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Olfactory responses of Drosophila 
are encoded in the organization of 
projection neurons
Kiri Choi*, Won Kyu Kim*, Changbong Hyeon*

School of Computational Sciences, Korea Institute for Advanced Study, Seoul, 
Republic of Korea

Abstract The projection neurons (PNs), reconstructed from electron microscope (EM) images of 
the Drosophila olfactory system, offer a detailed view of neuronal anatomy, providing glimpses into 
information flow in the brain. About 150 uPNs constituting 58 glomeruli in the antennal lobe (AL) 
are bundled together in the axonal extension, routing the olfactory signal received at AL to mush-
room body (MB) calyx and lateral horn (LH). Here we quantify the neuronal organization in terms 
of the inter-PN distances and examine its relationship with the odor types sensed by Drosophila. 
The homotypic uPNs that constitute glomeruli are tightly bundled and stereotyped in position 
throughout the neuropils, even though the glomerular PN organization in AL is no longer sustained 
in the higher brain center. Instead, odor-type dependent clusters consisting of multiple homotypes 
innervate the MB calyx and LH. Pheromone-encoding and hygro/thermo-sensing homotypes are 
spatially segregated in MB calyx, whereas two distinct clusters of food-related homotypes are found 
in LH in addition to the segregation of pheromone-encoding and hygro/thermo-sensing homotypes. 
We find that there are statistically significant associations between the spatial organization among a 
group of homotypic uPNs and certain stereotyped olfactory responses. Additionally, the signals from 
some of the tightly bundled homotypes converge to a specific group of lateral horn neurons (LHNs), 
which indicates that homotype (or odor type) specific integration of signals occurs at the synaptic 
interface between PNs and LHNs. Our findings suggest that before neural computation in the inner 
brain, some of the olfactory information are already encoded in the spatial organization of uPNs, illu-
minating that a certain degree of labeled-line strategy is at work in the Drosophila olfactory system.

Editor's evaluation
Choi et al. explore how olfactory information flows across the three major neuropils in the 
Drosophila brain – the antennal lobe (AL), mushroom Body (MB), and the lateral horn (LH). They 
use the two connectomes of adult Drosophila and 'inter-PN distances' to do this. Using this neuro-
anatomy based approach, they find support for a labeled-line strategy, which they subsequently 
test for with synaptic connectivity data for a subset of PNs. They find that while some labelled lines 
may exist, PNs generally participate in multi-channel integration at the MB and LH. This manuscript 
will be of interest to neuroscientists interested in olfactory processing and to those working on 
connectomic-level circuit analysis.

Introduction
Anatomical details of neurons obtained based on a full connectome of the Drosophila hemisphere 
reconstructed from electron microscope (EM) image datasets (Bates et al., 2020; Scheffer et al., 
2020) offer the wiring diagram of the brain, shedding light on the origin of brain function. Out of the 
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immense amount of data, we study the second-order neurons, known as the projection neurons (PNs) 
of the olfactory system. It is the PNs that bridge the olfactory receptor neurons (ORNs) in the antenna 
and maxillary palp to higher olfactory centers where neural computation occurs for Drosophila to 
sense and perceive the environment (Hallem and Carlson, 2004a). The three neuropils, namely the 
antennal lobe (AL), mushroom body (MB) calyx, and lateral horn (LH), are the regions that abound 
with an ensemble of axonal branches of PNs and synapses (Figure 1). PNs can be classified as uniglo-
merular and multiglomerular PNs based on their structure and connectivity to other PNs. The uniglo-
merular PNs (uPNs) in AL constitute glomeruli that collect olfactory signals from ORNs of the same 
receptor type (Gao et al., 2000; Couto et al., 2005). uPNs innervating MB calyx and LH relay the 
signals further inside the brain through synaptic junctions with the Kenyon cells (KCs) and lateral 
horn neurons (LHNs), respectively. Multiglomerular PNs (mPNs), on the other hand, innervate multiple 
glomeruli, often contributing to the inhibitory regulation of signals relayed from ORNs to third-order 
olfactory neurons (Berck et  al., 2016). PNs can functionally be categorized into either excitatory 
(cholinergic) or inhibitory (GABAergic), where a many GABAergic PNs tend to bypass MB calyx while 
innervating multiple glomeruli in AL (and hence are mPNs) (Schultzhaus et al., 2017; Shimizu and 
Stopfer, 2017).

Since the seminal work by Cajal, 1911, who recognized neurons as the basic functional units of the 
nervous system, there have been a series of attempts at classifying neurons using different represen-
tations of neuronal morphologies and at associating the classified anatomies with their electrophysi-
ological responses and functions (Uylings and van Pelt, 2002; Scorcioni et al., 2008; Jefferis et al., 
2007; Seki et al., 2010; Gillette and Ascoli, 2015; Lu et al., 2015; Li et al., 2017; Kanari et al., 
2018; Mihaljević et al., 2018; Gouwens et al., 2019; Laturnus et al., 2020). Systematic and princi-
pled analyses of neuronal anatomy would be a prerequisite for unveiling a notable link between the 
PN organization and olfactory representations. Several different metrics involving spatial projection 
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Figure 1. A schematic of the Drosophila olfactory system. uPNs comprising each glomerulus in AL collect input 
signals from ORNs of the same receptor type and relay the signals to MB calyx and LH. uPNs in MB calyx synapse 
onto KCs; and uPNs in LH synapse onto LHNs.

https://doi.org/10.7554/eLife.77748
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patterns (Jefferis et al., 2007), electrophysiological properties (Seki et al., 2010; Gouwens et al., 
2019), topological characteristics (e.g. morphometrics) (Uylings and van Pelt, 2002; Scorcioni et al., 
2008; Lu et al., 2015; Mihaljević et al., 2018; Gouwens et al., 2019), intersection profiles (Gouwens 
et  al., 2019), and NBLAST scores (Jeanne et  al., 2018; Zheng et  al., 2018; Bates et  al., 2020; 
Scheffer et al., 2020) have been utilized in the past. More recently, machine learning approaches 
have been popularized as a tool for classification tasks (Vasques et al., 2016; Buccino et al., 2018; 
Mihaljević et al., 2018; Zhang et al., 2021).

Among a multitude of information that can be extracted from the neural anatomy associated with 
uPNs, the inter-PN organization draws our attention. To compare spatial characteristics of uPNs across 
each neuropil and classify them based on the odor coding information, we confine ourselves to uPNs 
innervating all three neuropils, most of which are cholinergic and follow the medial antennal lobe 
tract (mALT). Within this scope, we first calculate inter-PN distance matrices in each neuropil and 
study them in reference to the glomerular types (homotypes) to discuss how the inter-PN organization 
changes as the PNs extend from AL to MB calyx and from AL to LH.

In this study, we utilize two representative EM-based reconstruction datasets for the analysis (the 
latest FAFB Bates et al., 2020 and the hemibrain datasets Scheffer et al., 2020). The FAFB dataset 
specifically encompasses the Drosophila olfactory system, while the hemibrain dataset aims for a 
reconstruction of the entire right hemisphere of the Drosophila brain. The results based on the two 
datasets are largely consistent and interchangeable, which generalizes our findings.

We have conducted statistical analyses to unravel potential associations between the uPN orga-
nization and the behavioral responses of Drosophila to external stimuli encoded by glomerular 
homotypes, finding that certain odor types and behavioral responses are linked to a characteristic 
inter-neuronal organization. The map of synaptic connectivity between uPNs and the third-order 
neurons (KCs and LHNs in MB calyx and LH, respectively) complements the functional implication of 
the association between the inter-PN organization and olfactory processing. A ‘labeled-line design’ in 
olfaction is generally considered to exhibit a chain of neurons dedicated to encoding a single olfac-
tory feature with no direct integration with other features as the signal is passed onto higher-order 
neurons. While we do not demonstrate the full architecture of labeled-line design in the Drosophila 
olfactory system as the signals from odor-sensing by ORNs are passed down to the inner brain for 
perception, our analysis shows that homotypic uPNs encoding particular odor types not only maintain 
their spatially localized and bundled structure throughout all three neuropils but also display synaptic 
connections that converge to a narrow subset of third-order neurons. The Drosophila olfactory system 
leverages the efficiency of the labeled-line design in sensory information processing (Min et al., 2013; 
Howard and Gottfried, 2014; Andersson et al., 2015; Galizia, 2014).

Results
Spatial organization of neurons inside neuropils
The inter-PN distance ‍dαβ‍
First, we define a metric with which to quantify the spatial proximity between neurons. Specifically, the 
inter-PN distance ‍dαβ‍ represents the average taken over the minimum Euclidean distances between 
two uPNs ‍α‍ and ‍β‍, such that ‍dαβ‍ is small when two uPNs are tightly bundled together (see Equa-
tion 1 and Figure 2—figure supplement 1A). Although metrics such as the NBLAST score (Costa 
et al., 2016) and others (Kohl et al., 2013) can be used to study the PN organization, these metrics 
take both the morphological similarity and the spatial proximity into account. The distance ‍dαβ‍ only 
measures the pairwise distance but not the dot product term (which measures the similarity of two 
neuronal morphologies), whereas the NBLAST score considers both. Therefore, while the distance ‍dαβ‍ 
is computationally comparable to the NBLAST score, it only measures the spatial proximity between 
two neurons. We notice that the features of the uPN organization captured by the NBLAST distance 
are not necessarily aligned with ‍dαβ‍ (see Figure 2—figure supplement 1B). The two distances are 
correlated but with significant dispersion, indicating that these two metrics are not the same. Since 
we are solely interested in the spatial proximity (or co-location) between two uPN innervations but 
not the morphological similarity between them (which the NBLAST score accounts for, a point also 
noted by Zheng et al., 2018), we deliberately chose the metric ‍dαβ‍ instead of the NBLAST score for 
our analyses.

https://doi.org/10.7554/eLife.77748
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The distances ‍dαβ‍ (Equation 1) between all the possible pairs (‍α‍ and ‍β‍) of 135 uPNs from the 
FAFB dataset are visualized in the form of a matrix (Figure 2). We perform hierarchical clustering on 
the distance matrix for uPNs in each neuropil (see the outcomes of ‍dαβ‍-based clustering analysis in 
Figure 2—figure supplement 2 and Materials and methods for the details). Individual clusters from 
the hierarchical clustering of uPNs in MB calyx and LH from the FAFB dataset are visualized in Figure 3 
and Figure 4 with the colors denoting the odor types encoded by the individual uPNs, which will be 
discussed in detail later.

Spatial proximity-based clustering results
In MB calyx, the hierarchical clustering divides the uPNs from the FAFB dataset into 10 clusters 
(Figure 3). Clusters ‍C

MB
2 ‍ and ‍C

MB
10 ‍ largely encompass the dorsal region and clusters ‍C

MB
6 ‍ and ‍C

MB
7 ‍ 

encompass the ventral region of the neuropil. The cluster ‍C
MB
7 ‍ shows a characteristic biforked pattern 

projecting to the lateral and medial regions. The cluster ‍C
MB
3 ‍ also exhibits the same structural pattern 

but is composed of a tight bundle of uPNs that are part of DL2d and DL2v (both of which encodes 
food-related odors). The cluster ‍C

MB
8 ‍ is located between the biforked innervation pattern of clusters 

‍C
MB
6 ‍ and ‍C

MB
7 ‍, and predominantly innervates the posterior region. Lastly, clusters ‍C

MB
1 ‍, ‍C

MB
4 ‍, and ‍C

MB
5 ‍, 

innervate the anterior region of MB calyx, spatially separated from other uPNs.
In LH, 11 clusters are identified in the FAFB dataset (Figure 4). The cluster ‍C

LH
3 ‍ is the largest, which 

mainly innervates the dorsal posterior region of LH. Clusters ‍C
LH
4 ‍, ‍C

LH
5 ‍, ‍C

LH
6 ‍, and ‍C

LH
9 ‍ display variable 

biforked projection patterns along the coronal plane, enveloping the boundary of the cluster ‍C
LH
3 ‍. 

