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Abstract During formation of the mammalian placenta, trophoblasts invade the maternal 
decidua and remodel spiral arteries to bring maternal blood into the placenta. This process, known 
as endovascular invasion, is thought to involve the adoption of functional characteristics of vascular 
endothelial cells (ECs) by trophoblasts. The genetic and molecular basis of endovascular invasion 
remains poorly defined, however, and whether trophoblasts utilize specialized endothelial proteins 
in an analogous manner to create vascular channels remains untested. Vascular endothelial (VE-)
cadherin is a homotypic adhesion protein that is expressed selectively by ECs in which it enables 
formation of tight vessels and regulation of EC junctions. VE-cadherin is also expressed in invasive 
trophoblasts and is a prime candidate for a molecular mechanism of endovascular invasion by those 
cells. Here, we show that VE-cadherin is required for trophoblast migration and endovascular inva-
sion into the maternal decidua in the mouse. VE-cadherin deficiency results in loss of spiral artery 
remodeling that leads to decreased flow of maternal blood into the placenta, fetal growth restric-
tion, and death. These studies identify a non-endothelial role for VE-cadherin in trophoblasts during 
placental development and suggest that endothelial proteins may play functionally unique roles in 
trophoblasts that do not simply mimic those in ECs.

Editor's evaluation
Understanding molecular and cellular pathways for endovascular invasion and pathogenesis of 
preeclampsia are important topics for current vascular biology and Ob/Gyn biology, making this 
study timely and important. It shows for the first time a causal link for the need of VE-cadherin on 
trophoblasts in vivo for the invasion of these cells into the decidua and for their role in vascular 
remodeling. The conclusions of this paper are well supported by data. It may provide a novel avenue 
for the prevention or treatment of preeclampsia.

Introduction
During placental development in mice and humans, fetal trophoblasts invade the maternal decidua 
by a process known as endovascular invasion to remodel and connect to maternal spiral arteries (SAs) 
(Velicky et al., 2016; Soares et al., 2014; Hu and Cross, 2011). This connection allows the flow of 
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maternal blood through trophoblast-lined sinuses characteristic of hemochorial placentation (Soares 
et al., 2018; Rai and Cross, 2014). Shallow trophoblast invasion, deficient SA remodeling, and poor 
remodeling of the maternal decidua are features of placental dysfunction such as preeclampsia, a 
hypertensive condition of pregnancy that can lead to maternal and fetal complications (Lyall et al., 
2013; Roberts and Escudero, 2012). Despite the broad and clinically significant impacts of placental 
dysfunction, the mechanisms controlling trophoblast endovascular invasion and SA remodeling remain 
poorly defined in vivo.

Invasive trophoblasts are believed to adopt an endothelial-like state by expressing endothelial 
specific genes (Nelson et al., 2016; Zhou et al., 1997b; Govindasamy et al., 2021), a process that 
has also been termed ‘vascular mimicry’ (reviewed in Rai and Cross, 2014). Invasive trophoblasts in 
human and mouse placentas express vascular endothelial (VE)-cadherin (gene name Cdh5) during 
remodeling of SAs (Zhou et al., 1997b; Govindasamy et al., 2021; Zhou et al., 1997a). Invasive 
trophoblasts in preeclamptic placentas lack VE-cadherin (Zhou et al., 1997a), and loss of VE-cadherin 
reduces trophoblast invasion in vitro (Cheng et al., 2013). These studies suggest a functional role 
for VE-cadherin in endovascular invasion and vessel formation. VE-cadherin is a well-studied cell-
cell adhesion protein in the vascular endothelium where it regulates vascular integrity and growth 
and endothelial barrier function (Corada et al., 1999; Crosby et al., 2005; Carmeliet et al., 1999). 
In vitro studies have suggested that VE-cadherin may regulate trophoblast-endothelial interactions 
(Bulla et al., 2005), but the requirement for VE-cadherin in trophoblasts during placental develop-
ment in vivo remains unknown.

In the present study, we functionally tested the role of VE-cadherin in trophoblasts during placental 
development in mice. We find that conditional deletion of VE-cadherin from trophoblasts disrupts 
trophoblast invasion into the decidua and SA remodeling, resulting in placental insufficiency and 
fetal growth restriction. We show that VE-cadherin is important for trophoblasts to interact with 
and displace SA endothelium. Additionally, trophoblast invasion is important for triggering multiple 
changes in the decidual extracellular matrix (ECM) and immune cell microenvironment. These studies 
identify a molecular mechanism by which fetal trophoblasts use VE-cadherin to invade and remodel 
the maternal environment for successful pregnancy that is relevant to preeclampsia pathogenesis. 
They also provide a first functional test of the concept of trophoblasts utilizing endothelial programs 
during endovascular invasion in vivo, and suggest that canonical endothelial proteins may be used 
by vascular trophoblasts in the placenta in ways that are specific for their function and do not merely 
mimic endothelial cell (EC) use.

