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Abstract The 12 related human ESCRT- III proteins form filaments that constrict membranes and 
mediate fission, including during cytokinetic abscission. The C- terminal tails of polymerized ESCRT- III 
subunits also bind proteins that contain Microtubule- Interacting and Trafficking (MIT) domains. MIT 
domains can interact with ESCRT- III tails in many different ways to create a complex binding code 
that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively 
and quantitatively mapped the interactions between all known ESCRT- III tails and 19 recombinant 
human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, 
and discovered 18 previously unreported interactions. We also report the crystal structure of the 
SPASTIN MIT domain in complex with the IST1 C- terminal tail. Three MIT enzymes were studied 
in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions 
with their specific ESCRT- III binding partners (SPASTIN- IST1, KATNA1- CHMP3, and CAPN7- IST1), (2) 
function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the ‘NoCut’ abscission 
checkpoint (SPASTIN and CAPN7). Our studies define the human MIT- ESCRT- III interactome, identify 
new factors and activities required for cytokinetic abscission and its regulation, and provide a plat-
form for analyzing ESCRT- III and MIT cofactor interactions in all ESCRT- mediated processes.

Editor's evaluation
The importance of the information provided to the community, their quality and the new questions 
they open will certainly make this paper an essential step forward in understanding the regulation of 
ESCRT- III.

Introduction
To complete cell division, a cell must equally and fully partition a faithfully duplicated genome into two 
nascent progeny cells through mitosis, and these cells must physically separate through cytokinesis. 
In animal cells, cytokinesis initiates when an actomyosin contractile ring ingresses to create a cleavage 
furrow between the two spindle poles following chromosome segregation (Addi et al., 2018). The 
plasma membrane furrow ultimately narrows into an intercellular membrane bridge containing a 
dense central array of microtubules (the midbody), which then undergoes abscission to create two 
new cells. Premature abscission in the presence of aberrantly segregated DNA can lead to tension- 
induced double strand breaks in chromatin bridges that traverse the cleavage furrow (Janssen et al., 
2011), chromosome instability (Umbreit et al., 2020), and formation of micronuclei and extensive 
DNA damage through chromothripsis (Zhang et al., 2015; Crasta et al., 2012). Hence, abscission is 
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required for cell proliferation and its misregulation can contribute to DNA damage and even cancer 
development (Pharoah et al., 2013; Sadler et al., 2018).

The ESCRT (Endosomal Sorting Complexes Required for Transport) pathway mediates abscission 
in cultured mammalian cells (Carlton and Martin- Serrano, 2007; Morita et al., 2007), and in neural 
progenitor cells in vivo (Tedeschi et al., 2020; Little et al., 2021). Approximately 30 human ESCRT 
factors comprise five subcomplexes: ALIX, ESCRT- I, ESCRT- II, ESCRT- III, and VPS4, which assemble 
sequentially to constrict and sever membranes (McCullough et al., 2018). During cytokinesis, ESCRT 
complexes are recruited to the central Flemming body within the midbody by the CEP55 adaptor 
protein. CEP55 binds the early- acting ESCRT protein, ALIX (Lee et al., 2008; Christ et al., 2016; 
Morita et al., 2007; Carlton and Martin- Serrano, 2007), which in turn recruits ESCRT- III subunits 
of the CHMP4 family (Christ et  al., 2016; McCullough et  al., 2008; Katoh et  al., 2003; Katoh 
et al., 2004; Kim et al., 2005). In a parallel pathway, CEP55 binds the TSG101 subunit of ESCRT- I/II 
complexes (Morita et al., 2007; Carlton and Martin- Serrano, 2007; Christ et al., 2016; Lee et al., 
2008), again leading to ESCRT- III recruitment. ESCRT- III recruitment is also promoted by the midbody 
protein SEPT9 (Karasmanis et al., 2019), and other CEP55- independent pathways (Merigliano et al., 
2021; Addi et  al., 2020). Humans express 12 homologous ESCRT- III proteins that fall into eight 
different families, termed CHMP1- 7 and IST1. The different ESCRT- III subunits co- polymerize to form 
spiraling filaments within the midbody (Guizetti et al., 2011; Mierzwa et al., 2017; Pfitzner et al., 
2021; Nguyen et al., 2020; Elia et al., 2011). These filaments recruit VPS4 AAA+ ATPases that in turn 
promote dynamic ESCRT- III subunit exchange, midbody constriction, membrane fission, and daughter 
cell separation (Pfitzner et al., 2021; Mierzwa et al., 2017; Elia et al., 2012; Pfitzner et al., 2020).

