
Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 1 of 19

Flexible and efficient simulation- based
inference for models of decision- making
Jan Boelts1,2*, Jan- Matthis Lueckmann1, Richard Gao1, Jakob H Macke1,3

1Machine Learning in Science, Excellence Cluster Machine Learning, University of
Tübingen, Tübingen, Germany; 2Technical University of Munich, Munich, Germany;
3Max Planck Institute for Intelligent Systems Tübingen, Tübingen, Germany

Abstract Inferring parameters of computational models that capture experimental data is a
central task in cognitive neuroscience. Bayesian statistical inference methods usually require the
ability to evaluate the likelihood of the model—however, for many models of interest in cognitive
neuroscience, the associated likelihoods cannot be computed efficiently. Simulation- based infer-
ence (SBI) offers a solution to this problem by only requiring access to simulations produced by the
model. Previously, Fengler et al. introduced likelihood approximation networks (LANs, Fengler et
al., 2021) which make it possible to apply SBI to models of decision- making but require billions of
simulations for training. Here, we provide a new SBI method that is substantially more simulation
efficient. Our approach, mixed neural likelihood estimation (MNLE), trains neural density estimators
on model simulations to emulate the simulator and is designed to capture both the continuous
(e.g., reaction times) and discrete (choices) data of decision- making models. The likelihoods of the
emulator can then be used to perform Bayesian parameter inference on experimental data using
standard approximate inference methods like Markov Chain Monte Carlo sampling. We demonstrate
MNLE on two variants of the drift- diffusion model and show that it is substantially more efficient
than LANs: MNLE achieves similar likelihood accuracy with six orders of magnitude fewer training
simulations and is significantly more accurate than LANs when both are trained with the same
budget. Our approach enables researchers to perform SBI on custom- tailored models of decision-
making, leading to fast iteration of model design for scientific discovery.

Editor's evaluation
This paper provides a new approach, Mixed Neural Likelihood Estimator (MNLE) to build likeli-
hood emulators for simulation- based models where the likelihood is unavailable. The authors show
that the MNLE approach is equally accurate but orders of magnitude more efficient than a recent
proposal, likelihood approximation networks (LAN), on two variants of the drift- diffusion model (a
widely used model in cognitive neuroscience). This work provides a practical approach for fitting
more complex models of behavior and neural activity for which likelihoods are unavailable.

Introduction
Computational modeling is an essential part of the scientific process in cognitive neuroscience:
Models are developed from prior knowledge and hypotheses, and compared to experimentally
observed phenomena (Churchland and Sejnowski, 1988; McClelland, 2009). Computational models
usually have free parameters which need to be tuned to find those models that capture experimental
data. This is often approached by searching for single best- fitting parameters using grid search or
optimization methods. While this point- wise approach has been used successfully (Lee et al., 2016;
Patil et al., 2016) it can be scientifically more informative to perform Bayesian inference over the

RESEaRCh aDvanCE

*For correspondence:
jan.boelts@uni-tuebingen.de

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 15

Preprinted: 23 December 2021
Received: 25 January 2022
Accepted: 26 July 2022
Published: 27 July 2022

Reviewing Editor: Valentin
Wyart, École normale supérieure,
PSL University, INSERM, France

 Copyright Boelts et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.77220
mailto:jan.boelts@uni-tuebingen.de
https://doi.org/10.1101/2021.12.22.473472
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 2 of 19

model parameters: Bayesian inference takes into account prior knowledge, reveals all the parameters
consistent with observed data, and thus can be used for quantifying uncertainty, hypothesis testing,
and model selection (Lee, 2008; Shiffrin et al., 2008; Lee and Wagenmakers, 2014; Schad et al.,
2021). Yet, as the complexity of models used in cognitive neuroscience increases, Bayesian inference
becomes challenging for two reasons. First, for many commonly used models, computational evalu-
ation of likelihoods is challenging because often no analytical form is available. Numerical approxi-
mations of the likelihood are typically computationally expensive, rendering standard approximate
inference methods like Markov Chain Monte Carlo (MCMC) inapplicable. Second, models and exper-
imental paradigms in cognitive neuroscience often induce scenarios in which inference is repeated
for varying numbers of experimental trials and changing hierarchical dependencies between model
parameters (Lee, 2011). As such, fitting computational models with arbitrary hierarchical structures to
experimental data often still requires idiosyncratic and complex inference algorithms.

Approximate Bayesian computation (ABC, Sisson, 2018) offers a solution to the first challenge by
enabling Bayesian inference based on comparing simulated with experimental data, without the need
to evaluate an explicit likelihood function. Accordingly, various ABC methods have been applied to
and developed for models in cognitive neuroscience and related fields (Turner and Van Zandt, 2012;
Turner and Van Zandt, 2018; Palestro et al., 2009; Kangasrääsiö et al., 2019). However, ABC
methods are limited regarding the second challenge because they become inefficient as the number
of model parameters increases (Lueckmann et al., 2021) and require generating new simulations
whenever the observed data or parameter dependencies change.

More recent approaches from the field simulation- based inference (SBI, Cranmer et al., 2020)
have the potential to overcome these limitations by using machine learning algorithms such as neural
networks. Recently, Fengler et al., 2021 presented an SBI algorithm for a specific problem in cognitive
neuroscience—inference for drift- diffusion models (DDMs). They introduced a new approach, called
likelihood approximation networks (LANs), which uses neural networks to predict log- likelihoods from
data and parameters. The predicted likelihoods can subsequently be used to generate posterior
samples using MCMC methods. LANs are trained in a three- step procedure. First, a set of N parame-
ters is generated and for each of the N parameters the model is simulated M times. Second, for each
of the N parameters, empirical likelihood targets are estimated from the M model simulations using
kernel density estimation (KDE) or empirical histograms. Third, a training dataset consisting of param-
eters, data points, and empirical likelihood targets is constructed by augmenting the initial set of N
parameters by a factor of 1000: for each parameter, 1000 data points and empirical likelihood targets
are generated from the learned KDE. Finally, supervised learning is used to train a neural network to
predict log- likelihoods, by minimizing a loss function (the Huber loss) between the network- predicted
log- likelihoods and the (log of) the empirically estimated likelihoods. Overall, LANs require a large
number of model simulations such that the histogram probability of each possible observed data
and for each possible combination of input parameters, can be accurately estimated— N · M model
simulations, for example, 1.5 (150 billion) for the examples used in Fengler et al., 2021. The extremely
high number of model simulations will make it infeasible for most users to run this training them-
selves, so that there would need to be a repository from which users can download pretrained LANs.
This restricts the application of LANs to a small set of canonical models like DDMs, and prohibits
customization and iteration of models by users. In addition, the high simulation requirement limits this
approach to models whose parameters and observations are sufficiently low dimensional for histo-
grams to be sampled densely.

To overcome these limitations, we propose an alternative approach called mixed neural likeli-
hood estimation (MNLE). MNLE builds on recent advances in probabilistic machine learning, and in
particular on the framework of neural likelihood estimation (Papamakarios et al., 2019b; Lueckmann
et al., 2019) but is designed to specifically capture the mixed data types arising in models of decision-
making, for example, discrete choices and continuous reaction times. Neural likelihood estimation has
its origin in classical synthetic likelihood (SL) approaches (Wood, 2010; Price et al., 2018). Classical SL
approaches assume the likelihood of the simulation- based model to be Gaussian (so that its moments
can be estimated from model simulations) and then use MCMC methods for inference. This approach
and various extensions of it have been widely used (Price et al., 2018; Ong et al., 2009; An et al.,
2019; Priddle et al., 2022)—but inherently they need multiple model simulations for each parameter
in the MCMC chain to estimate the associated likelihood.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 3 of 19

Neural likelihood approaches instead perform conditional density estimation, that is, they train a
neural network to predict the parameters of the approximate likelihood conditioned on the model
parameters (e.g., Papamakarios et al., 2019b; Lueckmann et al., 2019). By using a conditional
density estimator, it is possible to exploit continuity across different model parameters, rather than
having to learn a separate density for each individual parameter as in classical SL. Recent advances in
conditional density estimation (such as normalizing flows, Papamakarios et al., 2019a) further allow
lifting the parametric assumptions of classical SL methods and learning flexible conditional density
estimators which are able to model a wide range of densities, as well as highly nonlinear depen-
dencies on the conditioning variable. In addition, neural likelihood estimators yield estimates of the
probability density which are guaranteed to be non- negative and normalized, and which can be both
sampled and evaluated, acting as a probabilistic emulator of the simulator (Lueckmann et al., 2019).

Our approach, MNLE, uses neural likelihood estimation to learn an emulator of the simulator. The
training phase is a simple two- step procedure: first, a training dataset of N parameters θ is sampled
from a proposal distribution and corresponding model simulations x are generated. Second, the N
parameter–data pairs (θ, x) are directly used to train a conditional neural likelihood estimator to esti-
mate p(x|θ) . Like for LANs, the proposal distribution for the training data can be any distribution over
 θ , and should be chosen to cover all parameter values one expects to encounter in empirical data.
Thus, the prior distribution used for Bayesian inference constitutes a useful choice, but in principle any
distribution that contains the support of the prior can be used. To account for mixed data types, we
learn the likelihood estimator as a mixed model composed of one neural density estimator for cate-
gorical data and one for continuous data, conditioned on the categorical data. This separation allows
us to choose the appropriate neural density estimator for each data type, for example, a Bernoulli
model for the categorical data and a normalizing flow (Papamakarios et al., 2019a) for the contin-
uous data. The resulting joint density estimator gives access to the likelihood, which enables inference
via MCMC methods. See Figure 1 for an illustration of our approach, and Methods and materials for
details.