This creates a spatial pattern where a large blob of uPNs (‍C
LH
I ‍) are surrounded by a claw-like structure 

(‍C
LH
O ‍) (Figure 4, inset). Clusters ‍C

LH
1 ‍, ‍C

LH
2 ‍, and ‍C

LH
7 ‍ innervate the anterior-ventral region and display 

clear segregation from the other uPNs. Another group composed of clusters ‍C
LH
10 ‍ and ‍C

LH
11 ‍ innervates 

the posterior-ventral-medial region.
We use Pearson’s ‍χ

2
‍-test (see Materials and methods for the details) to assess the likelihood of 

dependence between the ‍dαβ‍-based clustering outputs for MB calyx, LH, and the glomerular labels 
(homotypes) statistically significant correlations are found in terms of both the p-value and the 
Cramér’s ‍V ‍ (see Appendix 1—table 1 and Methods for a detailed explanation of the meaning behind 
the p-value and the Cramér’s ‍V ‍), the latter of which is analogous to the correlation coefficient for 
the ‍χ

2
‍-test. The mutual information between the same set of nominal variables, which is calculated 

to verify our ‍χ
2
‍-tests (see Materials and methods), offers a similar conclusion (see Appendix 1 and 

Appendix 1—table 3).
We also categorize the spatial organization of uPNs in reference to the glomerular labels. The 

homotypic uPNs constituting a tightly bundled glomerulus in AL manifest themselves as the block 
diagonal squares in the ‍dαβ‍-matrix (Figure 2). This is apparent in the dendrogram constructed from 
the distance matrix for the uPNs at AL (Figure 2—figure supplement 3), where uPNs sharing the 
same glomerular label are grouped under a common branch, thereby demonstrating the spatial prox-
imity between uPNs forming the same glomerulus. The ‍dαβ‍-matrix indicates that such organizations 
are also preserved in MB calyx and LH. However, clear differences are found in the off-diagonal part 
of ‍dαβ‍ matrices (Figure 2).

The same hierarchical clustering analysis performed on the hemibrain dataset results in 14 clus-
ters for uPN innervation in MB calyx and 13 clusters in LH. Despite the differences in the number of 
clusters, we find that spatial and structural characteristics of individual clusters observed from the 
FAFB dataset are well translated and comparable to those from the hemibrain dataset (see the clus-
tering result in Figure 8—figure supplement 1). Furthermore, various statistical tests used in this 
study (e.g. Pearson’s ‍χ

2
‍-test) on the hemibrain dataset lead to the same conclusion (see Appendix 1, 

Appendix 1—table 2, and Appendix 1—table 4).

The degrees of bundling, packing, and overlapping
To conduct a quantitative and concise analysis of ‍dαβ‍ matrices, we define the mean intra- and inter-
homotypic uPN distances, ‍d̄intra,X‍ and ‍d̄inter,X‍ (see Methods for detailed formulation). The ‍d̄intra,X‍ is 
the average distance between uPNs in the same homotype and measures the degree of uPNs in 
the homotype ‍X ‍ being bundled. Therefore, a smaller ‍d̄intra,X‍ signifies a tightly bundled structure of 
‍X ‍-th homotypic uPNs (see Figure 5—figure supplement 1 for raw ‍d̄intra,X‍ values). Similarly, ‍d̄inter,X‍, 
which measures the degree of packing (or segregation), is defined as the average distance between 

https://doi.org/10.7554/eLife.77748
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Figure 2. The three matrices representing the pairwise distances ‍dαβ‍ in units of ‍µm‍ between individual uPN in 
AL, MB calyx, and LH. The matrices are calculated based on uPNs available in the FAFB dataset. The diagonal 
blocks reflect the homotypic uPNs comprising the 57 glomerular homotypes defined in the FAFB dataset (Bates 
et al., 2020), labeled at the edges.

Figure 2 continued on next page
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the neurons comprising the ‍X ‍-th homotype and neurons comprising other homotypes. Thus, a small 
value of ‍d̄inter,X‍ signifies tight packing of heterotypic uPNs around ‍X ‍-th homotype, while a large value 
indicates that the homotypic uPNs comprising the homotype ‍X ‍ are well segregated from other homo-
types (see Figure 5—figure supplement 1 for raw ‍d̄inter,X‍ values).

The degrees of bundling averaged over all homotypes (‍d̄intra = N−1
X

∑NX
X d̄intra,X ≈ 4 µm‍) are compa-

rable over all three neuropils (blue dots in Figure 5A and B). On the other hand, from ‍̄dinter‍, which is 
defined as the mean inter-homotype distance averaged over all ‍X ‍ s, we find that homotypic uPNs are 
well segregated from others in AL as expected, whereas spatial segregation among homotypes is only 
weakly present in MB calyx (orange dots in Figure 5A and B and the cartoon of Figure 5C). We also 
observe that the ‍̄dintra‍ and  ‍̄dinter‍ are comparable for the two different datasets. A minor difference is 
observed in ‍̄dintra‍, indicating a slightly tighter bundling structure for the hemibrain dataset.

Next, we take the ratio of mean intra- to inter-PN distances of ‍X ‍-th homotype as ‍λX‍ to quantify the 
degree of overlapping around ‍X ‍-th homotype (see Materials and methods). The term ‘overlapping’ 
is specifically chosen to describe the situation where different homotypes are occupying the same 
space. A large value of ‍λX‍ (particularly ‍λX > 0.4‍) suggests that the space occupied by the uPNs of the 
‍X ‍-th homotype is shared with the uPNs belonging to other homotypes. The value ‍λ(= N−1

X
∑NX

X λX)‍ 
averaged over all the homotypes (red in Figure 5A and B) suggests that the extent of overlapping 
between uPNs is maximal in MB calyx and minimal in AL (Figure 5C).

Figure 6A and B, Figure 7, and Figure 7—figure supplement 1 show individual values of ‍λX‍ for all 
homotypes in the three neuropils. We identify the following features: (i) In AL, ‍λX ≤ 0.4‍ for all homo-
types except DL5 (a homotype encoding aversive odors), indicating that homotypic uPNs are tightly 
bundled and segregated from uPNs in other glomeruli. The same trend is observable in the hemibrain 
dataset (Figure 6B), but with ‍λDL5 ≤ 0.4‍.; (ii) In MB calyx, a large portion (‍≈ 65%‍) of ‍λX‍’s exceed 0.4 and 
even the cases with ‍λX > 1‍ are found (VC5, DL5), implying that there is a substantial amount of overlap 
between different homotypes. In the hemibrain dataset, ‍≈ 76%‍ of ‍λX‍’s exceed 0.4.; (iii) Although not 
as significant as those in AL, many of uPNs projecting to LH are again bundled and segregated in 
comparison to those in MB calyx (see Figure 7B). (iv) The scatter plot of ‍λX‍ between MB calyx and LH 
(Figure 7C) indicates that there exists a moderate positive correlation (‍r = 0.642, p < 0.0001‍) between 

‍λX‍ at MB calyx and LH. This implies that a higher degree of overlapping in MB calyx carries over to 
the uPN organization in LH. The result from the hemibrain dataset is similar (‍r = 0.677‍, ‍p < 0.0001‍, see 
Figure 7—figure supplement 1).

The entire neuron morphologies of uPNs from two homotypes with a small (‍X =‍ DL3, which largely 
responds to pheromones) and a large (‍X =‍ DL5) ‍λX‍ s in LH are visualized along with the other uPNs 
(gray) (Figure 6C). The homotype DL3, which seldom overlaps with others in AL (‍λDL3 ≈ 0.07‍) and LH 
(‍λDL3 ≈ 0.17‍), displays an increased overlapping in MB calyx (‍λDL3 ≈ 0.31‍). Therefore, DL3 is tightly 
packed in AL and LH, whereas it is relatively dispersed in MB calyx. Meanwhile, the homotype DL5 
displays a significant dispersion in all three neuropils, although the dispersion is the smallest in AL 
(‍λDL5 ≈ 0.74‍) compared to that in MB calyx (‍λDL5 ≈ 1.1‍) and LH (‍λDL5 ≈ 1.5‍).

There are minor variations between the FAFB and the hemibrain datasets in terms of ‍d̄intra,X‍, ‍d̄inter,X‍, 
and ‍λX‍, and they likely arise from the factors such as a minor mismatch in the glomerulus label anno-
tations that sometimes affects the number of uPNs constituting a given homotype, and the difference 
in the number of uPNs between two datasets as a result of our selection criterion. Regardless, still 
present in both datasets are the spatial and organizational trends described above. Taken together, the 
organization of olfactory uPNs varies greatly in the three neuropils. The clear homotype-to-homotype 
segregation in AL no longer holds in MB calyx. Instead, the ‍dαβ‍ -based clustering suggests the pres-
ence of clusters made of multiple different homotypic uPNs (Figure 5C). For some homotypes, the 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. An illustration of inter-PN distance calculation and comparison with the NBLAST distance.

Figure supplement 2. Two 135×135 matrices representing the inter-neuronal distances in (A) MB calyx and (B) LH 
that are reorganized based on the clustering results.

Figure supplement 3. The dendrograms of dαβ-based clustering on uPNs innervation in (A) AL, (B) MB calyx, and 
(C) LH.

Figure 2 continued

https://doi.org/10.7554/eLife.77748
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well-segregated organizations in AL are recovered when they reach LH (compare Figure  7A and 
Figure 7B).

Relationship between neuronal organization and olfactory features
Now we explore how the structural features identified from our clustering outputs are associated 
with odor types and valences (behavioral responses). As briefly mentioned earlier, the color codes in 
Figure 3, Figure 4, Figure 6, and Figure 7 depict odor types encoded by corresponding homotypic 
uPNs, which follow the same categorical convention used by Mansourian and Stensmyr, 2015 and 

Figure 3. The ‍dαβ‍-based clustering on uPNs based on the FAFB dataset in MB calyx resulting in 10 clusters. The individual uPNs are color-coded based 
on the encoded odor types (Dark green: decaying fruit, lime: yeasty, green: fruity, gray: unknown/mixed, cyan: alcoholic fermentation, red: general bad/
unclassified aversive, beige: plant matter, brown: animal matter, purple: pheromones, pink: hygro/thermo) (Mansourian and Stensmyr, 2015; Bates 
et al., 2020). The first and second columns illustrate the dorsal and the anterior view, respectively (D: dorsal, M: medial, P: posterior). The black line 
denotes the approximate boundary of MB calyx.

https://doi.org/10.7554/eLife.77748
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Figure 4. The ‍dαβ‍-based clustering on uPNs based on the FAFB dataset in LH resulting in 11 clusters. (inset) A cartoon illustrating the relative position 
between clusters ‍C

LH
I = CLH

3 ‍ and ‍C
LH
O = CLH

4,5,6,9‍. The individual uPNs are color-coded based on the encoded odor types (Dark green: decaying fruit, 
lime: yeasty, green: fruity, gray: unknown/mixed, cyan: alcoholic fermentation, red: general bad/unclassified aversive, beige: plant matter, brown: animal 
matter, purple: pheromones, pink: hygro/thermo). The first and second columns illustrate the dorsal and the anterior view, respectively (D: dorsal, M: 
medial, P: posterior). The black line denotes the approximate boundary of LH.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 15 clusters from the ‍dαβ‍-based clustering on the entire PN innervation in LH including those that do not innervate all three 
neuropils such as GABAergic mPNs.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.77748
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Figure supplement 2. Comparison of innervation pattern of PNs in LH between the uPNs innervating all three neuropils (gray, most of which follow 
mALT) and those that bypass MB calyx (black, most of which follow mlALT) for the FAFB dataset.

