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Abstract Excess mortality studies provide crucial information regarding the health burden of 
pandemics and other large- scale events. Here, we use time series approaches to separate the direct 
contribution of SARS- CoV- 2 infection on mortality from the indirect consequences of the pandemic 
in the United States. We estimate excess deaths occurring above a seasonal baseline from March 1, 
2020 to January 1, 2022, stratified by week, state, age, and underlying mortality condition (including 
COVID- 19 and respiratory diseases; Alzheimer’s disease; cancer; cerebrovascular diseases; diabetes; 
heart diseases; and external causes, which include suicides, opioid overdoses, and accidents). 
Over the study period, we estimate an excess of 1,065,200 (95% Confidence Interval (CI) 909,800–
1,218,000) all- cause deaths, of which 80% are reflected in official COVID- 19 statistics. State- specific 
excess death estimates are highly correlated with SARS- CoV- 2 serology, lending support to our 
approach. Mortality from 7 of the 8 studied conditions rose during the pandemic, with the exception 
of cancer. To separate the direct mortality consequences of SARS- CoV- 2 infection from the indirect 
effects of the pandemic, we fit generalized additive models (GAM) to age- state- and cause- specific 
weekly excess mortality, using covariates representing direct (COVID- 19 intensity) and indirect 
pandemic effects (hospital intensive care unit (ICU) occupancy and measures of interventions strin-
gency). We find that 84% (95% CI 65–94%) of all- cause excess mortality can be statistically attributed 
to the direct impact of SARS- CoV- 2 infection. We also estimate a large direct contribution of SARS- 
CoV- 2 infection (≥67%) on mortality from diabetes, Alzheimer’s, heart diseases, and in all- cause 
mortality among individuals over 65 years. In contrast, indirect effects predominate in mortality from 
external causes and all- cause mortality among individuals under 44 years, with periods of stricter 
interventions associated with greater rises in mortality. Overall, on a national scale, the largest 
consequences of the COVID- 19 pandemic are attributable to the direct impact of SARS- CoV- 2 
infections; yet, the secondary impacts dominate among younger age groups and in mortality from 
external causes. Further research on the drivers of indirect mortality is warranted as more detailed 
mortality data from this pandemic becomes available.

Editor's evaluation
The authors examine the impacts of the COVID- 19 pandemic on excess mortality in the US up to 
January 2022. The authors separate direct impacts of the pandemic from indirect impacts (disrup-
tions), finding that most excess deaths (84%) are due to direct impacts. Moreover, in individuals 
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under 44 years of age, indirect effects predominate in mortality from external causes and all- cause 
mortality. The paper is well written and of interest to understant the impacts of the COVID- 19 
pandemic.

Introduction
As the official death toll of the coronavirus disease 2019 (COVID- 19) continues to grow, the full 
impacts of the pandemic on a range of conditions remain debated. By the end of January 2023, 
official statistics reported 1,056,000 deaths in the United States alone (Johns Hopkins University, 
2022), although burden estimates that do not rely on official tallies suggest a higher death toll (Wein-
berger et al., 2020; Karlinsky and Kobak, 2021). A pandemic of the magnitude of COVID- 19 would 
be expected to have secondary effects on unrelated health conditions; for instance, non- COVID- 19 
deaths increased in Spring of 2020 at the height of the first wave in part due to avoidance of the 
healthcare system (Bollmann et al., 2020; Kansagra et al., 2020; Mafham et al., 2020; Woolf et al., 
2020; Woolf et al., 2021).

Excess mortality approaches have been used for over a century to capture the full scope of large- 
scale infectious disease events, heatwaves, and earthquakes, by measuring the rise in mortality over 
a historical baseline (Serfling, 1963; Weinberger et al., 2020). In the early phase of the pandemic, 
these approaches highlighted substantial underestimation in official statistics of COVID- 19 deaths due 
to limited viral testing (Weinberger et al., 2020; Kobak, 2021). More recent analyses have examined 
excess mortality patterns for specific causes of death by age and socio- demographic groups and have 
compared the COVID- 19 death toll between countries (Banerjee et al., 2020; Islam et al., 2021; 
Karlinsky and Kobak, 2021; Mena et al., 2021; Rossen et al., 2021; Woolf et al., 2021; COVID- 19 
Excess Mortality Collaborators, 2022). Yet, separating the direct impact of SARS- CoV- 2 infection on 
mortality from the other consequences of the pandemic remains challenging.

To measure the direct and indirect effects of the COVID- 19 pandemic, it is important to enumerate 
the mechanisms that could generate these effects and understand how they would manifest in 
mortality statistics. We first consider the direct effects of COVID- 19 as those deaths that resulted 
from SARS- CoV- 2 infection and its complications. When there is evidence of SARS- CoV- 2 infection 
in the days or weeks before death, either virologically or clinically, it is likely that these deaths will 
receive a COVID- 19 code during certification and these deaths will appear in official statistics. We 
would, however, expect variation between states in the death certification process for COVID- 19. 
Additionally, a number of deaths triggered by SARS- CoV- 2 infection could result from a complicated 
and protracted pathologic process, especially in patients with multiple underlying chronic conditions, 
who may lack a history of SARS- CoV- 2 testing, and whose death may not be ascribed to COVID- 
19. For instance, a death in a diabetic patient could have been triggered by an undetected SARS- 
CoV- 2 infection, resulting in a primary code of diabetes, with a SARS- CoV- 2 code either lacking or 
listed as contributing condition. We would then expect a rise in diabetes mortality to coincide with a 
rise in COVID- 19 cases. A similar phenomenon has been reported for influenza, with mortality from 
chronic conditions rising concomitantly with influenza- associated respiratory mortality in epidemic 
and pandemic seasons (Reichert et al., 2004; Quandelacy et al., 2014).

In addition to the direct impacts of COVID- 19, there will be positive and negative changes in 
mortality during the pandemic period that are not associated with SARS- CoV- 2 infection and its 
complications. We refer to these changes as indirect impacts. Reasons for these changes include 
avoidance of the healthcare system for treatment of acute conditions and for management of under-
lying chronic conditions, stressed healthcare systems in a period of high COVID- 19 incidence, mental 
health issues in families of patients severely affected by COVID- 19, societal disruptions (Sharma et al., 
2021), decreased social interaction that depresses circulation of endemic pathogens, and decreased 
air pollution. The indirect impacts of the pandemic on mental health, violence, and addiction remain 
particularly debated, with potentially large impacts on mortality (Faust et al., 2021b; Faust et al., 
2021c). These indirect mortality changes may or may not coincide temporally with COVID- 19 waves.

In the United States, there was substantial geographic and temporal heterogeneity in the trajec-
tory of the COVID- 19 pandemic, along with differences in the strength and types of interventions 
implemented to mitigate COVID- 19. In a large country with standardized death ascertainment like 
the United States, these heterogeneities provide an opportunity to separate the contributions of viral 
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infection from other drivers of mortality. Here, we apply time series approaches to four large waves 
of COVID- 19 from March 1, 2020 to January 1, 2022, to separate the direct consequences of SARS- 
CoV- 2 infection on age- state- and cause- specific mortality from the indirect consequences associated 
with hospital strain and interventions. Our analyses indicate that the direct and indirect effects of the 
pandemic vary substantially by chronic condition and age group. A better understanding of these 
effects is particularly important for the mitigation of future large- scale pandemics.

Results
Overall mortality patterns
We compiled weekly US mortality data by age and state, from August 1, 2014 to January 1, 2022 for 
eight underlying conditions (all causes, respiratory conditions, Alzheimer’s disease, cancer, cerebro-
vascular diseases, diabetes, heart diseases, external causes; see supplement for disease codes and 
Centers for Disease Control and Prevention, 2022a; Centers for Disease Control and Prevention, 
2022b). External causes include suicides, accidents, homicides, and poisoning from opioids and other 
substances, among other conditions. Respiratory mortality includes deaths ascribed to COVID- 19 (ICD 
code U07), influenza, pneumonia, and chronic lower respiratory diseases. This is our most specific indi-
cator of excess deaths directly attributable to SARS- CoV- 2 infection. We used the data until March 1, 
2020 to calibrate seasonal regression models and project expected mortality baselines in the absence 
of a pandemic (See methods for details). Models were adjusted for influenza circulation. Pandemic 
excess mortality was the difference between observed and expected baseline mortality from March 1, 
2020 to January 1, 2022 (see https://github.com/viboudc/DirectIndirectCOVID19MortalityEstimation; 
Viboud, 2023 for data and code).

Across the United States from March 1, 2020 to January 1, 2022, there were 848,866 cumulative 
deaths officially attributed to COVID- 19, namely, with COVID- 19 as the underlying cause of death. 
During the same period, we estimate 757,600 (95% Confidence Intervals (CI) 725,200–788,100) 
excess respiratory deaths and 1,065,200 (95% CI 909,800–1,218,000) excess deaths due to all- cause 
(Table 1). National mortality patterns comprise four waves from March 1 to June 20, 2020 (wild- type 
variant); June 21 to September 19, 2020 (wild- type variant); September 20, 2020 to June 19, 2021 
(wild- type and Alpha variants); June 20 to November 11, 2021 (Delta variant). A recrudescence of 
mortality in the last weeks of 2021 was attributable to the co- circulation of the Delta and Omicron 
variants. The timing and intensity of mortality varied greatly by state (Figure 1A and Appendix 1—
figures 1–8). The first wave was concentrated in Northeastern states, while Southern and Western 
states experienced mortality increases during later waves. A sensitivity analysis based on the length 
of the historic data used for calibration of the model baseline is shown in Appendix 1—figure 9. All- 
cause and respiratory disease estimates, as well as national estimates, were particularly robust to the 
choice of the calibration period.

Next, to validate our excess mortality approach, we compared our estimates with serology (see 
methods for details). Excess respiratory mortality showed a significant, positive correlation with CDC 
seroprevalence surveys (Centers for Disease Control and Prevention, 2022g) conducted in late 
December 2021 in each state (Figure 1B). Seroprevalence estimates ranged between 11.1 and 47.7% 
across states, with a population- weighted national seroprevalence of 34.6%. New York and Alabama 
experienced higher than predicted excess mortality with respect to their reported serologic infection 
rates, while Illinois and Michigan had the reverse pattern. The nationwide infection fatality rate (IFR) 
was estimated at 0.67% (95% CI 0.60–0.73%) based on excess respiratory mortality and 0.89% (95% CI 
0.77–1.02%) based on all- cause excess mortality (Appendix 1—figure 10). Sensitivity analyses based 
on the maximum reported seroprevalence at any time point of the study period indicate that New 
York remained an outlier, with Illinois and Texas showing the reverse pattern (Appendix 1—figure 
10). Use of official COVID- 19 deaths determined an IFR of 0.72% (95%CI 0.62–0.81%); interestingly, 
serology was more highly correlated with excess respiratory deaths than with official COVID- 19 deaths 
(Appendix 1—figure 10). The IFR was significantly higher in individuals over 65 years, estimated at 
5.5% (95% CI 4.5–6.6%) based on all- cause excess respiratory mortality.

