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Time- resolved parameterization of 
aperiodic and periodic brain activity
Luc Edward Wilson, Jason da Silva Castanheira, Sylvain Baillet*

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 
Montreal, Canada

Abstract Macroscopic neural dynamics comprise both aperiodic and periodic signal components. 
Recent advances in parameterizing neural power spectra offer practical tools for evaluating these 
features separately. Although neural signals vary dynamically and express non- stationarity in relation 
to ongoing behaviour and perception, current methods yield static spectral decompositions. Here, 
we introduce Spectral Parameterization Resolved in Time (SPRiNT) as a novel method for decom-
posing complex neural dynamics into periodic and aperiodic spectral elements in a time- resolved 
manner. First, we demonstrate, with naturalistic synthetic data, SPRiNT’s capacity to reliably recover 
time- varying spectral features. We emphasize SPRiNT’s specific strengths compared to other time- 
frequency parameterization approaches based on wavelets. Second, we use SPRiNT to illustrate 
how aperiodic spectral features fluctuate across time in empirical resting- state EEG data (n=178) 
and relate the observed changes in aperiodic parameters over time to participants’ demographics 
and behaviour. Lastly, we use SPRiNT to demonstrate how aperiodic dynamics relate to movement 
behaviour in intracranial recordings in rodents. We foresee SPRiNT responding to growing neuro-
scientific interests in the parameterization of time- varying neural power spectra and advancing the 
quantitation of complex neural dynamics at the natural time scales of behaviour.

Editor's evaluation
The paper addresses the highly timely question of how to quantify aperiodic and periodic neural 
activity. This was done by extending previous work by embracing time- resolved parametrization 
of both simulated, noninvasive EEG and intracranial data. The new approach is termed Spectral 
Parametrization Resolved in Time (SPRiNT) and the paper shows that the slope of aperiodic activity 
is linked with both behavior and age. The method thus demonstrates the importance of evaluating 
the state- dependence of aperiodic activity and dynamic properties of oscillatory components in a 
time- resolved manner, and we believe that this approach would be of great interest to researchers 
analyzing human electrophysiological data to address clinical and cognitive neuroscience questions.

Introduction
The brain constantly expresses a repertoire of complex dynamics related to behaviour in health and 
disease. Neural oscillations, for instance, are rhythmic (periodic) components of brain activity that 
emerge from a background of arrhythmic (aperiodic) fluctuations recorded with a range of electro-
physiological techniques at the mesoscopic scale (Buzsáki, 2006). Brain oscillations and their rhythmic 
dynamics have been causally linked to individual behaviour and cognition (Albouy et al., 2017) and 
shape brain responses to sensory stimulation (Samaha et al., 2020).

Current methods for measuring the time- varying properties of neural fluctuations include several 
time- frequency decomposition techniques such as Hilbert, wavelet, and short- time Fourier signal 
transforms (Bruns, 2004; Cohen, 2014), and more recently, empirical mode decompositions (Huang 
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et al., 1998) and time- delay embedded hidden Markov models (Quinn et al., 2018). Following spec-
tral decomposition, rhythmic activity within the empirical bands of electrophysiology manifests as 
peaks of signal power (Buzsáki and Watson, 2012; Cohen, 2014). However, time- resolved signal 
power decompositions (spectrograms) do not explicitly account for the presence of aperiodic signal 
components, which challenge both the detection and the interpretability of spectral peaks as genuine 
periodic signal elements (Donoghue et al., 2020). This is critical as aperiodic and periodic compo-
nents of neural activity represent distinct, although possibly interdependent physiological mecha-
nisms (Gao et al., 2017).

Aperiodic neural activity is characterized by a reciprocal distribution of power with frequency (1 /f), 
which can be parameterized with two scalars: exponent and offset. These parameters are physio-
logically meaningful: current constructs consider the offset as reflecting neuronal population spiking 
and the exponent as related to the integration of synaptic currents (Voytek and Knight, 2015) and 
reflecting the balance between excitatory (E) and inhibitory (I) currents (i.e., the larger the exponent, 
the stronger the inhibition; Chini et al., 2021; Gao et al., 2017; Waschke et al., 2021). Aperiodic 
neural activity is ubiquitous throughout the brain (He, 2014), and it differentiates healthy ageing 
(Cellier et al., 2021; Donoghue et al., 2020; Hill et al., 2022; Ostlund et al., 2022; Schaworonkow 
and Voytek, 2021; Voytek et al., 2015) and is investigated as a potential marker of neuropsychi-
atric conditions (Molina et al., 2020) and epilepsy (van Heumen et al., 2021). Though the study of 
aperiodic neural activity has recently advanced, unanswered questions remain about its functional 
relevance, which requires an expanded toolkit to track their evolution across time and the broadest 
possible expressions of behaviour.

One little studied aspect of aperiodic activity is its fluctuations, both spontaneously over time, and 
in association with task and mental states. Baseline normalization is a common approach to compen-
sate for aperiodic contributions to spectrograms (Cohen, 2014), with the underlying assumption, 
however, that characteristics of aperiodic activity (exponent and offset) remain unchanged throughout 
the data length—an assumption that is challenged by recent empirical data that demonstrated their 
meaningful temporal fluctuations (van Heumen et al., 2021; Waschke et al., 2021). Akin to the moti-
vations behind aperiodic/periodic spectral parameterization and signal decomposition techniques 
(Donoghue et  al., 2020; Wen and Liu, 2016), undetected temporal variations within the neural 
spectrogram may conflate fluctuations in aperiodic activity with modulations of periodic signals, 
hence distorting data interpretation (Donoghue et al., 2020). Recent methodological advances have 
contributed practical tools to decompose and parameterize the neural power spectrum (periodo-
gram) into aperiodic and periodic components (Donoghue et al., 2020; Wen and Liu, 2016; He, 
2014). One such practical tool (specparam) sequentially fits aperiodic and parametric components 
to the empirical neural power spectrum (Donoghue et al., 2020). The resulting model for the aperi-
odic component is represented with exponent and offset scalar parameters; periodic elements are 
modelled with a series of Gaussian- shape functions characterized with three scalar parameters (centre 
frequency, amplitude, and SD). Specparam accounts for static spectral representations and as such 
does not account for the non- stationary contents of neural time series.

We introduce SPRiNT (Spectral Parameterization Resolved in Time) as a novel approach to identify 
and model dynamic shifts in aperiodic and periodic brain activity, yielding a time- resolved param-
eterization of neurophysiological spectrograms. We validate the method with an extensive set of 
naturalistic simulations of neural data, with benchmark comparisons to parameterized wavelet signal 
decompositions. Using SPRiNT, we also show that aperiodic fluctuations of the spectrogram can be 
related to meaningful behavioural and demographic variables from human EEG resting- state data and 
electrophysiological recordings from free- moving rodents.

Results
SPRiNT consists of the following methodological steps. First, short- time Fourier transforms (STFTs) are 
derived from overlapping time windows that slide over data time series. Second, the resulting STFT 
coefficients are averaged over consecutive time windows to produce a smooth estimate of the power 
spectral density of the recorded data. Third, the resulting periodogram is parameterized into aperi-
odic and periodic components with specparam (see Methods). As the procedure is repeated over the 
entire length of the data, SPRiNT produces a time- resolved parameterization of the data’s spectro-
gram (Figure 1a). The resulting parameters are then compiled into fully parameterized time- frequency 
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representations for visualization and further derivations. A fourth step consists of an optional post- 
processing procedure meant to prune outlier transient manifestations of periodic signal components 
(Figure 1—figure supplement 1).

We generated a total of 21,000 naturalistic synthetic neural time series comprising non- stationary 
aperiodic and periodic signal components, using scripts adapted from the NeuroDSP toolbox (Cole 
et  al., 2019) with MATLAB (R2020a; Natick, MA, USA). We first tested SPRiNT’s ability to detect 
and track transient and chirping periodic elements (with time- changing aperiodic components) and 
benchmarked its performance against parameterized wavelet signal decompositions and parame-
terized periodograms (Figure  1b). A second validation challenge focused on simulations derived 
from randomly generated sets of realistic aperiodic and periodic parameters; this challenge served 
to assess SPRiNT’s performance across naturalistic heterogeneous signals (Figure 1c; see Methods). 
Further below, we describe the application of SPRiNT to a variety of empirical data from human and 
rodent electrophysiology.

Methods benchmarking (synthetic data)
We first simulated 10,000 time series (60 s duration each) with aperiodic components transitioning 
linearly between t=24 s and t=36 s, from an initial exponent of 1.5 Hz–1 and offset of –2.56 (arbitrary 
units, a.u.) towards a final exponent of 2.0 Hz–1 and offset of –1.41 a.u. The periodic components of 
the simulated signals included transient activity in the alpha band (centre frequency: 8 Hz; ampli-
tude: 1.2 a.u.; SD: 1.2 Hz) occurring between 8 and 40 s, 41–46 s and 47–52 s and a down- chirping 
oscillation in the beta band centre frequency decreasing from 18 to 15 Hz; amplitude: 0.9 a.u.; SD: 
1.4 Hz, between 15 and 25 s (Figure 1b). We applied SPRiNT on each simulated time series, post- 
processed the resulting parameter estimates to remove outlier transient periodic components, and 
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Figure 1. Methods synopsis. (a) Overview of the Spectral Parameterization Resolved in Time (SPRiNT) approach: At each time bin along a 
neurophysiological time series (black trace) n overlapping time windows are Fourier- transformed to yield an estimate of spectral contents, which is 
subsequently parameterized using specparam (Donoghue et al., 2020). The procedure is replicated across time over sliding, overlapping windows to 
generate a parameterized spectrogram of neural activity. (b) Simulation challenge I: We simulated 10,000 time series composed of the same time- 
varying spectral (aperiodic and periodic) features, with different realizations of additive noise. (c) Simulation challenge II: We simulated another 10,000 
time series, each composed of different time- varying spectral (aperiodic and periodic) ground- truth features with additive noise. All simulated time 
series were used to evaluate the respective performances of SPRiNT and the wavelet- specparam alternative.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of the outlier peak removal process.
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derived goodness- of- fit statistics of the SPRiNT parameter estimates with respect to their ground- 
truth values. We compared SPRiNT’s performances to parameterized periodograms (specparam), as 
well as the parameterization of temporally smoothed spectrograms obtained from Morlet wavelets 
time- frequency decompositions of the simulated time series (smoothed using a 4 s Gaussian kernel, 
SD = 1 s). We refer to the latter approach as wavelet- specparam (see Methods). We assessed the 
respective performances of SPRiNT and wavelet- specparam with measures of mean absolute error 
(MAE) on their respective estimates of aperiodic/periodic spectrogram profiles and of the parameters 
of their aperiodic/periodic components across time.

Overall, we found that SPRiNT parameterized spectrograms were better fits to ground truth (MAE 
= 0.04 and SEM = 2.9 × 10–5) than those from wavelet- specparam (MAE = 0.58 and SEM = 5.1 × 
10–6; Figure 2a). The data showed marked differences in performance between SPRiNT and wavelet- 
specparam in the parameterization of aperiodic components (error on aperiodic spectrogram: 
wavelet- specparam MAE = 0.60 and SEM = 6.7 × 10–6; SPRiNT MAE = 0.06 and SEM = 4.0 × 10–5). The 
performances of the two methods in parameterizing periodic components were strong and similar 
(wavelet- specparam MAE = 0.05 and SEM = 4.0 × 10–6; SPRiNT MAE = 0.03 and SEM = 2.7 × 10–5).