Results
Trophoblast-specific deletion of VE-cadherin restricts placental and 
fetal growth and causes embryonic lethality
To understand the role of VE-cadherin in trophoblasts, we generated CYP19A1(Tg)Cre; Cdh5fl/fl (‘Cdh5 
knockout’) placentas and mice in which VE-cadherin (encoded by Cdh5) is deleted specifically in 
fetal trophoblasts. Immunostaining for VE-cadherin and the trophoblast marker Cytokeratin 8 (CK8) 

Table 1. Decreased survival of CYP19A1(Tg)Cre; Cdh5fl/fl mutants in late gestation.
Cdh5fl/fl male mice were crossed with CYP19A1(Tg)Cre; Cdh5fl/+ females to generate litters with mixed 
genotypes. The expected percentage is listed under the genotype label. The observed number of 
each genotype is shown with the corresponding percentage given in parentheses. P-values were 
calculated using Fisher’s exact test at stages E10.5-12.5 (pooled), E14.5-16.5 (pooled), and P21. E 
designates embryonic day and P designates postnatal day.

CYP19A1(Tg)Cre; 
Cdh5fl/fl (25%)

CYP19A1(Tg)Cre; 
Cdh5fl/+ (25%)

Cdh5fl/fl 
(25%)

Cdh5fl/+ 
(25%)

Total 
(100%)

Fisher Exact 
Test

E10.5-E12.5 13* (26%) 13 (26%) 12 (24%) 12 (24%) 50 (100%) P=1.0000

E14.5-E16.5 1 (2.9%) 13 (38.2%) 12 (35.3%) 8 (23.5%) 34 (100%) P=0.0033

P21 1 (2.2%) 11 (24.4%) 15 (33.3%) 18 (40.0%) 45 (100%) P=0.0333

*One embryo at E12.5 was dead.

https://doi.org/10.7554/eLife.77241
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demonstrated efficient deletion of VE-cadherin in trophoblasts but not ECs in the Cdh5 knockout 
placenta (Figure 1—figure supplement 1A, B). Cdh5 knockout embryos were present at the expected 
Mendelian ratio at E10.5–12.5 (Table 1, p = 1.0000). However, there was an almost complete loss of 
trophoblast Cdh5 knockout embryos at E14.5–16.5 and postnatal day 21 (Table 1, p < 0.05 and p 
< 0.005, respectively). Examination of placentas at E12.5 revealed that trophoblast Cdh5 knockout 
placentas were smaller and paler than those of control littermates in the same uterus (Figure 1A–D). 
Cdh5 knockout embryos exhibited marked fetal growth restriction and variable degrees of hemor-
rhage at E12.5 (green arrowheads, Figure 1E–H). No differences in weights were observed between 
Cre-negative (Cdh5fl/+ or Cdh5fl/fl) and Cre-positive heterozygous (CYP19A1(Tg)Cre; Cdh5fl/+) placentas 
and embryos (Figure 1—figure supplement 1C, D). Histological and immunofluorescence analysis 
of E12.5 knockout embryos showed growth defects in numerous organs, including the heart, brain, 
and liver (Figure  1—figure supplement 2A-D). Immunofluorescence staining for VE-cadherin in 
CYP19A1(Tg)Cre; Cdh5fl/fl embryos show that VE-cadherin is retained in the embryonic vasculature of 
affected organs, including the brain, heart, liver, lungs, and thorax (Figure 1—figure supplement 
3A-D). These data demonstrate that trophoblast-specific loss of VE-cadherin confers fetal growth 
restriction and lethality. Importantly, since CYP19A1(Tg)Cre activity is present only in placental tropho-
blasts (Wenzel and Leone, 2007; López-Tello et al., 2019), these embryonic defects are secondary 
to placental defects.

Loss of VE-cadherin disrupts trophoblast endovascular invasion but not 
formation of the fetal vasculature
To characterize the placental defects conferred by trophoblast loss of VE-cadherin, we performed 
histological staining with hematoxylin and eosin (H&E) and immunofluorescence staining for CK8 
(trophoblasts), Endomucin (endothelial cells), and TER119 (erythrocytes) on serial control and Cdh5 
knockout placenta sections (Figure 1I–L). H&E and immunofluorescence staining both showed abun-
dant trophoblasts, marked by CK8 positivity, surrounding Endomucin+ SAs within the decidua in 
control placentas (red arrowheads, Figure 1J and J’). Notably, trophoblasts surrounding maternal SAs 
were absent in knockout placentas (Figure 1L and L’), and quantification of number of trophoblasts 
and invasion depth into the decidua showed fewer and shallower invasion of trophoblasts overall 
(decidua, Figure 1M and N).

The findings described above suggested that Cdh5 knockout placentas were less able to carry 
maternal blood to nourish the growing embryo. Fetal and maternal red blood cells (RBCs) can be 
differentiated by the presence of nuclei in fetal RBCs. The labyrinth in knockout placentas had 
fewer enucleated TER119+ RBCs, indicating less maternal blood and consistent with paler placentas 
observed by gross examination (white arrowheads, Figure 2J” vs. L”). To determine whether loss 
of VE-cadherin affects the fetal placental vasculature, we quantified Endomucin+ vascular area in the 
labyrinth. We detected no differences in Endomucin+ staining, demonstrating that loss of VE-cadherin 
from trophoblasts does not disrupt formation of the fetal placental capillary plexus (Figure 1J, L and 
O). These findings suggest that VE-cadherin is important for trophoblast migration and for the associ-
ation with SAs required to channel maternal blood into the placenta.