Abscission timing and progression are regulated by the evolutionarily conserved abscission/NoCut 
cell cycle checkpoint (Norden et al., 2006; Steigemann et al., 2009). This checkpoint pauses abscis-
sion progression so that upstream mitotic events can be completed correctly before the cell irrevers-
ibly separates. Several different conditions are known to sustain abscission checkpoint activation, 
including incompletely segregated DNA within the midbody (Norden et al., 2006; Mendoza and 
Barral, 2008; Amaral et  al., 2016), nuclear pore subunit depletion (Mackay et  al., 2010), DNA 
damage resulting from replication stress (Mackay and Ullman, 2015), and midbody tension (Lafaurie- 
Janvore et al., 2013; Strohacker et al., 2021; Caballe et al., 2015). These conditions all converge 
on phosphorylated Aurora B (pAurB) kinase, which maintains checkpoint signaling and inhibits ESCRT 
activity. AurB is targeted to the intercellular bridge as a component of the multi- protein Chromo-
somal Passenger Complex (CPC), where it phosphorylates multiple substrates, including the regula-
tory ESCRT- III protein CHMP4C (pCHMP4C) (Carlton et al., 2012; Capalbo et al., 2012; Steigemann 
et al., 2009). pCHMP4C associates with ANCHR, and this complex sequesters VPS4 AAA+ ATPases 
from abscission sites, thereby inhibiting abscission progression (Thoresen et al., 2014). pAurB and 
pCHMP4C also localize to cytoplasmic Abscission Checkpoint Bodies (ACBs), where pro- abscission 
machinery, including ALIX and ESCRT- III proteins, are sequestered from the midbody (Strohacker 
et al., 2021). The importance of the abscission checkpoint and its regulation by CHMP4C is under-
scored by the discovery that a missense mutation in the penultimate CHMP4C residue (A232T) disrupts 
ALIX binding, inactivates the checkpoint, and predisposes carriers to several types of cancers (Sadler 
et al., 2018; Pharoah et al., 2013).

In addition to constricting the midbody, ESCRT- III filaments also recruit cofactors that contribute to 
abscission and checkpoint regulation. Human ESCRT- III proteins have conserved helical core domains 
that mediate filament formation (McCullough et  al., 2018; Pfitzner et  al., 2021; Bajorek et  al., 
2009b), and variable C- terminal tails that contain short peptide elements called MIT- Interacting Motifs 
(MIMs) (Figure 1A). MIMs bind cofactors that contain MIT (Microtubule- Interacting and Trafficking) 
domains (Hurley and Yang, 2008; Figure 1B). MIT domains are simple three helix bundles, but they 
can bind MIM elements in at least seven distinct ways (Skalicky et al., 2012; Obita et al., 2007; Scott 
et al., 2005; Stuchell- Brereton et al., 2007; Kieffer et al., 2008, Yang et al., 2008; Solomons et al., 
2011; Fujioka et al., 2014), which we have termed Type 1–7 binding modes (Figure 1C).

Humans express more than 20 MIT domain- containing proteins, which also contain a variety of 
associated activities that could function in cytokinesis (Figure 1B). Well- characterized examples of MIT 
domain- containing proteins that bind ESCRT- III proteins and perform important midbody functions 
include: (1) VPS4. The archetypal MIT domains of the related VPS4A and VPS4B ATPases bind promis-
cuously to different ESCRT- III filaments. These interactions promote assembly of VPS4 hexamers and 
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Figure 1. Domain organization of ESCRT- III and MIT domain- containing proteins. (A) Generalized ESCRT- III schematic, depicting the conserved helical 
core domain and the variable C- terminal tail that contains MIT- interacting Motif (MIM) elements. (B) Human proteins with MIT domains, grouped by 
enzymatic categories. Three dimensional structures (PDB IDs in parenthesis) are available for the MIT domains from human VPS4A (1YXR, 2JQ9, 2K3W), 
VPS4B (2JQH, 2JQK, 4U7Y, 1WRO, 2CPT), SPASTIN (3EAB), USP8 (2A9U), AMSH (2XZE), NRBF2 (4ZEY), LIP5 (2LXL, 2LXM, 4TXP, 4TXQ, 4TXR, 4U7E), 

