HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury

Abstract

Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype, and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.

Data availability

Source Data files have been provided for Figures 2C, and 5B, C.

Article and author information

Author details

  1. Parker S Woods

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    Parker S Woods, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
  2. Lucas M Kimmig

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Kaitlyn A Sun

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Angelo Y Meliton

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Obada R Shamaa

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Yufeng Tian

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  7. Rengül Cetin-Atalay

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  8. Willard W Sharp

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  9. Robert B Hamanaka

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    Robert B Hamanaka, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-356X
  10. Gökhan M Mutlu

    Department of Medicine, University of Chicago, Chicago, United States
    For correspondence
    gmutlu@medicine.bsd.uchicago.edu
    Competing interests
    Gökhan M Mutlu, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2056-612X

Funding

U.S. Department of Defense (W81XWH-16-1-0711)

  • Gökhan M Mutlu

National Institute of Environmental Health Sciences (R01ES010524)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (R01HL151680)

  • Robert B Hamanaka

National Institute of Environmental Health Sciences (U01ES026718)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (P01HL144454)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (T32HL007605)

  • Parker S Woods
  • Lucas M Kimmig
  • Obada R Shamaa
  • Gökhan M Mutlu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments and procedures were performed according to the protocols (ACUP7236 and ACUP72484) approved by the Institutional Animal Care and Use Committee at the University of Chicago.

Copyright

© 2022, Woods et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,819
    views
  • 626
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parker S Woods
  2. Lucas M Kimmig
  3. Kaitlyn A Sun
  4. Angelo Y Meliton
  5. Obada R Shamaa
  6. Yufeng Tian
  7. Rengül Cetin-Atalay
  8. Willard W Sharp
  9. Robert B Hamanaka
  10. Gökhan M Mutlu
(2022)
HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury
eLife 11:e77457.
https://doi.org/10.7554/eLife.77457

Share this article

https://doi.org/10.7554/eLife.77457

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.