SPRiNT errors on exponents (MAE = 0.11 and SEM = 7.8 × 10–5) and offsets (MAE = 0.14 and 
SEM = 1.1 × 10–4) were substantially less than those from wavelet- specparam (exponent MAE = 
0.19 and SEM = 1.5 × 10–5; offset MAE = 0.78 and SEM = 2.6 × 10–5; Figure 2a). SPRiNT detected 
periodic alpha activity with higher sensitivity (99% at time bins with maximum peak amplitude) and 
specificity (96%) than wavelet- specparam (95% sensitivity and 47% specificity). SPRiNT estimates of 
alpha- peak parameters were also closer to ground truth (centre frequency, amplitude, and bandwidth 
MAE [SEM] = 0.33 [3.6 × 10–4] Hz, 0.20 [1.7 × 10–4] a.u., and 0.42 [4.8 × 10–4] Hz, respectively) than 
wavelet- specparam’s (MAE [SEM]=0.41 Hz [4.8 × 10–5], 0.24 [2.6 × 10–5] a.u., and 0.64 [6.4 × 10–5] 
Hz, respectively; Figure 2c). SPRiNT detected and tracked down- chirping beta periodic activity with 
higher sensitivity (95% at time bins with maximum peak amplitude) and specificity (98%) than wavelet- 
specparam (62% sensitivity and 90% specificity). SPRiNT’s estimates of beta peak parameters were 
also closer to ground truth (centre frequency, amplitude, and bandwidth MAE = 0.43 [9.4 × 10–4] 
Hz, 0.17 [3.6 × 10–4] a.u., and 0.48 [1.1 × 10–3] Hz, respectively) than with wavelet- specparam (centre 
frequency, amplitude, and bandwidth MAE = 0.58 [1.4 × 10–4] Hz, 0.16 [4.2 × 10–5] a.u., and 1.05 
[1.2 × 10–4] Hz, respectively; Figure 2c). We noted that both methods tended to overestimate peak 
bandwidths (Figure 2—figure supplement 1), and the effect was more pronounced with wavelet- 
specparam (Figure 2c). While SPRiNT and wavelet- specparam performances varied with the chosen 
parameters (i.e., spectral/temporal resolutions; Figure  2—figure supplement 2 and Figure  2—
figure supplement 3; see Supplemental materials), the optimal settings for SPRiNT outperformed 
the optimal settings for wavelet- specparam. We report SPRiNT performances prior to the removal 
of outlier peaks, as well as wavelet- specparam performances without temporal smoothing in Supple-
mental materials (Figure 2—figure supplement 4).

We also parameterized the periodogram of each time series of the first simulation challenge with 
specparam to assess the outcome of a biased assumption of stationary spectral contents across time. 
The power spectral densities (PSDs) were computed using the Welch approach over 1 s time windows 
with 50% overlap. The average recovered aperiodic exponent was 1.94 Hz–1 (actual = 1.5–2 Hz–1) and 
offset was –1.64 a.u. (actual = –2.56 to –1.41 a.u.). The only peak detected by specparam (99% sensi-
tivity) was the alpha peak, with an average centre frequency of 8.09 Hz (actual = 8 Hz), amplitude of 
0.79 a.u. (actual max = 1.2 a.u.), and peak frequency SD of 1.21 Hz (actual = 1.2 Hz). No beta peaks 
were detected across all spectra processed with specparam.

Generalization of SPRiNT across generic aperiodic and periodic 
fluctuations (synthetic data)
We simulated 10,000 additional time series consisting of aperiodic and periodic components, whose 
parameters were sampled continuously from realistic ranges (Figure 1c). The generators of each trial 
time series composed: (i) one aperiodic component whose exponent and offset parameters were 
shifted linearly over time, and (ii) 0–4 periodic components (see Methods for details). SPRiNT, followed 
by outlier peak post- processing, recovered 69% of the simulated periodic components, with 89% 
specificity (70% sensitivity and 73% specificity prior to outlier removal as shown in Figure 3—figure 
supplement 3). Aperiodic exponent and offset parameters were recovered with MAEs of 0.12 and 
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Figure 2. Spectral Parameterization Resolved in Time (SPRiNT) vs wavelet- specparam performances (simulation challenge I). (a) Ground- truth 
spectrogram (left) and averaged modelled spectrograms produced by the wavelet- specparam approach (middle) and SPRiNT (right; n=10,000). 
(b) Aperiodic parameter estimates (lines: median; shaded regions: first and third quartiles, n=10,000) across time from wavelet- specparam (left) and 
SPRiNT (right; black: ground truth; blue: exponent; yellow: offset). (c) Absolute error (and detection performance) of alpha and beta- band rhythmic 
components for wavelet- specparam (left) and SPRiNT (right). Violin plots represent the sample distributions (n=10,000; blue: alpha peak; yellow: beta 
peak; white circle: median, grey box: first and third quartiles; whiskers: range).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Periodic parameter estimates across time.

Figure supplement 2. Wavelet- specparam performances at varying spectral/temporal resolutions.

Figure supplement 3. Spectral Parameterization Resolved in Time (SPRiNT) performances at varying spectral/temporal resolutions.

Figure supplement 4. Raw performances of Spectral Parameterization Resolved in Time (SPRiNT) and wavelet- specparam (without temporal smoothing 
and outlier peak removal).
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0.15, respectively. The centre frequency, amplitude, and frequency width of periodic components 
were recovered with MAEs of 0.45, 0.23, and 0.49, respectively (Figure 3b). We evaluated whether the 
detection and accuracy of parameter estimates of periodic components depended on their frequency 
and amplitude (Figure 3c). The synthesized data showed that overall, SPRiNT accurately detects up 
to two simultaneous periodic components (Figure 3d). We also found that periodic components of 
lower frequencies were more challenging to detect (Figure 3c,d; Figure 3—figure supplement 1b) 
because their peak spectral component, when present, tended to be masked by the aperiodic compo-
nent of the power spectrum. We also observed that lower amplitude peaks were more challenging to 
detect (Figure 3c). However, the detection rate did not depend on peak bandwidth (Figure 3—figure 
supplement 1a). We found that when two or more peaks were present simultaneously, the detection 
of either or both peaks depended on their spectral proximity (Figure 3—figure supplement 1c). 
Model fit errors (MAE = 0.032) varied significantly with the number of simultaneous periodic compo-
nents, but this effect was small (β = –0.0001, SE = 6.7 × 10–6, 95% CI [−0.0001 to 0.0001], p=8.6 × 
10–85; R2 = 0.0003; Figure 3e).

Finally, we simulated 1000 additional time series comprising two periodic components (within the 
3–30 Hz and 30–80 Hz ranges, respectively) and a static knee frequency. We used SPRiNT to param-
eterize the spectrograms of these times series over the 1–100 Hz frequency range (Figure 3—figure 
supplement 2). SPRiNT did not converge to fit aperiodic exponents in the range (–5, 5) Hz–1 only on 
rare occasions (<2% of all time points). We removed these data points from further analysis. The simu-
lated aperiodic exponents and offsets were recovered with MAEs of 0.22 and 0.42, respectively; static 
knee frequencies were recovered with a MAE of 3.55 × 104 (inflated by large outliers in absolute error; 
median absolute error = 11.72). Overall, SPRiNT detected the peaks of the simulated periodic compo-
nents with 56% sensitivity and 99% specificity. The spectral parameters of periodic components were 
recovered with equivalent performances in the lower (3–30 Hz) and respectively, higher (30–80 Hz) 
frequency ranges: MAEs for centre frequency (0.32, resp. 0.32), amplitude (0.27, resp. 0.22), and SD 
(0.35, resp. 0.29).

Aperiodic and periodic fluctuations in resting-state EEG dynamics with 
eyes-closed, and eyes-open behaviour (empirical data)
We applied SPRiNT and specparam to resting- state EEG data from the openly available Leipzig Study 
on Mind- Body- Emotion Interactions (LEMON) dataset (Babayan et al., 2019). Participants (n=178) 
were instructed to open and close their eyes (alternating every 60 s). We used Brainstorm (Tadel et al., 
2011) to preprocess EEG time series from electrode Oz and obtained parameterized spectra with 
specparam and parameterized spectrograms with SPRiNT in both behavioural conditions (eyes open 
or closed). We also generated time- frequency decompositions of the same preprocessed EEG time 
series using Morlet wavelets (with default parameters; see Methods and Supplemental materials).

As expected, the group- averaged periodograms showed increased Oz signal power in the alpha 
range (6–14 Hz) in the eyes- closed behavioural condition with respect to eyes- open (Figure 4a). A 
logistic regression of specparam outputs (aperiodic exponent, alpha- peak centre frequency, and 
alpha- peak amplitude entered as fixed effects) identified alpha- peak power (β = –2.73, SE = 0.33, 
95% CI [−3.42,–2.11]; Bayes Factor BF = 3.21 × 10–21) and aperiodic exponent (β = 1.14, SE = 0.42, 
95% CI [0.33,–1.99]; BF = 0.20) as predictors of eyes- open or eyes- closed behaviour (Table 1). The 
resulting model suggests that both lower alpha power and larger aperiodic exponents characterize 
the eyes- open condition.

Using SPRiNT, we found time- varying fluctuations of both aperiodic and alpha- band periodic 
components as participants opened or closed their eyes (Figure  4—figure supplement 1). We 
observed sharp changes in aperiodic exponent and offset at the transitions between eyes- open and 
eyes- closed (Figure 4—figure supplement 1), which are likely to be artefactual residuals of eye move-
ments. We discarded these segments from further analysis. We ran a logistic regression model with 
SPRiNT parameter estimates as fixed effects (mean and SD of alpha centre frequency, alpha power, 
and the aperiodic exponent across time) and found a significant effect of mean alpha power (β = 
–6.31, SE = 0.92, and 95% CI [–8.23,–4.61]), SD of alpha power (β = 4.64, SE = 2.03, and 95% CI [0.76, 
8.73]), and mean aperiodic exponent (β = 2.55, SE = 0.53, and 95% CI [1.55, 3.63]) as predictors of 
the behavioural condition (Table 2). According to this model, lower alpha power, larger aperiodic 
exponents, and stronger fluctuations of alpha- band activity over time are signatures of the eyes- open 
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resting condition. A Bayes factor analysis confirmed the evidence of effects of mean alpha power (BF 
= 4.39 × 10–13) and mean aperiodic exponent (BF = 1.62 × 10–4), and indicated mild evidence against 
the temporal variability of alpha power (BF = 3.81; Table 2). Although model fit error was slightly 
higher in the eyes- closed condition, it did not affect condition relationships when included in a logistic 
regression (see Supplemental materials; Table 3). In summary, both specparam and SPRiNT analyses 
confirmed alpha power and aperiodic exponent as neurophysiological markers of eyes- closed vs eyes- 
open behaviour. Wavelet analyses confirmed that mean alpha- band activity predicted behavioural 
condition (β = –2.05, SE = 0.31, and 95% CI [–2.67,–1.47]; BF = 1.08 × 10–11; Table 4). We empha-
size that SPRiNT’s spectrogram parameterization was uniquely able to reveal time- varying changes in 
alpha power related to eyes- closed vs eyes- open behaviour, although the Bayes factor for this effect 
suggests it to be marginal.