Figure 1 continued on next page
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activate ATPase activity (Han et al., 2015; Azmi et al., 2008; Norgan et al., 2013). VPS4 MIT domains 
can alternatively bind a MIM element within ANCHR, which sequesters the ATPases from the abscis-
sion zone (Thoresen et al., 2014). (2) ULK3 kinase. The second ULK3 MIT domain binds IST1, which 
localizes this kinase to the midbody where it phosphorylates ESCRT- III proteins and inhibits membrane 
fission (Caballe et al., 2015). (3) SPASTIN. The MIT domain of the microtubule severing AAA+ ATPase 
SPASTIN binds CHMP1B (Yang et al., 2008), which reportedly localizes the enzyme to the midbody 
where it clears spindle microtubules to allow abscission (Connell et al., 2009). (4) MITD1. The MIT 
domain of MITD1 binds preferentially to CHMP1A, CHMP1B, CHMP2A and IST1 and localizes this 
phospholipase- D family member to midbodies where it stabilizes the bridge, preventing abscission 
failure (Hadders et al., 2012; Lee et al., 2012). (5) SPARTIN. The MIT domain of the hereditary spastic 
paraplegia protein SPARTIN preferentially binds IST1, which localizes the protein to the midbody to 
support abscission (Renvoisé et al., 2010).

The 12 ESCRT- III and >20 MIT human proteins have the potential to form a complex combinato-
rial network of ESCRT- III- MIT interactions that help mediate and regulate abscission. However, the 
ESCRT binding and cytokinetic functions of many human MIT proteins have not yet been tested, 
and prediction of MIT- MIM interactions can be difficult owing to their remarkable variety of different 
possible binding modes (Figure 1C). To address these limitations, we systematically quantified the 
binding of all 12 human ESCRT- III MIM elements to nearly all known human MIT domains. Three MIT 
enzymes with interesting activities and ESCRT- III binding patterns were further tested for midbody 
localization, and roles in cytokinetic abscission and the abscission checkpoint. These studies revealed 
that SPASTIN, KATANIN- P60 (KATNA1), and CALPAIN- 7 (CAPN7) all localize to midbodies through 
specific MIT- ESCRT- III interactions and are required for efficient abscission, and that SPASTIN and 
CAPN7 are also required for abscission checkpoint maintenance. These studies define the human 
MIT- ESCRT- III interactome and identify new factors and activities required for cytokinetic abscission 
and its regulation.

Results
MIT-MIM interaction screen
We defined the ESCRT- III- MIT interactome by using fluorescence polarization anisotropy (FP) to quan-
tify the binding interactions between recombinant human MIT domains and ESCRT- III MIM peptides. 
These experiments employed fluorescently labeled C- terminal peptides (52–88 residues) that encom-
pass the known MIM elements of the 12 human ESCRT- III proteins (Figure 1A, Supplementary file 
1B). The ESCRT- III tails were fluorescently labeled at their N- termini. Literature analyses were used to 
identify 21 candidate human MIT domains (Ciccarelli et al., 2003; Rigden et al., 2009; Skalicky et al., 
2012; Xiao et al., 2008; Fujioka et al., 2014; Figure 1B; see Materials and methods), which were 
expressed as recombinant proteins and purified to homogeneity. Constructs encoding the tandem 
MIT domains of LIP5, CAPN7, and ULK3 spanned both domains, thereby allowing intramolecular 
interactions to occur and native structures to form. (Skalicky et al., 2012; Vild et al., 2015; Guo and 
Xu, 2015). 19/21 of the human MIT domain constructs could be purified in sufficient quantities for FP 
binding titrations (Figure 2). The two exceptions were the C- terminal tandem MIT domains of ULK1 