Figure 4 continued
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Figure 5. Organization of homotypic uPNs in the three neuropils. Plots of ‍̄dintra‍ (blue, degree of bundling), ‍̄dinter‍ 
(orange, degree of packing), and the ratio between the two distances ‍λ‍ (red, degree of overlapping) calculated 
based on (A) the FAFB dataset and (B) the hemibrain dataset. Error bars depict the standard deviation. (C) Diagram 
illustrating the overall organization of uPNs at each neuropil. Homotypic uPNs are tightly bundled and segregated 
in AL. Several groups of homotypic uPNs form distinct heterotypic spatial clusters at higher olfactory centers, 
extensively overlapping in MB calyx (see Figure 3).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparison of the intra- (‍d̄intra,X ‍) and inter-PN (‍d̄inter,X ‍) distances of ‍X ‍-th homotype.

Figure supplement 2. A plot depicting ‍̄dintra‍ (blue, degree of bundling), ‍̄dinter‍ (orange, degree of packing), and 
the ratio between the two distances λ (red, degree of overlapping) of 15 homotypes without (left) and with (right) 
27 additional uPNs added to the FAFB dataset, which are mostly GABAergic and follow mlALT.

https://doi.org/10.7554/eLife.77748
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Bates et al., 2020. The O and X represent the putative valence, which indicates whether Drosophila 
is attracted to or repelled from the activation of specific homotypic uPNs. For example, DA2 responds 
to geosmin, a chemical generated from harmful bacteria and mold, which evokes a strong repulsion 
in Drosophila (Stensmyr et al., 2012). Similarly, VM3 is suggested to encode repulsive odors, while 
VM2 and VM7d encode attractive odors (Mansourian and Stensmyr, 2015; Bates et  al., 2020). 
Overall, the following information is acquired from the literature (Hallem et al., 2004b; Galizia and 
Sachse, 2010; Mansourian and Stensmyr, 2015; Badel et al., 2016; Bates et al., 2020) and labeled 
accordingly:

•	 DA1, DA3, DL3, DM1, DM4, VA1v, VA2, VA3, VC1, VC2, VM1, VM2, VM4, VM5d, VM5v, VM7d, 
and VM7v (17 homotypes) encode attractive (O) odor.

•	 D, DA2, DA4l, DA4m, DC1, DC2, DC3, DC4, DL1, DL4, DL5, DM2, DM3, DM5, DM6, DP1m, V, 
VA5, VA6, VA7l, VA7m, VC3, VL2a, VL2p, and VM3 (25 homotypes) encode aversive (X) odor.

•	 The remaining homotypes are characterized as either unknown, non-preferential, or conflicting 
valence information.

Collecting the glomerular types of tightly bundled homotypic uPNs with ‍λX < 0.4‍ in LH (Figure 6, 
Figure 7, and Figure 7—figure supplement 1), we explore the presence of any organizational trend.

1.	 In LH, out of 37 homotypes composed of multiple uPNs (‍2 ≤ n ≤ 8‍) based on our selection 
criterion, 29 homotypes (DL2v, DL2d, VM1, VL1, DM6, VM7d, VA3, VM5v, DA3, VM2, DL1, 
VA7m, VC3, VM7v, VC4, V, DM2, VM3, DA2, D, DC2, VA5, VA1v, DA1, DC3, DL3, VA1d, VP1d, 
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Figure 6. Degree of overlapping between inter-homotypic uPNs, ‍λX ‍ (‍X = VM4, VC5, . . . , VP5‍). The degree of overlapping (‍λX ‍) for ‍X ‍-th homotype 
in AL, MB calyx, and LH (from lighter to darker colors) calculated from the uPNs based on (A) the FAFB dataset and (B) the hemibrain dataset. The 
homotype label is color-coded based on the odor types associated with the glomerulus obtained from the literature and is sorted based on the value 
of ‍λX ‍ for each odor type at LH. Asterisks (*) mark homotypes composed of a single uPN while plus (+) mark homotypes composed of a single uPN 
under our selection criterion but are actually a multi-uPN homotype, whose intra-homotype uPN distance is not available. O (attractive) and X (aversive) 
indicate the putative valence information collected from the literature. The blue horizontal line denotes ‍λX = 0.4‍. (C) Two homotypes taken from the 
FAFB dataset, DL3 (purple) and DL5 (red), which are indicated by yellow triangles in (A), are highlighted along with other uPNs (gray).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Selected morphologies of uPN innervation at each neuropil for single uPN homotypes and multiple uPN homotypes.

https://doi.org/10.7554/eLife.77748
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and VP1l) satisfy the condition of ‍λX < 0.4‍. In the hemibrain dataset, a couple of homotypes 
(VM1, DL5, DL3, and VP1l) are suggested to be single uPN homotypes based on our selection 
criterion.

2.	 Homotypes VA1v, DA1, DC3, DL3, and VA1d (colored purple in Figure 3, Figure 4, Figure 6, 
and Figure 7) encode pheromones involved with reproduction (Grabe et al., 2016; Bates et al., 
2020; Dweck et al., 2015), and VM4, VM1, VM7d, DM1, DM4, VC2, VM5d, VA3, VM5v, DA3, 
and VM2 encode odors presumed to be associated with identifying attractive food sources 
(Couto et al., 2005; Semmelhack and Wang, 2009; Mohamed et al., 2019; Bates et al., 2020) 
(see Figure 6A). A previous work (Grosjean et al., 2011) has identified a group of glomeruli 
that co-process food stimuli and pheromones via olfactory receptor gene knock-in coupled 
with behavioral studies. The list of homotypes mentioned above is largely consistent with those 
glomeruli reported by Grosjean et al., 2011.

3.	 Homotypes DM6, DM2, VM3, VL2p, DA2, and D are likely associated with aversive food odors. 
DA2 responds to bacterial growth/spoilage; VL2p, DM2, and VM3 to the alcoholic fermentation 
process; DM6 and D to flowers (Galizia and Sachse, 2010; Bates et al., 2020).

4.	 Many homotypes responding to odors which can be described as kairomones, a type of odors 
emitted by other organisms (Kohl et al., 2015), are part of the 29 homotypes with ‍λX < 0.4‍. This 
includes the pheromone encoding groups (VA1v, DA1, DC3, DL3, and VA1d) and others such as 
DA2, VC3, and VA5, which respond to geosmin, 1-hexanol, and 2-methyl phenol, respectively 
(Hallem et al., 2004b; Galizia and Sachse, 2010).

Figure 8 recapitulates the cluster information from ‍dαβ‍ -based analysis along with homotypes, 
odor types (color-codes), and putative valence (attractive (O) and aversive (X) odors). Some points are 
worth making:

1.	 Even though uPNs innervating MB calyx exhibit large ‍λX‍ s, the hierarchical clustering grouped 
homotypic uPNs together. This suggests the homotypic uPNs are still proximal in MB calyx, indi-
cating the reduction in ‍dinter‍ is what is driving the increase in overlapping. This is already shown 
through ‍̄dintra‍ in Figure 5A, B and is supported by our statistical tests (see Appendix 1—table 
1 and Appendix 1—table 3). The same is true for LH. The grouping of homotypic uPNs is also 
observable from the hemibrain dataset (Figure 8—figure supplement 1).

2.	 In the FAFB dataset, 13 out of 57 homotypes are made of a single uPN (‍n = 1‍, the aster-
isked glomeruli in Figure 6A and Figure 8), which tend to be characterized by comparatively 
dense branched structures (see Figure  6—figure supplement 1), suggestive of homotypic 
uPN number dependence for the neuron morphology. Among the 13 homotypes, 7 encode 
aversive stimuli (X), 4 encode attractive stimuli (O), and 2 have no known valence information 
(see Appendix 1—table 5). In the hemibrain dataset, 7 encode aversive stimuli (X), 5 encode 
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Figure 7. Scatter plots depicting the relationships between ‍λX ‍ s at two different neuropils calculated from the uPNs based on the FAFB dataset; (A) AL 
versus MB calyx, (B) AL versus LH, and (C) LH versus MB calyx. The color code is the same as in Figure 6. The blue lines in (A) and (B) denote ‍λX = 0.4‍.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The same graph as Figure 7 based on the hemibrain dataset.

https://doi.org/10.7554/eLife.77748
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attractive stimuli (O), and 1 has no known valence information (see Appendix 1—table 6). The 
relative prevalence of single-uPN homotypes encoding aversive stimuli is noteworthy.

3.	 In LH, the cluster ‍C
LH
1 ‍, located in the anterior-ventral region of the neuropil, is composed 

only of pheromone-encoding homotypic uPNs, DA1 and DC3. The cluster ‍C
LH
2 ‍ is also mostly 

composed of pheromone-encoding homotypic uPNs, DL3 and VA1d (Figure 4 and Figure 8), 
which is consistent with the results by Jefferis et al., 2007. In MB calyx, the majority of the 
uPNs encoding pheromones, except DL3, are grouped into the cluster ‍C

MB
8 ‍ (see Figure 3 and 

Figure 8). A similar trend is observed in the hemibrain dataset, although the arbitrary cluster 
labels differ (see clusters ‍C

LH
4 ‍, ‍C

LH
8 ‍, and ‍C

MB
10 ‍ in Figure 8—figure supplement 1).

4.	 Hygro/thermo-sensing homotypes such as VP2 and VP4 are spatially segregated from other 
odor-encoding uPNs, which is observable through clusters composed predominantly of hygro/
thermo-sensing homotypes (see Figure 8 and Figure 8—figure supplement 1). In MB calyx, 
these neurons rarely project to anterior region and are distributed along the base of the 
neuropil. This is in line with previous literature (Li et al., 2020). In LH, they are clustered in the 
posterior-ventral-medial region, hardly innervating the neuropil but covering the medial side of 
the neuropil (Figure 3 and Figure 4).

5.	 Along with the clusters of uPNs visualized in Figure  3 and Figure  4, of particular note are 
the clusters formed by a combination of several homotypic uPNs. A large portion of uPNs 
innervating LH that encodes potentially aversive responses are grouped into clusters ‍C

LH
4 ‍, ‍C

LH
5 ‍, 

‍C
LH
6 ‍, and ‍C

LH
9 ‍, which envelop the cluster ‍C

LH
3 ‍ where mostly food-related homotypes converge 

(Figure 4). In the hemibrain dataset, these correspond to ‍C
LH
10 ‍ and ‍C

LH
11 ‍ for the aversive responses 

and ‍C
LH
6 ‍ and ‍C

LH
13 ‍ for the food-related homotypes (Figure 8—figure supplement 1).

Given that the synaptic communications with KCs and LHNs are critical for neural computation 
in the inner brain, the specific type of uPN organization in each neuropil should be of great rele-
vance. Indeed, it has been suggested that the spatial convergence, segregation, and overlapping 
of different homotypic uPNs within neuropil influence the information processing in higher olfactory 
centers (Grosjean et al., 2011).