Next, we compared the mortality burden of COVID- 19 and influenza. We estimated excess mortality 
for the severe November 2017 to March 2018 influenza A/H3N2 season and for the large wave of 
COVID- 19 in November 2020 to March 2021 (see Appendix for details). We find that nationally, over 
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Table 1. Reported COVID- 19 deaths by US jurisdiction, Compared with Excess Deaths from All- Causes and Respiratory Diseases: 
March 1, 2020 to January 1, 2022.

Jurisdiction

Estimated excess 
all- cause deaths 
per 100,000, (95% 
prediction interval)

No. estimated excess 
all- cause deaths (95% 
prediction interval)

No. estimated excess 
respiratory deaths (95% 
prediction interval)

No. reported 
COVID- 19 
deaths*

Ratio of 
COVID- 19 
deaths to all- 
cause excess 
deaths

Ratio of 
COVID- 19 
deaths to 
respiratory 
excess deaths

United States 318 (272–364) 1,065,200 (909,800–1,218,000) 757,600 (725,200–788,100) 848,886 0.80 1.12

Alabama 569 (406–727) 26,900 (19,200–34,400) 15,000 (13,000–16,800) 16,425 0.61 1.09

Arizona 414 (328–498) 35,000 (27,700–42,100) 22,900 (21,000–24,600) 23,381 0.67 1.02

Arkansas 450 (283–612) 13,800 (8700–18,700) NA 9363 0.68 NA

California 286 (234–336) 120,500 (98,700–141,800) 75,500 (69,800–80,700) 81,910 0.68 1.08

Colorado 284 (173–393) 15,000 (9100–20,800) NA 11,280 0.75 NA

Connecticut 238 (98–374) 8700 (3600–13,700) NA 9451 1.08 NA

Florida 342 (279–404) 80,200 (65,400–94,600) 54,900 (51,400–58,200) 60,704 0.76 1.11

Georgia 366 (287–443) 39,600 (31,100–48,000) 25,400 (23,100–27,600) 27,763 0.70 1.09

Illinois 269 (198–339) 35,600 (26,200–44,800) 25,300 (22,800–27,600) 28,509 0.80 1.13

Indiana 325 (213–436) 21,600 (14,100–28,900) 16,400 (14,100–18,500) 19,830 0.92 1.21

Iowa 195 (26–361) 5900 (800–10,900) NA 8295 1.41 NA

Kansas 241 (75–401) 7000 (2200–11,600) NA 7316 1.05 NA

Kentucky 421 (278–560) 18,600 (12,300–24,800) NA 13,313 0.71 NA

Louisiana 451 (317–581) 21,300 (15,000–27,400) NA 13,984 0.66 NA

Maryland 262 (163–360) 17,000 (10,600–23,400) NA 12,832 0.75 NA

Massachusetts 196 (95–297) 13,500 (6500–20,300) NA 15,799 1.17 NA

Michigan 251 (165–336) 26,800 (17,600–35,900) 22,200 (19,600–24,700) 27,287 1.02 1.23

Minnesota 149 (42–253) 8800 (2500–14,900) NA 11,015 1.25 NA

Mississippi 477 (305–645) 14,500 (9300–19,600) NA 11,069 0.76 NA

Missouri 309 (190–426) 19,200 (11,800–26,400) 15,400 (13,300–17,200) 17,005 0.89 1.11

Nevada 348 (211–479) 12,000 (7300–16,500) NA 9172 0.76 NA

New Jersey 320 (238–401) 30,300 (22,500–38,000) 25,500 (23,600–27,300) 27,770 0.92 1.09

New York 353 (287–416) 69,000 (56,300–81,500) 56,700 (48,400–63,600) 62,339 0.90 1.10

Ohio 400 (296–502) 46,600 (34,500–58,500) 30,900 (27,800–33,700) 35,633 0.77 1.15

Oklahoma 416 (263–566) 15,600 (9800–21,100) NA 13,098 0.84 NA

Oregon 209 (76–338) 8900 (3200–14,400) NA 5801 0.65 NA

Pennsylvania 347 (259–434) 44,400 (33,100–55,500) 34,500 (31,800–37,000) 38,954 0.88 1.13

South Carolina 437 (301–570) 21,100 (14,500–27,500) NA 15,202 0.72 NA

Tennessee 411 (292–526) 27,800 (19,800–35,700) 20,200 (18,000–22,200) 21,580 0.78 1.07

Texas 364 (311–417) 104,300 (89,000–119,400) 76,000 (72,200–79,500) 82,328 0.79 1.08

Virginia 236 (149–320) 21,000 (13,300–28,500) 12,800 (10,700–14,800) 15,824 0.75 1.22

Washington 172 (77–264) 12,800 (5700–19,600) NA 9868 0.77 NA

Wisconsin 219 (−23–43) 13,100 (−1400–26,600) NA 12,362 0.94 NA

*As reported by National Center for Health Statistics. States are ordered alphabetically. No. of reported COVID –19 deaths (any death with COVID- 19 
as underlying cause) until December 31, 2021 as available on June 14, 2022, were obtained from the NCHS website (Centers for Disease Control and 
Prevention, 2022d).
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this 5 month period, the mortality burden of COVID- 19 was 5.7- fold higher than that of influenza 
based on all- cause excess mortality. A similar pattern was seen in all states median ratio of COVID- 19 
to influenza excess mortality rates across states, 5.8 (IQR, 5.0–7.8), (Appendix 1—figure 11).

Direct and indirect pandemic impacts by cause of death
To probe the direct and indirect mortality impacts of the pandemic, we assessed whether the trajecto-
ries of various mortality categories were synchronous with that of respiratory mortality. Synchronicity 
would signal a direct impact of SARS- CoV- 2 infection on these mortality categories. Overall, during 
the March 1, 2020 to January 1, 2022 pandemic period, excess mortality increased for 6 of the 7 non- 
respiratory conditions studied, although the timing and intensity of the rise varied by disease (Table 2, 
Figure 2). Cancer was the only mortality condition that did not increase during the pandemic. Cancer 
deaths have remained below historic levels since March 2020, although cumulative departures from 
baseline were not significantly different from zero (Table 2). In contrast, mortality from chronic condi-
tions such as Alzheimer’s, diabetes, and heart disease rose during the pandemic, with the trajectory 
of excess mortality matching the pattern of respiratory mortality in the 4 pandemic waves (Figure 2 
for national patterns, and Appendix 1—figures 3–8 for state- specific data). Across these causes of 
death, the first excess mortality peaks occurred within one week of the first respiratory mortality peak 
on April 18, 2020, with the most pronounced synchronicity patterns observed in the first wave in New 
York and New Jersey. Across chronic conditions, the peak of excess mortality was highest during the 
winter of 2020 to 21, or the third wave of the pandemic (Appendix 1—figure 12).

Figure 1. Weekly mortality rates (per 100,000) for select US jurisdictions and validation of COVID- 19 excess mortality estimates against serology. 
 (A) Weekly all- cause mortality rate per 100,000 in the United States and top five most populated states, August 2, 2014 to January 1, 2022. Black lines 
show observed data. Green line shows the seasonal model baseline. The red solid line shows the seasonal variation accounting for influenza circulation. 
The orange shaded areas show the upper and lower 95% confidence intervals (CIs). The dotted vertical red line marks the start of the pandemic on 
March 1, 2020. (B) Comparison between estimated excess respiratory mortality rates and cumulative COVID- 19 seroprevalence estimates from the 
Centers for Disease Control and Prevention (CDC) as of December 31, 2021. Each point corresponds to a state; observations are shown for 16 states 
which have enough resolution in respiratory mortality data. Error bars represent 95% CIs on serology and excess mortality estimates. The black line and 
dotted region represent a linear regression fit and the associated 95% CI for a model without intercept.
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We found a significant rise in deaths from external causes during the pandemic period from March 
1, 2020 to January 1, 2022, corresponding to 102,800 (95% CI 81,400–123,700) cumulative excess 
deaths nationally (Figure  2 and Table  2). The largest excess mortality rates from external causes 
were found in states that also had high baseline death rates from these conditions (Appendix 1—
figure 13). However, the weekly trajectory of mortality from external causes did not align with that 
of respiratory mortality. We further analyzed subcategories of external causes that were available on 
a monthly resolution (see Figure 3 and methods for data). The largest excess death tolls observed 
during this period were from accidents and injuries (43,600 excess deaths (95% CI 17,200–70,000), a 
12% increase over baseline), drug overdoses (25,300 deaths (95% CI 12,000–38,700), 16% increase), 
and assaults and homicides (8,000 deaths (95% CI 3,700–12,200), 20% increase, Table 3). Overdoses 
were the first to peak in May 2020, followed by accidents and assaults in July 2020. Notably, mortality 
from suicides remained at historic levels throughout the end of the study period.

We saw evidence of increased synchronicity in multiple causes of death during the pandemic, 
which is a signature of the direct effects of SARS- CoV- 2 infection on mortality. During the period 
March 1, 2020 to January 1, 2022, and compared to historical patterns, all- cause mortality became 
more correlated with excess deaths from respiratory conditions in all 16 states with available respi-
ratory estimates (Appendix  1—figure 14 and methods for details). States that experienced high 
cumulative excess respiratory deaths had concomitantly high excess mortality from all- causes 
(Spearman rho=0.81, 95% CI: 0.48–0.94), attesting to the large impact of COVID- 19 on total mortality 
(Appendix  1—figure 15). Synchrony between excess deaths from underlying respiratory diseases 
and excess deaths from underlying chronic conditions increased during the pandemic in a subset 
of states (Appendix  1—figure 14), particularly for diabetes (n=8 states), Alzheimer’s (n=5), heart 
diseases (n=4), and cerebrovascular diseases (n=4). In contrast, excess deaths recorded as due to 
cancer or external causes showed either no change (in most states) or declining synchrony (in one or 
two states) with respiratory mortality during the pandemic.

Next, to quantify the direct and indirect impacts of the pandemic on different causes of death, 
we used GAM to regress weekly cause- specific excess mortality on official COVID- 19 deaths, the 
strength of non- pharmaceutical interventions, and hospital ICU occupancy (see methods for statistical 
approach, and Figure 4 and Appendix 1—figure 16 for results). We used official COVID- 19 deaths 
as a proxy for the direct impact of SARS- CoV- 2 infection on mortality. The variables measuring the 
strength of interventions (Oxford contingency index, Oxford University, 2021) and ICU occupancy 
(Health and Human Services, 2022) allowed for the estimation of the indirect consequences of the 
pandemic on mortality. We found a major direct impact of SARS- CoV- 2 infection on mortality from 
all- cause, diabetes, heart disease, cerebrovascular diseases, and Alzheimer’s; namely, the strongest 

Table 2. Estimation of the direct impacts of COVID- 19 on non- respiratory conditions.