SPARTIN (4U7I), MITD1 (4A5X), and ULK3 MIT2 (4WZX). Abbreviations: MIT, Microtubule Interacting and Trafficking; MTB, Microtubule Binding Domain; 
S/T Kinase, Serine/Threonine Kinase domain; PSK, Pseudokinase domain; PX, Phosphoinositide binding domain; CysPc, Calpain protease domain; 
USP, Ubiquitin Specific Protease Domain; PLD, Phospholipase D- like domain; VSL, Vta1- SBP1- LIP5 domain; JAMM, JAB1/MPN/Mov34 metalloenzyme 
domain; CBSW, calpain- type beta- sandwich domain. (C) Gallery showing the different types of binding interactions formed between MIT domains (blue) 
and MIM elements (green). For clarity, the three helix bundles of the different MIT domains are shown in approximately equivalent orientations. Type 1 
interaction: a helical MIM binds in the groove between MIT helices 2 and 3 (H2/H3 groove), and is oriented parallel to MIT helix 3. Type 2 interaction: 
the MIM forms an extended strand that binds in the MIT H1/H3 groove, parallel to MIT helix 3. Type 3 interaction: a helical MIM binds in the MIT H1/3 
groove, parallel to MIT helix 3. Type 4 interaction: Similar to Type 1, except that the longer MIM helix binds lower in the H2/H3 groove and interacts 
with the H2/H3 loop. Type 5 interaction: Two MIM helices and adjacent linkers wrap nearly completely around the MIT domain. Type 6 interaction: a 
mixed helix/strand MIM element binds in the MIT H1/3 groove, antiparallel to MIT helix 3. Type 7 interaction: a helical MIM element binds in the MIT 2/3 
groove, antiparallel to helix 3. The specific complexes shown in the figure are labeled below, together with their PDB accession codes.

Figure 1 continued
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and ULK2, which function in autophagy (Fujioka et al., 2014) and apparently do not bind ESCRT- III 
proteins (see below).

Pairwise FP binding isotherms were fit to 1:1 equilibrium binding models (Figure 2, Figure 2—
figure supplements 1–4, Figure 3). Dissociation constants (KD) for the 228 interactions tested are 
summarized in Figure 2 and color- coded based upon interaction strengths. Our screen generally reca-
pitulated binding interactions reported previously using orthogonal techniques (See Supplemental 
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Figure 2. ESCRT- III- MIT domain interaction network. Equilibrium dissociation constants (μM) for pairwise binding interactions are displayed for each 
ESCRT- III- MIT pair and are reported as averages of at least three independent measurements. Values in parenthesis denote ± standard deviation. 
Interactions are color- coded based on strength of measured binding affinity (see key bar). Asterisks denote KI values that were determined from 
competition experiments (see Materials and methods and Figure 2—figure supplement 5B- E). Binding constants for ULK3(MIT)2 and IST1 are from 
Caballe et al., 2015, but were measured in the same fashion as the other interactions and are reproduced here for comparison.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Binding isotherms for MIT domains that bind promiscuously to ESCRT- III protein tails.

Figure supplement 2. Binding isotherms for MIT domains that bind specifically to ≤3 different ESCRT- III tails.

Figure supplement 3. USP54 MIT binds weakly to all ESCRT- III C- terminal tails.

Figure supplement 4. Raw binding data for MIT domains that do not bind any ESCRT- III tails.

Figure supplement 5. Competitive binding analyses of CHMP4C tails binding to MIT domains.

Figure supplement 6. ESCRT- III binding is not conserved across ULK family members.

Figure supplement 6—source data 1. Annotated uncropped western blots and raw images for Figure 2—figure supplement 6A and B.

https://doi.org/10.7554/eLife.77779
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Discussion), but we cannot rule out the possibility that in some cases the position of the label could 
have interfered with or artificially enhanced binding interactions for some ESCRT- III- MIT pairs. Pairwise 
binding isotherms for weak binding pairs often did not reach saturation (Figure 2—figure supple-
ments 1–3), and the KDs for those interactions should therefore be considered approximations. In 
cases where isotherms did not reach half saturation at the highest MIT concentration tested (usually 
100 µM), we did not attempt to estimate the KD.