Prediction of biological age group from aperiodic and periodic 
components of the resting-state EEG spectrogram (empirical data)
Using the same dataset, we tested the hypothesis that SPRiNT parameter estimates are associated 
with participants’ age group (i.e., younger [n=121] vs older [n=57] adults). Extant literature reports 
slower alpha rhythms and smaller aperiodic exponents in healthy ageing (Donoghue et al., 2020). We 
performed a logistic regression based on SPRiNT parameter estimates of the mean and SD of alpha 
centre frequency, alpha power, and aperiodic exponent as fixed effects in the eyes- open condition. 
We found significant effects of mean aperiodic exponent (β = –3.31, SE = 0.75, and 95% CI [−4.88,–
1.91]) and SD of alpha centre frequency (β = 1.30, SE = 0.53, and 95% CI [0.28, 2.39]; Table 5). We 
therefore found using SPRiNT that the EEG spectrogram of older participants decreased less rapidly 
with frequency (characterized by a smaller exponent) and revealed stronger time- varying fluctuations 
of alpha- peak centre frequency. A Bayes factor analysis showed strong evidence for the effect of the 
aperiodic exponent (BF = 5.14 × 10–5) and for the variability of the alpha- peak centre frequency (BF 
= 0.20; Table 5).

We replicated the same SPRiNT parameter analysis with the data in the eyes- closed condition. We 
found that mean aperiodic exponent (β = –4.34, SE = 0.84, and 95% CI [−6.10,–2.79]) and mean alpha 
centre frequency (β = –0.74, SE = 0.27, and 95% CI [−1.28,–0.24]) were predictors of participants’ age 
group, with older participants again showing a flatter spectrum and a slower alpha peak (lower centre 
frequency; Table 6). A Bayes factor analysis provided strong evidence for the effect of mean aperiodic 
exponent (BF = 1.10 × 10–7) and for the effect of mean alpha centre frequency (BF = 0.07; Table 6).

We performed an additional logistic regression to predict age group using the mean and variability 
(SD) of individual alpha- peak frequency (between 6 and 14 Hz) from the STFT as fixed effects. We 
found that only variability in eyes- open individual alpha- peak frequency predicted age group (β = 
0.63, SE = 0.30, and 95% CI [0.04, 1.24]), though a Bayes factor analysis showed anecdotal evidence 
for this effect (BF = 0.59; Table 7 , see also Table 8). Measures of individual alpha- peak frequency can 
be distorted by aperiodic activity (Donoghue et al., 2020) and by the absence of a clear peak in the 
spectrum. In that regard, SPRiNT can help clarify the underlying dynamical structure of the observed 

(light blue: 3–8 Hz theta; yellow: 8–13 Hz alpha; orange: 13–18 Hz beta; brown:18–35 Hz). (d) Number of fitted vs simulated periodic components 
(spectral peaks) across all simulations and time points. The underestimation of the number of estimated spectral peaks is related to centre frequency: 
3–8 Hz simulated peaks (light blue) account for proportionally fewer of recovered peaks between 3 and 18 Hz (light blue, yellow, and orange) than from 
the other two frequency ranges. Samples sizes by number of simulated peaks: 0 peaks = 798,753, 1 peak = 256,599, 2 peaks = 78,698, 3 peaks = 14,790, 
4 peaks = 1160. (e) Model fit error is not affected by number of simulated peaks. Violin plots represent the full sample distributions (white circle: median, 
grey box: first and third quartiles; whiskers: range).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Figure data for simulation challenge II.

Figure supplement 1. Performances of Spectral Parameterization Resolved in Time (SPRiNT) across a range of peak SD, frequency band, and spectral 
separation between peaks.

Figure supplement 2. Performances of Spectral Parameterization Resolved in Time (SPRiNT) on broad- range spectrograms comprising spectral knees.

Figure supplement 3. Performances of Spectral Parameterization Resolved in Time (SPRiNT) (without outlier peak removal).

Figure 3 continued

https://doi.org/10.7554/eLife.77348
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Figure 4. Spectral Parameterization Resolved in Time (SPRiNT) parameterization of resting- state EEG. (a) Mean periodogram and specparam models 
for eyes- closed (blue) and eyes- open (yellow) resting- state EEG activity (from electrode Oz; n=178). (b) Logistic regressions showed that specparam- 
derived eyes- closed alpha- peak amplitude was predictive of age group, but mean eyes- closed alpha- peak amplitude derived from SPRiNT was not. 
(c) Example of intrinsic dynamics in alpha activity during the eyes- closed period leading to divergent SPRiNT and specparam models (participant sub- 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.77348


 Tools and resources      Neuroscience

Wilson et al. eLife 2022;11:e77348. DOI: https://doi.org/10.7554/eLife.77348  10 of 30

effects by systematically decomposing spectrograms into explicitly detected time- varying aperiodic 
and periodic components.

We also tested whether the observed differences in mean spectral parameters could be replicated 
from the parameterization of the periodograms using specparam. We performed a logistic regres-
sion based on specparam parameter estimates of alpha centre frequency, alpha power, and aperi-
odic exponent as fixed effects from the average periodogram, in both behavioural conditions. We 
confirmed significant effects in all the same predictors as detected by SPRiNT: eyes- open aperiodic 
exponent (β = –3.30, SE = 0.85, and 95% CI [−5.08,–1.74]; Table 9), eyes- closed aperiodic exponent 
(β = –2.67, SE = 0.61, and 95% CI [–3.94,–1.54]), and eyes- closed alpha centre frequency (β = –0.85, 
SE = 0.25, and 95% CI [–1.38,–0.39]; Table 10). However, we found significant effects for eyes- open 
alpha centre frequency (β = –0.35, SE = 0.16, and 95% CI [–0.68,–0.05]; Table 9) and eyes- closed alpha 
power (β = –0.96, SE = 0.37, and 95% CI [–1.72,–0.24]; Table 10), which were not observed using 
SPRiNT (Figure 4b). We also observed intrinsic dynamics in the alpha band of a subset of participants 
(<10%) contributing to diverging measures of alpha- peak amplitude between specparam and SPRiNT 
(Figure 4c).

Finally, we performed a logistic regression using mean alpha power from the wavelet spectrogram 
as a fixed effect and found that mean alpha power discriminated between age groups only in the 
eyes- closed condition (β = –1.13, SE = 0.38, and 95% CI [−1.90 to 0.41]; Table 11; see also Table 12). 
Because wavelet spectrograms are not readily decomposed into aperiodic and periodic compo-
nents, these findings may be biased by age- related effects on aperiodic exponent, alpha- peak centre 
frequency (Scally et al., 2018), and the absence of an actual periodic component in the alpha range.

Transient changes in aperiodic brain activity are associated with 
locomotor behaviour (empirical data)
We used intracranial data from two Long- Evans rats recorded in layer 3 of entorhinal cortex while 
they moved freely along a linear track (Mizuseki et al., 2009; https://crcns.org). Rats travelled alter-
natively to either end of the track to receive a water reward, resulting in behaviours of recurring 
bouts of running and resting. Power spectral density estimates revealed substantial broadband power 
increases below 20 Hz during rest relative to movement (except for spectral peaks around 8 Hz and 

016). In a subset of participants (<10%), we observed strong intermittence of the presence of an alpha peak. Since an alpha peak was not consistently 
present in the eyes- closed condition, and specparam- derived alpha- peak amplitude (0.77 a.u.; light blue) is lower than SPRiNT- derived mean alpha- peak 
amplitude (1.06 a.u.; dark blue), as the latter only includes time samples featuring a detected alpha peak. (d) Logistic regression showed that temporal 
variability in eyes- open alpha centre frequency predicts age group. Left: mean SPRiNT spectrogram (n=178) and sample distribution of eyes- open 
alpha centre frequency (participant sub- 067). Right: variability (SD) in eyes- open alpha centre frequency separated by age group. Note: no alpha peaks 
were detected in the eyes- open period for one participant (boxplot line: median; boxplot limits: first and third quartiles; whiskers: range). Sample sizes: 
younger adults (age: 20–40 years): 121; older adults (age: 55–80 years): 56.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Spectral parameters and age group by participant.

Figure supplement 1. Spectral Parameterization Resolved in Time (SPRiNT) model parameters in resting- state EEG.

Figure 4 continued

Table 1. Logistic regression model of specparam parameters for predicting condition (eyes- closed vs 
eyes- open).

Predictors

Condition

Log- Odds CI p BF

(Intercept) 0.86 –1.85–3.64 0.537

Alpha centre frequency (specparam) 0.00 –0.23–0.23 0.990 7.97

Alpha amplitude (specparam) –2.73 –3.42 to –2.11 <0.001 3.21 e- 21

Aperiodic exponent (specparam) 1.14 0.33–1.99 0.007 0.20

Observations 323

R2 Tjur 0.284

https://doi.org/10.7554/eLife.77348
https://crcns.org
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harmonics; Figure 5; Samiee and Baillet, 2017). We therefore tested for the possible expression of 
two alternating modes of aperiodic neural activity associated with each behaviour. SPRiNT parameter-
ization found in the two subjects that resting bouts were associated with larger aperiodic exponents 
and more positive offsets than during movement bouts (Figure 5—figure supplement 2). We ran 
SPRiNT parameterizations over 8 s epochs proximal to transitions between movement and rest; we 
observed dynamic shifts between aperiodic modes associated with behavioural changes (Figure 5). 
We tested whether changes in aperiodic exponent proximal to transitions of movement and rest were 
related to movement speed and found a negative linear association in both subjects for both transi-
tion types (EC012 transitions to rest: β = –9.6 × 10–3, SE = 4.7 × 10–4, 95% CI [–1.1 × 10–2 –8.6 × 10–3], 
p<0.001, R2 = 0.29; EC012 transitions to movement: β = –7.3 × 10–3, SE = 4.3 × 10–4, 95% CI [–8.1 × 
10–3 –6.4 × 10–3], p<0.001, R2 = 0.18; EC013 transitions to rest: β = –1.1 × 10–2, SE = 2.3 × 10–4, 95% CI 
[–1.2x10–2 –1.1x10–2], p<0.001, R2 = 0.32; EC013 transitions to movement: β = –1.2 × 10–2, SE = 3.2 × 
10–4, 95% CI [–1.3x10–2 –1.2x10–2], p<0.001, R2 = 0.26; Figure 5—figure supplement 3). We empha-
size that the periodic features of the recordings were non- sinusoidal and therefore were not explored 
further with the methods discussed herein (Donoghue et al., 2021; Figure 5—figure supplement 1).

Table 2. Logistic regression model of Spectral Parameterization Resolved in Time (SPRiNT) 
parameters for predicting condition (eyes- closed vs eyes- open).