According to previous studies (Jefferis et al., 2007; Liang et al., 2013; Kohl et al., 2013; Fişek 
and Wilson, 2014), uPN innervation in LH and LHNs are highly stereotyped in terms of connec-
tivity and response. Homotypic uPNs are spatially organized in AL, and to a certain degree, in LH, 
based on the odor type and valence information (Min et al., 2013; Huoviala et al., 2020). The pres-
ence of tightly bundled anatomy of homotypic uPNs (‍λX < 0.4‍) in both AL and LH (Figure 7B and 
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Figure 8. A diagram summarizing how the clusters of uPNs in MB calyx (10 clusters) and LH (11 clusters) from the FAFB dataset are associated with 
the odor types (Dark green: decaying fruit, olive: yeasty, green: fruity, cyan: alcoholic fermentation, red: general bad/unclassified aversive, beige: plant 
matter, brown: animal matter, purple: pheromones, gray: unknown, pink: hygro/thermo). Asterisks (*) mark homotypes composed of a single uPN while 
plus (+) mark homotypes composed of a single uPN under our selection criterion but are actually a multi-uPN homotype, whose intra-homotype uPN 
distance is not available. O and X represent the putative valence information collected from the literature (O: attractive, X: aversive).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. The same graph as Figure 8 based on the hemibrain dataset.

https://doi.org/10.7554/eLife.77748
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Figure 7—figure supplement 1B) may imply that the Drosophila olfactory system dedicates a part 
of the second-order neural circuit on behalf of the ‘labeled-line’ design, which enables the organism 
to sense urgent chemical stimuli at the early stage of information processing without going through 
more sophisticated neural computation in the inner brain (Howard and Gottfried, 2014; Andersson 
et al., 2015; Min et al., 2013).

Labeled-line design of the higher order olfactory neurons
The concept of labeled-line design is widely considered at work at the ORN-PN interface (AL) as 
the signal generated from specific olfactory receptors converges to a single glomerulus (Vosshall 
et al., 2000; Couto et al., 2005; Fishilevich and Vosshall, 2005). A potential labeled-line strategy 
or separated olfactory processing of aversive odors encoded by DA2 has been extensively discussed 
(Stensmyr et al., 2012; Seki et al., 2017; Huoviala et al., 2020). It has been shown that pheromone-
encoding homotypes in LH (Jefferis et al., 2007; Ruta et al., 2010; Kohl et al., 2013; Frechter et al., 
2019; Bates et al., 2020; Das Chakraborty and Sachse, 2021) are at work in specific third-order 
olfactory neurons. So far, we have shown that the labeled-line design is present in the architecture of 
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Figure 9. A schematic illustrating the connectivity between homotypes (‍X = A, B, . . . , E ‍) and third-order neurons 
(‍i = 1, 2, . . . , 7‍). (A) The connectivity matrix ‍C‍ , where ‍CX,i = 1‍ when any uPNs in the ‍X ‍-th homotype and ‍i‍-th 
third-order neuron synapses and ‍CX,i = 0‍ otherwise. (B) The number of ‍X ‍-th homotype-specific connections 
(‍NX,sp‍) and the total number of third-order neurons synapsed to any uPNs in the ‍X ‍-th homotype. (C) The common 
synapse matrix (‍S ‍) whose element specifies the number of third-order neurons commonly connected between two 
homotypes. The homotype A is connected to three third-order neurons 1, 2, and 3 (‍NA,tot = 3‍). Neuron 1 is not 
synapsing with any other homotype but A, and hence ‍NA,sp = 1‍; similarly, ‍ND,sp = 2‍ (the blue lines depict specific 
connections). The signals from the two homotypes B and C are shared by the third-order neurons 2, 3, and 5; 
therefore, ‍SBC = 3‍ in the common synapse matrix ‍S ‍.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. The raw connectivity matrices.

https://doi.org/10.7554/eLife.77748
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higher olfactory centers of second-order neurons, that is, MB calyx and LH, where homotypic uPNs 
are tightly bundled together despite the lack of glomerular structure. In this section, we will conduct 
a comprehensive analysis of the synaptic connectivity between PNs and third-order olfactory neurons 
(KCs and LHNs) using three demonstrations. We ask (i) whether the labeled-line strategy implied in 
the uPN organization is translated over to the third-order olfactory neurons, (ii) to what extent the 
signals encoded by different homotypic uPNs are integrated at synaptic interfaces with the third-order 
neurons, and (iii) whether the spatial properties of pre-synaptic neurons (PNs) play any role in signal 
integration by the third-order neurons.

Homotype-specific connections
For the analysis of the interface between homotypic uPNs and third-order neurons, we study the 
connectivity matrices ‍CPN−KC‍ and ‍CPN−LHN‍ (see Figure 9, Figure 9—figure supplement 1), which 
are extracted from the hemibrain dataset (Scheffer et al., 2020). The ‍Cξ‍ (‍ξ =‍ PN-KC or PN-LHN) is 
a binary matrix (‍C

ξ
X,i = 0‍ or 1 dictating the connectivity) of synaptic connectivity between ‍X ‍-th homo-

typic uPNs and ‍i‍-th third-order neuron (KC or LHN). It is observed that most of the KCs and LHNs 
integrate information from multiple homotypes, but that there are also a small number of KCs and 
LHNs that synapse only with a single homotype (Figure 10).

The ‘homotype-specific’ connections, defined as the number of third-order neurons that only 
synapses with a specific homotype but not with the others (see Figure 10 and Methods for more 
information) can be quantified in terms of the total number of third-order neurons in contact 
with ‍X ‍-th homotypic uPNs, and it can be obtained by counting the non-zero elements of the 
matrix ‍C‍ with fixed ‍X ‍. For the case of the PN-KC interface, this number can be obtained from 

‍N
PN−KC
X,tot =

∑1754
i=1 CPN−KC

X,i ‍. Specifically, Figure 10A shows ‍N
PN−KC
X,sp ‍ and those normalized by ‍N

PN−KC
X,tot ‍ 

(‍fX = NPN−KC
X,sp /NPN−KC

X,tot ‍, see Materials and methods for the detailed algorithms behind the calcula-
tion), for all homotypes (‍X = VM4, VC5, . . . , VP4‍). Compared to those in KCs, the ‘homotype-specific’ 
connections are much more prevalent in LHNs (Figure 10). Certain homotypic uPNs, in particular, the 
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Figure 10. Bar graphs depicting the number of KCs/LHNs that synapse with a specific homotype ‍X ‍ (‍NX,sp‍, blue) and the percentage of KCs/LHNs that 
synapse with a specific homotype ‍X ‍ (‍fX = NX,sp/NX,tot‍, red) at (A) PN-KC and (B) PN-LHN interfaces, with the synaptic weight of ‍N = 3‍ used as the 
threshold.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Homotype specific connections with the synaptic connectivity threshold of ‍N = 8‍.

https://doi.org/10.7554/eLife.77748
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hygro/thermo-sensing homotypes are connected to the LHNs which are dedicated to process the 
signals from hygro/thermo-sensing homotypes (‍≥ 10%‍ of PN-LHN connections made by homotypes).

To address the concern with potential false positives in the detected synapses, we reexamine our 
results based on the synaptic connectivity with a higher threshold (‍N = 8‍). Figure 10—figure supple-
ment 1 demonstrates that the homotype-specific connections tend to increase under a more stringent 
synapse selection criterion, especially in LH. This is most notable in homotypes DM1, DM4, DP1l, and 
VM6. The existence of these ‘homotype-specific’ third-order neurons suggests that a subset of olfac-
tory processing may rely on the labeled-line strategy that extends beyond the layer of second-order 
neurons to the higher brain center.

Third-order neurons mediate signal integration
Figure 11A, B show the ‘common synapse matrices’ representing the number of commonly connected 
third-order neurons between two homotypes ‍X ‍ and ‍Y ‍ (‍S

η
XY ‍ with ‍η =‍ KC or LHN), which provide 

glimpses into the extent of signal integration mediated by KCs and LHNs (see Figure 9C and the 
caption for how these matrices are constructed from the connectivity matrix).

1.	 Overall, the number of synaptic connections between uPNs and KCs is greater than that 
between uPNs and LHNs (‍S

KC
XY > SLHN

XY ‍, see Figure 11).
2.	 In MB calyx, the signals from food-related odors-encoding homotypes (e.g. Yeasty, Fruity, or 

Alcoholic Fermentation odor types) are shared by a large number of KCs, which constitute a few 
large clusters in ‍SKC‍ matrix, depicted in red (‍S

KC
XY ≳ 35‍) and indicated by the blue arrows on the 

top in Figure 11A. Some KCs process signals almost exclusively from the hygro/thermo-sensing 
homotypes without sharing any signal from other homotypes (‍S

KC
XY = 0‍ for the cases of ‍X ‍ and 

‍Y ‍ homotype pairs without any signal integration, which are depicted in black in Figure 11). 
There are also homotypes with significantly less number of overall synaptic connections to KCs, 
dictated by the diagonal element of the matrix ‍SKC‍ (see Figure 11—figure supplement 2A). 
In comparison with ‍SLHN‍, the ‍SKC‍ suggests a stronger but less organized signal integration 
between heterotypic uPNs by KCs and lends support to the previous literature pointing to the 
random synapsing of KCs with uPNs at MB calyx (Caron et al., 2013; Stevens, 2015; Eichler 
et al., 2017; Zheng et al., 2020).

3.	 ‍SLHN‍, on the other hand, demonstrates LHN-mediated signal integration localized to subsets of 
homotypes. When we collect LHNs connected to a particular homotype and check which other 
homotypes these LHNs are also synapsing (thereby analyzing the scope of signal integration 
happening at LH), we find a strong tendency of signals from pheromone and hygro/thermo-
sensing uPNs to be integrated within the given odor/signal type (Figure  11). The fact that 
the pheromone-encoding and hygro/thermo-sensing homotypes share the synaptic connec-
tions to LHNs among themselves are demonstrated as the homotype-specific block patterns 
along the diagonal of the ‍SLHN‍ matrix (see purple and pink arrows on the side in Figure 11B). 
The ‍SLHN‍ matrix also shows that signals from various food-related odor encoding homotypes, 
such as DP1l, DP1m, VA2, and VL2p or DM1, DM4, and VA4 are also integrated (see blue 
arrows in Figure 11B). Many of these homotypes encode signals originating from esters, which 
is intriguing given the ester-encoding LHN cluster shown by Frechter et al., 2019. The results 
suggest that certain odor types are processed through common channels of LHNs that are 
largely dedicated to encoding a particular odor type.

A more stringent selection criterion for synaptic connectivity does not affect our conclusion on the 
signal integration by the third-order olfactory neurons (Figure 11—figure supplement 2). The only 
notable change is the general increase in the cases with no integration (‍SXY = 0‍) in ‍SLHN‍, especially 
for hygro/thermo-sensing homotypes. Thus, the extent of signal integration from homotypic uPNs to 
KCs and LHNs summarized in ‍SKC‍ and ‍SLHN‍ is robust.