Both LANs and MNLEs allow for flexible inference scenarios common in cognitive neuroscience,
for example, varying number of trials with same underlying experimental conditions or hierarchical
inference, and need to be trained only once. However, there is a key difference between the two
approaches. LANs use feed- forward neural networks to perform regression from model parameters
to empirical likelihood targets obtained from KDE. MNLE instead learns the likelihood directly by
performing conditional density estimation on the simulated data without requiring likelihood targets.
This makes MNLE by design more simulation efficient than LANs—we demonstrate empirically that
it can learn likelihood estimators which are as good or better than those reported in the LAN paper,

Figure 1. Training a neural density estimator on simulated data to perform parameter inference. Our goal is to perform Bayesian inference on models
of decision- making for which likelihoods cannot be evaluated (here a drift- diffusion model for illustration, left). We train a neural density estimation
network on synthetic data generated by the model, to provide access to (estimated) likelihoods. Our neural density estimators are designed to account
for the mixed data types of decision- making models (e.g., discrete valued choices and continuous valued reaction times, middle). The estimated
likelihoods can then be used for inference with standard Markov Chain Monte Carlo (MCMC) methods, that is, to obtain samples from the posterior over
the parameters of the simulator given experimental data (right). Once trained, our method can be applied to flexible inference scenarios like varying
number of trials or hierarchical inference without having to retrain the density estimator.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 4 of 19

but using a factor of 1,000,000 fewer simulations (Fengler et al., 2021). When using the same simu-
lation budget for both approaches, MNLE substantially outperforms LAN across several performance
metrics. Moreover, MNLE results in a density estimator that is guaranteed to correspond to a valid
probability distribution and can also act as an emulator that can generate synthetic data without
running the simulator. The simulation efficiency of MNLEs allows users to explore and iterate on their
own models without generating a massive training dataset, rather than restricting their investigations
to canonical models for which pretrained networks have been provided by a central resource. To
facilitate this process, we implemented our method as an extension to an open- source toolbox for SBI
methods (Tejero- Cantero et al., 2020), and provide detailed documentation and tutorials.

Results
Evaluating the performance of MNLE on the DDM
We first demonstrate the efficiency and performance of MLNEs on a classical model of decision-
making, the DDM (Ratcliff and McKoon, 2008). The DDM is an influential phenomenological model
of a two- alternative perceptual decision- making task. It simulates the evolution of an internal decision
variable that integrates sensory evidence until one of two decision boundaries is reached and a choice
is made (Figure 1, left). The decision variable is modeled with a stochastic differential equation which,
in the ‘simple’ DDM version (as used in Fengler et al., 2021), has four parameters: the drift rate v ,
boundary separation a , the starting point w of the decision variable, and the non- decision time τ.
Given these four parameters θ = (v, a, w, τ) , a single simulation of the DDM returns data x containing
a choice c ∈ {0, 1} and the corresponding reaction time in seconds rt ∈ (τ ,∞) .

MNLE learns accurate likelihoods with a fraction of the simulation
budget
The simple version of the DDM is the ideal candidate for comparing the performance of different
inference methods because the likelihood of an observation given the parameters, L(x|θ) , can be
calculated analytically (Navarro and Fuss, 2009, in contrast to more complicated versions of the
DDM, e.g., Ratcliff and Rouder, 1998; Usher and McClelland, 2001; Reynolds and Rhodes, 2009).
This enabled us to evaluate MNLE’s performance with respect to the analytical likelihoods and the
corresponding inferred posteriors of the DDM, and to compare against that of LANs on a range
of simulation budgets. For MNLE, we used a budget of 105 simulations (henceforth referred to as
MNLE5), for LANs we used budgets of 105 and 108 simulations (LAN5 and LAN8, respectively, trained
by us) and the pretrained version based on 1011 simulations (LAN11) provided by Fengler et al., 2021.

First, we evaluated the quality of likelihood approximations of MNLE5, and compared it to that
of LAN{5,8,11}. Both MNLEs and LANs were in principle able to accurately approximate the likelihoods
for both decisions and a wide range of reaction times (see Figure 2a for an example, and Details of
the numerical comparison). However, LANs require a much larger simulation budget than MNLE to
achieve accurate likelihood approximations, that is, LANs trained with 105 or 108 simulations show
visible deviations, both in the linear and in log- domain (Figure 2a, lines for LAN5 and LAN8).

To quantify the quality of likelihood approximation, we calculated the Huber loss and the mean-
squared error (MSE) between the true and approximated likelihoods (Figure 2b, c), as well as
between the log- likelihoods (Figure 2d, e). The metrics were calculated as averages over (log-)
likelihoods of a fixed observation given 1000 parameters sampled from the prior, repeated for
100 observations simulated from the DDM. For metrics calculated on the untransformed likeli-
hoods (Figure 2b, c), we found that MNLE5 was more accurate than LAN{5,8,11} on all simulation
budgets, showing smaller Huber loss than LAN{5,8,11} in 99, 81, and 66 out of 100 comparisons, and
smaller MSE than LAN{5,8,11} on 98, 81, and 66 out of 100 comparisons, respectively. Similarly, for
the MSE calculated on the log- likelihoods (Figure 2e), MNLE5 achieved smaller MSE than LAN{5,8,11}
on 100, 100, and 75 out of 100 comparisons, respectively. For the Huber loss calculated on the
log- likelihoods (Figure 2d), we found that MNLE5 was more accurate than LAN5 and LAN8, but
slightly less accurate than LAN11, showing smaller Huber loss than LAN{5,8} in all 100 comparisons,
and larger Huber loss than LAN11 in 62 out of 100 comparisons. All the above pairwise comparisons
were significant under the binomial test (p < 0.01), but note that these are simulated data and
therefore the p value can be arbitrarily inflated by increasing the number of comparisons. We also

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 5 of 19

note that the Huber loss on the log- likelihoods is the loss which is directly optimized by LANs, and
thus this comparison should in theory favor LANs over alternative approaches. Furthermore, the
MNLE5 results shown here represent averages over 10 random neural network initializations (five
of which achieved smaller Huber loss than LAN11), whereas the LAN11 results are based on a single
pretrained network. Finally, we also investigated MNLE’s property to act as an emulator of the
simulator and found the synthetic reaction times and choices generated from the MNLE emulator
to match corresponding data simulated from the DDM accurately (see Figure 2—figure supple-
ment 1 and Appendix 1).

When using the learned likelihood estimators for inference with MCMC methods, their evaluation
speed can also be important because MCMC often requires thousands of likelihood evaluations. We
found that evaluating MNLE for a batch of 100 trials and 10 model parameters (as used during MCMC)
took 4.14± (mean over 100 repetitions ± standard error of the mean), compared to 1.02± for LANs,
that is, MNLE incurred a larger computational foot- print at evaluation time. Note that these timings
are based on an improved implementation of LANs compared to the one originally presented in
Fengler et al., 2021, and evaluation times can depend on the implementation, compute infrastruc-
ture and parameter settings (see Details of the numerical comparison and Discussion). In summary,
we found that MNLE trained with 105 simulations performed substantially better than LANs trained
with 105 or 108 simulations, and similarly well or better than LANs trained with 1011 simulations, on all
likelihood approximation accuracy metrics.

Figure 2. Mixed neural likelihood estimation (MNLE) estimates accurate likelihoods for the drift- diffusion model (DDM). The classical DDM simulates
reaction times and choices of a two- alternative decision task and has an analytical likelihood which can be used for comparing the likelihood
approximations of MNLE and likelihood approximation network (LAN). We compared MNLE trained with a budget of 105 simulations (green, MNLE5) to
LAN trained with budgets of 105, 108, and 1011 simulations (shades of orange, LAN{5,8,11}, respectively). (a) Example likelihood for a fixed parameter θ over
a range of reaction times (reaction times for down- and up- choices shown toward the left and right, respectively). Shown on a linear scale (top panel)
and a logarithmic scale (bottom panel). (b) Huber loss between analytical and estimated likelihoods calculated for a fixed simulated data point over 1000
test parameters sampled from the prior, averaged over 100 data points (lower is better). Bar plot error bars show standard error of the mean. (c) Same
as in (b), but using mean- squared error (MSE) over likelihoods (lower is better). (d) Huber loss on the log- likelihoods (LAN’s training loss). (e) MSE on the
log- likelihoods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of simulated drift- diffusion model (DDM) data and synthetic data sampled from the mixed neural likelihood
estimation (MNLE) emulator.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 6 of 19

MNLE enables accurate flexible posterior inference with MCMC
In the previous section, we showed that MNLE requires substantially fewer training simulations than
LANs to approximate the likelihood accurately. To investigate whether these likelihood estimates were
accurate enough to support accurate parameter inference, we evaluated the quality of the resulting
posteriors, using a framework for benchmarking SBI algorithms (Lueckmann et al., 2021). We used
the analytical likelihoods of the simple DDM to obtain reference posteriors for 100 different observa-
tions, via MCMC sampling. Each observation consisted of 100 independent and identically distributed
(i.i.d.) trials simulated with parameters sampled from the prior (see Figure 3a for an example, details
in Materials and methods). We then performed inference using MCMC based on the approximate
likelihoods obtained with MNLE (105 budget, MNLE5) and the ones obtained with LAN for each of the
three simulation budgets (LAN {5,8,11} , respectively).