Condition

Predictors Log- Odds CI p BF

(Intercept) 0.10 –3.75–4.02 0.959

Mean alpha centre frequency 0.24 –0.04–0.52 0.101 1.58

Std alpha centre frequency –0.06 –0.97–0.86 0.898 4.39

Mean alpha power –6.31 –8.23 to –4.61 <0.001 4.51e- 13

Std alpha power 4.64 0.76–8.73 0.022 3.81

Mean aperiodic slope 2.55 1.55–3.63 <0.001 1.62e- 4

Std aperiodic slope –2.74 –8.54–3.38 0.362 4.32

Observations 355

R2 Tjur 0.432

Table 3. Logistic regression model of Spectral Parameterization Resolved in Time (SPRiNT) 
parameters for predicting condition (eyes- closed vs eyes- open), with model fit error (mean absolute 
error [MAE]) as a predictor.

Predictors

Condition

Log- Odds CI p

(Intercept) –1.37 –8.83–4.07 0.620

Mean alpha centre frequency 0.23 –0.05–0.51 0.115

Std alpha centre frequency –0.15 –1.08–0.79 0.751

Mean alpha power –6.62 –8.73 to –4.73 <0.001

Std alpha power 5.15 1.05–9.46 0.016

Mean aperiodic slope 2.63 1.60–3.73 <0.001

Std aperiodic slope –3.79 –10.21–2.89 0.253

Model fit MAE 59.96 –95.00–215.29 0.447

Observations 355

R2 Tjur 0.433

https://doi.org/10.7554/eLife.77348
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Discussion
We introduce SPRiNT as a new method to parameterize dynamic fluctuations in the spectral contents 
of neurophysiological time series. SPRiNT extends recent practical tools that determine aperiodic 
and periodic parameters from static power spectra of neural signals to their spectrograms. Aperiodic 
spectral components may confound the detection and interpretation of narrow- band power changes 
as periodic, oscillatory signal elements. Given the scientific prominence of measures of neural oscilla-
tions in (causal) relation to behaviour (e.g., Albouy et al., 2017) and clinical syndromes (e.g., Ostlund 
et al., 2021), it is essential that their characterization in time and frequency be contrasted with that of 
the underlying aperiodic background activity at the natural time scale of behaviour and perception.

SPRiNT expands the neural spectrogram toolkit
Recent empirical studies show that the spectral distribution of neural signal power with frequency 
can be decomposed into low- dimensional aperiodic and periodic components (Donoghue et  al., 
2020) and that these latter are physiologically (Cole et al., 2019), clinically (Molina et al., 2020; van 
Heumen et al., 2021), and behaviourally (Ouyang et al., 2020; Waschke et al., 2021) meaningful.

SPRiNT extends the approach to the low- dimensional time- resolved parameterization of neuro-
physiological spectrograms. The method combines the simplicity of the specparam spectral decom-
position approach with the computational efficiency of STFTs across sliding windows. The present 
results demonstrate its technical concept and indicate that SPRiNT unveils meaningful additional 
information from the data beyond established tools such as wavelet time- frequency decompositions.

Using realistic simulations of neural time series, we demonstrate the strengths and current limita-
tions of SPRiNT. We show that SPRiNT decompositions provide a comprehensive account of the 
neural spectrogram (Figure 2a), tracking the dynamics of periodic and aperiodic signal components 
across time (Figure 2b and Figure 2—figure supplement 1). We note that the algorithm performs 
optimally when the data features narrow- band oscillatory components that can be characterized as 

Table 4. Logistic regression model parameters for predicting condition (eyes- closed vs eyes- open) 
from Morlet wavelet spectrograms.

Condition

Predictors Log- Odds CI p BF

(Intercept) –25.98 –33.87 to –18.65 <0.001

Alpha power (Morlet wavelets) –2.05 –2.67 to –1.47 <0.001 1.08e- 11

Observations 356

R2 Tjur 0.148

Table 5. Eyes- open logistic regression model parameters for predicting age group, Spectral 
Parameterization Resolved in Time (SPRiNT).

Predictors

Age

Log- Odds CI p BF

(Intercept) 1.92 –2.82–6.80 0.428

Eyes- open mean alpha centre frequency –0.05 –0.39–0.29 0.789 3.43

Eyes- open std alpha centre frequency 1.30 0.28–2.39 0.015 0.20

Eyes- open mean alpha power 0.41 –2.69–3.27 0.784 2.97

Eyes- open std alpha power –3.81 –9.47–1.54 0.172 1.14

Eyes- open mean aperiodic slope –3.31 –4.88 to –1.91 <0.001 5.14e- 05

Eyes- open std aperiodic slope 3.44 –4.83–11.06 0.388 2.66

Observations 177

R2 Tjur 0.216

https://doi.org/10.7554/eLife.77348
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spectral peaks (Figure 3c). The algorithm performs best when the data contains two or fewer salient 
periodic components concurrently (Figure 3d). We found that these current limitations are inherent 
to specparam, which is challenged by the dissociation of spectral peaks from background aperiodic 
activity at the lower edge of the power spectrum (Donoghue et al., 2020).

Our synthetic data also identified certain limitations of the SPRiNT approach. The algorithm tends 
to overestimate the bandwidth of spectral peaks, which we discuss as related to the frequency reso-
lution of the spectrogram (mostly 1 Hz in the present study). The frequency resolution of the spec-
trogram at 1 Hz, e.g., may be too low to quantify narrower band- limited components. The intrinsic 
noise level present in STFTs (i.e., spectral power not explained by periodic or aperiodic components) 
may also challenge bandwidth estimation. Increasing STFT window length augments spectral reso-
lution and reduces intrinsic noise, although to the detriment of temporal specificity. We also found 
that SPRiNT may underestimate the number of periodic components, though this can be interpreted 
as the joint probability of SPRiNT detecting multiple independent oscillatory peaks (where the prob-
ability of detecting a given peak is between 65 and 75%; approximating a binomial distribution). 
We found that a peak was more likely to be detected if its amplitude is stronger and the centre 
frequency is above 8 Hz (Figure 3c and Figure 3—figure supplement 1b), and if separated from 
other peaks by at least 8 Hz (Figure 3—figure supplement 1d). Finally, SPRiNT’s performances were 
slightly degraded when spectrograms composed an aperiodic knee (Figure 3—figure supplement 2). 
This is due to the specific challenge of estimating knee parameters. Nevertheless, the spectral knee 
frequency is related to intrinsic neuronal timescales and cortical microarchitecture (Gao et al., 2020), 
which are expected to be stable properties within each individual and across a given recording. Thus, 
we recommend estimating (and reporting) aperiodic knee frequencies from the power spectrum of 
the data with specparam and specifying the estimated value as a SPRiNT parameter.

Table 6. Eyes- closed logistic regression model parameters for predicting age group, Spectral 
Parameterization Resolved in Time (SPRiNT).

Predictors

Age

Log- Odds CI p BF

(Intercept) 11.23 4.63–18.50 0.001

Eyes- closed mean centre frequency –0.74 –1.28 to –0.24 0.006 0.07

Eyes- closed std centre frequency 1.01 –0.48–2.56 0.188 1.65

Eyes- closed mean alpha power –0.15 –1.76–1.43 0.852 3.90

Eyes- closed std alpha power –0.51 –5.32–4.22 0.831 3.61

Eyes- closed mean aperiodic slope –4.34 –6.10 to –2.79 <0.001 1.10e- 07

Eyes- closed std aperiodic slope 0.54 –9.66–9.45 0.910 3.93

Observations 178

R2 Tjur 0.272

Table 7. Eyes- open logistic regression model parameters for predicting age group, short- time 
Fourier transform (STFT).

Predictors

Age

Log- Odds CI p BF

(Intercept) –0.44 –3.04–2.11 0.734

Eyes- open mean individual alpha- peak frequency (STFT) –0.17 –0.45–0.11 0.233 2.33

Eyes- open std individual alpha- peak frequency (STFT) 0.63 0.04–1.24 0.040 0.59

Observations 178

R2 Tjur 0.026

https://doi.org/10.7554/eLife.77348
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SPRiNT’s optional outlier peak removal procedure increases the specificity of detected spectral 
peaks by emphasizing the detection of periodic components that develop over time. This feature is 
controlled by threshold parameters that can be adjusted along the time and frequency dimensions. 
So far, we found that applying a semi- conservative threshold for outlier removal (i.e., if less than three 
more peaks are detected within 2.5 Hz and 3 s around a given peak of the spectrogram) reduced the 
false detection rate by 50%, without affecting the true detection rate substantially (a<5% reduction; 
Figure 3 and Figure 3—figure supplement 3). Setting these threshold parameters too conservatively 
would reduce the sensitivity of peak detection.

Practical mitigation techniques have been proposed to account for the presence of background 
aperiodic activity when estimating narrow- band signal power changes. For instance, baseline normal-
ization is a common approach used to isolate event- related signals and prepare spectrograms for 
comparisons across individuals (Cohen, 2014). However, the resulting relative measures of event- 
related power increases or decreases do not explicitly account for the fact that behaviour or stimulus 
presentations may also induce rapid changes in aperiodic activity. Therefore, baseline normalization 
followed by narrow- band analysis of power changes is not immune to interpretation ambiguities when 
aperiodic background activity also changes dynamically. Further, the definition of a reference baseline 
can be inadequate for some study designs, as exemplified herein with the LEMON dataset.

SPRiNT decomposition of EEG data tracks and predicts behaviour and 
demographics
We found in the LEMON dataset that measuring narrow band power changes without accounting for 
concurrent variations of the aperiodic signal background challenges the interpretation of effects mani-
fested in the spectrogram (Scally et al., 2018). Spectral parameterization with SPRiNT or specparam 
enables this distinction, showing that both periodic and aperiodic changes in neural activity are asso-
ciated with age and behaviour. We found strong evidence for decreases in alpha- peak power and 
increases in aperiodic exponent during eyes- open resting- state behaviour (compared to eyes- closed; 
Figure 4a). However, it remains unclear whether these effects are independent or related. A recent 
analysis of the same dataset showed that the amplitude of alpha oscillations around a non- zero mean 
voltage influences baseline cortical excitability (Studenova et al., 2021)—an effect observable in part 

Table 8. Eyes- closed logistic regression model parameters for predicting age group, short- time 
Fourier transform (STFT).

Predictors

Age

Log- Odds CI p BF

(Intercept) 1.83 –1.98–5.75 0.350

Eyes- closed mean individual alpha- peak frequency (STFT) –0.31 –0.70–0.07 0.113 1.28

Eyes- closed std individual alpha- peak frequency (STFT) 0.30 –0.22–0.81 0.256 2.32

Observations 178

R2 Tjur 0.024

Table 9. Eyes- open logistic regression model parameters for predicting age group, specparam.

Age

Predictors Log- Odds CI p BF

(Intercept) 7.61 3.63–12.09 <0.001

Eyes- open aperiodic exponent (specparam) –3.30 –5.08 to –1.74 <0.001 4.61 e- 4

Eyes- open alpha centre frequency (specparam) –0.35 –0.68 to –0.05 0.028 0.26

Eyes- open alpha amplitude (specparam) –1.34 –2.86–0.02 0.066 0.72

Observations 147

R2 Tjur 0.207

https://doi.org/10.7554/eLife.77348
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through variations of the aperiodic exponent (Gao et al., 2017). Using both SPRiNT and specparam, 
we also observed both slower alpha- peak centre frequencies and smaller aperiodic exponents in the 
older age group, in agreement with previous literature on healthy ageing (Cellier et al., 2021; Dono-
ghue et al., 2020; Hill et al., 2022; Ostlund et al., 2022; Schaworonkow and Voytek, 2021).

