿‍

µS = αβJ νX + J
[

1
NC

(
1 + γg

)
+ (1 − α) 1

(NC − 1)(1 − m) + 1

]

� �� �
κS,S

νS

+J
[

NC − 1
NC

(
1 + γg

)
+ (1 − α) (NC − 1)(1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κS,NS

νNS

‍�

(17)

	﻿‍

µNS = αβJ νX + J
[

1
NC

(
1 + γg

)
+ (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κNS,S

νS

+J
[

NC − 1
NC

(
1 + γg

)
+ (1 − α) 1 + (NC − 2)(1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κNS,NS

νNS

‍�

(18)

with ‍β = KX/KE‍, ‍γ = KI/KE‍, and ‍J = τKEJ ‍.
For the parameters ‍g‍ and ‍γ‍ chosen here, ‍κS,NS‍, ‍κNS,S‍, and ‍κNS,NS‍ in Equations 17 and 18 are always 
negative for any modularity ‍m‍ due to the large recurrent inhibition. Therefore, for the non-stimulated 
group, ‍κ < 0‍ in Equation 8 (see main text), such that one always finds a single fixed point, which, as 
desired, is at a low rate. Interestingly, the excitatory feedforward connections can switch the sign of 

‍κS,S‍ from negative to positive for large values of ‍m‍, thereby rendering the active group effectively 
excitatory, leading to a saddle-node bifurcation and the emergence of a stable high-activity fixed 
point (see Figure 7b in the main text).

The structure of fixed points can also be understood by studying the potential landscape of the 
system: Equation 14 can be regarded as the fixed-point solution of the following evolution equations 
for the stimulated and non-stimulated sub-populations (Wong and Wang, 2006; Schuecker et al., 
2017)

https://doi.org/10.7554/eLife.77009
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	﻿‍ τS
dνS

dt = −νS + ΦS(νS, νNS) ,‍� (19)

	﻿‍ τNS
dνNS

dt = −νNS + ΦNS(νS, νNS) ,‍� (20)

where ‍ΦS‍ and ‍ΦNS‍ are defined via the right-hand side of Equation 14 with ‍µ
S
‍ and ‍µ

NS
‍ inserted as 

defined in Equations 17 and 18 (and likewise for ‍σS‍ and ‍σNS‍). Due to the asymmetry in connections 
between stimulated and non-stimulated sub-populations, the right-hand side of Equations 19 and 
20 cannot be interpreted as a conservative force. Following the idea of effective response functions 
(Mascaro and Amit, 1999), a potential ‍U(νS)‍ for the stimulated sub-population alone can, however, 
be defined by inserting the solution ‍ν

NS = f(νS)‍ of Equation 20 into Equation 19

	﻿‍ τS
dνS

dt = −νS + ΦS(νS, f(νS))‍� (21)

and interpreting the right-hand side as a conservative force ‍F = − dU
dνS ‍ (Litwin-Kumar and Doiron, 

2012). The potential then follows from integration as

	﻿‍
U(νS) − U(0) = 1

2
(νS)2 −

ˆ νS

0
ΦS(ν, f(ν))dν ,

‍�
(22)

where ‍U(0)‍ is an inconsequential constant. We solved the latter integral numerically using the ​scipy.​
integrate.​trapz function of SciPy (Virtanen et al., 2020). The minima and maxima of the resulting 
potential correspond to locally stable and unstable fixed points, respectively. Note that while this 
single-population potential is useful to study the structure of fixed points, the full dynamics of all 
populations and global stability cannot be straight-forwardly infered from this reduced picture 
(Mascaro and Amit, 1999; Rost et  al., 2018), here for two reasons: (1) For spiking networks, 
Equation 19 and Equation 20 do not describe the real dynamics of the mean activity. Their right-
hand side only defines the stationary state solution. (2) The global stability of fixed points also 
depends on the time constants of all sub-populations’ mean activities (here ‍τS‍ and ‍τNS‍), but the 
temporal dynamics of the non-stimulated sub-populations is neglected here.

Mean-field analysis for two input streams
In the case of two simultaneously active stimuli (see Section ‘Input integration and multi-stability’), if 
the stimulated group 1 is in the high-activity state with rate ‍νS1‍, the second stimulated group 2 will 
receive an additional non-vanishing input of the form

	﻿‍

[
1

NC
(1 + γg) + (1 − α) (1−m)(

NC−1
)

(1−m)+1

]
νS1 < 0,

‍� (23)

which is negative for all values of ‍m‍ and can therefore lead to the silencing of group 2. If the stimuli 
are similarly strong, network fluctuations can dynamically switch the roles of the stimulated groups 
1 and 2.