Loss of trophoblast VE-cadherin blocks displacement of SA ECs and SA 
remodeling
A critical early step in establishing maternal circulation to the placenta is trophoblast invasion of the 
decidua and its SAs. The observation that there were fewer VE-cadherin-deficient trophoblasts adja-
cent to SAs and decreased maternal blood within the labyrinth suggested that trophoblast VE-cad-
herin may play a requisite role in SA remodeling. Since loss of vascular smooth muscle is a key step 
in SA remodeling, we stained control and knockout placentas for alpha-smooth muscle actin (αSMA). 
SAs in Cdh5 knockout placentas exhibited persistent vascular smooth muscle coverage and reduced 
SA diameter compared to control placentas (white arrowheads, Figure 2A–C). These studies reveal 
that loss of trophoblast VE-cadherin disrupts SA remodeling, which likely contributes to reduced 
maternal blood within the placenta.

During the process of SA remodeling, invasive trophoblasts displace the endothelial layer of SAs 
to direct maternal blood flow through trophoblast-lined sinuses into the labyrinth. In vitro studies 
have suggested that trophoblast expression of VE-cadherin may enable these cells to adhere to SA 

https://doi.org/10.7554/eLife.77241
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Figure 1. Deletion of VE-cadherin in trophoblasts disrupts cell migration resulting in placental and fetal growth restriction. (A–D) Gross examination 
and quantification of E12.5 Control and CYP19A1(Tg)Cre; Cdh5fl/fl placentas and weights. Control n = 11, CYP19A1(Tg)Cre; Cdh5fl/fl n = 5. (E–H) Gross 
examination and quantification of E12.5 Control and CYP19A1(Tg)Cre; Cdh5fl/fl embryos and weights. Control n = 11, CYP19A1(Tg)Cre; Cdh5fl/fl n = 5. 
Green arrowheads point to areas of hemorrhage. (I–L) Hematoxylin and eosin (H&E) staining and immunofluorescence staining for Endomucin (green), 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.77241
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ECs (Bulla et al., 2005). The finding that trophoblast Cdh5 knockout placentas fail to remodel SAs 
suggested that there may be defects in trophoblast-SA interactions. To address the role of VE-cad-
herin at the site of trophoblast-SA connection, we first sought to image the site at which trophoblasts 
connect to SAs. Close inspection of this region in control placentas revealed a clear demarcation from 
luminal Endomucin+ SA endothelium to luminal CK8+ trophoblasts (white arrowheads, Figure 2D and 
E). In contrast, we found that SAs in VE-cadherin knockout placentas maintained a layer of intact 
ECs despite being surrounded by trophoblasts (white arrowheads, Figure 2D and E). Quantification 
of the percent of trophoblasts immediately in contact with the lumen demonstrated that knockout 
placentas had a lower percentage of trophoblasts and higher percentage of ECs covering the lumen 
compared to controls (Figure 2F). To better appreciate differences in placental architecture, we addi-
tionally performed whole-mount immunofluorescence of thick placental sections. Consistent with our 
data above, Cdh5 knockout placentas maintained a layer of ECs in SAs surrounded by trophoblasts 
and had smaller lumens (Figure 2G). Fewer maternal RBCs were seen in trophoblast-lined sinuses in 
the labyrinth of Cdh5 knockout placentas, but we found no differences in the fetal capillary plexus 
(Figure 2H). Together, these data suggest that VE-cadherin is required for trophoblast displacement 
of SA ECs during endovascular invasion for efficient maternal-fetal circulatory connection.

Defective trophoblast invasion and SA remodeling cause placental 
insufficiency and fetal distress
The finding that Cdh5 knockout placentas have less maternal blood and are associated with mid-
gestation embryonic lethality suggested that failed SA remodeling restricts maternal blood flow 
into the placenta, thus causing fetal demise. Human placental insufficiency is typically assessed with 
ultrasound measurements of placental hemodynamics and fetal heart rate, a readout for overall fetal 
health. We therefore utilized Doppler ultrasound to measure peak systolic (PSV) and end diastolic 
velocities (EDV) in the umbilical arteries (Figure 3A) and calculated resistance and pulsatility indices 
(RI and PI) and fetal heart rates to assess placental vascular resistance and fetal wellbeing in individual 
concepti. Elevated RI and PI values are clinical indicators of placental insufficiency in humans and are 
associated with conditions such as preeclampsia and fetal growth restriction. Fetal heart rate is used 
as a clinical parameter for fetal wellbeing, with fetal bradycardia indicative of fetal distress. While 
control embryos had RIs, PIs, and fetal heart rates within range of previously published values (Galaz 
et al., 2020), we found that trophoblast Cdh5 knockout embryos exhibited significantly increased RIs 
and PIs (Figure 3B–D) and significantly reduced fetal heart rates (Figure 3B and E), consistent with 
placental insufficiency and fetal distress. Knockout embryos also exhibited reversal of end-diastolic 
flow as shown by the directional change of velocity from negative (peak systole) to positive (end of 