Using specparam, we found lower alpha- band peak amplitudes in older individuals in the eyes- 
closed condition. We could not replicate this effect from spectrograms parameterized with SPRiNT 
(Figure  4b). This apparent divergence may be due to the challenge of detecting low- amplitude 
peaks in the spectrogram of older individuals. Periodograms are derived from averaging across time 
windows, which augments signal- to- noise ratios (SNRs), and therefore the sensitivity of specparam to 
periodic components of lower amplitude. In a subset of participants (<10%), we also observed consid-
erable differences between the alpha- peak amplitudes extracted from specparam and SPRiNT, which 
we explained by unstable expressions of alpha activity over time in these participants (Figure 4c). 
The average alpha- peak amplitude estimated with SPRiNT is based only on time segments when 
an alpha- band periodic component is detected. With specparam, this estimate is derived across all 
time windows, regardless of the presence/absence of a bona fide alpha component at certain time 
instances. The consequence is that the estimate of the average alpha- peak amplitude is larger with 
SPRiNT than with specparam in these participants. Therefore, differences in alpha power between 
SPRiNT and specparam may be explained, at least in some participants, by differential temporal fluc-
tuations of alpha band activity (Donoghue et al., 2021). This effect is reminiscent of recent observa-
tions that beta- band power suppression during motor execution is due to sparser bursting activity, not 
a sustained decrease of beta- band activity (Sherman et al., 2016).

We also emphasize how the variability of spectral parameters may relate to demographic features, 
as shown with SPRiNT’s prediction of participants’ age from the temporal variability of eyes- open 
alpha- peak centre frequency (Figure 4d). This could account for the interpretation derived from the 
periodogram, where eyes- open alpha- peak centre frequency is predictive of age instead. Previous 
studies explored similar effects of within- subject variability of alpha- peak centre frequency (Haegens 
et al., 2014) and their clinical relevance (Larsson and Kostov, 2005). These findings augment the 
recent evidence that neural spectral features are robust signatures proper to an individual (da Silva 
Castanheira et al., 2021) and open the possibility that their temporal variability is neurophysiologi-
cally significant.

Table 10. Eyes- closed logistic regression model parameters for predicting age group, specparam.

Predictors

Age

Log- Odds CI p BF

(Intercept) 12.40 7.11–18.50 <0.001

Eyes- closed aperiodic exponent (specparam) –2.67 –3.94 to –1.54 <0.001 3.22e- 5

Eyes- closed alpha centre frequency 
(specparam) –0.85 –1.38 to –0.39 0.001 3.61e- 3

Eyes- closed alpha amplitude (specparam) –0.96 –1.72 to –0.24 0.010 0.11

Observations 176

R2 Tjur 0.246

Table 11. Eyes- closed logistic regression model parameters for predicting age group, Morlet 
wavelets.

Predictors

Age

Log- Odds CI p BF

(Intercept) –14.93 –24.68 to –5.89 0.002

Eyes- closed alpha power (Morlet wavelets) –1.13 –1.90 to –0.41 0.003 0.07

Observations 178

R2 Tjur 0.053
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We also report time- resolved fluctuations in aperiodic activity related to behaviour in freely moving 
rats (Figure 5). SPRiNT aperiodic parameters highlight larger spectral exponents in rats during rest 
than during movement. Time- resolved aperiodic parameters can also be tracked with SPRiNT as 
subjects transition from periods of movement to rest and vice versa. The smaller aperiodic expo-
nents observed during movement may be indicative of periods of general cortical disinhibition (Gao 
et al., 2017). Previous work on the same data has shown how locomotor behaviour is associated with 
changes in amplitude and centre frequency of entorhinal theta rhythms (Mizuseki et al., 2009; Samiee 
and Baillet, 2017). We also note that strong theta activity may challenge the estimation of aperiodic 
parameters (Gao et al., 2017). Changes in aperiodic exponent were partially explained by movement 
speed (Figure  5—figure supplement 3), which could reflect increased processing demands from 
additional spatial information entering entorhinal cortex (Keene et al., 2016) or increased activity in 
cells encoding speed directly (Iwase et al., 2020). Combined, the reported findings support the notion 
that aperiodic background neural activity changes in relation to a variety of contexts and subject types 
(Donoghue et al., 2020; Gao et al., 2017; Molina et al., 2020; Ostlund et al., 2021; Pathania et al., 
2021; Waschke et al., 2021; van Heumen et al., 2021). Gao et al., 2017 established a link between 
aperiodic exponent and the local balance of neural excitation vs inhibition. How this balance adjusts 
dynamically, potentially over a multiplicity of time scales, and relates directly or indirectly to individual 
behaviour, demographics, and neurophysiological factors remains to be studied.

Practical recommendations for using SPRiNT
SPRiNT returns goodness- of- fit metrics for all spectrogram parameters. However, these metrics cannot 
account entirely for possible misrepresentations or omissions of certain components of the spectro-
gram. Visual inspections of original spectrograms and SPRiNT parameterizations are recommended, 
e.g., to avoid fitting a ‘fixed’ aperiodic model to data with a clear spectral knee or to ensure that the 
minimum peak height parameter is adjusted to the peak of lowest amplitude in the data. Most of the 
results presented here were obtained with similar SPRiNT parameter settings. Below are practical 
recommendations for SPRiNT parameter settings, in mirror and complement of those provided by 
Ostlund et al., 2022 and Gerster et al., 2022 for specparam:

• Window length determines the frequency and temporal resolution of the spectrogram. This 
parameter needs to be adjusted to the expected timescale of the effects under study so 
that multiple overlapping SPRiNT time windows cover the expected duration of the effect of 
interest; see for instance, the 2 s time windows with 75% overlap designed to detect the effect 
at the timescale characterized in Figure 5.

• Window overlap ratio is a companion parameter of window length that also determines the 
temporal resolution of the spectrogram. While a greater overlap ratio increases the rate of 
temporal sampling, it also increases the redundancy of the data information collected within 
each time window and therefore smooths the spectrogram estimates over the time dimension. 
A general recommendation is that longer time windows (>2  s) enable larger overlap ratios 
(>75%). We recommend a default setting of 50% as a baseline for data exploration.

• Number of windows averaged in each time bin enables to control the SNR of the spectrogram 
estimates (higher SNR with more windows averaged), with the companion effect of increasing 
the temporal smoothing (i.e., decreased temporal resolution) of the spectrogram. We recom-
mend a baseline setting of five windows.

Table 12. Eyes- open logistic regression model parameters for predicting age group, Morlet 
wavelets.

Predictors

Age

Log- Odds CI p BF

(Intercept) –9.04 –21.73–3.13 0.152

Eyes- open alpha power (Morlet wavelets) –0.64 –1.63–0.30 0.189 2.74

Observations 178

R2 Tjur 0.010

https://doi.org/10.7554/eLife.77348
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Learning from the specparam experience, we expect that more practical (and critical) recommen-
dations will emerge and be shared by more users adopting SPRiNT, with the pivotal expectation, as 
with all analytical methods in neuroscience (Salmelin and Baillet, 2009), that users carefully and criti-
cally review the sensibility of the outcome of SPRiNT parameterization applied to their own data and 
to their own neuroscience questions (Ostlund et al., 2022).

Future directions
We used the STFT as the underlying time- frequency decomposition technique for SPRiNT. A major 
asset of STFT is computational efficiency, but with sliding time windows of fixed duration, the method 

a) subject EC012

rest
movement 

b) subject EC013

movement onset

movement onset

rest onset

rest onset

Log power (a.u.)

Log power (a.u.)Log power (a.u.)

Log power (a.u.)

Figure 5. Spectral Parameterization Resolved in Time (SPRiNT) captures aperiodic dynamics related to locomotion. (a) We derived the data 
periodograms collapsed across rest (green) and movement (purple) periods for subject EC012 and observed broad increases in signal power during 
rest compared to movement, below 20 Hz. A representative SPRiNT spectrogram is shown. The time series of the subject’s position is shown in the top 
plot (green: rest; purple: movement). We observed gradual shifts of aperiodic exponent around the occurrence of locomotor transitions (right plot), with 
increasing exponents at the onset of rest (green curve) and decreasing exponents at movement onset (purple curve). Solid lines indicated trial mean, 
with shaded area showing the 95% CI. (b) Same data as (a) but for subject EC013. The data samples consisted of, for EC012, 62 epochs of rest onset and 
81 epochs of movement onset; for EC013, 303 epochs of rest onset and 254 epochs of movement onset.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Empirical distributions of Spectral Parameterization Resolved in Time (SPRiNT) aperiodic parameters.

Figure supplement 1. Examples of sawtooth rhythms from two representative electrodes in entorhinal cortex layer 3 from both subjects.

Figure supplement 2. Empirical distributions of Spectral Parameterization Resolved in Time (SPRiNT) aperiodic exponent and offset parameters.

Figure supplement 3. Temporal variability of aperiodic exponent during transitions between movement and rest is partially explained by movement 
speed.

https://doi.org/10.7554/eLife.77348
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is less sophisticated that wavelet alternatives in terms of trading- off between temporal specificity 
and frequency resolution (Cohen, 2014). Combining specparam with STFT yields rapid extraction 
of spectral parameters from time- frequency data. In principle, spectral parameterization should be 
capable of supplementing any time- frequency decomposition technique, such as wavelet transforms 
(Pietrelli et al., 2021), though at the expense of significantly greater computational cost. However, 
we have shown that the wavelet- specparam alternative to SPRiNT underperformed to recover aperi-
odic signal components. Further, the temporal smoothing necessary to reduce wavelet- specparam 
parameter estimation errors to levels similar to SPRiNT’s (4 s Gaussian kernel; Figure 2) yields substan-
tial redundancy of the spectral parameterization following wavelet decompositions. Another alterna-
tive to using STFT would be the recent superlet approach (Moca et al., 2021), which was designed to 
preserve a fixed resolution across time and frequency. Combining superlets with specparam is to be 
explored, although reduced computational cost remains a very practical benefit of STFT.

Scientific interest towards aperiodic neurophysiological activity has recently intensified, especially 
in the context of methodological developments for the detection of transient oscillatory activity in 
electrophysiology (Brady and Bardouille, 2022; Seymour et al., 2022). These methods first remove 
the aperiodic component from power spectra using specparam before detecting oscillatory bursts 
from wavelet spectrograms. SPRiNT’s outlier peak removal procedure also detects burst- like spec-
trographic components, although for a different purpose. SPRiNT is one methodological response 
for measuring and correcting for aperiodic spectral components and, as such, could contribute to 
improve tools for detecting oscillatory bursts, as suggested by Seymour et al., 2022.

Future ameliorations for SPRiNT to determine the parameters of periodic components (number of 
peaks and peak amplitude) may be driven by a model selection approach based, e.g., on the Bayesian 
information criterion (Schwarz, 1978), which would advantage models with the most parsimonious 
number of periodic components in the data.

In conclusion, the SPRiNT algorithm enables the parameterization of the neurophysiological spec-
trogram. We validated the time tracking of periodic and aperiodic spectral features with a large sample 
of ground- truth synthetic time series and empirical data including human resting- state and rodent 
intracranial electrophysiological recordings. We showed that SPRiNT provides estimates of dynamic 
fluctuations of aperiodic and periodic neural activity that are related to meaningful demographic or 
behavioural outcomes. We anticipate that SPRiNT and future related developments will augment the 
neuroscience toolkit and enable new advances in the characterization of complex neural dynamics.