Overall, we found that the likelihood approximation performances presented above were reflected
in the inference performances: MNLE5 performed substantially better than LAN5 and LAN8, and
equally well or better than LAN11 (Figure 3b–d). In particular, MNLE5 approximated the posterior

Figure 3. Mixed neural likelihood estimation (MNLE) infers accurate posteriors for the drift- diffusion model. Posteriors were obtained given 100- trial
independent and identically distributed (i.i.d.) observations with Markov Chain Monte Carlo (MCMC) using analytical (i.e., reference) likelihoods,
or those approximated using LAN{5,8,11} trained with simulation budgets 10{5,8,11}, respectively, and MNLE5 trained with a budget of 105 simulations.
(a) Posteriors given an example observation generated from the prior and the simulator, shown as 95% contour lines in a corner plot, that is, one-
dimensional marginal (diagonal) and all pairwise two- dimensional marginals (upper triangle). (b) Difference in posterior sample mean of approximate
(LAN{5,8,11}, MNLE5) and reference posteriors (normalized by reference posterior standard deviation, lower is better). (c) Same as in (b) but for posterior
sample variance (normalized by reference posterior variance, lower is better). (d) Parameter estimation error measured as mean- squared error (MSE)
between posterior sample mean and the true underlying parameters (smallest possible error is given by reference posterior performance shown in blue).
(e) Classification 2- sample test (C2ST) score between approximate (LAN{5,8,11}, MNLE5) and reference posterior samples (0.5 is best). All bar plots show
metrics calculated from 100 repetitions with different observations; error bars show standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Drift- diffusion model (DDM) inference accuracy metrics for individual model parameters.

Figure supplement 2. Drift- diffusion model (DDM) example posteriors and parameter recovery for likelihood approximation networks (LANs) trained
with smaller simulation budgets.

Figure supplement 3. Drift- diffusion model (DDM) inference accuracy metrics for different numbers of observed trials.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 7 of 19

mean more accurately than LAN{5,8,11} (Figure 3b), being more accurate than LAN{5,8,11} in 100, 90, and
67 out of 100 comparisons, respectively. In terms of posterior variance, MNLE5 performed better than
LAN{5,8} and on par with LAN11 (Figure 3c), being more accurate than LAN{5,8,11} in 100, 93 (p <<0.01,
binomial test), and 58 (p = 0.13) out of 100 pairwise comparisons, respectively.

Additionally, we measured the parameter estimation accuracy as the MSE between the posterior
mean and the ground- truth parameters underlying the observed data. We found that MNLE5 esti-
mation error was indistinguishable from that of the reference posterior, and that LAN performance
was similar only for the substantially larger simulation budget of LAN11 (Figure 3c), with MNLE being
closer to reference performance than LAN{5,8,11} in 100, 91, and 66 out of 100 comparisons, respec-
tively (all p < 0.01). Note that all three metrics were reported as averages over the four parameter
dimensions of the DDM to keep the visualizations compact, and that this average did not affect the
results qualitatively. We report metrics for each dimension in Figure 3—figure supplement 1, as well
as additional inference accuracy results for smaller LAN simulation budgets (Figure 3—figure supple-
ment 2) and for different numbers of observed trials (Figure 3—figure supplement 3).

Finally, we used the classifier 2- sample test (C2ST, Lopez- Paz and Oquab, 2017; Lueckmann
et al., 2021) to quantify the similarity between the estimated and reference posterior distributions.
The C2ST is defined to be the error rate of a classification algorithm which aims to classify whether
samples belong to the true or the estimated posterior. Thus, it ranges from 0.5 (no difference between
the distributions, the classifier is at chance level) to 1.0 (the classifier can perfectly distinguish the two

Figure 4. Parameter recovery and posterior uncertainty calibration for the drift- diffusion model (DDM). (a) Underlying ground- truth DDM parameters
plotted against the sample mean of posterior samples inferred with the analytical likelihoods (reference, blue crosses), likelihood approximation network
(LAN; orange circles), and mixed neural likelihood estimation (MNLE; green circles), for 100 different observations. Markers close to diagonal indicate
good recovery of ground- truth parameters; circles on top of blue reference crosses indicate accurate posterior means. (b) Simulation- based calibration
results showing empirical cumulative density functions (CDF) of the ground- truth parameters ranked under the inferred posteriors calculated from 100
different observations. A well- calibrated posterior must have uniformly distributed ranks, as indicated by the area shaded gray. Shown for reference
posteriors (blue), LAN posteriors obtained with increasing simulation budgets (shades of orange, LAN{5,8,11}), and MNLE posterior (green, MNLE5), and for
each parameter separately (v , a , w , and τ).
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Drift- diffusion model (DDM) parameter recovery for different numbers of observed trials.

Figure supplement 2. Drift- diffusion model (DDM) simulation- based calibration (SBC) results for different numbers of observed trials.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 8 of 19

distributions). We note that the C2ST is a highly sensitive measure of discrepancy between two multi-
variate distributions—for example if the two distributions differ in any dimension, the C2ST will be
close to 1 even if all other dimensions match perfectly. We found that neither of the two approaches
was able to achieve perfect approximations, but that MNLE5 achieved lower C2ST scores compared
to LAN{5,8,11} on all simulation budgets (Figure 3e): mean C2ST score LAN{5,8,11}, 0.96, 0.78, 0.70 vs.
MNLE5, 0.65, with MNLE5 showing a better score than LAN{5,8,11} on 100, 91, and 68 out of 100 pairwise
comparisons, respectively (all p < 0.01). In summary, MNLE achieves more accurate recovery of poste-
rior means than LANs, similar or better recovery of posterior variances, and overall more accurate
posteriors (as quantified by C2ST).

MNLE posteriors have uncertainties which are well calibrated
For practical applications of inference, it is often desirable to know how well an inference procedure
can recover the ground- truth parameters, and whether the uncertainty estimates are well calibrated,
(Cook et al., 2006), that is, that the uncertainty estimates of the posterior are balanced, and neither
over- confident nor under- confident. For the DDM, we found that the posteriors inferred with MNLE
and LANs (when using LAN11) recovered the ground- truth parameters accurately (in terms of posterior
means, Figure 3d and Figure 4a)—in fact, parameter recovery was similarly accurate to using the
‘true’ analytical likelihoods, indicating that much of the residual error is due to stochasticity of the
observations, and not the inaccuracy of the likelihood approximations.

To assess posterior calibration, we used simulation- based calibration (SBC, Talts et al., 2018). The
basic idea of SBC is the following: If one repeats the inference with simulations from many different
prior samples, then, with a well- calibrated inference method, the combined samples from all the
inferred posteriors should be distributed according to the prior. One way to test this is to calculate
the rank of each ground- truth parameter (samples from the prior) under its corresponding posterior,
and to check whether all the ranks follow a uniform distribution. SBC results indicated that MNLE
posteriors were as well calibrated as the reference posteriors, that is, the empirical cumulative density
functions of the ranks were close to that of a uniform distribution (Figure 4b)—thus, on this example,
MNLE inferences would likely be of similar quality compared to using the analytical likelihoods. When
trained with the large simulation budget of 1011 simulations, LANs, too appeared to recover most
of the ground- truth parameters well. However, SBC detected a systematic underestimation of the
parameter a and overestimation of the parameter τ, and this bias increased for the smaller simulation
budgets of LAN5 and LAN8 (Figure 4b, see the deviation below and above the desired uniform distri-
bution of ranks, respectively).

The results so far (i.e., Figures 3 and 4) indicate that both LAN11 and MNLE5 lead to similar param-
eter recovery, but only MNLE5 leads to posteriors which were well calibrated for all parameters. These
results were obtained using a scenario with 100 i.i.d. trials. When increasing the number of trials
(e.g., to 1000 trials), posteriors become very concentrated around the ground- truth value. In that
case, while the posteriors overall identified the ground- truth parameter value very well (Figure 4—
figure supplement 1c), even small deviations in the posteriors can have large effects on the posterior
metrics (Figure 3—figure supplement 3). This effect was also detected by SBC, showing systematic
biases for some parameters (Figure 4—figure supplement 2). For MNLE, we found that these biases
were smaller, and furthermore that it was possible to mitigate this effect by inferring the posterior
using ensembles, for example, by combining samples inferred with five MNLEs trained with identical
settings but different random initialization (see Appendix 1 for details). These results show the utility
of using SBC as a tool to test posterior coverage, especially when studying models for which reference
posteriors are not available, as we demonstrate in the next section.

MNLE infers well-calibrated, predictive posteriors for a DDM with
collapsing bounds
MNLE was designed to be applicable to models for which evaluation of the likelihood is not prac-
tical so that standard inference tools cannot be used. To demonstrate this, we applied MNLE to a
variant of the DDM for which analytical likelihoods are not available (note, however, that numerical
approximation of likelihoods for this model would be possible, see e.g., Shinn et al., 2020, Materials
and methods for details). This DDM variant simulates a decision variable like the simple DDM used
above, but with linearly collapsing instead of constant decision boundaries (see e.g., Hawkins et al.,

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 9 of 19

2015; Palestro et al., 2018). The collapsing bounds are incorporated with an additional parameter γ
indicating the slope of the decision boundary, such that θ = (a, v, w, τ , γ) (see Details of the numerical
comparison).

We tested inference with MNLE on the DDM with linearly collapsing bound using observations
comprised of 100 i.i.d. trials simulated with parameters sampled from the prior. Using the same MNLE
training and MCMC settings as above, we found that posterior density concentrated around the
underlying ground- truth parameters (see Figure 5a), suggesting that MNLE learned the underlying
likelihood accurately. To assess inference quality systematically without needing reference posteriors,
we performed posterior predictive checks by running simulations with the inferred posteriors samples
and comparing them to observed (simulated) data, and checked posterior calibration properties using
SBC. We found that the inferred posteriors have good predictive performance, that is, data simulated
from the inferred posterior samples accurately matched the observed data (Figure 5b), and that their
uncertainties are well calibrated as quantified by the SBC results (Figure 5c). Overall, this indicated
that MNLE accurately inferred the posterior of this intractable variant of the DDM.