Cause of Death
No. estimated excess deaths (95% 
prediction interval)

% of excess deaths directly 
attributable to COVID- 19 (95% 
prediction interval)*

All- cause 1,065,200 (909,800–121,8000) 84% (65, 94)

Alzheimer’s 25,300 (12,600–37,600) 70% (45, 89)

Diabetes 24,700 (15,900–33,300) 70% (45, 93)

Heart diseases 51,300 (7,400–94,300) 73% (32, 94)

Cerebrovascular diseases 16,600 (5,300–27,800) 26% (−17, 62)

External causes 102,800 (81,400–123,700) −48% (−64, −23)†

Cancer 4,300 (−18,100–26,500) N/A‡

* Regression estimates of the direct impact of COVID- 19 on cause- specific excess mortality, where weekly cause- 
specific excess mortality is regressed against COVID- 19 intensity, strength of interventions, and ICU occupancy, 
using gam models. Estimates are based on comparison of predictions from the full model with counterfactual 
predictions where the COVID- 19 term is set to zero.
†COVID- 19 intensity is significant but negatively associated with excess mortality from external causes, hence the 
estimated attributable fraction is negative.
‡COVID- 19 intensity is not retained in the cancer model.

https://doi.org/10.7554/eLife.77562
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predictor of excess mortality from these causes was COVID- 19 deaths. The relationship between these 
mortality conditions and COVID- 19 deaths, while non- linear, was typically monotonically increasing. 
Non- pharmaceutical interventions and ICU occupancy variables were also statistically associated with 
excess mortality, although the form of the relationship was more complex. Non- pharmaceutical inter-
vention variables had a curvilinear relationship with excess deaths, consistent with different mecha-
nisms affecting different periods of the pandemic. At lower levels of interventions (measured by the 
Oxford contingency index between 0 and 50), representing the early stages of the lockdown in March 
2020, excess mortality rose with interventions. Later in the pandemic, increased interventions were 
estimated to have a beneficial effect on excess mortality, driven by comparison between late 2020 
when interventions were strengthened in response to increasing COVID- 19 activity (Oxford index 
above 60), and Spring 2021 when interventions were relaxed (Oxford index between 50 and 60). The 
relationship with the ICU occupancy variable was more difficult to interpret, varied between causes 
of death, and had the lowest statistical significance of the three variables tested. Furthermore, all 
mortality conditions were not equally well captured by our models: the best model fit was for all- cause 
mortality (R2=96%) and the worst was for cerebrovascular diseases (R2=47%; Figure 4).

On a national level, the GAM approach estimated that 84% (95% CI 65–94%) of all- cause excess 
deaths were attributable to the direct impact of SARS- CoV- 2 infection, while the proportion was 
73% (95% CI, 32–94%) for heart diseases, 70% (95% CI: 45–89%) for Alzheimer’s, and 70% (95% CI: 

Figure 2. Weekly national mortality rates and model baselines (per 100,000) for eight causes of death. The black line shows observed data, the green 
line shows the seasonal model baseline, the orange shaded areas the 95% Confidence Interval (CI) on the seasonal baseline, and the red line shows 
model predictions with seasonal variation and influenza circulation. Excess mortality attributed to the COVID- 19 pandemic is defined as the area 
between the black and green line from March 1, 2020 onwards. The dotted black vertical line marks the start of the pandemic on March 1, 2020.

https://doi.org/10.7554/eLife.77562
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45–93%) for diabetes (Table 2). The contribution of COVID- 19 on cerebrovascular diseases was not 
statistically significant.

Applying a similar GAM approach to excess mortality from cancer and external causes revealed that 
these conditions were more strongly associated with the intervention and ICU occupancy variables 
than with COVID- 19. Stricter interventions were associated with a nearly linear increase in external 
cause mortality and a decline in cancer mortality. COVID- 19 deaths had a negative effect on excess 
mortality from external causes (i.e. high COVID- 19 activity coincided with fewer excess deaths from 
external causes, Table 2). The model for cancer had the worst fit of all conditions studied, while the 
model for external causes had an intermediate fit (R2=18% vs 58% respectively).

State- level analyses yielded similar estimates of direct and indirect pandemic effects as in national 
analyses (Appendix 1—figure 17). The median proportion of all- cause excess deaths attributed to 
direct COVID- 19 effects was 81% by the GAM approach (inter- quartile range across states, 63–90%, 
Appendix 1—figure 17). State- level analyses confirmed the direct impact of COVID- 19 on Alzheimer’s, 

Figure 3. Monthly national deaths by subcategory of external causes of death from January 2014 to December 2021. The black line shows observed 
data, the green line shows the seasonal model baseline, and the orange shading represents the 95% Confidence Interval (CI) on the seasonal baseline. 
The dotted red vertical line marks the start of the pandemic period of excess mortality on March 1, 2020.

Table 3. Excess mortality for different subcategories of external deaths during the COVID- 19 
pandemic period, March 2020 to December 2021.
Estimates are based on a seasonal regression model fitted to monthly data (as shown in Figure 3).

Underlying cause of death
No of excess deaths 
(95% prediction intervals)

Ratio of excess deaths to baseline 
deaths (95% confidence intervals)*

Accidents (unintentional injuries) 43,600 (17,200–70,000) 0.12 (0.05–0.2)

  Motor vehicle accidents† 9,600 (1,000–18,200) 0.13 (0.01–0.24)

Drug overdoses 25,300 (12,000–38,700) 0.16 (0.07–0.24)

Assaults and homicides 8,000 (3,700–12,200) 0.2 (0.09–0.31)

Suicides 3,000 (−7,000–13,100) 0.04 (−0.08–0.16)

*This should be interpreted as the percent increase over baseline. For instance, mortality from accidents increased 
by 12% (95% CI, 5–20%) during the period March 2020 to December 2021 (p<0.05), relative to baseline pre- 
pandemic levels.
†Motor vehicle accidents are a subcategory of accidents.

https://doi.org/10.7554/eLife.77562
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diabetes, and heart diseases, although the effect size was generally attenuated compared to national 
analyses. Consistent with national analyses, the effect of COVID- 19 on mortality from cerebrovascular 
disease and cancer was low or non- significant, while COVID- 19 had a negative effect on mortality from 
external causes.

Figure 4. Observed and predicted excess death rates by condition, United States, March 1, 2020 to January 1, 2022, using generalized additive 
models (GAM) with weekly COVID- 19 deaths, intensive care unit (ICU) occupancy, and a proxy for the strength of interventions as covariates. Observed 
values are in black and predicted values are in red (mean=dark red, 95% Confidence Interval (CI) in lighter red). See also Appendix 1—figure 16 for a 
comparison of predicted and observed values, and Appendix 1—figures 18 and 19 for age- specific models.

https://doi.org/10.7554/eLife.77562
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Pandemic age mortality patterns
Next, we ran some of the same analyses on age- specific data. The total burden and direct impacts of 
the COVID- 19 pandemic from March 1, 2020 to January 1, 2022 varied substantially by age (Figure 5, 
Table 4). As many prior studies have reported, all- cause excess death rates increased monotonically 
with age. Individuals 85 years and older, the age group with the highest death rate, accounted for 17% 
of excess mortality, while individuals under 25 years accounted for only 2.1%. Age groups 45–64 years 

Figure 5. Age- specific weekly all- cause mortality rates time series per 100,000. The black line shows observed data, the green line shows the seasonal 
model baseline, the orange shaded areasthe 95% Confidence Interval (CI) on the seasonal baseline, and the red line shows model predictions with 
seasonal variation and influenza circulation. Excess mortality attributed to the COVID- 19 pandemic is defined as the area between the black and green 
line from March 1, 2020 onwards. The dotted black vertical line marks the start of the pandemic on March 1, 2020.

Table 4. Age specific mortality patterns from March 1, 2020 to January 1, 2021: excess all- cause deaths, official COVID- 19 deaths, 
and direct contribution of COVID- 19 to mortality estimated by statistical model.

Age

No. estimated excess 
all- cause deaths (95% 
prediction interval)

Estimated excess 
all- cause deaths 
per 100,000 (95% 
prediction interval)

Official statistics on 
the no. reported 
COVID- 19 deaths*

Percent of excess 
deaths coded as 
COVID- 19 in official 
statistics (%)†

Model estimate of % of 
excess deaths directly 
attributed to COVID- 19‡

Under 25 years 22,400 (15,400–29,000) 21.4 (14.7–27.7) 2853 0.13 (0.1–0.19) −0.45 (−0.63, 0.07)

25–44 years 112,200 (100,200–123,100) 125 (112–138) 34,048 0.30 (0.28–0.34) 0.02 (−0.09, 0.11)

45–64 years 286,500 (255,100–315,600) 342 (304–376) 183,284 0.64 (0.58–0.72) 0.43 (0.35, 0.49)

65–74 years 254,900 (222,600–285,400) 771 (673–863) 194,436 0.76 (0.68–0.87) 0.67 (0.59, 0.76)

75–84 years 189,200 (149,400–228,400) 1137 (898–1373) 217,479 1.15 (0.95–1.46) 1.02 (0.88, 1.32)

85 years and over 182,200 (120,400–242,500) 2708 (1789–3605) 218,464 1.20 (0.9–1.82) 1.20 (1.02, 1.41)

*Death certificates have multiple causes of death listed; here COVID- 19 can be listed anywhere on the death certificate. These are deaths reported 
between March 1, 2020 to January 1, 2022, as available on June 14, 2022.
†Estimated as the proportion of excess all- cause deaths captured by official COVID- 19 statistics (column 4 divided by column 2).
‡Proportion of all- cause excess mortality that is attributable to SARS- CoV- 2 infection (direct pandemic impact) based on GAM models, where all- cause 
excess mortality is regressed against COVID- 19 intensity, strength of interventions, and ICU occupancy each week. Estimates are based on comparison 
of predictions from the full model with counterfactual predictions where the COVID- 19 term is set to zero.

https://doi.org/10.7554/eLife.77562
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and 65–75 years each accounted for a quarter of all- cause excess deaths estimated for the pandemic 
period.