Methods
SPRiNT runs on individual time series and returns a parameterized representation of the spectrogram. 
The algorithm first derives STFTs over time windows that slide on the time series. Second, the modulus 
of STFT coefficients is averaged over n consecutive time windows to produce smoothed PSD esti-
mates at each time bin. Third, each of the resulting PSDs is parameterized into periodic and aperiodic 
components, using the specparam algorithm. A fourth optional step consists of the removal of outlier 
periodic components from the raw SPRiNT spectrograms. We developed SPRiNT as a plug- in library 
that interoperates with Brainstorm (Tadel et al., 2011) and therefore is an open- source and accessible 
to everyone.

Parameterization of short-time periodograms
STFTs are computed iteratively on sliding time windows (default window length = 1 s; tapered by a 
Hann window) using MATLAB’s fast Fourier transform (R2020a; Natick, MA, USA). Each window over-
laps with its nearest neighbours (default overlap = 50%). The modulus of Fourier coefficients of the 
running time window is then averaged locally with those from preceding and following time windows, 
with the number of time windows included in the average, n, determined by the user (default is n=5; 
Figure 1A). The resulting periodogram is then parameterized with specparam. The resulting spectro-
gram is time- binned based on time points located at the centre of each sliding time window.

Tracking periodic and aperiodic components across time
We used the MATLAB implementation of specparam in Brainstorm (Tadel et al., 2011), adapted from 
the original Python code (version 1.0.0) by Donoghue et al., 2020. The aperiodic component of the 
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power spectrum is typically represented using two parameters (exponent and offset); an additional 
knee parameter is added when a bend is present in the aperiodic component (Donoghue et al., 2020; 
Donoghue et al., 2020). Periodic components are parameterized as peaks emerging from the aperi-
odic component using Gaussian functions controlled with three parameters (mean [centre frequency], 
amplitude, and SD).

For algorithmic speed optimization purposes, in each iteration of specparam across time, the opti-
mization of the aperiodic exponent is initialized from its specparam estimate from the preceding time 
bin. All other parameter estimates are initialized using the same data- driven approaches as specparam 
(Donoghue et al., 2020).

Pruning of periodic component outliers
We derived a procedure to remove occasional peaks of periodic activity from parameterized spectro-
grams and emphasize expressions of biologically plausible oscillatory components across successive 
time bins. This procedure removes peaks with fewer than a user- defined number of similar peaks (by 
centre frequency; default = 3 peaks within 2.5 Hz) within nearby time bins (default = 6 bins). This 
draws from observations in synthetic data that non- simulated peaks are parameterized in isolation 
(few similar peaks in neighbouring time bins; Figure 1—figure supplement 1). Aperiodic parameters 
are refit at time bins where peaks have been removed, and models are subsequently updated to 
reflect changes in parameters. This post- processing procedure is applied on all SPRiNT outputs shown 
but remains optional (albeit recommended).

Study 1: Time series simulations
We simulated neural time series using in- house code based on the NeuroDSP toolbox (Cole et al., 
2019) with MATLAB (R2020a; Natick, MA, USA). The time series combined aperiodic with periodic 
components (Donoghue et al., 2020). Each simulated 60 s time segment consisted of white noise 
sampled at 200 Hz generated with MATLAB’s coloured noise generator (R2020a; Natick, MA, USA). 
The time series was then Fourier- transformed (frequency resolution = 0.017 Hz) and convolved with a 
composite spectrogram of simulated aperiodic and periodic dynamics (temporal resolution = 0.005 s). 
The final simulated time series was generated as the linear combination of cosines of each sampled 
frequency (with random initial phases), with amplitudes across time corresponding to the expected 
power from the spectrogram.

Simulations of transient and chirping periodic components
The aperiodic exponent was initialized to 1.5 Hz–1 and increased to 2.0 Hz–1, and offset was initialized 
to –2.56 a.u. and increased to –1.41 a.u.; both linearly increasing between the 24 s and 36 s time 
stamps of the time series. Periodic activity in the alpha band (centre frequency = 8 Hz, amplitude 
= 1.2 a.u., and SD = 1.2 Hz) was generated between time stamps 8 s and 40 s, as well as between 
41–46  s and 47–52  s. Periodic activity in the beta band (centre frequency = 18  Hz, amplitude = 
0.9 a.u., and SD = 1.4 Hz) was generated between 15 and 25 s and down- chirped linearly from 18 to 
15 Hz between 18 and 22 s. Peak amplitude was calculated as the relative height above the aperiodic 
component at every sampled frequency and time point. The SNR for peaks is reflected in their respec-
tive amplitudes, with peaks of lower amplitude exhibiting lower SNRs. All amplitudes of periodic 
activity were tapered by a Tukey kernel (cosine fraction = 0.4). Aperiodic and periodic parameters (and 
their dynamics) were combined to form a spectrogram of simulated activity.

All simulations (n=10,000) were unique as each was generated from a unique white- noise time 
series seed, and the cosine waves to simulate periodic components were each assigned a random 
initial phase.

Each simulated time series was analysed with SPRiNT using 5×1 s sliding time windows with 50% 
overlap (frequency range: 1–40 Hz). Settings for specparam were: peak width limits: (0.5 6); maximum 
number of peaks: 3; minimum peak amplitude: 0.6 a.u.; peak threshold (minimum peak SNR): 2.0 SDs; 
proximity threshold: 2 SDs; aperiodic mode: fixed. Settings for peak post- processing were: number 
of neighbouring peaks: 3; centre frequency: 2.5 Hz; time bin: 6 bins (=3 s). Periodic alpha activity was 
identified using the highest amplitude peak parameterized in each time bin between 5.5 and 10.5 Hz, 
while periodic beta activity was identified using the highest amplitude peak in each time bin between 
13.5 and 20.5 Hz.

https://doi.org/10.7554/eLife.77348


 Tools and resources      Neuroscience

Wilson et al. eLife 2022;11:e77348. DOI: https://doi.org/10.7554/eLife.77348  20 of 30

We also parameterized Morlet wavelet spectrograms of each simulated time series using specparam 
(Donoghue et  al., 2020; MATLAB version). Wavelet transforms were computed with Brainstorm 
(Tadel et al., 2011; 1–40 Hz, in 1 Hz steps) using default settings (central frequency = 3 Hz, full width 
at half maximum [FWHM] = 1 s). Before parameterizing wavelet transforms, we applied a 4 s temporal 
smoothing filter (Gaussian kernel, SD = 1  s; time range: 3.5–56.5  s, in 0.005  s steps) to increase 
SNR (results prior to this step are shown for the first 1000 simulations in Supplemental materials). 
Settings for specparam were: peak width limits: (0.5 6); maximum number of peaks: 3; minimum peak 
amplitude: 0.6 a.u.; peak threshold: 2.0 SDs; proximity threshold: 2 SDs; aperiodic mode: fixed. Peri-
odic alpha activity was identified using the highest amplitude peak parameterized in each time bin 
between 5.5 and 10.5 Hz. Periodic beta activity was identified using the highest amplitude peak in 
each time bin between 13.5 and 20.5 Hz.

Model fit error was calculated as the MAE between expected and modelled spectral power by 
each component across simulations and times. Algorithmic performances were assessed by calcu-
lating MAE in parameter estimates across simulations and time points relative to expected parame-
ters. Peak- fitting probability in the alpha (5.5–10.5 Hz) and beta (13.5–20.5 Hz) bands was calculated 
for each time bin as the fraction of simulations with at least one oscillatory peak recovered in the 
frequency band of interest.

Generic time series simulations
For each time series generation, we sampled the parameter values of their arhythmic/rhythmic compo-
nents uniformly from realistic ranges. Aperiodic exponents were initialized between 0.8 and 2.2 Hz–1. 
Aperiodic offsets were initialized between –8.1 and –1.5 a.u. Within the 12–36 s time segment into the 
simulation (onset randomized), the aperiodic exponent and offset underwent a linear shift of magni-
tude in the ranges –0.5–0.5 Hz–1 and –1–1 a.u. (sampled continuously and chosen randomly), respec-
tively. The duration of the linear shift was randomly selected for each simulated time series between 
6 and 24 s. Between zero and four oscillatory (rhythmic) components were added to each trial with 
parameters randomly sampled within the following ranges: centre frequency: 3–35 Hz; amplitude: 
0.6–1.6 a.u.; SD: 1–2 Hz. The onset (5–40 s) and duration (3–20 s) of each of the rhythmic components 
were also randomized across components and across trials, with the constraint that they would not 
overlap both in time and frequency; they were allowed to overlap in either dimension. If a rhythmic 
component overlapped temporally with another one, its centre frequency was set at least 2.5 peak 
SDs from the other temporally overlapping rhythmic component(s). The magnitude of each periodic 
component was tapered by a Tukey kernel (cosine fraction = 0.4).

Each simulation was analysed with SPRiNT using 5×1 s STFT windows with 50% overlap (frequency 
range: 1–40 Hz). Settings for specparam were: peak width limits: (0.5 6); maximum number of peaks: 
6; minimum peak amplitude: 0.6  a.u.; peak threshold: 2.0 SDs; proximity threshold: 2 SDs; aperi-
odic mode: fixed. Settings for peak post- processing were: number of neighbouring peaks: 3; centre 
frequency: 2.5 Hz; time bin: 6 bins (=3 s). The spectrogram outcome of SPRiNT was analysed to iden-
tify rhythmic components as correct (i.e., present in ground truth signal) or incorrect components. 
Rhythmic SPRiNT components were labelled as correct if their centre frequency was within 2.5 peak 
SDs from any of the ground truth rhythmic components. In the event of multiple SPRiNT rhythmic 
components meeting these conditions, we selected the one with the largest amplitude peak (marking 
the other as incorrect).

Errors on parameter estimates were assessed via MAE measures with respect to their ground truth 
values. The peak- fitting probability for each simulated rhythmic component was derived as the frac-
tion of correct peaks recovered when one was expected. Model fit error was calculated for each time 
bin as the MAE between empirical and SPRiNT spectral power. We used a linear regression model 
(MATLAB’s fitlm; 2020a; Natick, MA, USA) to predict model fit errors at each time bin, using number 
of simulated peaks as a predictor.

 MAE = intercept + B ∗ number of simulated peaks  

We also simulated 1000 time series with aperiodic activity featuring a static knee (Figure 3—figure 
supplement 2). Aperiodic exponents were initialized between 0.8 and 2.2 Hz–1. Aperiodic offsets were 
initialized between –8.1 and –1.5 a.u., and knee frequencies were set between 0 and 30 Hz. Within 
the 12–36 s time segment into the simulated time series (onset randomized), the aperiodic exponent 
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and offset underwent a linear shift and a random magnitude in the range of –0.5 to 0.5 Hz–1 and –1 
to 1 a.u., respectively. The duration of the linear shift was randomly selected for each simulated time 
series between 1 and 20 s; the knee frequency was constant for each simulated time series. We added 
two oscillatory (rhythmic) components (amplitude: 0.6–1.6 a.u.; SD: 1–2 Hz) of respective peak centre 
frequencies between 3 and 30 Hz and between 30 and 80 Hz, with the constrain of minimum peak 
separation of at least 2.5 peak SDs. The onset of each periodic component was randomly assigned 
between 5 and 25 s, with an offset between 35 and 55 s.

