The cellular architecture of memory modules in Drosophila supports stochastic input integration

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur  Is a corresponding author
  6. Jan Pielage  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Kaiserslautern, Germany

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript updated
  3. Accepted Manuscript updated
  4. Accepted Manuscript published
  5. Accepted
  6. Received
  7. Preprint posted

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omar A Hafez
  2. Benjamin Escribano
  3. Rouven L Ziegler
  4. Jan J Hirtz
  5. Ernst Niebur
  6. Jan Pielage
(2023)
The cellular architecture of memory modules in Drosophila supports stochastic input integration
eLife 12:e77578.
https://doi.org/10.7554/eLife.77578

Share this article

https://doi.org/10.7554/eLife.77578