Comparison of official COVID- 19 statistics with excess mortality data provides empirical estimates 
of the direct impacts of the pandemic. The ratio of official COVID- 19 statistics to all- cause excess 
deaths increased gradually with age, with official COVID- 19 deaths representing only 13% (95% CI 
10–19%) of excess mortality in individuals under 25 years and over 100% in the two oldest age groups 
(Table 3). The reported age gradient is consistent with a larger direct effect of the pandemic in older 
age groups; further, official statistics identified more deaths in seniors than estimated by excess 
mortality models.

To further investigate age differences in the direct and indirect effects of the pandemic, we applied 
our GAM approach to age- specific data (Appendix  1—figures 18 and 19). The COVID- 19 term 
measuring the direct impact of SARS- CoV- 2 infection on mortality was statistically significant in all age 
groups above 45 years but not in younger age groups. In contrast, the relative contribution of indirect 
effects, via the intervention variable, was highest in the youngest age groups and decreased with age. 
Overall, the direct contribution of COVID- 19 to excess mortality was estimated to increase with age, 
from negative and non- statistically significant in individuals under 25 years to over 100% in those over 
85 years, echoing the gradient seen in official statistics (Table 4). It is also worth noting that our excess 
mortality estimates may be too conservative (too high) as we did not account for missed circulation 
of endemic pathogens (see methods and Appendix). This could explain why our estimates of direct 
COVID- 19 contribution exceed 100% in the oldest age groups. Furthermore, periods of stricter inter-
ventions were statistically associated with increased mortality in younger individuals, independently 
from the effect of SARS- CoV- 2 infection.

Finally, to better understand the interplay between indirect mortality in younger age groups and 
deaths from external causes, we visualized age- specific monthly statistics on external deaths. These 
data were available for a subset of the study period (see Appendix 1—figure 20). The rise in mortality 
from external causes was concentrated in ages 15–44 years, with a notable elevation in May to July 
2020 compared to 2019 levels. By mid- 2021, mortality had substantially decreased, although some of 
the decreases could be attributable to reporting delays.

Discussion
In this US study, we aimed to disentangle the direct and indirect mortality impacts of the COVID- 19 
pandemic from March 1, 2020 to January 1, 2022 using regression models and synchronicity analyses. 
We find that 84% (65–94%) of the rise in all- cause mortality during this period can be statistically 
linked to SARS- CoV- 2 activity, lending support to the predominance of the direct mortality conse-
quences of the pandemic on a national scale. We also find a direct contribution of SARS- CoV- 2 infec-
tion to mortality from several chronic conditions such as Alzheimer’s, diabetes, and heart diseases. 
This contribution is not captured in official statistics that consider COVID- 19 as the primary cause of 
death. In contrast, analysis of mortality in children and young adults, and mortality from accidents 
and injuries, drug overdoses, assaults, and homicides, paints a different picture. Modeling of these 
death strata indicates a marked relationship with proxies for the strength of interventions, supporting 
a dominant contribution of indirect pandemic effects unrelated to SARS- CoV- 2 infection. In contrast 
to other causes of death studied, cancer and suicides remained within baseline levels during the 
pandemic period.

Perhaps the most striking finding of our study is the large mortality burden of the pandemic in 
individuals 25–44 years, with an estimated 112,200 (100,200–123,100) excess deaths by January 1, 
2022. Only 30% of these excess deaths are ascribed to COVID- 19 in official statistics. Accordingly, our 
regression analysis does not support a predominant contribution of SARS- CoV- 2 infection in this age 
group. The trajectory of mortality in this age group is disjoint from periods of intense COVID- 19 circu-
lation and statistically tied to a variable monitoring the strength of interventions. This finding supports 
a possible detrimental effect of COVID- 19 control measures beyond the initial lockdown period in 
Spring 2020, although this is an ecological study that cannot prove causality nor elucidate the mech-
anisms at play. And while individuals under 25 years had a low overall excess death rate during the 
pandemic, we find that the contribution of indirect pandemic effects is even greater in this age group. 
In contrast, individuals over 65 years predominantly suffered from the direct consequences of SARS- 
CoV- 2 infection. In a study of excess mortality in over 100 countries, Karlinsky and Kobak, 2021 note 
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a predominance of the direct mortality consequences of the pandemic; however, they did not study 
age patterns. Our analysis shows that the contributions of direct and indirect effects vary with age 
and can skew towards indirect effects in the young, even in countries that experienced relatively high 
infections rates like the United States.

Prior studies have shown that a decrease in emergency visits for diabetes, stroke, and myocardial 
infarctions in all age groups coincided with a rise in mortality for these conditions (Lange et al., 2020). 
Faust et al., estimated that 38% of deaths between 25 and 44 years were due to COVID- 19 during 
March to July 2020, compared to 26% (23–30%) in our study that considers a much longer time period 
(Faust et al., 2021a). Public health interventions, limited medical care, and behavioral changes (e.g. 
delays in seeking timely medical help due to fear of infection, Bollmann et al., 2020; Kansagra et al., 
2020; Mafham et al., 2020; Woolf et al., 2021) could have contributed to the surge in excess deaths 
unrelated to COVID- 19 in young adults, resulting in a notable peak of mortality in summer 2020. In 
addition, we find that mortality from external causes remained elevated during May to August 2020 
among young adults, likely driven by an elevation in deaths from opioid poisonings, accidents, and 
assaults.

Mortality from external causes increased by 102,800 (81,400–123,700) from March 1, 2020 to 
January 1, 2022. There was a moderate correlation with pre- pandemic baseline mortality rates in 
state- level data (Appendix 1—figure 13), indicating that states with historically high death rates from 
external causes experienced more prominent increases during the pandemic. The rise in external 
cause mortality was most pronounced in the subcategory of assaults and homicide, followed by over-
doses and accidents. In contrast, mortality from suicides remained stable or below expectations. Prior 
work by Faust et al., 2021b, reported a decrease in suicide in several countries during March to 
July 2020, including in the United States (10%); here, we show that suicide mortality remained stable 
throughout the rest of 2020–2021. Furthermore, Faust et al., 2021a reported that deaths from over-
doses and injuries increased during March- July 2020. In our data, the increase persisted until the end 
of 2021. Overall, of the eight causes of death studied here, the indirect pandemic effects were statis-
tically largest in external mortality causes.

There was strong synchronicity between respiratory mortality and mortality from other conditions 
during spring 2020, possibly due to poor SARS- CoV- 2 test availability and guidelines to restrict testing 
to just hospitalized cases in the early pandemic stages. Many deaths in nursing homes or at home 
during March to April 2020 were never tested, and they were recorded as known unlying conditions 
(i.e. heart disease, Alzheimer’s, and diabetes) by default. In addition, Alzheimer patients typically live 
in long- term care facilities and may have been at increased risk of (untested) COVID- 19 infection early 
in the pandemic. Interestingly, the correlation between excess mortality from respiratory diseases and 
Alzheimer increased in the winter 2020–2021 wave, signaling a persistent direct impact of COVID- 19 
on Alzheimer’s in a period where COVID- 19 incidence and testing propensity were high.

We validated our excess mortality estimates against serology and assessed the IFR, a parameter 
notoriously difficult to measure. Our all- age estimate of 0.67% (95% CI 0.60–0.73%) is consistent with 
a 2020 meta- analysis (Meyerowitz- Katz and Merone, 2020) and an early study from China (0.66%; 
95% CI: 0.39—1.33%) (Verity et al., 2020). A study of all- cause excess mortality in the Netherlands 
reports a substantially higher IFR (1%) (van Asten et al., 2021); however, all- cause mortality is not 
specific to COVID- 19 (accordingly, our estimate based on all- cause mortality is higher at 0.89% (95% 
CI 0.77–1.02%)). IFR estimates based on official COVID- 19 statistics were 15% higher than those 
based on excess respiratory mortality, yet the official statistics did not correlate with serology data 
as well as with our excess mortality estimates. Between- state differences in COVID- 19 death coding 
practices could explain these findings. Overall, our analyses support the robustness and specificity of 
excess respiratory mortality (with the addition of the COVID- 19 specific code) as an indicator of the 
COVID- 19 mortality burden.

A few states were outliers in the regression of excess mortality against serology; for instance, New 
York had a higher than predicted IFR, while Michigan had a lower than predicted IFR. Several non- 
mutually exclusive factors could drive these findings, including a higher proportion of deaths among 
older individuals (aligned with the demography of New York state), large outbreaks in long- term care 
facilities, lack of knowledge on the management of severe patients early in the pandemic (Barnett 
et al., 2020), and waning immunity. Serosurveys conducted in December 2021 could underestimate 
cumulative SARS- CoV- 2 infection rates in states that have experienced most of their infections in early 
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2020. All states contributing to CDC serology surveillance used the Roche assay to test for the pres-
ence of SARS- CoV- 2 antibodies, which is less prone to waning than other assays but has some decay 
(Prete et al., 2022). We ran a sensitivity analysis using the maximum seroprevalence recorded over 
the study period rather than the seroprevalence at the end of the study period (Appendix 1—figure 
10); New York remained an outlier in this analysis.

The roll- out of a large SARS- CoV- 2 vaccination campaign starting in December 2020 in the United 
States has had a major impact on rates of hospitalizations and deaths for COVID- 19. Yet, excess 
mortality from all causes and respiratory diseases has remained elevated all throughout 2021, fueled 
by new SARS- CoV- 2 variants, particularly Delta and Omicron. COVID- 19 mortality is now concentrated 
among unvaccinated groups, with the highest vaccination rates reported in older individuals (Centers 
for Disease Control and Prevention, 2022h). Coincidentally, in our data, excess respiratory mortality 
started to decouple from chronic condition excess mortality (e.g. diabetes, Alzheimer, heart diseases) 
around the time of the Delta wave in the summer of 2021. Similarly, among the oldest and most highly 
vaccinated age groups, the Delta wave had a proportionally milder impact than the wave dominated 
by the ancestral strain in winter 2020–21, while the pattern was reversed in younger age groups. 
Decoupling between COVID- 19 mortality and mortality from chronic conditions is likely due to vacci-
nation rather than a specific variant. Yet decoupling remains insufficient to obfuscate synchronicity in 
these conditions observed during the full study period from March 1, 2020 to January 1, 2022. Further 
analyses of the Omicron period could reveal different synchronicity patterns.

