HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury

Abstract

Cellular metabolism is a critical regulator of macrophage effector function. Tissue-resident alveolar macrophages (TR-AMs) inhabit a unique niche marked by high oxygen and low glucose. We have recently shown that in contrast to bone marrow-derived macrophages (BMDMs), TR-AMs do not utilize glycolysis and instead predominantly rely on mitochondrial function for their effector response. It is not known how changes in local oxygen concentration that occur during conditions such as acute respiratory distress syndrome (ARDS) might affect TR-AM metabolism and function; however, ARDS is associated with progressive loss of TR-AMs, which correlates with the severity of disease and mortality. Here, we demonstrate that hypoxia robustly stabilizes HIF-1α in TR-AMs to promote a glycolytic phenotype. Hypoxia altered TR-AM metabolite signatures, cytokine production, and decreased their sensitivity to the inhibition of mitochondrial function. By contrast, hypoxia had minimal effects on BMDM metabolism. The effects of hypoxia on TR-AMs were mimicked by FG-4592, a HIF-1α stabilizer. Treatment with FG-4592 decreased TR-AM death and attenuated acute lung injury in mice. These findings reveal the importance of microenvironment in determining macrophage metabolic phenotype, and highlight the therapeutic potential in targeting cellular metabolism to improve outcomes in diseases characterized by acute inflammation.

Data availability

Source Data files have been provided for Figures 2C, and 5B, C.

Article and author information

Author details

  1. Parker S Woods

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    Parker S Woods, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
  2. Lucas M Kimmig

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Kaitlyn A Sun

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Angelo Y Meliton

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Obada R Shamaa

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Yufeng Tian

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  7. Rengül Cetin-Atalay

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  8. Willard W Sharp

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  9. Robert B Hamanaka

    Department of Medicine, University of Chicago, Chicago, United States
    Competing interests
    Robert B Hamanaka, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-356X
  10. Gökhan M Mutlu

    Department of Medicine, University of Chicago, Chicago, United States
    For correspondence
    gmutlu@medicine.bsd.uchicago.edu
    Competing interests
    Gökhan M Mutlu, has a pending patent on targeting tissue-resident alveolar macrophage metabolism to prevent their death during ARDS. (ARCD.P0740US.P1/1001176943).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2056-612X

Funding

U.S. Department of Defense (W81XWH-16-1-0711)

  • Gökhan M Mutlu

National Institute of Environmental Health Sciences (R01ES010524)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (R01HL151680)

  • Robert B Hamanaka

National Institute of Environmental Health Sciences (U01ES026718)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (P01HL144454)

  • Gökhan M Mutlu

National Heart, Lung, and Blood Institute (T32HL007605)

  • Parker S Woods
  • Lucas M Kimmig
  • Obada R Shamaa
  • Gökhan M Mutlu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul W Noble, Cedars-Sinai Medical Centre, United States

Ethics

Animal experimentation: All animal experiments and procedures were performed according to the protocols (ACUP7236 and ACUP72484) approved by the Institutional Animal Care and Use Committee at the University of Chicago.

Version history

  1. Received: January 31, 2022
  2. Preprint posted: March 1, 2022 (view preprint)
  3. Accepted: July 10, 2022
  4. Accepted Manuscript published: July 13, 2022 (version 1)
  5. Version of Record published: July 26, 2022 (version 2)

Copyright

© 2022, Woods et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,450
    views
  • 582
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parker S Woods
  2. Lucas M Kimmig
  3. Kaitlyn A Sun
  4. Angelo Y Meliton
  5. Obada R Shamaa
  6. Yufeng Tian
  7. Rengül Cetin-Atalay
  8. Willard W Sharp
  9. Robert B Hamanaka
  10. Gökhan M Mutlu
(2022)
HIF-1α induces glycolytic reprograming in tissue-resident alveolar macrophages to promote cell survival during acute lung injury
eLife 11:e77457.
https://doi.org/10.7554/eLife.77457

Share this article

https://doi.org/10.7554/eLife.77457

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.