The dynamics and fixed-point structure in deep sub-networks can be studied using a two-
dimensional potential landscape that is defined via the following evolution equation

	﻿‍
dνS1

dt = −νS1 + ΦS1(νS1, νS2, f(νS1, νS2)) ,‍� (24)

	﻿‍
dνS2

dt = −νS2 + ΦS2(νS1, νS2, f(νS1, νS2)) ,‍� (25)

where ‍f(νS1, νS2) = νNS
‍ is the fixed point of the non-stimulated sub-populations for given rates 

‍νS1, νS2‍ of the two stimulated sub-populations, respectively. The functions ‍ΦS1‍ and ‍ΦS2‍ are again 
defined via the right-hand side of Equation 14 with inserted ‍µ

S1
‍, ‍µ

S2
‍ and ‍µ

NS
‍ that are defined as 

follows (derivation analogous to the single-input case):
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	﻿‍

µS1 = αJ νX + J
[

1
NC

(
1 + γg

)
+ (1 − α) 1

(NC − 1)(1 − m) + 1

]

� �� �
κS1,S1

νS1

+J
[

1
NC

(
1 + γg

)
+ (1 − α) 1 − m

(NC − 1)(1 − m) + 1

]

� �� �
κS1,S2

νS2

+J
[

NC − 2
NC

(
1 + γg

)
+ (1 − α) (NC − 2)(1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κS1,NS

νNS

‍�

(26)

	﻿‍

µS2 = αJ νX + J
[

1
NC

(
1 + γg

)
+ (1 − α) 1 − m

(NC − 1)(1 − m) + 1

]

� �� �
κS2,S1

νS1

+J
[

1
NC

(
1 + γg

)
+ (1 − α) 1

(NC − 1)(1 − m) + 1

]

� �� �
κS2,S2

νS2

+J
[

NC − 2
NC

(
1 + γg

)
+ (1 − α) (NC − 2)(1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κS1,NS

νNS

‍�

(27)

	﻿‍

µNS = αJ νX + J
[

1
NC

(
1 + γg

)
+ (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κNS,S1

νS1

‍�

(28)

	﻿‍

+J
[

1
NC

(
1 + γg

)
+ (1 − α) (1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κNS,S2

νS2

+J
[

NC − 2
NC

(
1 + γg

)
+ (1 − α) 1 + (NC − 3)(1 − m)

(NC − 1)(1 − m) + 1

]

� �� �
κNS,NS

νNS

‍�

(29)

Due to the symmetry between the two stimulated sub-populations, the right-hand side of Equations 
24 and 25 can be viewed as a conservative force ‍F‍ of the potential ‍U(νS1, νS2) = −

´
C F ds‍, where we 

parameterized the line integral along the path ‍ν : [0, 1] → C, t �→ t · (νS1, νS2)‍, which yields

	﻿‍
U(νS1, νS2) = 1

2
(νS1)2+ 1

2
(νS2)2−

ˆ νS1

0
ΦS1

(
ν, ν ν

S2

νS1 , f(ν, ν ν
S2

νS1 )

)
−
ˆ νS2

0
ΦS2

(
ν
νS1

νS2 , ν, f(ν ν
S1

νS2 , ν)

)
.
‍

� (30)

The numerical evaluation of this two-dimensional potential is shown in Figure 9—figure supplement 
2, whereas sketches in Figure 9e show a one-dimensional section (gray lines in Figure 9—figure 
supplement 2) that goes anti-diagonal through the two minima corresponding to one population 
being in the high-activity state and the other one being in the low-activity state.

Critical modularity for piecewise linear activation function
To obtain a closed-form analytic solution for the critical modularity, in the following we consider a 
neuron model with piecewise linear activation function

	﻿‍ ν(µ) = νmax
µ−µmin

µmax−µmin ‍� (31)

for ‍µ ∈ [µmin,µmax]‍, ‍ν(µ) = 0‍ for ‍µ < µmin‍ and ‍ν(µ) = νmax‍ for ‍µ > µmax‍ (Figure  8a). Successful 
denoising requires the non-stimulated sub-populations to be silent, ‍νNS = 0‍, and the stimulated 
sub-populations to be active, ‍νS > 0‍. We first study solutions where ‍0 < νS < νmax‍ and afterwards the 
case where ‍νS = νmax‍. Inserting Equation 31 into Equations 9 and 10, we obtain

	﻿‍

µS = αJ νX + κS,S(m) νmax
µS−µmin
µmax−µmin

,

µNS = αJ νX + κNS,S(m) νmax
µS−µmin
µmax−µmin

.‍�
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The first equation can be solved for ‍µ
S
‍

	﻿‍
µS

µmin
= 1 + αJ νX−µmin

µmin−κS,S(m) νmax
µmin

µmax−µmin

,
‍�

(32)

which holds for

	﻿‍ µmin ≤ µS ≤ µmax ,‍� (33)

	﻿‍ µNS ≤ µmin .‍� (34)