Discussion
Statistical inference for computational models in cognitive neuroscience can be challenging because
models often do not have tractable likelihood functions. The recently proposed LAN method (Fengler
et al., 2021) performs SBI for a subset of such models (DDMs) by training neural networks with
model simulations to approximate the intractable likelihood. However, LANs require large amounts of

Figure 5. Mixed neural likelihood estimation (MNLE) infers accurate posteriors for the drift- diffusion model (DDM) with collapsing bounds. Posterior
samples were obtained given 100- trial observations simulated from the DDM with linearly collapsing bounds, using MNLE and Markov Chain Monte
Carlo (MCMC). (a) Approximate posteriors shown as 95% contour lines in a corner plot of one- (diagonal) and two- dimensional (upper triangle)
marginals, for a representative 100- trial observation simulated from the DDM. (b) Reaction times and choices simulated from the ground- truth
parameters (blue) compared to those simulated given parameters sampled from the prior (prior predictive distribution, purple) and from the MNLE
posterior shown in (a) (posterior predictive distribution, green). (c) Simulation- based calibration results showing empirical cumulative density functions
(CDF) of the ground- truth parameters ranked under the inferred posteriors, calculated from 100 different observations. A well- calibrated posterior must
have uniformly distributed ranks, as indicated by the area shaded gray. Shown for each parameter separately (v , a , w , τ, and γ).

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 10 of 19

training data, restricting its usage to canonical models. We proposed an alternative approached called
MNLE, a synthetic neural likelihood method which is tailored to the data types encountered in many
models of decision- making.

Our comparison on a tractable example problem used in Fengler et al., 2021 showed that MNLE
performed on par with LANs using six orders of magnitude fewer model simulations for training.
While Fengler et al., 2021 discuss that LANs were not optimized for simulation efficiency and that
it might be possible to reduce the required model simulations, we emphasize that the difference in
simulation efficiency is due to an inherent property of LANs. For each parameter in the training data,
LANs require empirical likelihood targets that have to be estimated by building histograms or kernel
density estimates from thousands of simulations. MNLE, instead, performs conditional density esti-
mation without the need of likelihood targets and can work with only one simulation per parameter.
Because of these conceptual differences, we expect the substantial performance advantage of MNLE
to be robust to the specifics of the implementation.

After the networks are trained, the time needed for each evaluation determines the speed of
inference. In that respect, both LANs and MNLEs are conceptually similar in that they require a single
forward- pass through a neural network for each evaluation, and we found MNLE and the original
implementation of LANs to require comparable computation times. However, evaluation time will
depend, for example, on the exact network architecture, software framework, and computing infra-
structure used. Code for a new PyTorch implementation of LANs has recently been released and
improved upon the evaluation speed original implementation we compared to. While this new imple-
mentation made LAN significantly faster for a single forward- pass, we observed that the resulting time
difference with the MCMC settings used here was only on the order of minutes, whereas the differ-
ence in simulation time for LAN11 vs. MNLE5 was on the order of days. The exact timings will always
be implementation specific and whether or not these differences are important will depend on the
application at hand. In a situation where iteration over model design is required (i.e., custom DDMs),
an increase in training efficiency on the order of days would be advantageous.

There exist a number of approaches with corresponding software packages for estimating param-
eters of cognitive neuroscience models, and DDMs in particular. However, these approaches either
only estimate single best- fitting parameters (Voss and Voss, 2007; Wagenmakers et al., 2007; Chan-
drasekaran and Hawkins, 2019; Heathcote et al., 2019; Shinn et al., 2020) or, if they perform
fully Bayesian inference, can only produce Gaussian approximations to posteriors (Feltgen and
Daunizeau, 2021), or are restricted to variants of the DDM for which the likelihood can be evaluated
(Wiecki et al., 2013, HDDM [Hierarchical DDM] toolbox). A recent extension of the HDDM toolbox
includes LANs, thereby combining HDDM’s flexibility with LAN’s ability to perform inference without
access to the likelihood function (but this remains restricted to variants of the DDM for which LAN
can be pretrained). In contrast, MNLE can be applied to any simulation- based model with intractable
likelihoods and mixed data type outputs. Here, we focused on the direct comparison to LANs based
on variants of the DDM. We note that these models have a rather low- dimensional observation struc-
ture (as common in many cognitive neuroscience models), and that our examples did not include
additional parameter structure, for example, stimulus encoding parameters, which would increase
the dimensionality of the learning problem. However, other variants of neural density estimation have
been applied successfully to a variety of problems with higher dimensionality (see e.g., Gonçalves
et al., 2020; Lueckmann et al., 2021; Glöckler et al., 2021; Dax et al., 2022). Therefore, we expect
MNLE to be applicable to other simulation- based problems with higher- dimensional observation
structure and parameter spaces, and to scale more favorably than LANs. Like for any neural network-
based approach, applying MNLE to different inference problems may require selecting different archi-
tecture and training hyperparameters settings, which may induce additional computational training
costs. To help with this process, we adopted default settings which have been shown to work well on
a large range of SBI benchmarking problems (Lueckmann et al., 2021), and we integrated MNLE into
the established sbi python package that provides well- documented implementations for training- and
inference performance of SBI algorithms.

Several extensions to classical SL approaches have addressed the problem of a bias in the likelihood
approximation due to the strong parametric assumptions, that is, Gaussianity, the use of summary
statistics, or finite- sample biases (Price et al., 2018; Ong et al., 2009; van Opheusden et al., 2020).
MNLE builds on flexible neural likelihood estimators, for example, normalizing flows, and does not

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 11 of 19

require summary statistics for a low- dimensional simulator like the DDM, so would be less suscep-
tible to these first two biases. It could be subject to biases resulting from the estimation of the log-
likelihoods from a finite number of simulations. In our numerical experiments, and for the simulation
budgets we used, we did not observe biased inference results. We speculate that the ability of neural
density estimators to pool data across multiple parameter settings (rather than using only data from a
specific parameter set, like in classical SL methods) mitigates finite- sample effects.

MNLE is an SBI method which uses neural density estimators to estimate likelihoods. Alterna-
tives to neural likelihood estimation include neural posterior estimation (NPE, Papamakarios and
Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019, which uses conditional density
estimation to learn the posterior directly) and neural ratio estimation (NRE, Hermans et al., 2020;
Durkan et al., 2020, which uses classification to approximate the likelihood- to- evidence ratio to then
perform MCMC). These approaches could in principle be applied here as well, however, they are not
as well suited for the flexible inference scenarios common in decision- making models as MNLE. NPE
directly targets the posterior and therefore, by design, typically requires retraining if the structure of
the problem changes (e.g., if the prior or the hierarchical structure of the model changes). There are
variants of NPE that use embedding nets which can amortize over changing number of trials, avoiding
retraining (Radev et al., 2022, von Krause et al., 2022). NRE learns the likelihood- to- evidence ratio
using ratio estimation (and not density estimation) and would not provide an emulator of the simulator.

Regarding future research directions, MNLE has the potential to become more simulation efficient
by using weight sharing between the discrete and the continuous neural density estimators (rather
than to use separate neural networks, as we did here). Moreover, for high- dimensional inference
problems in which slice sampling- based MCMC might struggle, MNLE could be used in conjunc-
tion with gradient- based MCMC methods like Hamiltonian Monte Carlo (HMC, Brooks et al., 2011;
Hoffman and Gelman, 2014), or variational inference as recently proposed by Wiqvist et al., 2021
and Glöckler et al., 2021. With MNLE’s full integration into the sbi package, both gradient- based
MCMC methods from Pyro (Bingham et al., 2019), and variational inference for SBI (SNVI, Glöckler
et al., 2021) are available as inference methods for MNLE (a comparison of HMC and SNVI to slice
sampling MCMC on one example observation resulted in indistinguishable posterior samples). Finally,
using its emulator property (see Appendix 1), MNLE could be applied in an active learning setting for
highly expensive simulators in which new simulations are chosen adaptively according to a acquisition
function in a Bayesian optimization framework (Gutmann and Corander, 2016; Lueckmann et al.,
2019; Järvenpää et al., 2019).

In summary, MNLE enables flexible and efficient inference of parameters of models in cognitive
neuroscience with intractable likelihoods. The training efficiency and flexibility of the neural density
estimators used overcome the limitations of LANs (Fengler et al., 2021). Critically, these features
enable researchers to develop customized models of decision- making and not just apply existing
models to new data. We implemented our approach as an extension to a public sbi python package
with detailed documentation and examples to make it accessible for practitioners.

Materials and methods
Mixed neural likelihood estimation
MNLE extends the framework of neural likelihood estimation (Papamakarios et al., 2019a; Luec-
kmann et al., 2019) to be applicable to simulation- based models with mixed data types. It learns
a parametric model qψ(x|θ) of the intractable likelihood p(x|θ) defined implicitly by the simulation-
based model. The parameters ψ are learned with training data {θn, xn}1:N comprised of model param-
eters θn and their corresponding data simulated from the model xn|θn ∼ p(x|θn) . The parameters are
sampled from a proposal distribution over parameters θn ∼ p(θ) . The proposal distribution could be
any distribution, but it determines the parameter regions for which the density estimator will be good
in estimating likelihoods. Thus, the prior, or a distribution that contains the support of the prior (or
even all priors which one expects to use in the future) constitutes a useful choice. After training, the
emulator can be used to generate synthetic data x|θ ∼ qψ(x|θ) given parameters, and to evaluate the
SL qψ(x|θ) given experimentally observed data. Finally, the SL can be used to obtain posterior samples
via

https://doi.org/10.7554/eLife.77220
https://github.com/mackelab/sbi

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 12 of 19

 p(θ|x) ∝ qψ(x|θ)p(θ), (1)

through approximate inference with MCMC. Importantly, the training is amortized, that is, the
emulator can be applied to new experimental data without retraining (running MCMC is still required).