Spatial proximity-based versus connectivity-based clustering
Next, we study the relationship between spatial proximity-based clustering and connectivity-based 
clustering results. Upon visual inspection, the connectivity-based clustering at MB calyx (Figure 12A 
on the right) appears less structured than the spatial proximity-based clustering (Figure  12A on 
the left). Specifically, many homotypic uPNs are grouped under a common branch in the tree struc-
ture obtained from the spatial proximity-based clustering, whereas such a feature is largely absent 
in the output of the connectivity-based clustering. Therefore, the spatially well-clustered uPNs at 

https://doi.org/10.7554/eLife.77748
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Figure 11. Common synapse matrices (A) ‍SKC‍ and (B) ‍SLHN‍, each of which represents the extent of signal 
integration from homotypic uPNs to KCs and LHNs. The color code represents ‍SXY ‍, which is the number of the 
third-order neurons (KCs or LHNs) synapsing with both homotypes ‍X ‍ and ‍Y ‍. The black color is used when there 
is no third-order neuron-mediated signal integration (‍SXY = 0‍) happening between two homotypes ‍X ‍ and ‍Y ‍. See 

Figure 11 continued on next page
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MB calyx (or stereotyped structure) do not necessarily translate into structured connectivity patterns 
(or stereotyped connectivity), which is consistent with the notion of randomized PN-KC connections 
(Caron et al., 2013; Stevens, 2015; Eichler et al., 2017; Zheng et al., 2020). In stark contrast to 
the outcomes for MB calyx, most homotypic uPNs are grouped in the connectivity-based clustering 
for LH (Figure 12B). This suggests that the spatially proximal uPNs synapse with a similar group of 
LHNs. The stereotyped organization and stereotyped connectivity of uPNs in LH have been suggested 
before (Jefferis et al., 2007; Liang et al., 2013; Kohl et al., 2013; Fişek and Wilson, 2014), and we 
demonstrate such stereotypies are, in reality, expressed throughout LH over all uPNs. In LH, spatial 
and organizational characteristics of uPNs are well translated to connectivity to LHNs.

A quantitative comparison of two trees based on statistical tests lends support to the notion that 
the spatial organization of uPNs can be indicative of connective properties, most evident in LH (see 
Appendix 2 for Baker’s Gamma index, entanglement, and cophenetic distance correlation).

Discussion
The inter-PN organization revealed in this study and its association with odor type/valence are remi-
niscent of the generally accepted notion that the form determines the function in biology. Previously 
observed stereotypes of neurons in the Drosophila olfactory system were largely based on the differ-
entiation between pheromones and non-pheromones (Ruta et al., 2010; Kohl et al., 2013; Frechter 
et al., 2019; Das Chakraborty and Sachse, 2021), the whole-cell patch-clamp recording (Seki et al., 
2017), and imaging studies suggestive of stimulus-dependent arrangement of neurons in LH (Marin 
et al., 2002; Wong et al., 2002; Jefferis et al., 2007). Our results are generally consistent with the 
previous studies, which suggest that a level of stereotypy in uPN organization in MB calyx and LH is 
universal throughout Drosophila, which can be captured through different metrics and methodolo-
gies. In line with Lin et al., 2007, our study finds that homotypes DL2v and DL2d constitute a bilat-
eral cluster in MB calyx (‍C

MB
3 ‍), and that the dual organization of uPNs is present in MB calyx and LH, 

such that homotypes DC2, DL1, and VA5 are sorted into the same cluster in LH while sharing similar 
innervation pattern in MB calyx. Our clustering results in LH share similarities with the NBLAST score-
based LH clusters (Bates et al., 2020). The uPNs that ended up in the same cluster or nearby clus-
ters, such as homotypes DM1, DM3, DM4, VA4, and VM3 in the cluster ‍C

LH
3 ‍, are also grouped in the 

NBLAST score-based clustering analysis (Bates et al., 2020). We find a significant correlation of ‍dαβ‍ 
with NBLAST score (see Figure 2—figure supplement 1) despite the fact that two metrics prioritize 
different aspects of neuronal anatomy.

Our inter-PN distances and clustering results suggest the spatial organization of uPNs differs 
greatly in each neuropil (Figure  5). Some of the tightly bundled organization of uPN homotypes 
are well preserved throughout the neuropils despite the lack of glomerulus in MB calyx and LH. The 
spatial segregation between different homotypes is, however, practically not present in MB calyx, 
leading to a high degree of overlapping. Therefore, the heterogeneity of homotypes at the PN-KC 
synaptic interface may physically assist the randomized sampling known to exist between uPNs and 
KCs (Caron et al., 2013; Stevens, 2015; Eichler et al., 2017; Zheng et al., 2020).

Our analysis suggests that LH is compartmentalized into four regions: (1) Posterior-dorsal region 
primarily occupied by food-related uPNs; (2) Anterior-ventral region occupied by pheromone-encoding 
uPNs; (3) Biforked bundle surrounding posterior-dorsal region largely occupied by food-related uPNs 
with an aversive response; (4) Posterior-ventral-medial region occupied by hygro/thermo-sensing 
uPNs. Previous attempts at identifying regions of odorant space in LH revealed compatible results. 
The three domains (LH-PM, LH-AM, and LH-AL) suggested by Strutz et  al., 2014 seem to be a 

Figure 9C and its caption for how the common synapse matrices are calculated from the connectivity matrices 
provided in Figure 9—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. The total number of third-order neurons connected to each homotype.

Figure supplement 2. Common Synapse matrices (A) ‍SKC‍ and (B) ‍SLHN‍ calculated with the synaptic connectivity 
threshold of ‍N = 8‍, each of which represents the extent of signal integration from homotypic uPNs to KCs and 
LHNs.

Figure 11 continued
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different combination of our clustering result (LH-PM and LH-AM correspond to the posterior-dorsal 
region and LH-AL corresponds to a combination of anterior-ventral region and the biforked bundle). 
Although not perfect, the study of the axo-axonic communities in LH yields results with comparable 
characteristics (Bates et al., 2020), understandably due to the necessity of inter-neuronal proximity 
to form synapses. For example, the community 12 by Bates et al., 2020 is predominantly composed 
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Figure 12. Tanglegrams comparing the tree structures generated from the inter-PN distances-based (left) and the connectivity-based clustering (right) 
(A) between uPNs and KCs, and (B) between uPNs and LHNs. The same uPNs in the two tree structures are connected with lines, which visualize where 
the uPNs clustered by one method end up in the clustering results of another. The labels for uPNs are representative of the homotype and are color-
coded based on the encoded odor types (Dark green: decaying fruit, lime: yeasty, green: fruity, gray: unknown/mixed, cyan: alcoholic fermentation, red: 
general bad/unclassified aversive, beige: plant matter, brown: animal matter, purple: pheromones, pink: hygro/thermo).
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of homotypes VP1l and DL5, which resembles our cluster ‍C
LH
10 ‍. The community 6 contains a mixture of 

homotypes VA5, VC1, D, DA4l, DC2, DA3, and VA7m, which is reminiscent of our cluster ‍C
LH
6 ‍.

Many homotypic uPNs that are spatially localized in LH can be associated with key survival 
features and a strong innate response (Seki et al., 2017). In this sense, the stereotyped localization 
of pheromone-encoding uPNs in ‍C

MB
8 ‍, ‍C

LH
1 ‍, and ‍C

LH
2 ‍ is of great interest. Our study not only lends 

support to the existing studies pointing to the labeled-line strategy in the Drosophila olfactory system 
but also suggests that there may exist an even more sophisticated level of spatial organization, which 
supersedes the pheromone versus non-pheromone segregation. Interestingly, while the spatial orga-
nization of uPNs in LH has a basis on the functionality of the odor type encoded, it does not seem 
to be directly translated to segregated chemical features seen in LHNs (Frechter et al., 2019). The 
apparent divergence observed at the PN-LHN interface, coupled with strongly stereotyped connec-
tivity may contribute to a higher resolution of odor categorization.

The uPN organizations from FAFB and hemibrain datasets are 
consistent
Our analyses of both the FAFB and the hemibrain dataset (Scheffer et al., 2020) find that the results 
from both datasets are generally consistent. For example, ‍̄dintra‍, ‍̄dinter‍, and ‍λ‍ analyzed based on two 
different datasets are almost identical (see Figure  5A and B). ‍d̄intra,X‍, ‍d̄inter,X‍, and ‍λX‍ show slight 
differences due to a mismatch between the FAFB and the hemibrain dataset (on glomerulus labels 
and the number of uPNs based on our selection criterion) leading to a different number of uPNs per 
homotype (Figure 6A and B and Figure 5—figure supplement 1), but the correlation between ‍λX‍ s 
at MB calyx and LH are still observed (Figure 7C and Figure 7—figure supplement 1C). Most impor-
tantly, the clustering results are similar, where many spatial clusters in both datasets share the same 
set of homotypes. Additionally, odor type-dependent spatial properties are retained (Figure 8 and 
Figure 8—figure supplement 1), with all statistical tests supporting our hypothesis. In conclusion, the 
outcomes from our analyses of the two EM datasets lend support to the previous claims of stereotypy 
in the Drosophila brain and neuronal structures (Jenett et al., 2012; Jeanne et al., 2018; Schlegel 
et al., 2021).

Odor signal processing and labeled-lines
Our study suggests that while the primary connectivity motif of third-order olfactory neurons indeed 
integrates signals, there still exist several labeled lines. The synaptic connections at the PN-KC inter-
face in MB calyx are largely integrative and randomized - with an exception of hygro/thermo-sensing 
homotypes that display stereotypy even in terms of the connectivity to the KCs. A similar observation 
has been made by Li et al., 2020, who employed NBLAST score to identify a structural segregation 
between odor-encoding and hygro/thermo-sensing homotypes. They found that specific KC types 
are preferentially targeted by hygro/thermo-sensing homotypes. Marin et al., 2020, who carried out 
connectome analysis specific to hygro/thermo-sensing homotypes, also identified that lateral acces-
sory calyx (lACA), the anterior-dorsal part of the calyx, are primarily targeted by hygro/thermo-sensing 
homotypes (analogous to our clusters ‍C

MB
1 ‍ and ‍C

MB
4 ‍ in Figure 3), and found that a number of KCs 

are dedicated to encoding signals from these homotypes. The uPNs in LH are spatially segregated, 
which translates to connectivity in three different levels. First, certain LHNs are dedicated to encoding 
signals from a specific homotype. The number of these ‘homotype-specific’ LHNs varies across the 
homotype and can make up a significant portion of PN-LHN connections depending on the homo-
type (Figure 10). Second, synaptic connectivity maps between uPNs and LHNs indicate odor type-
dependent integration occurs at LH (Figure 11B). Channels of LHNs predominantly encoding specific 
odor types are observed; one primarily integrates responses from certain food-related homotypes, 
one integrates pheromone-encoding homotypes, and another integrates hygro/thermo-sensing 
homotypes. Third, homotypic uPNs share similar connectivity to LHNs, unlike those in MB calyx. 
The signals relayed from the spatially well-organized (or tightly bundled) homotypes are localized 
into a specific group of LHNs, thereby forming a ‘homotype-specific’ connectivity motif (Figure 10, 
Figure 11, and Figure 12).

In our study of the labeled-line strategy, we made several interesting observations, which are worth 
comparing with the concept of ‘fovea’ introduced by Zheng et al., 2020. A ‘fovea’ delineates devia-
tions between experimentally observed connectivity matrices and connectivity under the assumption 

https://doi.org/10.7554/eLife.77748
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of random synapses in MB calyx, specifically for certain food-related uPNs (Zheng et  al., 2020). 
A group of common KCs predominantly sampling ’food-related’ uPNs manifest themselves in the 
common synapse matrix ‍SKC‍ (see the group of homotypes comprising the clusters, highlighted by 
the blue arrows in Figure 11A). A subset of homotypic uPNs under the food-related ‘fovea’ reported 
by Zheng et  al., 2020 are also spatially clustered (e.g. DM1, DM4, DP1m, DP1l, VA2, and VA4). 
While most of these homotypes are spatially proximal (the vast majority of the uPNs are located in 
clusters ‍C

MB
6 ‍ and ‍C

MB
7 ‍), some homotypes under the food-related ‘fovea’ such as VA2 are sampled 

from spatially disparate clusters. Thus, it is likely that factors other than the spatial organization of 
uPNs in neuropils contribute to creating the ‘fovea’. Interestingly, the spatial proximity of pheromone-
encoding homotypes in MB calyx may suggest the existence of pheromone-encoding ‘fovea,’ but 
most uPNs in these homotypes do not converge in connectivity-based clustering with an exception 
of VA1d. In fact, we suspect the spatial organization of pheromone-encoding homotypes in MB calyx, 
which is placed at the center of the neuropil, to facilitate the observed randomization of connections 
by increasing the accessibility of KCs to these homotypes. There is, however, a potential hygro/thermo 
‘fovea,’ where homotypes such as VP1d and VP2 are spatially clustered together and the signals from 
these homotypes are relayed by the same set of KCs. Curiously, VL1 is part of this hygro/thermo 
‘fovea’ (Figure 12A).