It is interesting that during April- June 2021, and before the rise of the Delta variant, mortality from 
cancer, Alzheimer and heart diseases was below baseline (negative excess mortality), with a similar 
phenomenon observed for all- cause mortality among individuals 75–84 and over 85  years. These 
negative excesses could signal a displacement of the mortality baseline, whereby frail individuals are 
harvested by a large- scale infectious disease event, resulting in a decline in baseline mortality in the 
aftermath -- similar patterns have been associated with heatwaves (Saha et al., 2014). Harvesting 
is also consistent with our regression analysis, where estimates of the direct impacts of COVID- 19 
exceeded 100% in the two oldest age groups (albeit with broad confidence intervals, Table 4). This 
would be expected if the baseline mortality was overestimated due to harvesting. Furthermore, the 
age profile of COVID- 19 severity risk dictates that older individuals would bear the strongest effects of 
harvesting, which is consistent with the US data. A competing hypothesis for an inflated baseline is the 
role of non- COVID- 19 pathogens that were repressed during the pandemic due to social distancing. 
These pathogens are implicitly included in our baseline model calibrated to pre- pandemic years. 
Although the timing of negative excesses (Spring 2021) is not fully supportive of the contribution of 
missed pathogens which tend to predominate in winter, harvesting and depressed pathogen circula-
tion are two mechanisms inherently difficult to separate. A third competing mechanism is that official 
COVID- 19 deaths capture deaths with COVID- 19, rather than deaths from COVID- 19. Although this 
is likely true to some extent, our estimates of direct effects exceed 100% in regression models that 
ignore official statistics, suggesting that other mechanisms are at play.

Our study is subject to several limitations. First, mortality counts below the minimum cut- off 
value of 10 were suppressed due to privacy regulations. As a result, our age- specific analyses were 
restricted to larger states, and we could not assess the role of race and ethnicity. Prior work has 
shown important disparities in COVID- 19 impact by race/ethnicity and economic status in the United 
States and abroad (Mena et al., 2021; Rossen et al., 2021). Second, official coding practices may 
have changed between states and through time- based on SARS- CoV- 2 testing availability, location of 
death, demographic factors, and comorbidities. Third, we assumed full coverage of death reporting, 
which may not be valid throughout the United States (Murray et al., 2010), and we did not study 
changes in deaths ascribed to ill- defined codes (R codes). Ill- defined deaths would be captured in 
all- cause mortality but not in cause- specific analyses. Fourth, we find periods of negative excesses 
in cancer (throughout the pandemic), cardiovascular, and heart diseases, possibly due to changes in 
the ascertainment of the underlying cause of death (e.g. death in a cancer patient with COVID- 19 is 
ascribed to COVID- 19), harvesting (Saha et al., 2014), or depressed circulation of endemic patho-
gens other than influenza. Fifth, we choose to fit the model baseline to data for 2014–2020, which is 
arbitrary. We studied the sensitivity of our excess mortality estimates to this assumption (Appendix 1 
- Figure 9). While national analyses were robust to this choice, as well as state- level analyses of most 
conditions, state- specific estimates for Alzheimer’s disease were more sensitive. Furthermore, the 
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model baseline did not account for possible point- in- time disasters that may have occurred during 
the pandemic but are independent of COVID- 19 (e.g. a hurricane) or changes in air pollution. Sixth, 
GAM indicate that the Oxford stringency index, used as a proxy for the strength of interventions, is 
a dominant predictor of excess mortality from external causes and all- cause mortality in individuals 
under 45 years. Yet, the relationships are non- linear, and the resulting models do not fully capture 
mortality changes during the pandemic. Along the same lines, the Oxford stringency index does not 
consider the actual implementation nor the effect of interventions; it is solely based on mandates in 
place in different locations and time periods. We also assume that, for a given level of stringency, 
the impact of interventions does not change over time. Because time and intervention stringency 
are highly conflated, it would be difficult to study potential temporal variation in this relationship. 
Furthermore, analyses are aggregated at the state or national level, while implementation of inter-
ventions may operate more locally. We also do not account for underlying differences in vulnerability 
between states, where more vulnerable states may have implemented stricter interventions (although 
this potential bias would not affect temporal analyses). Finally, our study ends on January 1, 2022 
and does not capture a recrudescence of COVID- 19- related deaths due to the Omicron variant. As a 
result, our excess mortality estimates should be deemed conservative.

Pandemic excess mortality patterns have been heterogeneous globally (Islam et  al., 2021; 
Karlinsky and Kobak, 2021; Kontis et al., 2020; Nørgaard et al., 2021). In a comprehensive anal-
ysis of mortality in 21 countries in Europe, New Zealand, and Australia, official COVID- 19 deaths 
accounted for an average of 77% (62–93%) of all- cause excess deaths during the first wave of the 
pandemic from March to May 2020 (Kontis et al., 2020). However, there was a greater disconnect 
between estimates in hard- hit countries such as the UK, Spain, Italy, and Belgium (Kontis et al., 2020; 
Kontopantelis et al., 2021; Odone et al., 2021). In a study of over 100 countries, the ratio between 
excess mortality and official deaths was 1.6 on average, but went as high as 50 (Karlinsky and Kobak, 
2021). The disconnect was primarily attributed to the under- detection of COVID- 19 rather than indi-
rect effects, although indirect effects were not explicitly modeled. In Italy, the case fatality rate for 
acute myocardial infarction increased threefold during the first wave, while hospitalizations for these 
conditions decreased by 48% (Odone et  al., 2021), suggesting that at least some of the excess 
deaths were indirect deaths. In the UK, cancer deaths increased about 10% at the height of the 
April 2020 lockdown; however, more recent fluctuations in cancer mortality remain unclear (Lai et al., 
2020). Interestingly, in New Zealand, where control of COVID- 19 has been remarkable, mortality was 
slightly but not significantly below baseline (Kontis et al., 2020). A similar finding was described in 
Russian provinces where a lockdown was implemented before the onset of COVID- 19 (Kobak, 2021). 
This suggests that a lockdown without COVID- 19 is neither preventing nor causing an appreciable 
number of deaths, although effects could be country- dependent. In the United States, the direct 
impacts of the pandemic greatly outweigh the indirect consequences in all age data, but the reverse 
is true in children and young adults. Further work should concentrate on comparing the direct and 
indirect impact of COVID- 19 in different countries over the same time period and using the same 
methodology.

Conclusion
Here, we examined trends in cause- specific mortality across states and age groups to address the 
direct and indirect impacts of COVID- 19 in the United States. We find that 84% (95% CI 65–94%) 
of the total mortality elevation during the March 1, 2020 to January 1, 2021 pandemic period is 
attributable to the direct impact of SARS- CoV- 2 infection. There is, however, a large indirect impact 
of the pandemic on children and young adults, and on mortality from external causes, particularly 
from accidents, assaults, and overdoses and these indirect impacts are statistically linked to indicators 
of the strength of interventions. We also find an undetected contribution of SARS- CoV- 2 infection 
on mortality from chronic conditions, such as Alzheimer’s, diabetes, and heart diseases, which has 
not fully disappeared after 2 years of SARS- CoV- 2 circulation and a large vaccination program. Our 
conclusions are based on ecologic analyses that are useful for generating hypotheses but do not 
prove causality. As more detailed information becomes available with the release of individual death 
certificates, it will be important to dissect the drivers of mortality among younger adults and certain 
ethnic groups, and understand how chronic conditions, violence, opioids, and suicides intersect with 
large- scale infectious disease events and behavioral changes.
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Materials and methods
Mortality data
We obtained weekly mortality counts from the National Center for Health Statistics (NCHS) for 
the period August 1, 2014 to January 1, 2022 (the last week of 2021 ended on January 1st, 2022); 
we included 2014–2019 data to construct robust historical model baselines (Centers for Disease 
Control and Prevention, 2022a; Centers for Disease Control and Prevention, 2022b). Data were 
stratified by state, six age groups (all ages, under 25 years, 25–44, 45–64, 65–74, 75–84, and over 
85), and eight underlying mortality causes (all causes, respiratory conditions, Alzheimer’s disease, 
cancer, cerebrovascular diseases, diabetes, heart disease, external causes; see supplement for disease 
codes). External causes include suicides, accidents, homicides, and poisoning from opioids and other 
substances, among other conditions. We used aggregated mortality counts ascribed to COVID- 19 
(ICD code U07), influenza, pneumonia, and chronic lower respiratory diseases as an indicator of ‘respi-
ratory mortality,’ which was our most specific indicator of excess deaths directly attributable to SARS- 
CoV- 2 infection. Furthermore, we compiled weekly deaths with any mention of COVID- 19 anywhere in 
the death certificate and considered those to be the official COVID- 19 statistics (Centers for Disease 
Control and Prevention, 2022c).

Weekly mortality is available with a typical lag of 7 weeks. We undertook this work more than 
7 months after the last observation, ensuring that there was little reporting delay for the data presented 
in this study. As a result, we did not apply any backfilling algorithms, unlike prior work (Weinberger 
et al., 2020).

To further explore patterns in external mortality causes, which include a range of conditions, we 
obtained additional monthly data by subcategories of deaths, including suicides, assaults and homi-
cides, drug overdoses, accidents and unintentional injuries, and motor vehicle accidents (a subset 
of accidents) (Centers for Disease Control and Prevention, 2022d). We also downloaded monthly 
deaths from external causes combined by age and region (Centers for Disease Control and Preven-
tion, 2022e). External causes of death are typically released several months later than other condi-
tions; detailed data are unavailable at a weekly resolution.

Other datasets
Age- and state- specific population estimates were obtained from CDC (Centers for Disease Control 
and Prevention, 2022f) and used to calculate mortality rates. To validate our mortality approach, we 
compared our excess mortality estimates with serology, using the CDC’s state- specific observations 
from the 28th round of SARS- CoV- 2 serology surveys (Centers for Disease Control and Prevention, 
2022g). These surveys provide estimates of the proportion of the population with SARS- CoV- 2 anti-
bodies to the nucleocapsid by late December 2021, which is a measure of cumulative infections. As 
the nucleocapsid antigen is not a component of the vaccines used in the United States, the serologic 
assay only captures natural infections. We compared these serologic estimates with our estimates of 
cumulative excess death rates on January 1, 2022, assuming a similar delay between infection and 
death, and between infection and antibody rise. This comparison was also used to estimate the IFR. 
We ran a sensitivity analysis on the maximum seroprevalence reported during the study period, rather 
than seroprevalence at the end of the study period, to account for the potential waning of natural 
immunity.

To adjust excess mortality models for the contribution of influenza, we used weekly data on influ-
enza circulation based on CDC surveillance (Rudis et al., 2021). To evaluate the putative impacts of 
public health interventions on cause- specific mortality, we compiled the health containment index 
from the COVID- 19 government response tracker, which measures the strength of interventions by 
week and state (Oxford University, 2021). Furthermore, to evaluate how hospital strain may have 
contributed to excess mortality, we used the HHS COVID- 19 dataset on hospital use, which has 
hospital- level indicators of ICU bed utilization (Health and Human Services, 2022). Data were aggre-
gated by week and state.