We analysed each simulated time series with SPRiNT using 5×1 s STFT windows with 50% overlap 
over the 1–100 Hz frequency range. Parameter settings for specparam were: peak width limits: (0.5 
6); maximum number of peaks: 3; minimum peak amplitude: 0.6 a.u.; peak threshold: 2.0 SDs; prox-
imity threshold: 2.0 SDs; aperiodic mode: knee. Settings for peak post- processing were: number of 
neighbouring peaks: 3; centre frequency: 2.5 Hz; time bin: 6 bins (=3 s). The identification of periodic 
components was registered as correct or incorrect using the methods described above. We discarded 
the time bins (<2%) where aperiodic exponent estimations did not converge within the expected 
range.

Study 2: Resting-state electrophysiology data
We used open- access resting- state EEG and demographics data collected for 212 participants from 
the LEMON (Babayan et al., 2019). Data from the original study was collected in accordance with the 
Declaration of Helsinki, and the study protocol was approved by the ethics committee at the medical 
faculty of the University of Leipzig (reference No. 154/13- ff). Participants were asked to alternate 
every 60  s between eyes- open and eyes- closed resting- state for 16  min. Continuous EEG activity 
(2500 Hz sampling rate) was recorded from 61 Ag/AgCl active electrodes placed in accordance with 
the 10–10 system. An electrode below the right eye recorded eyeblinks (ActiCap System, Brain Prod-
ucts). Impedance of all electrodes was maintained below 5 kΩ. EEG recordings were referenced to 
electrode FCz during data collection (Babayan et al., 2019) and re- referenced to an average refer-
ence during preprocessing.

Preprocessing was performed using Brainstorm (Tadel et al., 2011). Recordings were resampled 
to 250 Hz before being high- pass filtered above 0.1 Hz using a Kaiser window. Eyeblink EEG arte-
facts were detected and attenuated using signal- space projection. Data was visually inspected for 
bad channels and artefacts exceeding 200 μV. 20 participants were excluded for not following task 
instructions, 2 for failed EEG recordings, 1 for data missing event markers, and 11 were excluded for 
EEG data of poor quality (>8 bad sensors). The results herein are from the remaining 178 participants 
(average number of bad sensors = 3). We extracted the first 5 min of consecutive quality data, begin-
ning with the eyes- closed condition, from electrode Oz for each participant. We removed 2.5 s of data 
centred at transitions between eyes- open and eyes- closed from further analyses due to sharp changes 
observed in aperiodic parameters when participants transitioned between eyes- open and eyes- closed 
(Figure 4—figure supplement 1) likely to be artefactual residuals of eye movements.

Spectrogram analysis
Each recording block was analysed with SPRiNT using 5×1 s sliding time windows with 50% overlap 
(frequency range: 1–40 Hz). We ran SPRiNT using Brainstorm with the following settings: peak width 
limits: (1.5 6); maximum number of peaks: 3; minimum peak amplitude: 0.5 a.u.; peak threshold: 2.0 
SDs; proximity threshold: 2.5 SDs; aperiodic mode: fixed. Peak post- processing was run on SPRiNT 
outputs number of neighbouring peaks 3; centre frequency: 2.5 Hz; time bin: 6 bins (=3 s). Alpha 
peaks were defined as all periodic components detected between 6 and 14 Hz. To capture variability 
in alpha- peak centre frequency across time, mean and SDs of alpha- peak centre frequency distri-
butions were computed across both the eyes- open and eyes- closed conditions and by age group 
(defined below).

We computed spectrograms from Morlet wavelet time- frequency decompositions (1–40 Hz, in 1 Hz 
steps) using Brainstorm (with default parameters; central frequency = 1 Hz, FWHM = 3 s; Tadel et al., 
2011). We also parameterized periodograms across eyes- open and eyes- closed time segments using 
specparam with Brainstorm, with the following settings: frequency range: 1–40 Hz; peak width limits: 
(0.5 6); maximum number of peaks: 3; minimum peak amplitude: 0.2 a.u.; peak threshold: 2.0 SDs; 
proximity threshold: 1.5 SDs; aperiodic mode: fixed.
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Contrast between eyes-open and eyes-closed conditions
All regression analyses were performed in R (V 3.6.3; R Development Core Team, 2020). We ran a 
logistic regression model whereby we predicted the condition (i.e., eyes- open vs eyes- closed) from 
the mean and SD of the following SPRiNT parameters: alpha centre frequency, alpha power, and 
aperiodic exponent. All model predictors were entered as fixed effects. Significance of each beta 
coefficient was tested against zero (i.e.,  Bn  = 0). We quantified the evidence for each predictor in 
our models with a Bayes factor analysis where we systematically removed one of the predictors and 
computed the Bayes factor using the BayesFactor library (Morey and Rouder, 2018). We compared 
the most complex model (i.e., the full model) against all models formulated by removing a single 
predictor. Evidence in favour of the full model (i.e., BF <1) indicated that a given predictor improved 
model fit, whereas evidence for the model without the predictor (i.e., BF >1) showed limited improve-
ment in terms of model fit.

We also fitted a logistic regression model to predict experimental condition (i.e., eyes- open and 
eyes- closed; dummy coded) from mean alpha- band power (6–14 Hz) entered as a fixed effect. Alpha- 
band power was computed as the mean log- power between 6 and 14 Hz for each condition extracted 
from the Morlet wavelets spectrograms. Significance of each beta coefficient was tested against zero 
(i.e.,  Bn  = 0). Finally, we adjusted a logistic regression model to predict behavioural condition (eyes- 
open vs eyes- closed) from specparam parameters (aperiodic exponent, alpha- peak centre frequency, 
and alpha- peak power) as fixed effects, where significance of each beta coefficient was tested against 
zero (i.e.,  Bn  = 0).

Predicting age from resting-state activity
Participants were assigned to two groups based on their biological age: younger adults (age: 
20–40 years, n=121) and older adults (age: 55–80 years, n=57). The SPRiNT- modelled alpha peaks 
and aperiodic parameters were collapsed across time to generate condition- specific distributions of 
model parameters per participant. We used these distributions to examine the mean and SD of alpha 
centre frequency, alpha power, and aperiodic exponent. We fitted two logistic regression models 
using the glm function in R (R Development Core Team, 2020) for the eyes- open and eyes- closed 
conditions:

 

age = intercept + B1 ∗ mean alpha center frequency + B2

∗standard deviation alpha center frequency + B3 ∗ mean alpha power + B4

∗standard deviation alpha power + B5 ∗ mean aperiodic slope + B6

∗standard deviation aperiodic slope   

 

age = intercept + B1 ∗ mean alpha center frequency + B2

∗standard deviation alpha center frequency + B3 ∗ mean alpha power + B4

∗standard deviation alpha power + B5 ∗ mean aperiodic slope + B6

∗standard deviation aperiodic slope   

All predictors were entered as fixed effects. Significance of each beta coefficient was tested against 
zero (i.e.,  Bn  = 0). We also quantified the evidence for each predictor in our models with a Bayes factor 
analysis. We performed similar logistic regressions using data from Morlet wavelets spectrograms 
and specparam- modelled power spectra (using the same parameters as those used for predicting 
behavioural condition). Finally, we performed logistic regressions using the mean and temporal vari-
ability (SD) of individual alpha- peak frequency (the frequency corresponding to the maximum power 
value between 6 and 14 Hz; Klimesch, 1999) derived from the STFT in both conditions to predict age 
group.

Study 3: Intracranial rodent data
Local field potential (LFP) recordings and animal behaviour, originally published by Mizuseki et al., 
2009, were collected from two Long- Evans rats (data retrieved from https://crcns.org). Animals were 
implanted with eight- shank multi- site silicon probes (200 µm inter- shank distance) spanning multiple 
layers of dorsocaudal medial entorhinal cortex (entorhinal cortex, dentate gyrus, and hippocampus). 
Neurophysiological signals were recorded while animals traversed to alternating ends of an elevated 
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linear track (250 × 7 cm) for 30 µL water reward (animals were water deprived for 24 hr prior to task). 
All surgical and behavioural procedures in the original study were approved by the Institutional Animal 
Care and Use Committee of Rutgers University (protocol No. 90–042). Recordings were acquired 
continuously at 20 kHz (RC Electronics) and bandpass- filtered (1 Hz- 5 kHz) before being down- sampled 
to 1250 Hz. In two rats (EC012 and EC013), nine recording blocks of activity in entorhinal cortex 
layer 3 (EC3) were selected for further analysis (16 electrodes in EC012 and 8 electrodes in EC013). 
Electrodes in EC012 with consistent isolated signal artefacts were removed (average number of bad 
electrodes = 2; none in EC013). Movement- related artefacts (large transient changes in LFP across all 
electrodes, either positive or negative) were identified by visual inspection and data coinciding with 
these artefacts were later discarded from further analysis. Animal head position was extracted from 
video recordings (39.06 Hz) of two head- mounted LEDs and temporally interpolated to align with 
SPRiNT parameters across time (piecewise cubic Hermite interpolative polynomial; MATLAB’s pchip; 
2020a; Natick, MA, USA).

Spectrogram analysis
Each recording block was analysed with SPRiNT using 5×2 s sliding time windows with 75% overlap 
(frequency range: 2–40 Hz). The 1 Hz frequency bin was omitted from spectral analyses due to its 
partial attenuation by the bandpass filter applied to the data. Time windows of 2 s were used to 
increase frequency resolution, with an overlap ratio of 75% to preserve the temporal resolution of 
0.5 s and to increase the temporal specificity of the spectrogram windows. Settings for specparam 
were set: peak width limits: (1.5 5); maximum number of peaks: 3; minimum peak amplitude: 0.5 a.u.; 
peak threshold: 2.0 SDs; proximity threshold: 2.0 SDs; aperiodic mode: fixed. Settings for peak post- 
processing were set as: number of neighbouring peaks: 3; centre frequency bounds: 2.5 Hz; time 
bin bounds: 6 bins (=3 s). Aperiodic parameters were averaged across electrodes and aligned with 
behavioural data.

Tracking aperiodic dynamics during movement transitions
Time bins were categorized based on whether animals were resting at either end of the track or 
moving towards opposite ends of the track (‘rest’ or ‘movement’, respectively) using animal posi-
tion (and speed). Rest- to- movement and movement- to- rest transitions were defined as at least four 
consecutive seconds of rest followed by four consecutive seconds of run (t=0 s representing the onset 
of movement) or vice versa (t=0 s representing the onset of rest), respectively. In both subjects, we 
also fit separate linear regression models (MATLAB’s fitlm; 2020a; Natick, MA, USA) of the relation 
between aperiodic exponents and movement speed at the transitions between movement and rest.