Multiglomerular PNs are spatially distinctive
Apart from uPNs primarily explored in this study, a host of local neurons (LNs) and multiglomerular 
PNs (mPNs) also constitute sophisticated neural circuits to regulate the signals received from ORNs 
(Sudhakaran et  al., 2012; Bates et  al., 2020), playing a significant role in the olfactory signal 
processing (Olsen et al., 2010; Jeanne and Wilson, 2015; Seki et al., 2017). A large portion of 
these mPNs is GABAergic and inhibitory (Berck et al., 2016; Tobin et al., 2017), whereas the role 
of interneurons can be both inhibitory and excitatory (Wilson et al., 2004; Turner et al., 2008). 
Electrophysiological measurements indicate that mPNs are narrowly tuned to a specific set of odor 
stimuli (Berck et al., 2016), which is significant given that PNs are generally thought to be more 
broadly tuned than presynaptic ORNs (Wilson et al., 2004). Several PNs do not follow the typical 
mALT, but mediolateral antennal lobe (mlALT) or lateral antennal lobe tracts (lALT) instead, thereby 
bypassing innervation through one of the higher olfactory centers (Schultzhaus et al., 2017; Zheng 
et al., 2018; Bates et al., 2020). As stated previously, we confined ourselves to uPNs innervating 
all three neuropils to compare the spatial organization across neuropils for each uPN. As a result, 
28 uPNs present in the FAFB dataset are not explored in our study. In MB calyx, only two uPNs 
constituting VP3 were dropped as a result of our selection criterion, which ended up in an almost 
identical clustering output once hierarchical clustering was performed on the entire 137 uPNs that 
innervate MB calyx. Two missing uPNs were grouped into clusters ‍C

MB
4 ‍ and ‍C

MB
6 ‍, along with other 

hygro/thermo-sensing homotypes. On the other hand, the addition of 27 uPNs constituting 15 
homotypes innervating LH but not MB calyx created four new clusters when hierarchical clustering 
was performed (Figure 4—figure supplement 1). The additional uPNs changed the content of the 
individual clusters; that is, the tree-cutting algorithm broke down a few clusters that became larger 
due to the additional uPNs. Furthermore, when we calculate the ‍̄dintra‍, ‍̄dinter‍, and ‍λ‍ in LH for the 15 
homotypes that included the 27 uPNs, we find that the ‍̄dintra‍ values increased when the 27 uPNs 
were included (see Figure 5—figure supplement 2). This suggests that the previously removed 
uPNs, most of which follow mlALT, are significantly different in terms of spatial and organizational 
characteristics and thus should be analyzed separately. Out of 27 additional uPNs in LH, 21 were 
in mlALT, 5 were in trans-lALT, and 1 was in mALT. Figure 4—figure supplement 2 illustrates how 
these 27 uPNs innervate LH which demonstrates the reason behind increased ‍̄dintra‍ values. These 
27 uPNs are mostly GABAergic (21 are labeled as GABAergic, 1 as cholinergic, and 4 as unknown 
neurotransmitter type), covering 84% of all GABAergic uPNs available in the FAFB dataset. These 
uPNs innervate LH differently from other uPNs in the same homotype that follow mALT (see homo-
types such as DA1, DC4, DL2d, DL2v, DP1l, VA1d, VA1v, VL2a, VL2p, and VP5 in Figure 4—figure 
supplement 2). Morphologically, inhibitory GABAergic neurons are often considered ‘smooth’ and 
aspiny (Douglas et al., 1989; Bopp et al., 2014; Gouwens et al., 2019), which are discernible from 
Figure 4—figure supplement 2.

https://doi.org/10.7554/eLife.77748
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The single-uPN homotypes may have different morphological 
properties
It is of great interest that many of the single-uPN homotypes, characterized by densely branched 
morphology, encode signals with aversive responses. Direct transmission of the associated signals 
across the three neuropils via a single PN might simplify the overall processing of the olfactory signals 
as well as reduce the energetic cost. Similarly, the morphological characteristics of uPN innervation at 
each neuropil are intriguing. Even though a structural difference exists between the single-uPN and 
multi-uPN homotypes, all uPN innervations within neuropil share a similar morphology regardless of 
the homotype (see Figure 6—figure supplement 1; Choi et al., 2022). A localized morphological 
diversity within a neuron may be a characteristic aspect of pseudo-unipolar neurons like uPN and 
suggests a fundamentally multi-scale characteristic of neuron morphology.

The Drosophila brain EM reconstruction project has evolved to its near completion since the EM 
image dataset was first released (Dorkenwald et al., 2022). The reconstruction of the majority of 
the Drosophila central brain as well as the corresponding connectome with detailed information of 
the individual synapses has become publicly available (Scheffer et  al., 2020). Our analysis of the 
second-order neurons inside the Drosophila olfactory system may be translated to other parts of 
the nervous system in Drosophila as well as different organisms including the central nervous system 
(CNS) of humans. For the mammalian olfactory system, the details of analyses must be adapted, 
however, since the wiring scheme is much more complex than that of an insect (Maresh et al., 2008). 
For example, multiple glomeruli encoding the same olfactory signal exist in humans (Mombaerts 
et al., 1996). When analyzing the spatial properties, this can be accounted for by prioritizing the 
individual glomerulus over the homotypes. Then, homotypic PNs forming different glomeruli may be 
compared or averaged if one were to consider the homotype-dependent characteristics. According 
to the neurotransmitter map from a recent study (Dolan et al., 2019), sophisticated processes beyond 
neuronal anatomy are apparently at work in the olfactory signal processing. Thus, functional studies 
incorporating odor response profiles in PNs (Badel et al., 2016) and ORNs (Münch and Galizia, 2016; 
Bak et al., 2018) would supplement our findings. The extension of our study to the other regulatory 
interneurons and mPNs, morphological studies of second-order neurons, and spatial analysis of third-
order neurons will be of great interest for a better understanding of the olfactory signal processing 
beyond the implication of the neural anatomy and connectivity studied here.

Materials and methods
Data preparation
We used the neuron morphology reconstruction of 346 Drosophila olfactory neurons from the FAFB 
dataset (Bates et al., 2020) traced from EM images. The neurons were extracted from the right hemi-
sphere of the female Drosophila. Out of 346 neurons in the FAFB dataset, 164 neurons were uPNs. 
One uPN in the dataset (neuron ID = 1356477 forming VP3) did not have an associated reconstruction 
(.swc file) available and was therefore ignored. For this study, uPNs that innervate all three neuropils 
were chosen because our aim is (1) to compare spatial characteristics of the uPN innervation across 
each neuropil and (2) to classify each uPN based on the odor encoding information. Thus, out of 164 
uPNs, a total of 135 uPNs constituting 57 homotypes were collected under this criteria, resulting in 
mostly cholinergic uPNs that follow mALT. Rest of the uPNs that did not innervate all three neuropils 
are collected for the supplementary analysis. In MB calyx, a total of 137 PNs are identified with two 
PNs constituting VP3 that do not innervate all three neuropils. On the other hand, in LH, a total of 
162 PNs are identified, indicating that 27 PNs constituting 15 homotypes do not innervate all three 
neuropils. The morphological information of each neuron is stored as a set of 3D coordinates with the 
connectivity specified with the parent nodes. Complete reconstruction of neuron morphology was 
made by connecting data points based on their parent-child relationship.

The hemibrain dataset (Scheffer et al., 2020) was taken from the neuPrint database (Clements 
et al., 2020), where we collected from the right hemisphere of the female Drosophila a total of 120 
uPNs forming 58 glomeruli based on the same criterion we used for the FAFB dataset (uPNs that 
innervate all three neuropils). Unlike the FAFB dataset, the neurons in the hemibrain dataset are 
labeled with regions of interest (ROI), which are used to query uPNs conforming to our selection crite-
rion. The discrepancy in the number of uPNs between the two datasets most likely resulted from the 

https://doi.org/10.7554/eLife.77748
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difference between the neuropil boundary we used and the region defined by the hemibrain dataset. 
In fact, we find that the total number of uPNs in both datasets is comparable, with 164 uPNs in the 
FAFB dataset and 162 uPNs in the hemibrain dataset. The two datasets also had a minor mismatch 
in the glomerulus label annotations, sometimes affecting the number of uPNs constituting a given 
homotype. Among the 120 uPNs from the hemibrain dataset, five uPNs had ambiguity in terms of 
their glomerulus labels, which is presumably due to poorly formed glomerular structures. For these 
uPNs, we adopted the glomerulus labels of the FAFB dataset with the matching hemibrain neuron IDs.

Additionally, a recent community-led effort identified three glomeruli in both databases with 
conflicting glomerulus labels, which have been a source of confusion (Schlegel et al., 2021). After 
an extensive study, the community agreed to rename the glomeruli in both datasets labeled as VC3l, 
VC3m, and VC5 as VC3, VC5, and VM6, respectively (Schlegel et al., 2021). Thus, we have manually 
incorporated these labels into our analyses for both the FAFB and the hemibrain dataset.

Next, we systematically demarcated the regions of AL, LH, and MB calyx. The density of data points 
projected to each axis was used for the identification since the neuropils are featured with a much 
higher density of data points than the rigid backbone connecting them. The boundaries defining each 
neuropil were systematically chosen from local minima that separate neuropils from rigid backbones. 
Due to the unique structure of uPNs, sometimes the projection along a given axis cannot fully differen-
tiate two neuropils. To resolve this issue, projections along each axis were sampled while rotating the 
data points along the reference axes at ‍5◦‍ increments to obtain multiple snapshots. The densities were 
analyzed to choose the optimal degrees of rotation along the reference axes that could best segment 
the neuropils. We used the smallest average and deviation value of density at the local minima as the 
criteria to choose the optimal rotation. The process has been repeated for each neuropil to identify 
a set of boundaries along multiple transformed axes with various degrees of rotations that optimally 
confine each neuropil. This information has been combined to create a set of conditions per neuropil 
for segmentation. The resulting neuropils were confirmed through visual inspection. We compared 
our neuropil segmentation boundaries with neuropil volume surface coordinates provided by Ito 
et al., 2014 via CATMAID (Saalfeld et al., 2009) and found the boundaries are comparable (data not 
shown). An overview of the segmentation process is available in Figure 13.

The odor type and odor valence information were extracted from various literature (Hallem et al., 
2004b; Galizia and Sachse, 2010; Stensmyr et al., 2012; Mansourian and Stensmyr, 2015; Badel 
et al., 2016; Bates et al., 2020) and we closely followed the categorical convention established by 
Mansourian and Stensmyr, 2015 and Bates et al., 2020. However, we note that the categorization 
of a uPN under a specific odor category may overshadow the complete spectrum of odorants a uPN 
might encode, especially if the uPN encodes ORs that are broadly tuned. Therefore, we focused on 
the well-separated pheromone/non-pheromone encoding types and valence information.