We tailored MNLE to simulation- based models that return mixed data, for example, in form of reac-
tion times rt and (usually categorical) choices c as for the DDM. Conditional density estimation with
normalizing flows has been proposed for continuous random variables (Papamakarios et al., 2019a),
or discrete random variables (Tran et al., 2019), but not for mixed data. Our solution for estimating
the likelihood of mixed data is to simply factorize the likelihood into continuous and discrete variables,

 p(rt, c|θ) = p(rt|θ, c) p(c|θ), (2)

and use two separate neural likelihood estimators: A discrete one qψc to estimate p(c|θ) and a
continuous one qψrt to estimate p(rt|θ, c) . We defined qψc to be a Bernoulli model and use a neural
network to learn the Bernoulli probability ρ given parameters θ . For qψrt we used a conditional neural
spline flow (NSF, Durkan et al., 2019) to learn the density of rt given a parameter θ and choice c . The
two estimators are trained separately using the same training data (see Neural network architecture,
training and hyperparameters for details). After training, the full neural likelihood can be constructed
by multiplying the likelihood estimates qψc and qψrt back together:

 qψc,ψrt (rt, c|θ) = qψc (c|θ) qψrt (rt|c, θ). (3)

Note that, as the second estimator qψrt (r|c, θ) is conditioned on the choice c , our likelihood model
can account for statistical dependencies between choices and reaction times. The neural likelihood
can then be used to approximate the intractable likelihood defined by the simulator, for example, for
inference with MCMC. Additionally, it can be used to sample synthetic data given model parameters,
without running the simulator (see The emulator property of MNLE).

Relation to LAN
Neural likelihood estimation can be much more simulation efficient than previous approaches because
it exploits continuity across the parameters by making the density estimation conditional. Fengler
et al., 2021, too, aim to exploit continuity across the parameter space by training a neural network to
predict the value of the likelihood function from parameters θ and data x . However, the difference to
neural likelihood estimation is that they do not use the neural network for density estimation directly,
but instead do classical neural network- based regression on likelihood targets. Crucially, the likelihood
targets first have to obtained for each parameter in the training dataset. To do so, one has to perform
density estimation using KDE (as proposed by Turner et al., 2015) or empirical histograms for every
parameter separately. Once trained, LANs do indeed exploit the continuity across the parameter
space (they can predict log- likelihoods given unseen data and parameters), however, they do so at a
very high simulation cost: For a training dataset of N parameters, they perform N times KDE based on
 M simulations each111 For models with categorical output, that is, all decision- making models, KDE
is performed separately for each choice., resulting is an overall simulation budget of N · M (N = 1.5
million and M = 100,000 for ‘pointwise’ LAN approach).

Details of the numerical comparison
The comparison between MNLE and LAN is based on the DDM. The DDM simulates a decision vari-
able X as a stochastic differential equation with parameters θ = (v, a, w, τ) :

 dXt+τ = vdt + dW, Xτ = w, (4)

where W a Wiener noise process. The priors over the parameters are defined to be uniform:

 v ∼ U (−2, 2) is the drift, a ∼ U (0.5, 2) the boundary separation, w ∼ U (0.3, 0.7) the initial offset, and

 τ ∼ U (0.2, 1.8) the nondecision time. A single simulation from the model returns a choice c ∈ {0, 1} and
the corresponding reaction time in seconds rt ∈ (τ ,∞) .

For this version of the DDM the likelihood of an observation (c, rt) given parameters θ , L(c, rt|θ) ,
can be calculated analytically (Navarro and Fuss, 2009). To simulate the DDM and calculate analyt-
ical likelihoods we used the approach and the implementation proposed by Drugowitsch, 2016. We

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 13 of 19

numerically confirmed that the simulations and the analytical likelihoods match those obtained from
the research code provided by Fengler et al., 2021.

To run LANs, we downloaded the neural network weights of the pretrained models from the repos-
itory mentioned in Fengler et al., 2021. The budget of training simulations used for the LANs was
 1.5 × 1011 (1.5 million training data points, each obtained from KDE based on 105 simulations). We
only considered the approach based on training a multilayer perceptron on single- trial likelihoods
(‘pointwise approach’, Fengler et al., 2021). At a later stage of our study we performed additional
experiments to evaluate the performance of LANs trained at smaller simulation budgets, for example,
for 105 and 108 simulations. For this analysis, we used an updated implementation of LANs based
on PyTorch that was provided by the authors. We used the training routines and default settings
provided with that implementation. To train LANs at the smaller budgets we used the following splits
of budgets into number of parameter settings drawn from the prior, and number of simulations per
parameter setting used for fitting the KDE: for the 105 budget we used 102 and 103, respectively (we
ran experiments splitting the other way around, but results were slightly better for this split); for the
108 budget we used an equal split of 104 each (all code publicly available, see Code availability).

To run MNLE, we extended the implementation of neural likelihood estimation in the sbi toolbox
(Tejero- Cantero et al., 2020). All comparisons were performed on a single AMD Ryzen Threadripper
1920X 12- Core processor with 2.2 GHz and the code is publicly available (see Code availability).

For the DDM variant with linearly collapsing decision boundaries, the boundaries were parame-
trized by the initial boundary separation, a , and one additional parameter, γ, indicating the slope with
which the boundary approaches zero. This resulted in a five- dimensional parameter space for which
we used the same prior as above, plus the an additional uniform prior for the slope γ ∼ U (−1.0, 0) . To
simulate this DDM variant, we again used the Julia package by Drugowitsch, 2016, but we note that
for this variant no analytical likelihoods are available. While it would be possible to approximate the
likelihoods numerically using the Fokker–Planck equations (see e.g., Shinn et al., 2020), this would
usually involve a trade- off between computation time and accuracy as well as design of bespoke solu-
tions for individual models, and was not pursued here.

Flexible Bayesian inference with MCMC
Once the MNLE is trained, it can be used for MCMC to obtain posterior samples θ ∼ p(θ|x) given
experimentally observed data x . To sample from posteriors via MCMC, we transformed the parame-
ters to unconstrained space, used slice sampling (Neal, 2009), and initialized ten parallel chains using
sequential importance sampling (Papamakarios et al., 2019a), all as implemented in the sbi toolbox.
We ran MCMC with identical settings for MNLE and LAN.

Importantly, performing MNLE and then using MCMC to obtain posterior samples allows for flex-
ible inference scenarios because the form of x is not fixed. For example, when the model produces
trial- based data that satisfy the i.i.d. assumption, for example, a set of reaction times and choices

 X = {rt, c}N
i=1 in a DDM, then MNLE allows to perform inference given varying numbers of trials,

without retraining. This is achieved by training MNLE based on single- trial likelihoods once and then
combining multiple trials into the joint likelihood only when running MCMC:

p(θ|X) ∝

N∏
i=1

q(rti, ci|θ) p(θ).

(5)

Similarly, one can use the neural likelihood to perform hierarchical inference with MCMC, all without
the need for retraining (see Hermans et al., 2020; Fengler et al., 2021, for examples).

Stimulus- and intertrial dependencies
Simulation- based models in cognitive neuroscience often depend not only on a set of parameters
 θ , but additionally on (a set of) stimulus variables s which are typically given as part of the experi-
mental conditions. MNLE can be readily adapted to this scenario by generating simulated data with
multiple stimulus variables, and including them as additional inputs to the network during inference.
Similarly, MNLE could be adapted to scenarios in which the i.i.d. assumption across trials as used
above (see Flexible Bayesian inference with MCMC) does not hold. Again, this would be achieved by
adapting the model simulator accordingly. For example, when inferring parameters θ of a DDM for

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 14 of 19

which the outcome of the current trial i additionally depends on current stimulus variables si as well
as on previous stimuli sj and responses rj, then one would implement the DDM simulator as a function

 f(θ; si−T, . . . , si; ri−T, . . . , ri−1) (where T is a history parameter) and then learn the underlying likelihood
by emulating f with MNLE.

Neural network architecture, training, and hyperparameters
Architecture
For the architecture of the Bernoulli model we chose a feed- forward neural network that takes param-
eters θ as input and predicts the Bernoulli probability ρ of the corresponding choices. For the normal-
izing flow we used the NSF architecture (Durkan et al., 2019). NSFs use a standard normal base
distribution and transform it using several modules of monotonic rational- quadratic splines whose
parameters are learned by invertible neural networks. Using an unbounded base distribution for
modeling data with bounded support, for example, reaction time data rt ∈ (0,∞) , can be challenging.
To account for this, we tested two approaches: We either transformed the reaction time data to
logarithmic space to obtain an unbounded support (log rt ∈ (−∞,∞)), or we used a log- normal base
distribution with rectified (instead of linear) tails for the splines (see Durkan et al., 2019, for details
and Architecture and training hyperparameters for the architecture settings used).

Training
The neural network parameters ψc and ψrt were trained using the maximum likelihood loss and the
Adam optimizer (Kingma and Ba, 2015). As proposal distribution for the training dataset we used
the prior over DDM parameters. Given a training dataset of parameters, choices, and reaction times

 {θi, (ci, rti)}N
i=1 with θi ∼ p(θ); (ci, rti) ∼ DDM(θi) , we minimized the negative log- probability of the

model. In particular, using the same training data, we trained the Bernoulli choice model by minimizing

− 1

N

N∑
i=1

log qψc (ci|θi),

(6)

and the NSF by minimizing

− 1

N

N∑
i=1

log qψrt (rt|ci, θi).

(7)

Training was performed with code and training hyperparameter settings provided in the sbi toolbox
(Tejero- Cantero et al., 2020).

Hyperparameters
MNLE requires a number of hyperparameter choices regarding the neural network architectures, for
example, number of hidden layers, number of hidden units, number of stacked NSF transforms, kind
of base distribution, among others (Durkan et al., 2019). With our implementation building on the sbi
package we based our hyperparameter choices on the default settings provided there. This resulted
in likelihood accuracy similar to LAN, but longer evaluation times due to the complexity of the under-
lying normalizing flow architecture.