CK8 (red), and TER119 (gray) of E12.5 Control (I, J) and CYP19A1(Tg)Cre; Cdh5fl/fl (K, L) serial placenta sections. Dotted lines demarcate the different 
placental regions. Red arrowheads indicate trophoblasts. Green arrowheads indicate spiral arteries (SA). White arrowheads indicate maternal red blood 
cells (RBCs). Note fewer non-nucleated, maternal TER119+ cells in the labyrinth region of CYP19A1(Tg)Cre; Cdh5fl/fl placentas. Boxes on the left correlate 
with magnified images on the right, and boxes in H&E and immunofluorescence images are of the same region. Scale bars = 500 μm. Dec (decidua), 
JZ (junctional zone), Lab (labyrinth). (M–O) Quantification of number of trophoblasts in the decidua (M), trophoblast invasion depth (N), and percent 
labyrinth Endomucin+ area (O). Control n = 11, CYP19A1(Tg)Cre; Cdh5fl/fl n = 5. Statistical analysis was performed using two-tailed, unpaired Welch’s t-test. 
Data are shown as means ± SD.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Excel file containing quantification for embryo weights, placenta weights, trophoblast density, trophoblast migration distance, and fetal 
labyrinth vasculature in Figure 1.

Figure supplement 1. Deletion of VE-cadherin in CYP19A1(Tg)Cre; Cdh5fl/fl placentas.

Figure supplement 1—source data 1. Excel file containing quantification for VE-cadherin expression in trophoblasts, embryo weights, and placenta 
weights in Figure 1—figure supplement 1.

Figure supplement 2. Loss of trophoblast VE-cadherin causes defects in brain, liver, and heart development.

Figure supplement 2—source data 1. Excel file containing quantification for liver area and myocardial thickness in Figure 1—figure supplement 2.

Figure supplement 3. VE-cadherin expression is retained in the vasculature of affected organs in CYP19A1(Tg)Cre; Cdh5fl/fl embryos.

Figure supplement 3—source data 1. Excel file containing quantification for VE-cadherin expression in various organs in Figure 1—figure 
supplement 3.

Figure 1 continued

https://doi.org/10.7554/eLife.77241
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Figure 2. VE-cadherin is required in trophoblasts to remodel spiral arteries (SAs) and to displace SA endothelium. (A) Immunofluorescence staining 
of E12.5 Control and CYP19A1(Tg)Cre; Cdh5fl/fl placentas for Endomucin (green) and alpha-smooth muscle actin (αSMA) (red). White arrowheads 
indicate αSMA+ cells. Scale bars = 25 μm. (B, C) Quantification of αSMA+ cells per SA and SA diameter. Control n = 11, CYP19A1(Tg)Cre; Cdh5fl/fl n = 
5. (D) Immunofluorescence staining of E12.5 Control and CYP19A1(Tg)Cre; Cdh5fl/fl placentas for Endomucin (green) and CK8 (red). White arrowheads 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77241
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diastole) (Figure 3B), indicative of high vascular resistance. These hemodynamic data demonstrate 
placental insufficiency that contributes to fetal growth restriction and fetal demise following loss of 
trophoblast invasion and SA remodeling.

Loss of trophoblast VE-cadherin alters decidual ECM remodeling and 
uterine natural killer cell clearance
Since trophoblast invasion occurs in conjunction with decidual changes, we hypothesized that failed 
trophoblast migration might affect other placental processes involved in that process. To identify such 
effects, we performed bulk RNA-sequencing (RNA-seq) on deciduas of E12.5 knockout and control 
placentas (Figure  4A). Analysis of the top 100 differentially expressed genes showed that genes 
highly expressed in invasive trophoblasts (Prl4a1, Pla2g4f, Pla2g4d, Nos1, Ncam1, Aldh1a3, Ascl2, 
Car2, Tfap2c) (Nelson et al., 2016; Müller et al., 1999; Simmons et al., 2008; Marsh and Blelloch, 
2020; Outhwaite et al., 2015; Varberg et al., 2021; Bogutz et al., 2018; Sharma et al., 2016) were 
downregulated in knockout placentas (Figure 4B), consistent with reduced trophoblasts present in 
the decidua. Genes previously associated with trophoblast invasion (Gabrp, Mmp15) (Lu et al., 2016; 
Majali-Martinez et al., 2020) and differentiation (Cdx2) (Ralston and Rossant, 2008) were also differ-
entially expressed, as were multiple genes related to defective decidualization (Ccl28, Slc27a2, Klk1, 
Csf1, Tmem132e, Ermap, Pappa2, Tmc5) (Woods et al., 2017; Goolam et al., 2020; Sun et al., 2013; 
Figure 4B). Thus RNA-seq data are consistent with defects in trophoblast invasion and suggest the 
presence of non-cell autonomous effects in the decidua that may contribute to a preeclamptic-like 
phenotype.

We next analyzed gene ontology (GO) related to cellular components and biological processes. 
We found that four of the top ten upregulated cellular component GO terms in knockout placentas 
were related to the ECM (Figure 4C). Many of the significantly upregulated genes were secreted 
ECM proteins (Vwa2, Ntn1, Fbln1) (Figure 4D). Several extracellular proteases previously linked to 
abnormal human pregnancies were also differentially expressed. These included increased expres-
sion of Adamts9 (associated with preterm birth; Li et al., 2020), reduced Adamts13 (associated with 
preeclampsia; Aref and Goda, 2013; Stepanian et al., 2011), and reduced Mmp15 (associated with 
reduced trophoblast invasion; Majali-Martinez et  al., 2020). GO analysis of biological processes 
revealed that seven of the top ten upregulated GO terms were related to the immune system and 
immune activation, specifically the innate immune response (Figure  4E). Many of the significantly 
upregulated genes were involved in the complement factor pathway (C3, Cfb, Cfh) (Figure 4F). Thus 
GO analysis suggests that defects in ECM remodeling and changes in immune cells may contribute to 
the placental defects associated with reduced trophoblast invasion of the decidua.