All data used in the analysis were publicly available and exempt from human subject review; the 
data and code have been posted in a GitHub repository (https://github.com/viboudc/DirectIndire 
ctCOVID19MortalityEstimation).

https://doi.org/10.7554/eLife.77562
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Analytic approach
Excess mortality models
To estimate seasonal mortality baselines, we applied linear regression models to weekly mortality rates 
in the pre- pandemic period, August 1, 2014 to March 1, 2020; excess mortality was the difference 
between observed mortality and baseline mortality (Goldstein et al., 2012; Weinberger et al., 2020; 
see Appendix for more details). Baselines were estimated separately for each mortality cause, age 
group, and state. The models included harmonic terms for seasonality, time trends, and a proxy for 
weekly influenza incidence. In this approach, we single out influenza by explicitly modeling the contri-
bution of this virus on mortality and taking influenza mortality out of the mortality baseline. Hence, 
our estimates of excess deaths due to COVID- 19 are deaths above the baseline from prior years, after 
the impact of influenza has been removed. Our choice is motivated by the fact that influenza can 
cause large mortality variations between years due to differences in circulating strains; hence, it is not 
straightforward to define an average influenza season as part of the baseline. In contrast, we do not 
explicitly model the mortality contribution of other pathogens, for which we do not have surveillance 
data, and which we assume to be less variable between years. The mortality contribution of these 
pathogens implicitly becomes part of the baseline. Since, the circulation of endemic pathogens has 
been greatly reduced during the pandemic, our baseline is likely inflated, leading to conservative 
estimates of excess mortality. We return to this question in the discussion.

We fitted the model to data until March 1, 2020 and projected the baseline forward until January 1, 
2022. We estimated weekly excess mortality by subtracting the predicted baseline from the observed 
mortality that week; total excess mortality was the sum of weekly excesses (positive or negative) from 
March 1, 2020 to January 1, 2022. We used block bootstraps to generate 95% uncertainty intervals 
on excess mortality estimates.

We ran cause- specific excess mortality analyses nationally and for states that had sufficient mortality 
counts, as weekly death counts below 10 were suppressed due to privacy concerns. States missing 
more than 2 weeks of data between March 1, 2020 and January 1, 2022 were excluded from the 
corresponding analyses. We ran respiratory excess mortality analyses for 16 states and non- respiratory 
analyses for 33 states (see Appendix for full list).

For reference, we compared the mortality impact of COVID- 19 with that of a severe influenza 
season. This comparison is not straightforward as an influenza epidemic typically lasts 3–4 months 
while COVID- 19 mortality has persisted for over 2 years. Yet, to provide context, we compared excess 
mortality during November to March of 2017–2018, corresponding to a recent severe influenza season 
dominated by the A/H3N2 virus, with the same months in 2020–2021, which correspond to the largest 
national wave of COVID- 19.

Estimation of direct and indirect pandemic impacts
To assess the direct and indirect consequences of the pandemic on mortality, we performed several 
correlation and regression analyses evaluating the trajectory of different causes of deaths by age 
and geography, building on earlier work on the 1968 influenza pandemic (Reichert et al., 2004) and 
COVID- 19 (Sharma et al., 2021) (see Appendix for details). First, we tested whether weekly respira-
tory excess mortality became increasingly correlated with other causes of death during the pandemic 
period March 1, 2020 to January 1, 2022, compared to pre- pandemic periods of similar duration. An 
increase in correlation would signal a direct but undetected effect of COVID- 19 on non- respiratory 
mortality.

Second, we assessed whether states that experienced high cumulative COVID- 19 mortality expe-
rienced high cumulative mortality from other causes during the pandemic. We used our estimates 
of excess respiratory mortality and official COVID- 19 death tallies, as complementary measures of 
COVID- 19 mortality.

Third, we estimated the fraction of excess mortality attributable to the direct impact of SARS- 
CoV- 2 infection, vs the indirect impacts that are driven by non- pharmaceutical interventions and 
hospital strain. We regressed weekly excess mortality against COVID- 19 deaths, the health contain-
ment index, and ICU use, after exploring different lags between predictors and outcomes. We used 
GAM to allow for non- linear effects between mortality and all covariates. Models were run sepa-
rately for each cause of death, nationally and by state, and for each age group. Uncertainty in weekly 
excess mortality estimates was propagated into the regression models. Attributable fractions were 
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obtained by resampling from the models after setting covariates to their minimum values reported for 
the pandemic period; for instance, the attributable fraction for COVID- 19 was based on the relative 
difference in cumulative predicted mortality when the COVID- 19 variable was at its observed values 
vs. zero, with the other covariates remaining unchanged (Appendix).

Validation of excess deaths based on serology and estimation of IFR
Since COVID- 19 deaths are ultimately the result of SARS- CoV- 2 infections, serology can validate the 
accuracy of excess mortality estimates. To test the validity of the excess mortality approach for our 
most proximal mortality indicator of COVID- 19, we regressed cumulative excess respiratory mortality 
rates against SARS- CoV- 2 seroprevalence estimates at the state level. We used a model without inter-
cept since we assumed a direct correspondence between rates of infection and death. We repeated 
this analysis with all- cause excess mortality, official COVID- 19 deaths, and excess mortality in individ-
uals over 65 years as the outcome variable. We used this analysis to estimate the IFR, based on the 
slope of the above regressions. We propagated the errors obtained in excess mortality and seroprev-
alence estimates into IFR estimates (Appendix).
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Data availability
Our study presents an analysis of publicly available surveillance and mortality data, so no new data 
have been generated for this manuscript. The modelling code and underlying data have been posted 
in the following public Github repository https://github.com/viboudc/DirectIndirectCOVID19Mortali 
tyEstimation (copy archived at swh:1:rev:f0c23c87a00f589179af5351e89732f51d5a2b19).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 Weekly Counts of Deaths 
by State and Select Causes, 
2014- 2019

https:// data. cdc. 
gov/ NCHS/ Weekly- 
Counts- of- Deaths- 
by- State- and- Select- 
Causes/ 3yf8- kanr

National Center for Health 
Statistics, Weekly- Counts- 
of- Deaths- by- State- and- 
Select- Causes/3yf8- kanr

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 Weekly Counts of Deaths 
by State and Select Causes, 
2020- 2023

https:// data. cdc. 
gov/ NCHS/ Weekly- 
Counts- of- Deaths- 
by- State- and- Select- 
Causes/ muzy- jte6

National Center for Health 
Statistics, Weekly- Counts- 
of- Deaths- by- State- and- 
Select- Causes/muzy- jte6

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 Provisional COVID- 19 
Deaths by Week, Sex, and 
Age

https:// data. cdc. gov/ 
NCHS/ Provisional- 
COVID- 19- Deaths- by- 
Week- Sex- and- Age/ 
vsak- wrfu

National Center for Health 
Statistics, Provisional- 
COVID- 19- Deaths- by- 
Week- Sex- and- Age/vsak- 
wrfu

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 Monthly Counts of Deaths 
by Select Causes, 2014- 
2019

https:// data. cdc. 
gov/ NCHS/ Monthly- 
Counts- of- Deaths- by- 
Select- Causes- 2014- 
201/ bxq8- mugm

National Center for Health 
Statistics, Monthly- Counts- 
of- Deaths- by- Select- 
Causes- 2014- 201/bxq8- 
mugm

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 Monthly Provisional Counts 
of Deaths by Select Causes, 
2020- 2022

https:// data. cdc. 
gov/ NCHS/ Monthly- 
Provisional- Counts- 
of- Deaths- by- Select- 
Cau/ 9dzk- mvmi

National Center for 
Health Statistics, Monthly- 
Provisional- Counts- 
of- Deaths- by- Select- 
Cau/9dzk- mvmi

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 AH Monthly Provisional 
Counts of Deaths by Age 
Group and HHS region for 
Select Causes of Death, 
2019- 2022

https:// data. cdc. gov/ 
NCHS/ AH- Monthly- 
Provisional- Counts- 
of- Deaths- by- Age- 
Gro/ ezfr- g6hf

National Center for Health 
Statistics, AH- Monthly- 
Provisional- Counts- of- 
Deaths- by- Age- Gro/
ezfr- g6hf

Centers for Disease 
Control and 
Prevention, National 
Center for Health 
Statistics

2022 State Population 
Projections 2004- 2030

https:// wonder. cdc. 
gov/ population- 
projections. html

Centers for Disease 
Control, WONDER

Centers for Disease 
Control

2022 Nationwide COVID- 19 
Infection- Induced 
Antibody Seroprevalence 
(Commercial laboratories)

https:// covid. cdc. gov/ 
covid- data- tracker/# 
national- lab

Centers for Disease 
Control, covid- data- 
tracker/#national- lab

Centers for Disease 
Control

2022 COVID data tracker https:// covid. cdc. gov/ 
covid- data- tracker/# 
datatracker- home

Centers for Disease 
Control, covid- data- 
tracker/#datatracker- home
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Appendix 1
Supplemental data and methods
General approach
Our analysis relies on modeling of weekly trends in US death certificates compiled from the 
National Center for Health Statistics (NCHS) website (Centers for Disease Control and Prevention, 
2022a; Centers for Disease Control and Prevention, 2022b; Centers for Disease Control and 
Prevention, 2022c). The goal of the study is to estimate the direct mortality impact of COVID- 19, 
which results from SARS- CoV- 2 infection, from the indirect impacts of the pandemic which can be 
linked to societal or health- related changes brought about by the pandemic.

We define direct COVID- 19 mortality as the sum of deaths confirmed and coded as COVID- 19 as 
the underlying cause, deaths coded as another underlying primary cause but with COVID- 19 as one 
of the contributing multiple causes, and deaths that were directly caused by SARS- CoV- 2 infection 
but for which a COVID- 19 code is not included in the death certificate due to misdiagnosis or lack of 
testing. The first two categories are included in official death tallies of COVID- 19 (since a COVID- 19 
code appears in the death certificate), while the third category can only be estimated using excess 
mortality approaches.

We define the indirect mortality impact of the pandemic as the sum of deaths due to healthcare 
avoidance or inaccessibility, deaths due to conditions or events that are exacerbated by non- 
pharmaceutical interventions and other pandemic behavior, and would not have occurred otherwise 
(i.e. suicide, drug overdose, homicide, or a stressed healthcare system that is unable to treat 
conditions unrelated to SARS- CoV- 2).

It is worth noting that circulation of multiple pathogens has plummeted due to social distancing 
interventions in 2020–2021, and therefore the pandemic could have prevented a number of infectious 
disease deaths relative to historical expectations. Excess mortality approaches (Weinberger et al., 
2020; Goldstein et al., 2012) will capture the net sum of these indirect impacts. These direct and 
indirect mortality pathways are not mutually exclusive and plausible over a wide range of conditions. 
For example, SARS- CoV- 2 infection may trigger death in a patient with diabetes, which may be 
missed by testing, with no COVID- 19 code listed on the death certificate. Concomitantly, a diabetic 
patient without a recent history of SARS- CoV- 2 infection may turn away from the healthcare system 
at the height of the pandemic and die from lack of treatment. Our analysis attempts to separate 
these effects.