Software and code availability
The SPRiNT algorithm and all code needed to produce the figures shown are available from GitHub 
(https://github.com/lucwilson/SPRiNT; Wilson, 2022). The SPRiNT algorithm is also available from the 
Brainstorm distribution (Tadel et al., 2011).
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on OSF (https://doi.org/10.17605/OSF.IO/UGZJA). Resting- state EEG data was obtained from the 
open repository LEMON (https://openneuro.org/datasets/ds000221/versions/00002). Intracranial 
rodent data (study HC3) is openly available from Mizuseki et al. 2009 (https://crcns.org). Figure 3 - 
source data 1, Figure 4 - source data 1, and Figure 5 - source data 1 contain the numerical data used 
to generate the figures.
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Appendix 1

Supplemental materials
Detection and removal of spectrogram outlier components
A known issue of specparam is the fitting of spurious, outlier spectral peaks (Donoghue et al., 2020). 
With Spectral Parameterization Resolved in Time (SPRiNT), these peaks often appear as transient 
episodes of periodic activity in the spectrogram. We propose a post- processing option in SPRiNT 
to detect and remove fast, transient periodic activity (Figure 1—figure supplement 1). In short, the 
procedure searches for clusters of spectral peaks over a user- defined maximum time period (see 
Methods "Pruning of periodic component outliers"). Once an outlier peak is detected at a given 
time bin and removed from the model, aperiodic parameters are refit with specparam to account for 
the variance previously attributed to the spurious peak, and models are subsequently updated to 
reflect changes in parameters.

Wavelet-specparam with alternative wavelet parameters (synthetic data chal-
lenge I)
In addition to the wavelet settings used in the main text, we parameterized Morlet wavelet 
spectrograms of the first 1000 simulated time series from challenge I using alternative full width at 
half maximum (FWHM) settings for the wavelet transforms. This resulted in lower FWHM yielding 
wavelet spectrograms of higher temporal and lower spectral resolution (Cohen, 2014). As with other 
analyses of this dataset, settings for specparam were: peak width limits: (0.5 6); maximum number of 
peaks: 3; minimum peak amplitude: 0.6 a.u.; peak threshold: 2.0 SDs; proximity threshold: 2.0 SDs; 
aperiodic mode: fixed.

Wavelet settings of finer resolution in time and coarser in frequency (time range: 3–57 s, in 0.005 s 
steps; central frequency = 1 Hz, FWHM = 2 s; frequency range: 1–40 Hz, in 1 Hz steps) yielded lower 
estimation errors of exponent (mean absolute error [MAE] = 0.12) and offset (MAE = 0.35) compared 
to original settings (exponent and offset MAE = 0.19 and 0.78). Alpha peaks were recovered with 
higher sensitivity (97% at time bins with maximum peak amplitude and original 95%) and specificity 
(32% spurious detections and original 47%), although with greater errors in centre frequency (MAE 
= 0.61), amplitude (MAE = 0.25), and bandwidth (MAE = 0.94) compared to original settings (centre 
frequency, amplitude, and bandwidth MAE = 0.41, 0.24, and 0.64, respectively). Down- chirping 
beta oscillations were detected with lower sensitivity (29% sensitivity at time bins with maximum 
peak amplitude and original 62%) but higher specificity (97%, original 90%), and with greater errors 
in centre frequency (MAE = 0.63), amplitude (MAE = 0.17), and bandwidth (MAE = 1.59) relative 
to original settings (centre frequency, amplitude, and bandwidth MAE = 0.58, 0.16, and 1.05, 
respectively).

When wavelet settings prioritized resolution in frequency over time (time range: 4–56 s, in 0.005 s 
steps; central frequency = 1 Hz, FWHM = 4  s; frequency range: 1–40 Hz, in 1 Hz steps) relative 
to original settings, the errors in estimates of exponent (MAE = 0.16) and offset (MAE = 0.47) 
parameters were reduced (original exponent and offset MAE = 0.19 and 0.78, respectively). Alpha 
peaks were recovered with higher sensitivity (99% at time bins with maximum peak amplitude and 
original 95%) and similar specificity (46% spurious detections and original 47%), although with larger 
errors in centre frequency (MAE = 0.33), amplitude (MAE = 0.20), and bandwidth (MAE = 0.43) 
compared to original settings (centre frequency, amplitude, and bandwidth MAE = 0.41, 0.24, and 
0.64, respectively). In contrast, down- chirping beta oscillations were detected with slightly higher 
sensitivity (79% at time bins with maximum peak amplitude and original 62%) and specificity (91%, 
original 90%), and with lower errors on centre frequency (MAE = 0.37), amplitude (MAE = 0.14), and 
bandwidth (MAE = 0.71) compared to original settings (centre frequency, amplitude, and bandwidth 
MAE = 0.58, 0.16, and 1.05, respectively).

SPRiNT with alternative short-time Fourier transform (STFT) parameters 
(synthetic data challenge I)
In addition to the primary SPRiNT settings used in the main text (i.e., 5×1  s windows with 50% 
overlap), we parameterized STFT spectrograms of the first 1000 simulated time series from challenge 
I using alternative settings for the STFTs (Figure 2—figure supplement 3). One setting enabled 
higher temporal resolution (5×1  s with 75% overlap), while the other enabled higher frequency 
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resolution (5×2 s with 75% overlap). As with other analyses of this dataset, settings for specparam 
were: peak width limits: (0.5 6); maximum number of peaks: 3; minimum peak amplitude: 0.6 a.u.; 
peak threshold: 2.0 SDs; proximity threshold: 2.0 SDs; aperiodic mode: fixed.

SPRiNT settings for higher temporal resolution (time range: 1–59 s, in 0.25 s steps; frequency 
range: 1–40 Hz, in 1 Hz steps) provided slightly larger estimation errors of exponent (MAE = 0.15) 
and offset (MAE = 0.20) relative to original settings (exponent and offset MAE = 0.11 and 0.14, 
respectively). Alpha peaks were recovered with slightly lower sensitivity (98% at time bins with 
maximum peak amplitude; original 99%) and specificity (9% spurious detections; original 4%), and 
with greater errors in centre frequency (MAE = 0.43), amplitude (MAE = 0.24), and bandwidth (MAE 
= 0.53) compared to original settings (centre frequency, amplitude, and bandwidth MAE = 0.33, 0.20, 
and 0.42, respectively). Down- chirping beta oscillations were detected with lower sensitivity (93% 
sensitivity at time bins with maximum peak amplitude, original 98%; 86% specificity, original 98%), 
and with greater errors in centre frequency (MAE = 0.57), amplitude (MAE = 0.22), and bandwidth 
(MAE = 0.57) compared to original settings (centre frequency, amplitude, and bandwidth MAE = 
0.43, 0.17, and 0.48, respectively).

SPRiNT settings for higher frequency resolution (time range: 2–58 s, in 0.5 s steps; frequency 
range: 1–40 Hz, in 0.5 Hz steps) provided comparable estimation errors of exponent (MAE = 0.13) 
and offset (MAE = 0.16) relative to original settings (exponent and offset MAE = 0.11 and 0.20, 
respectively). Alpha peaks were recovered with similar sensitivity (99% at time bins with maximum 
peak amplitude; original 99%) but lower specificity (21% spurious detections; original 4%), and with 
comparable errors in centre frequency (MAE = 0.35), amplitude (MAE = 0.23), and bandwidth (MAE 
= 0.41) to original settings (centre frequency, amplitude, and bandwidth MAE = 0.33, 0.20, and 
0.42, respectively). Down- chirping beta oscillations were detected with comparable sensitivity (99% 
sensitivity at time bins with maximum peak amplitude and original 98%) but lower specificity (78%, 
original 98%), and with greater errors in centre frequency (MAE = 0.50), amplitude (MAE = 0.21), and 
bandwidth (MAE = 0.59) relative to original settings (centre frequency, amplitude, and bandwidth 
MAE = 0.43, 0.17, and 0.48, respectively).

Wavelet-specparam without temporal smoothing (synthetic data challenge I)
We parameterized Morlet wavelet spectrograms (central frequency = 1 Hz, FWHM = 3 s; 1–40 Hz, 
in 1 Hz steps) of the first 1000 simulated time series consisting of transient alpha and down- chirping 
beta periodic activity (time range: 1.5–58.5 s, in 0.005 s steps). In the main text, we discuss results 
from temporally smoothed wavelet spectrograms (see Methods). Here, we show results without 
temporal smoothing (Figure 2—figure supplement 4).

Error in estimates from unsmoothed parameterized wavelet spectrograms of exponent (MAE = 
0.41) and offset (MAE = 0.83) parameters was worse than those obtained from smoothed wavelet 
decompositions (exponent MAE = 0.19; offset MAE = 0.78). Alpha peaks were recovered with 
lower sensitivity (84% at time bins with maximum peak amplitude) and specificity (41% spurious 
detections), and with greater errors on centre frequency (MAE = 0.82), amplitude (MAE = 0.53), and 
bandwidth (MAE = 0.91). The down- chirping beta oscillation was also detected with lower sensitivity 
(53% at time bins with maximum peak amplitude) and specificity (74%), and with greater errors on 
centre frequency (MAE = 1.23), amplitude (MAE = 0.60), and bandwidth (MAE = 1.10).

SPRiNT without outlier peak removal (synthetic data challenge 1)
Here, we present the results of SPRiNT from synthetic data challenge I without outlier peak removal 
(Figure 2—figure supplement 4). For the aperiodic component, SPRiNT accurately recovered both 
ground truth exponent (MAE = 0.11) and offset (MAE = 0.15). It also detected the occurrences of 
alpha peaks with high sensitivity (99% at time bins with maximum peak amplitude) and specificity 
(6% spurious detections), and with low errors on their centre frequency (MAE = 0.33) and amplitude 
(MAE = 0.20) parameters, but overestimated the width of the periodic peak components (MAE 
= 0.42). SPRiNT detected and tracked the down- chirping beta periodic components with high 
sensitivity (95% at time bins with maximum peak amplitude) but lower specificity (95%) than with 
outlier peak removal (98%). Time- collapsed errors on centre frequency (MAE = 0.44) and amplitude 
(MAE = 0.17) parameters were low, with a tendency to overestimate the width in frequency of 
the periodic component (MAE = 0.48). Results following outlier peak removal are presented and 
discussed in the main text.
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Generalization of SPRiNT across generic aperiodic and periodic fluctuations 
without outlier removal (synthetic data challenge II)
We present the results of the second synthetic data challenge without outlier peak removal 
(Figure 3—figure supplement 3). SPRiNT recovered 70% of the simulated periodic components, 
with 73% specificity. Dynamic aperiodic exponents were recovered with a MAE of 0.13, while dynamic 
offsets were recovered with a MAE of 0.16. Centre frequency, amplitude, and SD parameters were 
recovered with MAEs of 0.46, 0.23, and 0.49, respectively.

SPRiNT model fit error does not affect condition associations
We performed t- tests of model fit errors (MAE) between conditions and age groups. While there 
were no age- related effects on model fit error (eyes- open: p=0.09; eyes closed: p=0.69), we 
observed slightly lower model fit errors in the eyes- open condition (mean = 0.032) compared to the 
eyes- closed condition (mean = 0.033; t[354] = –3.17, p=0.002, and 95% CI [3.0 × 10–4 1.3 × 10–3]). 
The size of this effect was small- to- medium (Cohen’s d=0.34).

To determine whether model fit error would affect our SPRiNT logistic regression model for 
condition, we included it as a fixed effect in a new logistic regression model (Table 3). Here, we 
observed the same effects for predicting condition as the original model (mean aperiodic exponent, 
mean alpha power, and variability of alpha power; see Table 2), with no significant effect of model 
fit error (p=0.45).

https://doi.org/10.7554/eLife.77348
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