We next aimed to directly assess the impact of trophoblast-specific deletion of VE-cadherin on (1) 
ECM remodeling and (2) immune cells. Our RNA-seq data showed a >2.5-fold decrease in Mmp15 
(Figure 4D and Figure 4—figure supplement 1A). MMP15 (also known as MT2-MMP) is a membrane 
metalloprotease that is expressed in invasive trophoblasts in first trimester human placentas that 
promotes trophoblast invasion and degrades laminin as gestation progresses (Majali-Martinez et al., 
2020; Pollheimer et al., 2014; Majali-Martinez et al., 2016; Turpeenniemi-Hujanen et al., 1995). 
Examination of MMP15 expression and its target laminin using immunofluorescence revealed increased 

indicate Endomucin+ SA endothelial cells (ECs). Positive signal in small, rounded cells in the lumen is the result of erythrocyte autofluorescence. 
(E) Schematic demonstrating differences in trophoblast and SA EC contact with the vessel lumen. Scale bars = 25 μm. (F) Quantification of the 
percent trophoblast-lumen contact, which was calculated by measuring the circumference of the vessel lumen and then measuring the length of 
CK8+ trophoblasts in contact with the lumen. Each point represents the average of at least three SAs from an individual placenta. Control n = 10, 
CYP19A1(Tg)Cre; Cdh5fl/fl n = 5. (G, H) Maximum intensity projections of whole-mount immunofluorescence of the decidua (G) and labyrinth (H) from 
200 μm thick placenta sections stained for Endomucin (green), TER119 (red), and CK8 (magenta). Double-headed arrows indicate differences in lumen 
size. White arrowheads indicate Endomucin+ SA ECs. Red arrowheads indicate maternal red blood cells within the trophoblast-lined vessels. Yellow 
arrowheads indicate fetal red blood cells within fetal capillaries. Dotted white line demarcates the decidua from the junctional zone. Scale bars = 50 μm. 
Statistical analysis was performed using two-tailed, unpaired Welch’s t-test. Data are shown as means ± SD.

The online version of this article includes the following source data for figure 2:

Source data 1. Excel file containing quantification for smooth muscle cells per spiral artery, spiral artery diameter, and trophoblast-endothelial cell 
displacement in Figure 2.

Figure 2 continued

https://doi.org/10.7554/eLife.77241


 Short report﻿﻿﻿﻿﻿﻿ Developmental Biology | Medicine

Sung et al. eLife 2022;11:e77241. DOI: https://doi.org/10.7554/eLife.77241 � 8 of 17

laminin in the decidual stroma of Cdh5 knockout placentas but no differences in MMP15 expression 
in trophoblasts (Figure  4—figure supplement 1B, C). Additionally, we evaluated vinculin, a focal 
adhesion protein that regulates cell-matrix adhesion and associates with VE-cadherin (Huveneers 
et al., 2012). Vinculin is required for cell polarization and invasion (Thievessen et al., 2015; Mierke 

Figure 3. Spiral artery remodeling defects result in placental insufficiency and fetal distress. (A) Schematic of workflow for Doppler ultrasound of 
pregnant dams. The embryo, UA/UV (yellow arrow), and placenta (dotted white outline) are labeled. (B) Representative umbilical artery Doppler 
waveforms from two Control and two CYP19A1(Tg)Cre; Cdh5fl/fl placentas. The placenta is outlined in a dotted white line. Reversal of end-diastolic flow is 
evident by the change of directional velocity at the end of diastole compared to peak systole (i.e., negative to positive velocity). (C–E) Quantification of 
resistance index (RI), pulsatility index (PI), and fetal heart rate. PSV (peak systolic velocity), EDV (end diastolic velocity), UA/UV (umbilical artery/umbilical 
vein). Note that red/blue colors in color Doppler images do not indicate UA/UV, which can only be differentiated based on the Doppler waveform. 
Control n = 10, CYP19A1(Tg)Cre; Cdh5fl/fl n = 4. Statistical analysis was performed using two-tailed, unpaired Welch’s t-test. Data are shown as means ± 
SD.

The online version of this article includes the following source data for figure 3:

Source data 1. Excel file containing quantification for ultrasound studies (resistance index, pulsatility index, fetal heart rate) in Figure 3.

https://doi.org/10.7554/eLife.77241
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Figure 4. RNA-sequencing reveals defects in the decidual extracellular matrix and immune microenvironment. (A) Schematic of bulk RNA-sequencing 
(RNA-seq) workflow on deciduas from Control (WT) and CYP19A1(Tg)Cre; Cdh5fl/fl (KO) E12.5 placentas. (B) Heatmap of the top 100 differentially 
regulated genes shown by z-score (n = 3 biological replicates). (C) Gene ontology (GO) term analysis of top 10 upregulated cellular components in 
CYP19A1(Tg)Cre; Cdh5fl/fl placentas. Purple bars indicate GO terms related to the extracellular matrix. (D) Heatmap of significantly differentially expressed 
genes from GO terms related to the extracellular matrix. (E) GO term analysis of top 10 upregulate biological processes in CYP19A1(Tg)Cre; Cdh5fl/fl 
placentas. Red bars indicate GO terms related to immune processes. (F) Heatmap of significantly differentially expressed genes from GO terms related 
to immune processes.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Disrupting trophoblast migration results in decidual extracellular matrix defects.