Mortality data
Mortality conditions studied and states selected for further analysis
We used the international classification of disease version- 10 to retrieve deaths for the period from 
August 1, 2014 to January 1, 2022 for the following 8 mortality outcomes: All- cause (deaths from 
any causes), Alzheimer’s (G30), Cancer (C00- C97), Cerebrovascular diseases (I60- I69), Diabetes (E10 
– E14), Heart disease (I00- I09, I11,I13,I20- I51), Respiratory Conditions (J09- J18, J40- J47, U071[the 
code for COVID- 19]), External Cause (V01- Y89, U01- U03). Deaths with any of these codes as the 
underlying cause of deaths were selected for analysis.

16 states were selected for further analysis of respiratory mortality because they had sufficient 
counts on a weekly basis: Alabama, Arizona, California, Florida, Georgia, Illinois, Indiana, Michigan, 
Missouri, New Jersey, New York, Ohio, Pennsylvania, Tennessee, Texas, and Virginia. Weekly deaths 
count below 10 are blanked by NCHS for privacy reasons; states that had more than 2 weeks of 
blanked observations during the pandemic period were excluded. For states that were retained for 
respiratory mortality analyses, we interpolated missing data (≤2 weeks of interpolated data over 
388 study weeks). Respiratory mortality was our most restrictive mortality outcome; it is based on 
aggregation of deaths from pneumonia and influenza with deaths from other respiratory conditions. 
Pneumonia and influenza can be uncommon on a weekly basis in less populous states, especially in 
summer, and hence blanked observations are not uncommon in the state- level dataset.

We applied a similar reasoning to the 7 other causes of deaths that are unrelated to respiratory 
conditions. Death counts were more numerous for these conditions than for respiratory mortality. 
If a state had more than 2 blanked weeks for one of the conditions, it was excluded for analysis of 
the other conditions. The following 33 states were included for analysis of non- respiratory mortality: 
Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Illinois, Indiana, 

https://doi.org/10.7554/eLife.77562
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Iowa, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, 
Missouri, Nevada, New Jersey, New York, Ohio, Oklahoma, Oregon, Pennsylvania, South Carolina, 
Tennessee, Texas, Virginia, Washington, and Wisconsin.

Analytical approach

Weekly excess mortality model
We applied negative binomial seasonal regression models to weekly cause- and age- specific 
mortality, using an identity link, inspired by prior work on COVID- 19 (Weinberger et al., 2020). 
Models included time trends, harmonic terms for seasonality, and terms for influenza circulation, 
following:

 
yt = β0 + β1t + β2t2 + β3 sin

(
2πt

52.17

)
+ β4 cos

(
2πt

52.17

)
+

6∑
i=1

αix{i,t
} + et

  

where  t  = time

 β0  = intercept

 β1  and  β2  = time trends coefficients

 αi  = flu coefficients in season  i 
xi,t = influenza proxy at time  t , season  i 
 et  = error terms

The proxy for weekly influenza incidences was calculated by multiplying the weekly percentage of 
physician visits for influenza- like illness and weekly percentage of positive influenza tests (Bollmann 
et  al., 2020), which were obtained via CDC’s FluView portal using the cdcfluview package in R 
(package version 0.9.1). We let the influenza coefficient vary each season to reflect a different mix 
of circulating subtypes, associated with different severities. Influenza data were not available for 
New Jersey and Florida; instead, we used data from New York state and HHS Region 4, respectively. 
Some states discontinue laboratory surveillance for influenza virus circulation during the summer 
months, so we replaced the missing summer weeks with zero. Weekly influenza incidences after 
March 1, 2020 were set to zero, in line with the minimal circulation of influenza reported in this 
time period . Before fitting the model, we smooth the mortality data by running a 5 week moving 
average (this choice does not affect respiratory or all- cause mortality, but can be particularly useful 
to stabilize some of the state- specific time series for chronic conditions). We compute CI following 
prior work on COVID- 19 excess mortality in the United States (Weinberger et al., 2020).

March 1, 2020 was set as the start of the period of putative pandemic- related excess mortality. We 
fitted the model to data from August 1, 2014 to March 1, 2020 and projected the baseline forward 
until January 1, 2022. We estimated weekly excess mortality related to the COVID- 19 pandemic by 
subtracting the predicted baseline from the observed mortality that week. Total excess mortality for 
the pandemic period was defined as the sum of weekly excesses (positive or negative) during March 
1 to January 1, 2022.

We also tested different link functions and error structures for the model and report the best fit 
to data here. Weekly observations and model baselines are displayed for the cause of death and 
administrative area (United States and each state) in Appendix 1—figures 1–8.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 1. Trends in weekly all- cause mortality, nationally, and by state, August 1, 2018 to Janaury 
1, 2022 Black lines show observed weekly death rates. Green lines show the seasonal baseline estimated based 
on time series regression of pre- pandemic data from August 1, 2014 to March 1, 2020 (the graph below truncates 
earlier years for sake of clarity). The red solid line shows the seasonal variation accounting for influenza circulation. 
The orange shading shows the upper and lower 95% confidence intervals (CIs) on the baseline. The dotted 
vertical line marks March 1, 2020. 33 states were selected for analysis of non- respiratory mortality causes based on 
completeness patterns.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 2. Trends in weekly Alzheimer’s mortality, nationally, and by state. Legend as in 
Appendix 1—figure 1

Appendix 1—figure 3. Trends in weekly cancer mortality, nationally, and by state. Legend as in Appendix 1—
figure 1

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 4. Trends in weekly cerebrovascular disease mortality, nationally, and by state. Legend as in 
Appendix 1—figure 1

Appendix 1—figure 5. Trends in weekly diabetes mortality, nationally, and by state. Legend as in Appendix 1—
figure 1

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 6. Trends in weekly heart disease mortality, nationally, and by state. Legend as in 
Appendix 1—figure 1

Appendix 1—figure 7. Trends in weekly mortality from external causes (opioids, suicides, accidents, etc.), 
nationally and by state. Legend as in Appendix 1—figure 1.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 8. Trends in weekly respiratory and COVID- 19 mortality, nationally, and by state. Legend as in 
Appendix 1—figure 1 (only 16 states had sufficient weekly data for these conditions).

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 9. Sensitivity analysis using a shorter historic time series (August 1, 2016 to March 1, 2020) 
than in the main analysis to calibrate the model baseline. Graph displays estimates of cumulative excess mortality 
rates for the pandemic period, March 1, 2020 to January 1, 2022, by state and cause of death. Correlation is shown 
with estimates from the main analyses, which use calibration data going back to August 2014.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 10. Sensitivity Analyses of Infection Fatality Rate (IFR, ratio of deaths/infections), March 1, 
2020 to January 1, 2022. The main analysis (Figure 1B in main text) is based on a comparison of excess respiratory 
deaths with Centers for Disease Control and Prevention (CDC) laboratory seroprevalence survey of SARS- CoV- 2 
N antigen by December 2021. Sensitivity analyses are based on: top left: official COVID- 19 death tallies; top right: 
maximum seroprevalence estimates during study period; bottom left: excess all- cause deaths; bottom right: ages 
over 65 years (excess all- cause mortality in 65+ vs. seroprevalence in 65+). Each point corresponds to a state, 
annotated by their acronym. Error bars represent 95% confidence intervals (CIs). The black line and dotted region 
represent a linear regression fit and the associated 95% CI. IFR estimates, based on the slope of the regression, 
are: official COVID- 19: 0.71% (0.66–0.76%); maximum serology estimates: 0.65% (0.58–0.72%); all- cause mortality 
0.90% (0.76–1.01%); 65+ years: 5.5% (4.5–6.6%).

We also ran a sensitivity analysis to test the robustness of the baseline, and resulting excess 
mortality estimates, to the number of years included in the model. We fitted the baseline model 
to a shorter historical time series from August 1, 2016 to March 1, 2020, while the main analysis 
considered 2 additional years of data (2014–2020). National cause- specific excess mortality estimates 
were robust to these changes, and so were state- specific estimates for all- cause and respiratory and 
COVID- 19 conditions (Appendix 1—figure 9). State- specific estimates for certain causes, particularly 

https://doi.org/10.7554/eLife.77562
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Alzheimer’s, were more sensitive to the amount of data included in the baseline; however, the 
ranking of excess mortality across states was robust to the length of data used for model fitting even 
for Alzheimer’s. Appendix 1—figure 9 shows the impact of using shorter historical time series on 
cumulative excess mortality estimates for the pandemic period, by state and cause of death.

Of note, the impact of seasonal influenza was estimated by having an explicit flu coefficient in 
the excess mortality model, while the COVID- 19 impact was estimated by taking the difference 
between the observed mortality and baseline mortality during the pandemic period. Generally, this 
would be expected to inflate the impact of COVID- 19, relative to influenza. It can also be difficult 
to compare the impact of influenza, which circulates over a relatively short winter season (typically 
3 months), while COVID- 19 has caused persistent excess mortality over 2 years. To address this issue, 
we considered a standard period, November through March, to compare the impact of the two 
pathogens. We estimated excess mortality during the severe influenza season of November 2017 to 
March 2018, compared to excess mortality during November 2020 to March 2021, a period when 
COVID- 19 mortality was the most widespread in the US. This comparison should be caveated by the 
fact that our excess mortality estimates of COVID- 19 captures direct and indirect pandemic effects, 
while by construction our influenza estimates represent direct viral effects. Yet, the scale of the 
difference of excess mortality between the two pathogens (five to sixfold mortality rate ratio across 
most US states, Appendix 1—figure 11) highlights the magnitude of SARS- CoV- 2 disease burden.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 11. Comparison of excess mortality from a severe influenza season (2017–2018) and the 
most severe of the COVID- 19 waves (2020–2021 winter wave) across United States. For the sake of comparability, 
we estimated all- cause excess mortality for the November tto March period for each pathogen. All rates are per 
100,000. Each symbol represents a state, color- coded by region, with the horizontal and vertical bars representing 
95% confidence intervals (CIs) on excess estimates. Note that some of the lower bounds of the CIs on the flu 
estimates were negative. The diagonal represents the line where the influenza and COVID- 19 mortality burden 
would be equal. The median ratio of excess COVID- 19 to excess flu is 5.8 across United States.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 12. Synchrony between respiratory and non- respiratory mortality patterns on a national scale. 
 The black lines show the time- series of mortality rates (before excess mortality modeling) for each non- respiratory 
mortality cause. The red line represents respiratory and COVID- 19 mortality rate. The dotted black vertical lines 
mark the dates of peak respiratory and COVID- 19 mortality for each of the four national pandemic waves in the 
study period (April 18, 2020; August 1, 2020; January 9, 2021; September 11, 2021). Synchrony with respiratory and 
COVID- 19 mortality is most pronounced for all- cause, Alzheimer’s, Heart Disease, Diabetes, and in the first three 
waves (before vaccination). Synchrony is intermediate for cerebrovascular diseases and absent for cancer and 
external causes.