To reduce evaluation time of MNLE, we further adapted the architecture to the example model
(DDM). In particular, we ran a cross- validation of the hyperparameters relevant for evaluation time, that
is, number of hidden layers, hidden units, NSF transforms, spline bins, and selected those that were
optimal in terms of Huber loss and MSE between the approximate and the analytical likelihoods, as
well as evaluation time. This resulted in an architecture with performance and evaluation time similar
to LANs (more details in Appendix: Architecture and training hyperparameters). The cross- validation
relied on access to the analytical likelihoods which is usually not given in practice, for example, for
simulators with intractable likelihoods. However, we note that in cases without access to analytical
likelihoods a similar cross- validation can be performed using quality measures other than the differ-
ence to the analytical likelihood, for example, by comparing the observed data with synthetic data
and SLs provided by MNLE.

https://doi.org/10.7554/eLife.77220

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 15 of 19

Acknowledgements
We thank Luigi Acerbi, Michael Deistler, Alexander Fengler, Michael Frank, and Ingeborg Wenger
for discussions and comments on a preliminary version of the manuscript. We also acknowledge and
thank the Python and Julia communities for developing the tools enabling this work, including Diff
eren tial Equa tions. jl, DiffModels. jl, NumPy, pandas, Pyro, PyTorch, sbi, sbibm, and Scikit- learn (see
Appendix for details).

Additional information

Funding

Funder Grant reference number Author

Deutsche
Forschungsgemeinschaft

SFB 1233 Jan-Matthis Lueckmann
Jakob H Macke

Deutsche
Forschungsgemeinschaft

SPP 2041 Jan Boelts
Jakob H Macke

Deutsche
Forschungsgemeinschaft

Germany's Excellence
Strategy MLCoE

Jan Boelts
Jan-Matthis Lueckmann
Richard Gao
Jakob H Macke

Bundesministerium für
Bildung und Forschung

ADIMEM Jan-Matthis Lueckmann
Jakob H Macke

HORIZON EUROPE Marie
Sklodowska-Curie Actions

101030918 Richard Gao

Bundesministerium für
Bildung und Forschung

Tübingen AI Center Jan Boelts
Jakob H Macke

Bundesministerium für
Bildung und Forschung

FKZ 01IS18052 A-D Jan-Matthis Lueckmann
Jakob H Macke

Bundesministerium für
Bildung und Forschung

KZ 01IS18039A Jan Boelts
Jakob H Macke

The funders had no role in study design, data collection, and interpretation, or the
decision to submit the work for publication.

Author contributions
Jan Boelts, Conceptualization, Resources, Data curation, Software, Formal analysis, Validation, Investi-
gation, Visualization, Methodology, Writing – original draft, Writing – review and editing; Jan- Matthis
Lueckmann, Conceptualization, Supervision, Visualization, Methodology, Writing – original draft,
Writing – review and editing; Richard Gao, Conceptualization, Software, Validation, Visualization,
Writing – original draft, Writing – review and editing; Jakob H Macke, Conceptualization, Supervision,
Funding acquisition, Methodology, Project administration, Writing – review and editing

Author ORCIDs
Jan Boelts http://orcid.org/0000-0003-4979-7092
Richard Gao http://orcid.org/0000-0001-5916-6433
Jakob H Macke http://orcid.org/0000-0001-5154-8912

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.77220.sa1
Author response https://doi.org/10.7554/eLife.77220.sa2

Additional files
Supplementary files
•  Transparent reporting form

https://doi.org/10.7554/eLife.77220
http://orcid.org/0000-0003-4979-7092
http://orcid.org/0000-0001-5916-6433
http://orcid.org/0000-0001-5154-8912
https://doi.org/10.7554/eLife.77220.sa1
https://doi.org/10.7554/eLife.77220.sa2

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 16 of 19

Data availability
We implemented MNLE as part of the open source package for SBI, sbi, available at https://github.
com/mackelab/sbi, copy archived at swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560.
Code for reproducing the results presented here, and tutorials on how to apply MNLE to other
simulators using sbi can be found at https://github.com/mackelab/mnle-for-ddms, copy archived at
swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321.

References
An Z, South LF, Nott DJ, Drovandi CC. 2019. Accelerating bayesian synthetic likelihood with the graphical lasso.

Journal of Computational and Graphical Statistics 28:471–475. DOI: https://doi.org/10.1080/10618600.2018.
1537928

Bezanson J, Edelman A, Karpinski S, Shah VB. 2017. Julia: A fresh approach to numerical computing. SIAM
Review 59:65–98. DOI: https://doi.org/10.1137/141000671

Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip P, Horsfall P,
Goodman ND. 2019. Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research
20:973–978.

Boelts J. 2022a. sbi: simulation- based inference. swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560.
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405
196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748
adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560

Boelts J. 2022b. Mixed neural likelihood estimation for models of decision- making.
swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321. Software Heritage. https://archive.softwareheritage.
org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-
ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c
414b76ac70f7dc88d4fbd321

Brooks S, Gelman A, Jones G, Meng XL. 2011. MCMC Using Hamiltonian Dynamics. Brooks S (Ed). Handbook of
Markov Chain Monte Carlo. Elsevier. p. 1–2. DOI: https://doi.org/10.1201/b10905

Chandrasekaran C, Hawkins GE. 2019. ChaRTr: An R toolbox for modeling choices and response times in
decision- making tasks. Journal of Neuroscience Methods 328:108432. DOI: https://doi.org/10.1016/j.
jneumeth.2019.108432, PMID: 31586868

Churchland PS, Sejnowski TJ. 1988. Perspectives on cognitive neuroscience. Science 242:741–745. DOI: https://
doi.org/10.1126/science.3055294, PMID: 3055294

Cook SR, Gelman A, Rubin DB. 2006. Validation of software for bayesian models using posterior quantiles.
Journal of Computational and Graphical Statistics 15:675–692. DOI: https://doi.org/10.1198/
106186006X136976

Cranmer K, Brehmer J, Louppe G. 2020. The frontier of simulation- based inference. PNAS 117:30055–30062.
DOI: https://doi.org/10.1073/pnas.1912789117, PMID: 32471948

Dax M, Green SR, Gair J, Deistler M, Schölkopf B, Macke JH. 2022. Group equivariant neural posterior
estimation. In International Conference on Learning Representations. .

Drugowitsch J. 2016. Fast and accurate Monte Carlo sampling of first- passage times from Wiener diffusion
models. Scientific Reports 6:1–13. DOI: https://doi.org/10.1038/srep20490, PMID: 26864391

Durkan C, Bekasov A, Murray I, Papamakarios G. 2019. Neural spline flows. Advances in Neural Information
Processing Systems. 7511–7522.

Durkan C, Murray I, Papamakarios G. 2020. On contrastive learning for likelihood- free inference. In International
Conference on Machine Learning. 2771–2781.

Feltgen Q, Daunizeau J. 2021. An overcomplete approach to fitting drift- diffusion decision models to trial- by-
trial data. Frontiers in Artificial Intelligence 4:531316. DOI: https://doi.org/10.3389/frai.2021.531316, PMID:
33898982

Fengler A, Govindarajan LN, Chen T, Frank MJ. 2021. Likelihood approximation networks (LANs) for fast
inference of simulation models in cognitive neuroscience. eLife 10:e65074. DOI: https://doi.org/10.7554/eLife.
65074, PMID: 33821788

Glöckler M, Deistler M, Macke JH. 2021. Variational methods for simulation- based inference. In International
Conference on Learning Representations. .

Gonçalves PJ, Lueckmann JM, Deistler M, Nonnenmacher M, Öcal K, Bassetto G, Chintaluri C, Podlaski WF,
Haddad SA, Vogels TP, Greenberg DS, Macke JH. 2020. Training deep neural density estimators to identify
mechanistic models of neural dynamics. eLife 9:e56261. DOI: https://doi.org/10.7554/eLife.56261, PMID:
32940606

Greenberg D, Nonnenmacher M, Macke J. 2019. Automatic posterior transformation for likelihood- free
inference. In Proceedings of the 36th International Conference on Machine Learning of Proceedings of
Machine Learning Research. 2404–2414.

Gutmann MU, Corander J. 2016. Bayesian optimization for likelihood- free inference of simulator- based statistical
models. The Journal of Machine Learning Research 17:4256–4302.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P,

https://doi.org/10.7554/eLife.77220
https://github.com/mackelab/sbi
https://github.com/mackelab/sbi
https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560
https://github.com/mackelab/mnle-for-ddms
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321
https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1080/10618600.2018.1537928
https://doi.org/10.1137/141000671
https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560
https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560
https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321
https://doi.org/10.1201/b10905
https://doi.org/10.1016/j.jneumeth.2019.108432
https://doi.org/10.1016/j.jneumeth.2019.108432
http://www.ncbi.nlm.nih.gov/pubmed/31586868
https://doi.org/10.1126/science.3055294
https://doi.org/10.1126/science.3055294
http://www.ncbi.nlm.nih.gov/pubmed/3055294
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1073/pnas.1912789117
http://www.ncbi.nlm.nih.gov/pubmed/32471948
https://doi.org/10.1038/srep20490
http://www.ncbi.nlm.nih.gov/pubmed/26864391
https://doi.org/10.3389/frai.2021.531316
http://www.ncbi.nlm.nih.gov/pubmed/33898982
https://doi.org/10.7554/eLife.65074
https://doi.org/10.7554/eLife.65074
http://www.ncbi.nlm.nih.gov/pubmed/33821788
https://doi.org/10.7554/eLife.56261
http://www.ncbi.nlm.nih.gov/pubmed/32940606

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 17 of 19

Gérard- Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.
1038/s41586-020-2649-2, PMID: 32939066

Hawkins GE, Forstmann BU, Wagenmakers EJ, Ratcliff R, Brown SD. 2015. Revisiting the evidence for collapsing
boundaries and urgency signals in perceptual decision- making. The Journal of Neuroscience 35:2476–2484.
DOI: https://doi.org/10.1523/JNEUROSCI.2410-14.2015, PMID: 25673842

Heathcote A, Lin YS, Reynolds A, Strickland L, Gretton M, Matzke D. 2019. Dynamic models of choice. Behavior
Research Methods 51:961–985. DOI: https://doi.org/10.3758/s13428-018-1067-y, PMID: 29959755

Hermans J, Begy V, Louppe G. 2020. Likelihood- free mcmc with approximate likelihood ratios. In Proceedings of
the 37th International Conference on Machine Learning of Proceedings of Machine Learning Research. .