Figure supplement 1—source data 1. Excel file containing quantification for Mmp15 gene expression, laminin expression in the decidua, and vinculin 
expression in trophoblasts in Figure 4—figure supplement 1.

Figure supplement 2. Persistent uterine natural killer (uNK) cells at the junctional zone-decidual interface of Cdh5 knockout placentas.

Figure supplement 2—source data 1. Excel file containing quantification for uterine natural killer cell density and apoptotic cell density in Figure 4—
figure supplement 2.

https://doi.org/10.7554/eLife.77241
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et al., 2010), and vinculin levels were indeed decreased in invasive trophoblasts of Cdh5 knockout 
placentas (Figure 4—figure supplement 1D). Together, these results suggest that VE-cadherin cell 
autonomously controls focal adhesions but not MMP activity and that persistent laminin in the decidua 
of Cdh5 knockout placentas is likely a consequence of fewer MMP15-expressing trophoblasts.

Since uterine natural killer (uNK) cells are the most abundant innate immune cell in the decidua, we 
stained placenta sections with the uNK cell-specific marker DBA. We found markedly increased uNK 
cells in knockout placentas compared to controls (Figure 4—figure supplement 2A, B). In order to 
determine the cause of increased uNK cells, we stained for the apoptosis marker cleaved caspase-3 
and found numerous apoptotic uNK cells in control placentas; however almost no uNK cells in 
knockout placentas were positive for cleaved caspase-3 (Figure 4—figure supplement 2A, C). Lastly, 
we also found multiple significantly upregulated NK cell-related GO terms reflecting increased NK cell 
activity (Figure 4—figure supplement 2D). Together, these results indicate that loss of trophoblast 
invasion has non-cell autonomous effects that impact that maternal microenvironment of the placenta.

Discussion
The invasion of the maternal decidua by trophoblasts and their fusion to maternal SAs is a critical step 
in establishing placental circulation. However, the mechanisms by which trophoblast migration and 
endovascular invasion are accomplished remain largely unknown. Trophoblasts express endothelial 
molecular and genetic programs during invasion of SAs (Soares et al., 2018). However, the function 
of specific endothelial genes in trophoblasts has not been functionally assessed in vivo, and this model 
remains untested. In blood and lymphatic ECs, VE-cadherin is used to maintain vascular integrity 
(Corada et al., 1999; Crosby et al., 2005; Carmeliet et al., 1999), restrict endothelial migration 
(Crosby et al., 2005; Hägerling et al., 2018), and regulate angiogenic growth (Gaengel et al., 2012). 
While it is an attractive concept that trophoblasts may form vascular sinuses using similar genetic 
programs, the findings that loss of VE-cadherin decreases trophoblast cell migration and prevents 
SA remodeling suggest that trophoblasts utilize VE-cadherin in a manner distinct from ECs. Our work 
characterizing mechanisms of endovascular invasion in the placenta suggests that the use of endo-
thelial proteins by trophoblasts may be relatively specific to their role in the placenta and not a simple 
reflection of vascular EC function.

VE-cadherin is primarily an adhesive receptor that acts in a homotypic manner to establish strong 
EC-cell junctions. Evidently, VE-cadherin is required in trophoblasts to invade the maternal decidua 
and remodel the maternal microenvironment. Our findings that loss of VE-cadherin decreases vinculin 
but not MMP15 in trophoblasts suggest that VE-cadherin mainly regulates cell invasion and that 
ECM remodeling defects are likely secondary consequences of decreased trophoblast invasion. 
A second interesting aspect of Cdh5 knockout placentas is persistent innate immune cells within 
the decidua. uNK cells (called decidual NK cells or dNK cells in humans) are present in the mouse 
decidua at E6.5, prior to formation and invasion of trophoblasts, and decline in number beginning 
at E12.5 (Rajagopalan, 2014; Sojka et al., 2018). uNK cells also secrete factors such as VEGF-C that 
promote SA remodeling (Pawlak et al., 2019). Significantly, increased dNK cells is also characteristic 
of preeclamptic placentas (Zhang et al., 2019), similar to our mouse model. Our findings raise the 
possibility that trophoblast migration into the decidua may coordinate decidual matrix and immune 
changes that promote SA remodeling.