Appendix 1—figure 13. Correlation between cumulative excess death rates due to external causes (opioids, 
suicide, accidents, etc.) during March 1, 2020 to January 1, 2022 and baseline death rates of external causes, across 
33 states. (A) Baselinedeath rates from external causes are based on the seasonal regression model shown in 
Figure 3. (B) Baselines death rates are based on observed mortality rates from external causes for a comparable 
pre- pandemic period, March 2018 to December 2020. The correlation is non- significant on the left (corr=0.30, 
p=0.09) and moderate on the right (corr=0.54, p=0.001). This suggests that states that had high rates of mortality 
Appendix 1—figure 13 continued on next page

https://doi.org/10.7554/eLife.77562
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from external causes in the 2 years before COVID- 19 saw a more pronounced mortality elevation during the 

pandemic.

Appendix 1—figure 14. Changes in weekly synchrony between respiratory and non- respiratory mortality causes 

during the pandemic. Graph compares correlations during 96 weeks of any baseline pre- pandemic period and in 

the 96 weeks of the pandemic (March 2020 1 to January 1, 2022). Black points represent estimated pre- pandemic 

correlations (96 weeks selected before March 2020 by block of 2 weeks). Black error bars represent 95% bootstrap 

Appendix 1—figure 13 continued

Appendix 1—figure 14 continued on next page
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confidence intervals (CI) accounting for multiple comparisons using Bonferroni correction. Triangles represent 
estimated pandemic correlations. Red color indicates significant deviation from pre- pandemic correlation. 
Correlation is highest for all- cause and is more pronounced during the pandemic period (red triangle), which 
suggests a direct impact of the virus on these conditions.

Appendix 1—figure 15. Rank correlation between total COVID- 19 mortality and total excess mortality for 
other causes, across 33 states. Black lines represent the best fit regression lines. Shaded areas represent the 
95% confidence intervals (CI). The states have been categorized into the Midwest, Northeast, South, and West. 
Respiratory deaths are moderately to highly correlated with all- cause (rho=0.73, 95% CI: 0.47–0.90).

Appendix 1—figure 14 continued

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 16. Observed and predicted excess death rates by condition, United States, March 1, 2020 to 
January 1, 2022, using Generalized Additive Model (GAM) models with weekly COVID- 19 intensity, intensive care 
unit (ICU) occupancy, and strength of interventions as covariates. Observed values are on the x- axis and predicted 
on the y- axis, with colors representing different time periods.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 17. State- level analyses of the direct contribution of COVID- 19 on weekly mortality from 
different causes, March 1, 2020 to January 1, 2022. Results as based on Generalized Additive Model (GAM) with 
weekly excess mortality as the outcome, and weekly COVID- 19 intensity, intensive care unit (ICU) occupancy 
and strength of interventions as covariates. Models are fit separately to each state. The box plots represent the 
proportions of excess deaths attributed to COVID- 19 across states (i.e. the direct impact of SARS- CoV- 2 infection). 
These proportions can be compared to national estimates displayed in Table 2. As in national data, we see that 
the state- level contribution of COVID- 19 on all- cause, Alzheimers, diabetes, and heart diseases is substantial. 
Furthermore, the contribution to external causes is typically negative, indicating that excess mortality from 
these conditions tends to be high when COVID- 19 activity is low. There is no or low contribution to cancer and 
cerebrovascular diseases.

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 18. Observed and predicted excess death rates by age group, United States, March 1, 2020 
to January 1, 2022, using Generalized Additive Model (GAM) models with weekly COVID- 19 intensity, intensive 
care unit (ICU) occupancy and strength of interventions as covariates. Observed values are in black and predicted 
values in red (mean=dark red, 95% CI in lighter red).

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 19. Observed and predicted excess death rates by age group, United States, March 1, 2020 
to January 1, 2022, using Generalized Additive Model (GAM) models with weekly COVID- 19 intensity, intensive 
care unit (ICU) occupancy, and interventions as covariates. Observed values are on the x- axis and predicted on the 
y- axis, with colors representing different time periods.

Models based on monthly excess mortality model for subcategories of 
external deaths
To better understand the rise in external deaths during the pandemic, we applied a similar excess 
mortality approach to deaths from five subcategories of external deaths available at a monthly 
resolution (Centers for Disease Control and Prevention, 2022d; Centers for Disease Control and 
Prevention, 2022e): all accidents, motor vehicle accidents, drug overdoses, assaults and homicides 
and suicides. Because these data were on a monthly time scale, and less stationary that the other 
mortality causes, we tried more flexible model formulations including spline terms for time trends 
and/or for seasonality. Based on AIC, a model with cubic spline terms for time trends and seasonality 
(5 df/year) provided the best fit to the data. We did not include a term for influenza as there is no 
biological reason for why influenza would affect external deaths. External cause of death data were 
not available by subcategory and age, but we had age- specific data for all external causes of death 
combined (Centers for Disease Control and Prevention, 2022e). We visually explored these age- 
specific data as there was not enough information to fit time series models (Appendix 1—figure 20).

https://doi.org/10.7554/eLife.77562
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Appendix 1—figure 20. Monthly number of deaths from external causes by age group, United States, January 

2019 to July 2021. Although mortality appears to have decreased substantially by June to July 2021, some of the 

decrease is likely attributable to reporting delays as the underlying dataset does not appear to have been updated 

recently.

Estimation of the direct and indirect mortality impacts of the pandemic
We use a two- step approach to estimate the direct and indirect impacts of the pandemic. In the first 
step, we estimate national weekly excess mortality for a given cause of death and age group, along 

https://doi.org/10.7554/eLife.77562
https://data.cdc.gov/NCHS/AH-Monthly-Provisional-Counts-of-Deaths-by-Age-Gro/ezfr-g6hf/data


 Research article      Epidemiology and Global Health

Lee et al. eLife 2023;12:e77562. DOI: https:// doi. org/ 10. 7554/ eLife. 77562  41 of 42

with CI, based on the model detailed in the prior section. In a second step, we regress weekly cause- 
and age- specific excess mortality against a weekly proxy for the strength of non- pharmaceutical 
interventions Oxford Health containment index (Oxford University, 2021), weekly hospital strain 
(from HHS hospital occupancy mandatory reporting of ICU use during COVID- 19 Health and Human 
Services, 2022), and weekly COVID- 19 activity (proxied by the official tallies of COVID- 19 deaths in 
NCHS data). To allow for non- linear effects between covariates and excess mortality, we used GAM, 
with each covariate modeled as a smoothing spline (mgcv package in R). All models have intercepts 
to account for the impact of factors not captured by our three covariates.

To derive the direct contribution of COVID- 19 to excess mortality, we set the COVID term to 
zero and calculate the ratio of (predicted_deaths_full_model – predicted_deaths_0_COVID)/
predicted_deaths_full_model. This can be understood as the attributable fraction of COVID- 19 on 
excess deaths, for any cause. We explored potential delays between excess mortality and covariates 
(intervention measures, hospital strain, and COVID- 19 activity) using cross- correlation analysis (ccf 
function in R). We identified a lag of 4 weeks for interventions, 5 weeks for hospital strains, and no 
lag for COVID- 19, consistent across mortality outcomes and age groups.

To propagate the uncertainty in excess mortality estimates (response variable) between the first 
and second regression steps, we resampled the weekly excess mortality estimates based on their 
mean estimated values and standard deviation provided by the step 1 seasonal regression model, 
assuming a normal distribution. We sampled excess mortality 1000 times at each week (generating 
1000 time series of excess mortality) and performed GAM regression using COVID- 19 activity, hospital 
strain and interventions as covariates. Then, for each of the 1000 regressions, we approximated the 
estimated direct contribution of COVID- 19 as in the analysis of main data. We estimated the CI for 
the effect of COVID- 19 on mortality based on the quantiles of the simulated estimates. This method 
accounts for uncertainty in the response variable as well as uncertainty in each GAM model fit. The 
same approach was used for national cause- and age- specific data, and for state- level data.

An alternative approach to our two- step process (Step 1: estimate weekly excess mortality and 
Step 2: regress weekly excess mortality against weekly COVID- 19 activity, hospital use, and weekly 
interventions) would be to run a single regression model, where observed weekly mortality rates 
are regressed against seasonal terms, time trends, flu activity, COVID- 19 activity, hospital use, and 
interventions. However, because there were only 96 pandemic weeks in our dataset, compared to 
292 pre- pandemic weeks where the COVID- 19 and intervention coefficients were zero, and hospital 
ICU use data was unavailable before the pandemic, this alternative approach would be inappropriate 
to get a robust estimate of the direct and indirect pandemic impacts.

Estimation of the IFR
Without accounting for delays between infection and death, the IFR can be estimated by dividing 
the total number of deaths by the total number of infections. In other words, we have:

 

IFR = Total number of deaths
Total number of infections ,

=
(

Total number of deaths
)

/
(

Population size
)

(
Total number of infections

)
/
(

Population size
) ,

= Excess respiratory deaths per 100 people
% seroprevalence   

assuming that excess respiratory deaths provide an accurate estimate of deaths attributable to 
COVID- 19. If we have information on excess deaths and serology in multiple states, we can regress 
these factors against each other, and the slope gives the average nationwide IFR when the intercept 
is set to zero (Figure  1). Given that the delay between seroconversion after infection is around 
2 weeks, and the delay between infection and death is in the same order of magnitude, we use 
excess deaths until January 1, 2022 in the numerator and serology for the last week of December 
2021 in the denominator.

To propagate uncertainty from both the response variable (excess mortality) and covariate 
(seroprevalence) into IFR estimates, we used a similar approach as for the direct and indirect 
attribution model in the previous section. We resampled from the reported estimates of excess 
mortality and seroprevalence in each state, assuming normal distributions aligned with the reported 
95% CI. Then, we drew 10,000 samples of excess mortality and seroprevalence in each state, and for 
each sample data set, we performed a linear regression and estimated the slope. Next, we drew 100 
random samples for each of the 10,000 slope distributions. We calculated the CI of our IFR estimate 

https://doi.org/10.7554/eLife.77562
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by aggregating random samples of IFR estimates across all 100,000 sample data sets and taking 2.5 
and 97.5% quantiles.

Different sensitivity analyses on the IFR are presented in Appendix 1—figure 10.

https://doi.org/10.7554/eLife.77562
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