Requirement (Equation 33) is equivalent to an inequality for ‍m‍

	﻿‍
0 ≤ αJ νX−µmin

µmax− J
NC

(
1+γg

)
νmax− (1−α)Jνmax

(NC−1)(1−m)+1 −µmin
≤ 1

‍�

that, depending on the dynamic range of the neuron, the strength of the external background input 
and the recurrence, yields

	﻿‍
m = NC

NC−1 − 1
NC−1

(1−α)J νmax
µmax−αJ νX− J

NC

(
1+γg

)
νmax ‍� (35)

as an upper or lower bound for the modularity (Figure  8). Requirement (Equation 34) with the 
solution (Equation 32) for ‍µ

S
‍ inserted yields a further lower bound

	﻿‍ m ≥ (µmax−µmin)NC
(1−α)J νmax+(µmax−µmin)(NC−1)‍� (36)

for the modularity that is required for denoising. This criterion is independent of the external 
background input and the recurrence of the SSN.

Now we turn to the saturated scenario ‍νS = νmax‍ and ‍νNS = 0‍ and obtain

	﻿‍

µS = αJ νX + κS,S(m) νmax ,

µNS = αJ νX + κNS,S(m) νmax ,‍�

with the criteria

	﻿‍ µS ≥ µmax ,‍� (37)

	﻿‍ µNS ≤ µmin .‍� (38)

The first criterion (Equation 37) yields the same critical value (Equation 35) that 
for ‍µmax − αJ νX − J

NC

(
1 + γg

)
νmax ≥ 0‍ is a lower bound and otherwise an upper 

bound. The second criterion (Equation 38) yields an additional lower bound for 

‍
J (1 − α)νmax − (NC − 1)

(
µmin − αJ νX − J

NC

(
1 + γg

)
νmax

)
≥ 0

‍
 (Figure 8):

	﻿‍
m ≥ 1 −

(
µmin−αJ νX− J

NC

(
1+γg

)
νmax

)

J (1−α)νmax−(NC−1)
(
µmin−αJ νX− J

NC

(
1+γg

)
νmax

) .
‍�

(39)

The above criteria yield necessary conditions for the existence of a fixed point with ‍νS > 0‍ and 
‍νNS = 0‍. Next we study the stability of such solutions. This works analogous to the stability in the 
spiking models discussed in Section ‘Effective connectivity and stability analysis’ by studying the 
spectrum of the effective connectivity matrix. For the model Equation 31, the effective connectivity 
is given by

	﻿‍ wij = ∂νi
∂νj

= ν′(µi)∂µi
∂νj

= ν′(µi)Jij‍� (40)

with ‍ν
′(µ) = dν

dµ (µ)‍ and ‍Jij = τxJij‍. On the level of stimulated and non-stimulated sub-populations 
across layers, the effective connectivity becomes

https://doi.org/10.7554/eLife.77009
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	﻿‍

W=


 κS,S(m)ν′(µS) κS,NS(m)ν′(µNS)

κNS,S(m)ν′(µS) κNS,NS(m)ν′(µNS)




‍�
(41)

with eigenvalues

	﻿‍

λ± = κS,S(m)ν′ (µS)+κNS,NS(m)ν′ (µNS)
2

±

√(
κS,S(m)ν′ (µS)+κNS,NS(m)ν′ (µNS)

2

)2
−

(
κS,S(m)ν′(µS)κNS,NS(m)ν′(µNS) − κS,NS(m)ν′(µNS)κNS,S(m)ν′(µS)

)
.
‍�

(42)

The saturated fixed point ‍νS = νmax‍ and ‍νNS = 0‍ has ‍ν
′(µS) = ν′(µNS) = 0‍, leading to ‍λ± = 0‍. This 

fixed point is always stable. The non-saturated fixed point also has ‍ν
′(µNS) = 0‍. Consequently, 

Equation 42 simplifies to ‍λ− = 0‍ and

	﻿‍ λ+ = νmax
µmax−µmin

κS,S(m) .‍� (43)

For ‍λ > 1‍ fluctuations in the stimulated sub-population are being amplified. These fluctuations also 
drive fluctuations of the non-stimulated sub-population via the recurrent coupling. The fixed point 
thus becomes unstable and the necessary distinction between the stimulated and non-stimulated 
sub-populations vanishes. For inhibition-dominated recurrence, ‍κS,S(m)‍ is small enough to obtain 
stable fixed points at non-saturated rates (Figure 8c). In the case of no recurrence or excitation-
dominated recurrence, ‍κS,S(m)‍ is much larger, typically driving ‍λ+‍ across the line of instability and 
preventing non-saturated fixed points to be stable. In such networks, only the saturated fixed point 
at ‍νS = νmax‍ is stable and reachable (Figure 8d and e).
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