Hoffman MD, Gelman A. 2014. The No- U- turn sampler: adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research: JMLR 15:1593–1623.

Järvenpää M, Gutmann MU, Pleska A, Vehtari A, Marttinen P. 2019. Efficient acquisition rules for model- based
approximate bayesian computation. Bayesian Analysis 14:595–622. DOI: https://doi.org/10.1214/18-BA1121

Kangasrääsiö A, Jokinen JP, Oulasvirta A, Howes A, Kaski S. 2019. Parameter inference for computational
cognitive models with approximate bayesian computation. Cognitive Science 43:e12738. DOI: https://doi.org/
10.1111/cogs.12738

Kingma DP, Ba J. 2015. Adam: A method for stochastic optimization. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR. .

Lee MD. 2008. Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review
15:1–15. DOI: https://doi.org/10.3758/pbr.15.1.1, PMID: 18605474

Lee MD. 2011. How cognitive modeling can benefit from hierarchical Bayesian models. Journal of Mathematical
Psychology 55:1–7. DOI: https://doi.org/10.1016/j.jmp.2010.08.013

Lee MD, Wagenmakers EJ. 2014. Bayesian Cognitive Modeling. Cambridge university press. DOI: https://doi.
org/10.1017/CBO9781139087759

Lee HS, Betts S, Anderson JR. 2016. Learning problem- solving rules as search through a hypothesis space.
Cognitive Science 40:1036–1079. DOI: https://doi.org/10.1111/cogs.12275, PMID: 26292648

Lopez- Paz D, Oquab M. 2017. Revisiting classifier two- sample tests. In 5th International Conference on Learning
Representations, ICLR. .

Lueckmann JM, Goncalves PJ, Bassetto G, Öcal K, Nonnenmacher M, Macke JH. 2017. Flexible Statistical
Inference for Mechanistic Models of Neural Dynamics. arXiv. https:// arxiv. org/ abs/ 1711. 01861

Lueckmann JM, Bassetto G, Karaletsos T, Macke JH. 2019. Likelihood- free inference with emulator networks. In
Proceedings of The 1st Symposium on Advances in Approximate Bayesian Inference of Proceedings of
Machine Learning Research. 32–53.

Lueckmann JM, Boelts J, Greenberg D, Goncalves P, Macke J. 2021. Benchmarking simulation- based inference.
Proceedings of The 24th International Conference on Artificial Intelligence and Statistics of Proceedings of
Machine Learning Research. 343–351.

McClelland JL. 2009. The place of modeling in cognitive science. Topics in Cognitive Science 1:11–38. DOI:
https://doi.org/10.1111/j.1756-8765.2008.01003.x, PMID: 25164798

Navarro DJ, Fuss IG. 2009. Fast and accurate calculations for first- passage times in Wiener diffusion models.
Journal of Mathematical Psychology 53:222–230. DOI: https://doi.org/10.1016/j.jmp.2009.02.003

Neal RM. 2009. Slice sampling. The Annals of Statistics 31:e62461. DOI: https://doi.org/10.1214/aos/
1056562461

Ong VMH, Nott DJ, Tran M- N, Sisson SA, Drovandi CC. 2009. Variational Bayes with synthetic likelihood.
Statistics and Computing 28:971–988. DOI: https://doi.org/10.1007/s11222-017-9773-3

Palestro JJ, Sederberg PB, Osth AF, Van Zandt T, Turner BM. 2009. Likelihood- Free Methods for Cognitive
Science. Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-72425-6

Palestro JJ, Weichart E, Sederberg PB, Turner BM. 2018. Some task demands induce collapsing bounds:
Evidence from a behavioral analysis. Psychonomic Bulletin & Review 25:1225–1248. DOI: https://doi.org/10.
3758/s13423-018-1479-9, PMID: 29845433

pandas development team. 2020. Pandas- dev/pandas: pandas. 6e1a040. Github. https://github.com/pandas-
dev/pandas

Papamakarios G, Murray I. 2016. Fast ε-free Inference of Simulation Models with Bayesian Conditional Density
Estimation. In Advances in Neural Information Processing Systems. .

Papamakarios G, Nalisnick E, Rezende DJ, Mohamed S, Lakshminarayanan B. 2019a. Normalizing Flows for
Probabilistic Modeling and Inference. arXiv. https:// arxiv. org/ abs/ 1912. 02762

Papamakarios G, Sterratt D, Murray I. 2019b. Sequential neural likelihood: Fast likelihood- free inference with
autoregressive flows. In Proceedings of the 22nd International Conference on Artificial Intelligence and
Statistics (AISTATS) of Proceedings of Machine Learning Research. 837–848.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, et al.
2019. Pytorch: An imperative style, high- performance deep learning library. In Advances in Neural Information
Processing Systems. 8024–8035.

Patil U, Hanne S, Burchert F, De Bleser R, Vasishth S. 2016. A computational evaluation of sentence processing
deficits in aphasia. Cognitive Science 40:5–50. DOI: https://doi.org/10.1111/cogs.12250, PMID: 26016698

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. 2011. Scikit- learn:
Machine learning in python. Journal of Machine Learning Research 12:2825–2830.

https://doi.org/10.7554/eLife.77220
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25673842
https://doi.org/10.3758/s13428-018-1067-y
http://www.ncbi.nlm.nih.gov/pubmed/29959755
https://doi.org/10.1214/18-BA1121
https://doi.org/10.1111/cogs.12738
https://doi.org/10.1111/cogs.12738
https://doi.org/10.3758/pbr.15.1.1
http://www.ncbi.nlm.nih.gov/pubmed/18605474
https://doi.org/10.1016/j.jmp.2010.08.013
https://doi.org/10.1017/CBO9781139087759
https://doi.org/10.1017/CBO9781139087759
https://doi.org/10.1111/cogs.12275
http://www.ncbi.nlm.nih.gov/pubmed/26292648
https://doi.org/10.1111/j.1756-8765.2008.01003.x
http://www.ncbi.nlm.nih.gov/pubmed/25164798
https://doi.org/10.1016/j.jmp.2009.02.003
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1007/s11222-017-9773-3
https://doi.org/10.1007/978-3-319-72425-6
https://doi.org/10.3758/s13423-018-1479-9
https://doi.org/10.3758/s13423-018-1479-9
http://www.ncbi.nlm.nih.gov/pubmed/29845433
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://doi.org/10.1111/cogs.12250
http://www.ncbi.nlm.nih.gov/pubmed/26016698

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 18 of 19

Price LF, Drovandi CC, Lee A, Nott DJ. 2018. Bayesian Synthetic Likelihood. Journal of Computational and
Graphical Statistics 27:1–11. DOI: https://doi.org/10.1080/10618600.2017.1302882

Priddle JW, Sisson SA, Frazier DT, Turner I, Drovandi C. 2022. Efficient bayesian synthetic likelihood with
whitening transformations. Journal of Computational and Graphical Statistics 31:50–63. DOI: https://doi.org/
10.1080/10618600.2021.1979012

Rackauckas C, Nie Q. 2017. Diff eren tial Equa tions. jl – a performant and feature- rich ecosystem for solving
differential equations in julia. Journal of Open Research Software 5:15. DOI: https://doi.org/10.5334/jors.151

Radev ST, Mertens UK, Voss A, Ardizzone L, Kothe U. 2022. BayesFlow: learning complex stochastic models with
invertible neural networks. IEEE Transactions on Neural Networks and Learning Systems 33:1452–1466. DOI:
https://doi.org/10.1109/TNNLS.2020.3042395, PMID: 33338021

Ratcliff R, Rouder JN. 1998. Modeling response times for two- choice decisions. Psychological Science 9:347–
356. DOI: https://doi.org/10.1111/1467-9280.00067

Ratcliff R, McKoon G. 2008. The diffusion decision model: theory and data for two- choice decision tasks. Neural
Computation 20:873–922. DOI: https://doi.org/10.1162/neco.2008.12-06-420, PMID: 18085991

Reynolds AM, Rhodes CJ. 2009. The Lévy flight paradigm: random search patterns and mechanisms. Ecology
90:877–887. DOI: https://doi.org/10.1890/08-0153.1, PMID: 19449680

Schad DJ, Betancourt M, Vasishth S. 2021. Toward a principled Bayesian workflow in cognitive science.
Psychological Methods 26:103–126. DOI: https://doi.org/10.1037/met0000275, PMID: 32551748

Shiffrin RM, Lee MD, Kim W, Wagenmakers EJ. 2008. A survey of model evaluation approaches with A tutorial
on hierarchical bayesian methods. Cognitive Science 32:1248–1284. DOI: https://doi.org/10.1080/
03640210802414826, PMID: 21585453

Shinn M, Lam NH, Murray JD. 2020. A flexible framework for simulating and fitting generalized drift- diffusion
models. eLife 9:e56938. DOI: https://doi.org/10.7554/eLife.56938, PMID: 32749218

Sisson SA. 2018. Overview of abc. Sisson SA, Fan Y, Beaumont MA (Eds). In Handbook of Approximate Bayesian
Computation, Chapter 1. CRC Press, Taylor & Francis Group. p. 1–678. DOI: https://doi.org/10.1201/
9781315117195

Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A. 2018. Validating Bayesian Inference Algorithms with
Simulation- Based Calibration. arXiv. https:// arxiv. org/ abs/ 1804. 06788

Tejero- Cantero A, Boelts J, Deistler M, Lueckmann JM, Durkan C, Gonçalves PJ, Greenberg DS, Macke JH.
2020. sbi: A toolkit for simulation- based inference. Journal of Open Source Software 5:2505. DOI: https://doi.
org/10.21105/joss.02505

Tran D, Vafa K, Agrawal K, Dinh L, Poole B. 2019. Discrete flows: Invertible generative models of discrete data.
Advances in Neural Information Processing Systems. 14719–14728.