In humans, defective SA remodeling and shallow trophoblast invasion are hallmarks of preeclampsia. 
Preeclampsia is a complex and heterogeneous disease with maternal and fetal contributions to its 
pathogenesis, and many in vitro models fail to fully recapitulate many aspects of its pathophysi-
ology. Most rodent models of preeclampsia utilize maternal genetic or pharmacological perturba-
tions (Gatford et al., 2020; Marshall et al., 2018), and there have been few in vivo models in which 
preeclamptic features are recapitulated with fetal modulation of trophoblasts. Previous studies of 
human placentas showed that invasive trophoblasts in severely preeclamptic placentas exhibit reduced 
expression of VE-cadherin (Zhou et al., 1997a) however whether this is a cause or consequence of 
placental dysfunction has been unclear. Our mouse model utilizing trophoblast-specific knockout of 
VE-cadherin exhibits many histopathological and clinical features of preeclampsia and suggests that 
loss of VE-cadherin in trophoblasts may be a primary contributor to preeclampsia pathogenesis. Addi-
tionally, we observe secondary defects in organogenesis and vascular development in the embryo 
(Perez-Garcia et al., 2018), which has also been linked to placentation defects. Interestingly, VEGF-A 

https://doi.org/10.7554/eLife.77241


 Short report﻿﻿﻿﻿﻿﻿ Developmental Biology | Medicine

Sung et al. eLife 2022;11:e77241. DOI: https://doi.org/10.7554/eLife.77241 � 11 of 17

is known to induce VE-cadherin expression in cultured trophoblasts (Chang et al., 2005) and may 
therefore be a useful strategy in treating preeclampsia. Trophoblast-specific loss of VE-cadherin may 
serve as a useful model for studying fetal contributions to preeclampsia.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus musculcus) CYP19A1(Tg)-Cre
Wenzel and Leone, 
2007

Genetic reagent (Mus musculcus) Cdh5 flox Yang et al., 2019

Antibody Anti-Endomucin (goat polyclonal) R&D AF4666 IF(1:400)

Antibody Anti-Endomucin (rat monoclonal) Abcam ab106100 IF(1:300)

Antibody Anti-TER119 (rat monoclonal) Abcam ab91113 IF(1:300)

Antibody Anti-VE-cadherin (goat polycloncal) R&D AF1002 IF(1:200)

Antibody Anti-CK8 (rabbit monoclonal) Abcam ab53280 IF(1:300)

Antibody Anti-CK8 (rat monoclonal) DSHB TROMA-1 IF(1:400)

Antibody Anti-αSMA-Cy3 (mouse monoclonal) Sigma C6198 IF(1:300)

Antibody
Anti-Cleaved Caspase-3 (rabbit 
polyclonal) Millipore Sigma AB3623 IF(1:100)

Antibody Anti-MMP15 (rabbit polyclonal) Thermo Fisher Scientific PA5-13184 IF(1:200)

Antibody Anti-Laminin (rabbit polyclonal) Sigma L9393 IF(1:200)

Antibody Anti-Vimentin (goat polyclonal) R&D AF2105 IF(1:300)

Antibody Anti-Vinculin (mouse monoclonal) Sigma V9131 IF(1:200)

Commercial assay or kit Direct-zol RNA Miniprep Kits Zymo Research R2053

Software, algorithm ImageJ NIH, Bethesda, MD, USA RRID:SCR_003070

Software, algorithm GraphPad Prism GraphPad RRID:SCR_002798

Software, algorithm Picard v2.17.11 Picard RRID:SCR_006525

Other DBA-Biotin Vector Labs B-1035 (1:500)

Generation of mutant mice
CYP19A1(Tg)-Cre mice have been previously described (Wenzel and Leone, 2007) in which the 
transgene relies on Cre expression under a 501 bp region with the first exon of human CYP19A1 
containing regulatory elements for trophoblast-specific expression, as CYP19A1 is not endogenously 
expressed in trophoblasts. VE-cadherin (Cdh5) floxed mice have been previously described (Yang 
et al., 2019) and were generated with LoxP sites flanking exons 3 and 4. Mice were bred according 
to standard protocols and maintained on a mixed background. Male Cdh5fl/fl mice were mated to 
female CYP19A1(Tg)Cre; Cdh5fl/+ mice  due to the influence of parental inheritance on Cre expres-
sion, with maternal inheritance providing the most robust and consistent expression (Wenzel and 
Leone, 2007). Mating pairs were set up in the afternoon and vaginal plugs checked in the morning. 
Presence of a vaginal plug indicated embryonic day (E)0.5. Cre-negative (Cdh5fl/+ and Cdh5fl/fl) and 
Cre-positive heterozygous (CYP19A1(Tg)Cre; Cdh5fl/+) littermates were used as controls. All procedures 
were conducted using an approved animal protocol (806811) in accordance with the University of 
Pennsylvania Institutional Animal Care and Use Committee.

Intrauterine Doppler ultrasound
In utero Doppler ultrasound was performed by a trained technician using the VEVO2100 Ultrasound 
System equipped with the MS-400 transducer (30 MHz). E12.5 pregnant mice were lightly anesthe-
tized using 2% isoflurane. Hair was removed from the abdomen using chemical hair remover (Nair), 
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and the animals were placed on a warming pad. Maternal heart rate and temperature were continu-
ously monitored and consistently within 400–500 bpm and 37°C. Ultrasound gel was applied to the 
abdomen and the transducer applied to visualize embryos and placentas using the maternal bladder 
as an anatomical landmark. Color Doppler was used to visualize the umbilical vessels, and pulse wave 
(angle of insonation <60°) measurements were made at the point where the umbilical artery inserts 
into the placenta. From the Doppler waveforms, PSV and EDV were measured and used to calculate 
resistance index [RI = 1 – PSV/EDV] and pulsatility index [PI = (PSV – EDV)/mean velocity, where 
mean velocity = (PSV +EDV)/2]. Heart rate was calculated as beats per minute by dividing 60 s by the 
systolic + diastolic time.

