Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion

  1. William J Allen
  2. Robin A Corey
  3. Daniel W Watkins
  4. A Sofia F Oliveira
  5. Kiel Hards
  6. Gregory M Cook
  7. Ian Collinson  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. University of Oxford, United Kingdom
  3. University of Otago, New Zealand

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record updated
  2. Version of Record published
  3. Accepted Manuscript published
  4. Accepted
  5. Received
  6. Preprint posted

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William J Allen
  2. Robin A Corey
  3. Daniel W Watkins
  4. A Sofia F Oliveira
  5. Kiel Hards
  6. Gregory M Cook
  7. Ian Collinson
(2022)
Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion
eLife 11:e77586.
https://doi.org/10.7554/eLife.77586

Share this article

https://doi.org/10.7554/eLife.77586