Turner BM, Van Zandt T. 2012. A tutorial on approximate bayesian computation. Journal of Mathematical
Psychology 56:69–85. DOI: https://doi.org/10.1016/j.jmp.2012.02.005

Turner BM, van Maanen L, Forstmann BU. 2015. Informing cognitive abstractions through neuroimaging: the
neural drift diffusion model. Psychological Review 122:312–336. DOI: https://doi.org/10.1037/a0038894,
PMID: 25844875

Turner BM, Van Zandt T. 2018. Approximating bayesian inference through model simulation. Trends in Cognitive
Sciences 22:826–840. DOI: https://doi.org/10.1016/j.tics.2018.06.003, PMID: 30093313

Usher M, McClelland JL. 2001. The time course of perceptual choice: the leaky, competing accumulator model.
Psychological Review 108:550–592. DOI: https://doi.org/10.1037/0033-295x.108.3.550, PMID: 11488378

van Opheusden B, Acerbi L, Ma WJ. 2020. Unbiased and efficient log- likelihood estimation with inverse binomial
sampling. PLOS Computational Biology 16:e1008483. DOI: https://doi.org/10.1371/journal.pcbi.1008483,
PMID: 33362195

Van Rossum G, Drake FL. 1995. Python Tutorial. Centrum Voor Wiskunde En Informatica.
von Krause M, Radev ST, Voss A. 2022. Mental speed is high until age 60 as revealed by analysis of over a

million participants. Nature Human Behaviour 6:700–708. DOI: https://doi.org/10.1038/s41562-021-01282-7,
PMID: 35177809

Voss A, Voss J. 2007. Fast- dm: A free program for efficient diffusion model analysis. Behavior Research Methods
39:767–775. DOI: https://doi.org/10.3758/bf03192967, PMID: 18183889

Wagenmakers EJ, van der Maas HLJ, Grasman R. 2007. An EZ- diffusion model for response time and accuracy.
Psychonomic Bulletin & Review 14:3–22. DOI: https://doi.org/10.3758/bf03194023, PMID: 17546727

Wiecki TV, Sofer I, Frank MJ. 2013. HDDM: Hierarchical bayesian estimation of the drift- diffusion model in
python. Frontiers in Neuroinformatics 7:14. DOI: https://doi.org/10.3389/fninf.2013.00014, PMID: 23935581

Wiqvist S, Frellsen J, Picchini U. 2021. Sequential Neural Posterior and Likelihood Approximation. arXiv. https://
arxiv. org/ abs/ 2102. 06522

Wood SN. 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102–1104.
DOI: https://doi.org/10.1038/nature09319, PMID: 20703226

https://doi.org/10.7554/eLife.77220
https://doi.org/10.1080/10618600.2017.1302882
https://doi.org/10.1080/10618600.2021.1979012
https://doi.org/10.1080/10618600.2021.1979012
https://doi.org/10.5334/jors.151
https://doi.org/10.1109/TNNLS.2020.3042395
http://www.ncbi.nlm.nih.gov/pubmed/33338021
https://doi.org/10.1111/1467-9280.00067
https://doi.org/10.1162/neco.2008.12-06-420
http://www.ncbi.nlm.nih.gov/pubmed/18085991
https://doi.org/10.1890/08-0153.1
http://www.ncbi.nlm.nih.gov/pubmed/19449680
https://doi.org/10.1037/met0000275
http://www.ncbi.nlm.nih.gov/pubmed/32551748
https://doi.org/10.1080/03640210802414826
https://doi.org/10.1080/03640210802414826
http://www.ncbi.nlm.nih.gov/pubmed/21585453
https://doi.org/10.7554/eLife.56938
http://www.ncbi.nlm.nih.gov/pubmed/32749218
https://doi.org/10.1201/9781315117195
https://doi.org/10.1201/9781315117195
https://doi.org/10.21105/joss.02505
https://doi.org/10.21105/joss.02505
https://doi.org/10.1016/j.jmp.2012.02.005
https://doi.org/10.1037/a0038894
http://www.ncbi.nlm.nih.gov/pubmed/25844875
https://doi.org/10.1016/j.tics.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30093313
https://doi.org/10.1037/0033-295x.108.3.550
http://www.ncbi.nlm.nih.gov/pubmed/11488378
https://doi.org/10.1371/journal.pcbi.1008483
http://www.ncbi.nlm.nih.gov/pubmed/33362195
https://doi.org/10.1038/s41562-021-01282-7
http://www.ncbi.nlm.nih.gov/pubmed/35177809
https://doi.org/10.3758/bf03192967
http://www.ncbi.nlm.nih.gov/pubmed/18183889
https://doi.org/10.3758/bf03194023
http://www.ncbi.nlm.nih.gov/pubmed/17546727
https://doi.org/10.3389/fninf.2013.00014
http://www.ncbi.nlm.nih.gov/pubmed/23935581
https://doi.org/10.1038/nature09319
http://www.ncbi.nlm.nih.gov/pubmed/20703226

 Research advance Neuroscience

Boelts et al. eLife 2022;11:e77220. DOI: https://doi.org/10.7554/eLife.77220 19 of 19

Appendix 1
Code availability
We implemented MNLE as part of the open- source package for SBI, sbi,
available at https://github.com/mackelab/sbi, (Boelts, 2022a copy archived at
swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560). Code for reproducing the results
presented here, and tutorials on how to apply MNLE to other simulators using sbi can be
found at https://github.com/mackelab/mnle-for-ddms, (Boelts, 2022b copy archived at
swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321). The implementation of MNLE relies on
packages developed by the Python (Van Rossum and Drake, 1995) and Julia (Bezanson et al.,
2017) communities, including Diff eren tial Equa tions. jl (Rackauckas and Nie, 2017), DiffModels. jl
(Drugowitsch, 2016), NumPy (Harris et al., 2020), pandas (pandas development team, 2020),
Pyro (Bingham et al., 2019), PyTorch (Paszke et al., 2019), sbi (Tejero- Cantero et al., 2020), sbibm
(Lueckmann et al., 2021), and Scikit- learn (Pedregosa et al., 2011).

Architecture and training hyperparameters
For the Bernoulli neural network we used three hidden layers with 10 units each and sigmoid activation
functions. For the neural spline flow architecture (Durkan et al., 2019), we transformed the reaction
time data to the log- domain, used a standard normal base distribution, 2 spline transforms with 5
bins each and conditioning networks with 3 hidden layers and 10 hidden units each, and rectified
linear unit activation functions. The neural network training was performed using the sbi package
with the following settings: learning rate 0.0005; training batch size 100; 10% of training data as
validation data, stop training after 20 epochs without validation loss improvement.

The emulator property of MNLE
Being based on the neural likelihood estimation framework, MNLE naturally returns an emulator
of the simulator that can be sampled to generate synthetic data without running the simulator. We
found that the synthetic data generated by MNLE accurately matched the data we obtained by
running the DDM simulator (Figure 2—figure supplement 1). This has several potential benefits: it
can help with evaluating the performance of the density estimator, it enables almost instantaneous
data generation (one forward- pass in the neural network) even if the simulator is computationally
expensive, and it gives full access to the internals of the emulator, for example, to gradients w.r.t. to
data or parameters.

There is variant of the LAN approach which allows for sampling synthetic data as well: In the
‘Histogram- approach’ (Fengler et al., 2021) LANs are trained with a convolutional neural network
(CNN) architecture using likelihood targets in form of two- dimensional empirical histograms. The
output of the CNN is a probability distribution over a discretized version of the data space which
can, in principle, be sampled to generate synthetic DDM choices and reaction times. However, the
accuracy of this emulator property of CNN- LANs is limited by the number of bins used to approximate
the continuous data space (e.g., 512 bins for the examples shown in Fengler et al., 2021).

https://doi.org/10.7554/eLife.77220
https://github.com/mackelab/sbi
https://archive.softwareheritage.org/swh:1:dir:d327a49bdf0127726927c70c6b216405196653d6;origin=https://github.com/mackelab/sbi;visit=swh:1:snp:ff58cc8344d88bbe9952872597690748adb5798b;anchor=swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560
https://github.com/mackelab/mnle-for-ddms
https://archive.softwareheritage.org/swh:1:dir:e20ac3b3d5324d29f262cc52388b3916526d2518;origin=https://github.com/mackelab/mnle-for-ddms;visit=swh:1:snp:b9707619efaa06519bb97d54db256cc99f78df3f;anchor=swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321

	Flexible and efficient simulation-based inference for models of decision-making
	Editor's evaluation
	Introduction
	Results
	Evaluating the performance of MNLE on the DDM
	MNLE learns accurate likelihoods with a fraction of the simulation budget
	MNLE enables accurate flexible posterior inference with MCMC
	MNLE posteriors have uncertainties which are well calibrated
	MNLE infers well-calibrated, predictive posteriors for a DDM with collapsing bounds

	Discussion
	Materials and methods
	Mixed neural likelihood estimation
	Relation to LAN
	Details of the numerical comparison
	Flexible Bayesian inference with MCMC
	Stimulus- and intertrial dependencies

	Neural network architecture, training, and hyperparameters
	Architecture
	Training
	Hyperparameters

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	Appendix 1
	Code availability
	Architecture and training hyperparameters
	The emulator property of MNLE