Histology and immunofluorescence staining and analysis
Whole mouse embryos or placentas were collected and fixed in 4% paraformaldehyde (PFA) over-
night at 4°C prior to dehydration in alcohol and paraffin embedding. Tissue sections underwent to 
dewaxing and rehydration through xylene and ethanol treatment and were then subject to H&E 
staining or processed for immunofluorescence. For immunodetection, 10 mM citrate buffer (pH 6) 
was used for antigen retrieval, and sections were blocked with 10% donkey serum in 1% BSA prior to 
primary antibody treatment overnight at 4°C. A list of antibodies can be found below. Fluorescence-
conjugated Alexa Fluor secondary antibodies were used (1:500, Invitrogen) according to the primary 
antibody species and counterstained with DAPI (1:1000). Sections or tissues were mounted on slides 
with ProLong Gold Antifade reagent. Signals were detected and images collected using a Zeiss LSM 
880 confocal microscope and Zeiss Axio Observer 7 widefield microscope. Images were visualized 
using ImageJ/FIJI software (NIH).

Whole-mount immunofluorescence
Whole mouse placentas were collected and fixed in 4% PFA overnight at 4°C and then placed in 1× 
PBS. Placentas were embedded in 3% low-melt agarose and cut into 200 μm thick sections using a 
vibratome. Sections were permeabilized with 0.2% Triton X-100 and blocked with 10% donkey serum 
in 1% BSA prior to primary antibody treatment overnight at 4°C. Fluorescence-conjugated Alexa 
Fluor secondary antibodies were used (1:500, Invitrogen) according to the primary antibody species 
and counterstained with DAPI (1:1000). Sections were mounted on a glass slide in a silicone isolator 
and filled with ProLong Gold Antifade reagent. Signals were detected and images collected using a 
Zeiss Axio Observer 7 widefield microscope with the Apotome 3 attachment for optical sectioning. 
Raw images were deconvoluted using ZEN Blue. Maximum intensity projections were generated using 
ImageJ/FIJI software (NIH).

Quantification of immunofluorescence images
Number of CK8+ trophoblasts were manually counted and divided by total decidual area. Tropho-
blast invasion depth was measured as the distance the farthest CK8+ trophoblast was found in the 
decidua relative to the junctional zone. Percent labyrinth EC coverage was measured by quantifying 
Endomucin-positive area as a percentage of total labyrinth area. Number of αSMA+ smooth muscle 
cells were manually counted and divided by number of SAs. SA diameter was manually measured 
using only circular SAs, taking the average of the long- and short-axis diameters, and averaging 
at least five SAs per section per placenta. Trophoblast-endothelial displacement was quantified by 
measuring the circumference of the vessel lumen and then measuring the length of CK8+ trophoblasts 
in contact with the lumen. Percent displacement was calculated by dividing the trophoblast length by 
the lumen circumference. VE-cadherin deletion was quantified by measuring VE-cadherin+CK8+ area 
(determined by Colocalization Threshold plugin in FIJI) and calculating it as a percent of CK8+ area. 
The Colocalization Threshold plugin was also used to generate colocalization images in Figure 1—
figure supplement 3C. Laminin and vinculin mean fluorescence intensity was calculated by dividing 
total fluorescence intensity by area. All images were analyzed using ImageJ/FIJI software.

Bulk RNA-seq
Total RNA was extracted from E12.5 deciduas (n = 3 per genotype) using Direct-zol RNA miniprep kit 
(Zymo Research). Quality assessment, cDNA library synthesis, and sequencing using Illumina HiSeq 
with a 2 × 150 configuration were conducted through GeneWiz. Fastq files were assessed for quality 
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control using the FastQC program (v0.11.7). They were then aligned against the mouse reference 
genome (mm39) using the STAR aligner (v2.7.8a) (Dobin et al., 2013). Duplicate reads were flagged 
using the MarkDuplicates program from Picard tools (v2.17.11) (http://broadinstitute.github.io/​
picard/). Per gene read counts for Ensembl (GRCm39) gene annotations were computed using the R 
package Rsubread (Liao et al., 2019) and duplicate reads were removed. Gene counts were normal-
ized as counts per million (CPM) using the R package edgeR (Robinson et al., 2010) and genes with 
CPM < 1 in 25% of samples were filtered out. The data was transformed using the VOOM function 
from the limma R package (Law et al., 2014). Differential gene expression was performed as a paired 
analysis using limma. p-Values were adjusted for multiple comparisons using Benjamini-Hochberg 
procedure. Genes with adjusted p-values less than 0.05 and an absolute log2-fold change >1 were 
considered significantly differentially expressed genes. The RNA-seq data set has been deposited in 
the NCBI GEO under accession ID number GSE189408.

Statistical analysis
All data are reported as means with n ≥ 3 independent experiments or mice, and error bars represent 
standard deviation. Each data point in the figures represents one individual placental or embryo. The 
explicit number of samples is indicated in the figure legends. No explicit power analyses were used 
to predetermine sample size, and no randomization was used. No samples were excluded for anal-
ysis. Statistical significance was determined using Welch’s t-test. Differences between means were 
considered significant at p < 0.05. Significant differences in expected genotypes was calculated using 
two-tailed Fisher’s exact test and considered statistically significant at p < 0.05.
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