To test our labeled-line hypothesis, the connectivity information between uPNs and higher olfac-
tory neurons such as KCs and LHNs was necessary. Since only the hemibrain dataset contains detailed 
connectivity information, all of our connectivity studies are done using uPNs, KCs, and LHNs queried 
from the hemibrain dataset. We chose KCs and LHNs that made at least three synaptic connections 
with any of the 120 uPNs from the hemibrain dataset. This resulted in 1754 KCs and 1295 LHNs, 
creating bipartite connectivity matrices at each neuropil.

Inter-PN distance
The ‘distance’ ‍dαβ‍ between two neurons, ‍α‍ and ‍β‍, with different lengths (‍Nα ≤ Nβ‍) is quantified by 
calculating.

	﻿‍
d2
αβ = 1

Nα

Nα∑
i=1

min
[
(rαi − rβj )2

]
,
‍�

(1)

where ‍r
α
i ‍ is an i-th coordinate forming the neuron ‍α‍. Equation 1 is evaluated over all pairs of ‍r

α
i ‍ and 

‍r
β
j ‍ with ‍j = 1, . . . , Nβ‍ that gives rise to the minimum value. This means that when ‍Nα ≤ Nβ‍, for every 

i-th coordinate in the neuron ‍α‍ (‍r
α
i ‍), we find j-th coordinate in the neuron ‍β‍ (‍r

β
j ‍) that is the closest to ‍r

α
i ‍. 

Then, the spatial proximity of a given pair of neurons is assessed by the ‍dαβ‍ that denotes the average 
of all the minimum Euclidean distances between the pair of coordinates.

https://doi.org/10.7554/eLife.77748
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The degree of bundling, packing, and overlapping
We define the mean intra- and inter-homotype distances as.

	﻿‍
d̄intra,X ≡ 1

N

N∑
α,β∈X

dαβ
‍
 
�

(2)

and

	﻿‍
d̄inter,X ≡ 1

N

N∑
α∈X,β /∈X

dαβ ,
‍�

(3)
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Figure 13. A diagram depicting the neuropil segmentation process. The data points from skeletal reconstruction are projected to each axis to generate 
distributions from which local minima are obtained. The process is repeated while rotating the uPNs along each axis. A collection of histograms and 
corresponding local minima are surveyed to generate a set of optimal rotations and boundaries for individual neuropil. The resulting parameters are 
combined to form a collection of conditions to segment each neuropil.

https://doi.org/10.7554/eLife.77748
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where ‍X ‍ denotes a homotype and ‍N ‍ is the total number of uPN pairs to be averaged. The ‍d̄intra,X‍ 
is calculated over all the pairs of uPNs in the ‍X ‍-th homotype, quantifying the tightness of bundling of 
uPNs constituting the ‍X ‍-th homotype. On the other hand, ‍d̄inter,X‍ is calculated over the pairs of uPNs 
between ‍α‍-th uPN belonging to the ‍X ‍-th homotype and ‍β‍-th uPN in the ‍Y ‍-th homotype (‍Y ̸= X ‍), such 
that it measures the extent of packing of uPNs around the ‍X ‍-th homotype. The degree of overlapping 
for the ‍X ‍-th homotype, ‍λX‍, is defined as the ratio of average intra- and inter-homotype distances,

	﻿‍
λX =

d̄intra,X
d̄inter,X

,
‍�

(4)

which represents how clearly the ‍X ‍-th homotype is segregated from other homotypes in a given 
space. A large value of ‍λX‍ (‍λX ≫ 1‍) implies that the space spanned by the ‍X ‍-th homotype is not clearly 
discerned from other homotypes.

Spatial clustering of projection neurons
Hierarchical/agglomerative clustering was used to cluster the uPN innervation at each neuropil using 
the pairwise ‍dαβ‍ matrices. First, the linkage was decided based on the pairwise distance matrix built 
with the Farthest Point Algorithm (or ‘complete’ method), where uses the maximum distance between 
neurons to define the distance between two clusters. This criterion is used to build hierarchical rela-
tions (or nested clusters) in a bottom-up approach where each neuron is treated as a cluster at the 
beginning. The result is a fixed tree structure of individual neurons from which the finalized clusters 
are formed using an optimal tree-cutting algorithm. In the dendrogram from AL (Figure 2—figure 
supplement 3), homotypic uPNs are grouped together with high accuracy, suggesting our distance 
metric ‍dαβ‍ is adequate. We tested various tree-cutting criteria such as elbow method, gap statistics, 
maximum average silhouette coefficient, and dynamic hybrid cut tree method (Langfelder et  al., 
2008) to determine the optimal number of clusters. Among them, we selected the dynamic hybrid 
cut tree method, since it performed the best in giving the cluster number closest to the number of 
different odor types (which is 10) (Table 1). We deployed the dynamic hybrid cut tree method with 
the minimum cluster size of 4 neurons for the tree-cutting, following the neuron clustering procedure 
used by Gouwens et al., 2019.

Pearson’s ‍x2‍-test of independence
The association between two categorical variables is assessed using Pearson’s ‍χ

2
‍-test. For the test, 

a contingency table, which lists the categorical frequency of two variables, is created. For example, 

‍Oij‍ of the ‍i‍- and ‍j‍-th element of the contingency table shown below is the frequency counting the 
putative valence ‍i = 1‍ (attractive), 2 (aversive), 3 (unknown), and the number of uPNs in one of the 10 
clusters in MB calyx with ‍j = 1‍ (‍C

MB
1 ‍), 2 (‍C

MB
2 ‍), ... , 10 (‍C

MB
10 ‍).

‍C
MB
1 ‍ ‍C

MB
2 ‍ ‍C

MB
3 ‍ ‍C

MB
4 ‍ ‍C

MB
5 ‍ ‍C

MB
6 ‍ ‍C

MB
7 ‍ ‍C

MB
8 ‍ ‍C

MB
9 ‍ ‍C

MB
10 ‍ Total

Attractive 0 4 0 1 0 5 4 11 11 8 44

Aversive 1 2 0 0 4 12 9 8 8 3 47

Unknown 4 7 8 5 6 5 1 2 3 3 44

Total 5 13 8 6 10 22 14 21 22 14 135

Table 1. The optimal number of clusters of uPNs in the FAFB dataset determined by employing the 
dynamic hybrid cut tree method, elbow method, gap statistics, and maximum average silhouette 
coefficient.

Dynamic hybrid Elbow Gap Silhouette

AL 19 14 8 54

MB calyx 10 11 7 2

LH 11 9 7 2

https://doi.org/10.7554/eLife.77748
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Then the ‍χ
2
‍ value is evaluated based on the table using.

	﻿‍
χ2 =

R∑
i=1

C∑
j=1

(Oij − Eij)2

Eij
,
‍�

(5)

where ‍R‍ and ‍C‍ are the numbers of rows and columns, and ‍Oij‍ and ‍Eij‍ are the observed and expected 
frequencies of the event in the ‍i‍-th row and ‍j‍-th column, respectively. ‍Eij‍ is calculated from ‍Oij‍ as.

	﻿‍ Eij = Npi·p·j,‍� (6)

where ‍pi· =
∑C

j Oij/N ‍ and ‍p·j =
∑R

i Oij/N ‍ with ‍N ‍ being the total count. Thus, ‍Eij‍ is the frequency 
expected by assuming that the two categorical data are statistically independent. Pearson’s ‍χ

2
‍ test 

aims to check whether there is a significant difference between ‍Oij‍ and ‍Eij‍.
In the ‍χ

2
‍-test, the p-values are estimated using ‍fk(x)‍, the ‍χ

2
‍-distribution with the degree of freedom 

‍k = (R − 1)(C − 1)‍. If the test returns a ‍χ
2
‍ value that gives rise to a p-value smaller than the defined 

significance level (‍α = 0.01‍), the null hypothesis of independence between the two data sets should 
be rejected. As a result, the distribution of the categorical data is deemed significantly different from 
a randomly generated distribution, which concludes that the association between two sets of data is 
statistically significant.

For the above contingency table with ‍k = 18‍, which leads to ‍χ
2 ≈ 66.1‍ (Equation 5), we get a p-value 

much smaller than the significance level (‍α = 0.01‍), ‍p = 1 −
´ χ2

0 fk=18(x)dx ≈ 2.016 × 10−7 ≪ α = 0.01‍.
When Pearson’s ‍χ

2
‍ statistics are available, one can calculate Cramér’s ‍V ‍ with bias correction, a 

measure of association between two categorical variables, as follows.

	﻿‍
V =

√
ϕ′2/N

min
(
R′ − 1, C′ − 1

) ,
‍�

(7)

where 
‍
ϕ′2 = max

(
0,χ2/N − (R − 1)(C − 1)/(N − 1)

)
‍
, ‍R′ = R − (R − 1)2/(N − 1)‍, and 

‍C′ = C − (C − 1)2/(N − 1)‍. Similar to the Pearson correlation coefficient, the value ‍V ‍ ranges between 0 
and 1 where 0 indicates no correlation and 1 indicates a complete correlation between two categor-
ical variables.

Mutual information
Mutual information (‍I ‍) is used to verify the significance of association between nominal variables 
observed in Pearson’s ‍χ

2
‍-test for independence. The ‍I ‍ measures the information transfer or the 

similarity between two data. The concept can be extended to clustering outputs to check how two 
different clustering labels from the same data are similar to each other. Traditionally, the ‍I ‍ between 
two jointly discrete variables ‍A‍ and ‍B‍ is given by.

	﻿‍
I(A; B) =

nA∑
i=1

nB∑
j=1

P(Ai, Bj) log
[

P(Ai, Bj)
P(Ai)P(Bj)

]
,
‍�

(8)

where ‍nA‍ (or ‍nB‍) is the number of clusters in ‍A‍ (or ‍B‍). Numerically, the ‍I ‍ between two clustering 
outputs ‍A‍ and ‍B‍ is calculated by evaluating ‍P(Ai) = NAi /N ‍, ‍P(Bi) = NBi /N ‍, and ‍P(Ai, Bj) = NAi∩Bj /N ‍ 
where ‍N ‍ is the total count and ‍NAi∩Bj‍ is the number of elements common in both clusters ‍Ai‍ and ‍Bj‍.

The significance was assessed by comparing the observed ‍I ‍ with the distribution of ‍I ‍ s from 
randomly sampled variables. Specifically, the cluster label was randomly sampled 1000 times to 
generate a distribution of ‍I ‍ under the assumption of independence. The value of observed ‍I ‍ is consid-
ered significant if the approximated p-value is below 0.01 (p< 0.01).

Analysis of synaptic interfaces
We conducted three different analyses on the synaptic interfaces of uPNs with the third-order neurons 
(KCs or LHNs) from the hemibrain dataset.

(i) The ‘homotype-specific’ connections (‍N
ξ
X,sp‍ with ‍ξ =‍ PN-KC or PN-LHN) are obtained by counting 

the number of third-order neurons that synapse with a homotype ‍X ‍ but do not synapse with any other 
homotypes, the information of which is provided by the binarized connectivity matrix ‍C‍. The total 

https://doi.org/10.7554/eLife.77748
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number of synaptic connections for a homotype ‍X ‍ is simply the sum of the row of the connectivity 
matrix ‍C‍ (‍N

ξ
X,tot = Σ

Nξ

i=1CXi‍).
(ii) To generate the ‍S‍ matrices, we counted the number of third-order neurons synapsing with a 

given homotype ‍X ‍ that also synapses with other homotypes.
(iii) The tanglegram study required a hierarchical clustering of uPNs based on their connectivity to 

third-order neurons. The distances between uPNs in the connectivity matrix ‍C‍ represent the similarity 
of the connectivity patterns to third-order neurons between two uPNs. We utilized the metric of cosine 
distance, which is widely used for analyzing the connectivity matrix (Bates et al., 2019; Bates et al., 
2020; Li et al., 2020; Eschbach et al., 2020; Schlegel et al., 2021). The cosine distance is defined as.

	﻿‍
dcos = 1 − u · v∣u∣ ∣v∣ ,

‍� (9)

where ‍u‍ and ‍v‍ are two vectors to be compared. After calculating the distances, we performed hier-
archical clustering by Ward’s criterion, which minimizes the variance of merged clusters, to generate 
the tree structure. The results of hierarchical clustering using the spatial proximity (‍dαβ‍) and connec-
tivity (‍dcos‍) are compared using a tanglegram (Figure 12) after untangling two trees using the ’step-
1side’ method (Galili, 2015).
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Appendix 1
Monte Carlo approach to independence test
In this section, we describe an alternative method to the independence test inspired by the Monte 
Carlo significance test (Hope, 1968) to further support our Pearson’s ‍χ

2
‍-test of independence. The 

procedure is as follows: (1) For a given contingency table, randomize the observation such that 
the marginal sum of each row remains the same as the observed contingency table. That is, for 
each row, randomize the vector with integers while the sum of the vector stays the same as the 
observed contingency table. This procedure randomly shuffles the distribution of the clusters while 
keeping the distribution of a particular categorical variable intact. (2) Calculate the ‍χ

2
‍ value from the 

randomized contingency table. (3) Repeat steps 1 and 2 for 1000 times to generate a distribution 
of the ‍χ

2
‍ values. (4) Obtain the mean and the standard deviation of ‍χ

2
‍ values. The distribution of 

‍χ
2
‍ values is approximately normal. (5) If the ‍χ

2
‍ value from the observed contingency table is more 

than ‍4σ‍ different from the distribution, we consider the observed ‍χ
2
‍ value statistically significant and 

reject the null hypothesis. Whenever we ran a Pearson’s ‍χ
2
‍-test, we performed the above procedure 

alongside. The output of this procedure supported whichever conclusion we drew from Pearson’s 
‍χ

2
‍-test.

Identifying the agreement between two categorical data via mutual 
information
We verified our Pearson’s ‍χ

2
‍-test of independence of two categorical variables by calculating 

the mutual information ‍I ‍ (see Methods). In the FAFB dataset, the mutual information between 
glomerular labels and ‍dαβ‍-based clustering output in MB calyx was equal to ‍I(glo; CMB) = 1.892‍, 
which is significantly (more than ‍4σ‍) different from the mean of randomly sampled ‍I ‍ distribution, 
‍I(glo; CMB)rand = 1.386 ± 0.035‍. This result is consistent with our ‍χ

2
‍-test, as the mutual information 

of the observed variables is significantly larger than the mutual information under the assumption 
of random sampling, suggestive of a statistically significant association between glomerular labels 
and MB calyx cluster labels. In LH, the mutual information between glomerular labels and ‍dαβ‍-based 
clustering output was ‍I(glo; CLH) = 2.128‍ which deviated ‍4σ‍ or more from the mean of the randomly 
sampled ‍I ‍ distribution, ‍I(glo; CLH)rand = 1.466 ± 0.035‍.

The same method is applied to confirm that a statistically significant association exists between odor 
type and the clustering outputs, with ‍I(odor; CMB) = 0.819‍ and ‍I(odor; CLH) = 0.963‍, all of which differ by 
more than ‍4σ‍ from the means of the randomly sampled ‍I ‍ distributions, ‍I(odor; CMB)rand = 0.337 ± 0.044‍ 
and ‍I(odor; CLH)rand = 0.372 ± 0.043‍. For odor valence, we obtain ‍I(val; CMB) = 0.277‍ and 

‍I(val; CLH) = 0.326‍, where both ‍I(val; CMB)‍ and ‍I(val; CLH)‍ differ significantly from the means of the 
randomly sampled ‍I ‍ distributions, ‍I(val; CMB)rand = 0.073 ± 0.026‍ and  ‍I(val; CLH)rand = 0.081 ± 0.026‍. 
Overall, the conclusion drawn from the association study based on mutual information is identical 
to Pearson’s ‍χ

2
‍-test.

Appendix 1—table 1. Pearson’s ‍χ
2
‍ tests of independence of variables in the FAFB dataset.

‍CZ ‍ indicates cluster labels from ‍dαβ‍-based clustering in ‍Z ‍ neuropil. Cramér’s V values are displayed 
on each cell and the corresponding p-values are shown in parentheses.

‍CLH‍ Glomerular Labels Odor Type Odor Valence

‍CMB‍ 0.502 (1.149E-36) 0.610 (1.255E-27) 0.401 (3.303E-21) 0.425 (2.016E-07)

‍CLH‍ 0.671 (2.266E-40) 0.416 (1.980E-22) 0.455 (2.586E-08)

Appendix 1—table 2. Pearson’s ‍χ
2
‍ tests of independence of variables in the hemibrain dataset.

‍CZ ‍ indicates cluster labels from ‍dαβ‍-based clustering in ‍Z ‍ neuropil. Cramér’s V values are displayed 
on each cell and the corresponding p-values are shown in parentheses.

‍CLH‍ Glomerular Labels Odor Type Odor Valence

‍CMB‍ 0.495 (6.635E-34) 0.577 (3.461E-25) 0.425 (9.400E-18) 0.463 (6.283E-07)

‍CLH‍ 0.685 (1.523E-40) 0.502 (6.072E-29) 0.521 (2.932E-09)

https://doi.org/10.7554/eLife.77748
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Appendix 1—table 3. Mutual information (observed mutual information (top), randomly sampled 
mutual information (bottom) in each cell) from the association study using the FAFB dataset.
‍CZ ‍ is cluster labels from ‍dαβ‍-based clustering at ‍Z ‍ neuropil. The observed mutual information differs 
from the randomly sampled mutual information by more than ‍4σ‍.

‍CLH‍ Glomerular Labels Odor Type Odor Valence

‍CMB‍ 1.076 
 
0.397±0.045

1.892 
 
1.386±0.035

0.819  
 
0.337±0.044

0.277  
 
0.073±0.026

‍CLH‍ 2.128  
 
1.466±0.035

0.963  
 
0.372±0.043

0.326  
 
0.081±0.026

Appendix 1—table 4. Mutual information (observed mutual information (top), randomly sampled 
mutual information (bottom) in each cell) from the association study using the hemibrain dataset.
‍CZ ‍ is cluster labels from ‍dαβ‍-based clustering at ‍Z ‍ neuropil. The observed mutual information differs 
from the randomly sampled mutual information by more than ‍4σ‍.

‍CLH‍ Glomerular Labels Odor Type Odor Valence

‍CMB‍ 1.371 
 
0.710±0.048

2.244  
 
1.783±0.033

1.036  
 
0.527±0.047

0.336 
 
0.124±0.035

‍CLH‍ 2.344  
 
1.717±0.034

1.211  
 
0.493±0.048

0.434  
 
0.116±0.033

Appendix 1—table 5. Statistics of homotypes composed of a single uPN (or multiple uPNs) in the 
FAFB dataset and the corresponding putative valence.

Aversive Attractive Unknown Total

Single uPN Homotypes Count 7 4 2 13

Multiple uPN Homotypes Count 18 13 13 44

Total 25 17 15 57

Appendix 1—table 6. Statistics of homotypes composed of a single uPN (or multiple uPNs) in the 
hemibrain dataset and the corresponding putative valence.

Aversive Attractive Unknown Total

Single uPN Homotypes Count 7 5 1 13

Multiple uPN Homotypes Count 18 12 15 45

Total 25 17 16 58

https://doi.org/10.7554/eLife.77748
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Appendix 2
Testing the labeled-line hypothesis
We detail the analyses performed on the tanglegram and the respective outputs (Figure 12). First, 
we applied the dynamic hybrid cut tree method on the dendrogram generated from connectivity 
and conducted Pearson’s ‍χ

2
‍ test. The results are shown in Table 1. The p-values for the connectivity-

based clustering between uPNs and LHNs for glomerular labels, odor types, and odor valence were 
very small. For the connectivity between uPNs and KCs, we see a moderate to no association for the 
given categorical variables (Appendix 2—table 1).

The similarity between two tree structures from spatial proximity-based and connectivity-
based clustering at a given synaptic interface is measured in several different ways to provide a 
comprehensive comparison. First, we quantified the similarity using Baker’s Gamma index (Baker, 
1974), which is a measure of rank correlation (or ordinal relation) calculated from concordant and 
discordant pairs given by.

	﻿‍
GBaker = Ncon − Ndis

Ncon + Ndis
,
‍�

(10)

where ‍Ncon‍ is the number of concordant pairs (the ordering of elements in two trees match) and 

‍Ndis‍ is the number of discordant pairs (the ordering of elements in two trees do not match). Baker’s 
Gamma index ranges from -1 to 1 where 0 represents the ordering of two trees is completely dissimilar 
and 1 or -1 indicate the ordering of two trees match. We find ‍G

MB
Baker = 0.286‍ and ‍G

LH
Baker = 0.219‍ (which 

we double-checked using both the in-house code and ‘dendextend’ package in R). Baker’s Gamma 
index for LH is very similar to the one obtained by Bates et al., 2020 (‍G

LH
Baker = 0.21‍), who conducted 

a similar study using the NBLAST score and connectivity. However, the fact that ‍G
MB
Baker > GLH

Baker‍ when 
the tanglegram of MB calyx is seemingly more incoherent (Figure 12A) raises a question of whether 
Baker’s Gamma index alone is enough to describe the tanglegram.

Apart from the ordinal relations between two sets of leaves, we employed two additional metrics 
to compare the two trees: (1) entanglement, a measure spanning from 0 to 1 quantifying the number 
of lines crossing, and (2) cophenetic distance correlation, a measure spanning from 0 to 1 quantifying 
how similar the two branching structures are. The entanglement between two trees for MB calyx 
was 0.35 (higher entanglement), while the entanglement for LH was 0.26 (lower entanglement), 
which agrees with Figure  12. To calculate cophenetic distance correlation, we measured the 
pairwise cophenetic distances within each tree and calculated the Pearson correlation coefficient. 
The cophenetic distance between two leaves in the dendrogram is equal to the minimum distance 
(or height) to the branching point that contains both leaves. The Pearson correlation coefficient 
between cophenetic distances of the spatial proximity-based and connectivity-based tree structures 
was ‍r = −0.032‍ (‍p > 0.001‍) for MB calyx and ‍r = 0.236‍ (‍p ≪ 0.001‍) for LH, reflecting the less disrupted 
tree structure in LH compared to MB calyx.

Appendix 2—table 1. Pearson’s ‍χ
2
‍ tests of independence of variables on the connectivity-based 

clustering results.
Cramér’s V values are displayed on each cell and the corresponding p-values are shown in 
parentheses. Bold entries are used to specify statistically significant results.

Glomerular Labels Odor Type Odor Valence

‍CPN−KC‍ 0.433 (2.472E-08) 0.316 (9.978E-09) 0.271 (0.012)

‍CPN−LHN‍ 0.765 (1.410E-67) 0.630 (1.519E-48) 0.604 (4.055E-12)

https://doi.org/10.7554/eLife.77748
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