Our binding survey confirmed a series of previously reported ESCRT- III- MIT domain interactions 
(See Supplemental discussion), and also revealed 18 previously unreported interactions (Figure 2), 
including establishing new direct links between ESCRT- III proteins and the MIT domains from KATNA1, 
KATNAL1, RPS6KC1, RPS6KL1, SNX15, and AMSHLP. These new interactions should facilitate future 
investigations of ESCRT- associated activities.
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Figure 3. MIT- MIM Binding Interactions of SPASTIN, KATNA1 and CAPN7 and IST1. (A) Binding isotherms from human ESCRT- III C- terminal tails and the 
MIT domains from SPASTIN (left), KATNA1 (middle), and CAPN7 (right). Representative binding data are shown for each ESCRT- III- MIT pairwise binding 
interaction. Binding isotherms with KD <200 µM are fit with colored curves. Weak and non- binders (KD >200 µM) are plotted as black and white points. 
(B) Domain schematic of the ESCRT- III protein IST1 showing the position of the Type 2, MIM316- 343 and Type 1/3, MIM344- 366 elements within the full- length 
protein. Data for the ‘IST1’ peptide encompasses residues 316–366. (C) Dissociation constants for MIM344- 366 and MIM316- 343 peptides with IST1- binding 
MIT domains. Dissociation constants shown are averages calculated from at least three independent experiments with standard deviation reported in 
parentheses. Interactions are color- coded based on strength of measured binding affinity (see key bar). Asterisk denotes KI values determined from 
competition experiments (see Materials and methods and Figure 2—figure supplement 5E). Binding data for ULK3(MIT)2 and IST1, IST1- MIM344- 366 and 
IST1- MIM316- 366 are from Caballe et al., 2015, but are reproduced here for comparison.

https://doi.org/10.7554/eLife.77779


 Research article      Cell Biology | Structural Biology and Molecular Biophysics

Wenzel, Mackay, Skalicky et al. eLife 2022;11:e77779. DOI: https://doi.org/10.7554/eLife.77779  7 of 36

ESCRT-III binding behaviors
MIT domains displayed a range of different ESCRT- III binding behaviors that we classified as promis-
cuous (>3 ESCRT- III binding partners) (Figure 2—figure supplement 1), specific (≤3 ESCRT- III binding 
partners) (Figure  3A, Figure  2—figure supplement 2), non- specific (Figure  2—figure supple-
ment 3), and non- binding (Figure 2—figure supplement 4). The seven promiscuous binders bound 
ESCRT- III tails with high (KD  <2  µM) or moderate (KD  <100  µM) affinities. The MIT domain of the 
deubiquitinase AMSH exhibited the greatest promiscuity, binding all but two of the 12 different 
ESCRT- III subunits. The eight specific binders interacted with CHMP3 (KATNA1, KATNAL1, RPS6KL1, 
RPS6KC1, and AMSHLP), IST1 (RPS6KC1, CAPN7, SNX15, and SPARTIN), or CHMP1B, CHMP3, 
and IST1 (SPASTIN). The predicted MIT domain of the catalytically inactive deubiquitinase, USP54 
(Rigden et al., 2009), bound weakly (KD >100 µM) to nearly all ESCRT- III proteins, indicating that these 
interactions were probably non- specific (Figure 2—figure supplement 3). Finally, two MIT domains 
(NRBF2 and VPS9D1) did not bind any ESCRT- III proteins (Figure 2—figure supplement 4). The MIT 
domain of NRBF2 has been characterized structurally (PDB 4ZEY, 2CRB) and shown to interact with 
the VPS15 kinase to promote autophagosome biogenesis (Young et al., 2019). The putative VPS9D1 
MIT domain was predicted through bioinformatics, has not been characterized structurally, and has no 
known ESCRT connections (Rigden et al., 2009).

The tightest MIM- MIT binding pair was LIP5- CHMP5 (KD = 2.5 nM), which reflects the fact that 
CHMP5 tail helices 5 and 6 and adjacent linkers form an amphipathic ‘leucine collar’ that wraps almost 
completely around the second LIP5 MIT domain (Figure 1C; Skalicky et al., 2012).

The ESCRT- III proteins IST1, CHMP3, and CHMP1B partnered with the largest subset of MIT 
domains (Figure  2). IST1 bound 11/19 MIT domains with high affinity, and this promiscuity likely 
reflects the presence of two MIMs in the IST1 tail; a helical Type 1 or Type 3 (Type 1/3) element (resi-
dues 344–366) and an extended Type 2 element (residues 316–343) (Bajorek et al., 2009a, Guo and 
Xu, 2015; Figure 3B). To distinguish the contributions of each IST1 MIM element to MIT- binding, we 
tested their binding separately to each of the IST1- interacting MIT domains, using shorter peptides 
comprising either MIM (Figure 3B and C). These experiments revealed that the IST1 Type 1/3 (MIM344- 

366) element bound 10/11 MIT domains, and the Type 2 element (MIM316- 343) bound 5/11 MIT domains. 
Three binding patterns for the IST1 MIMs emerged, with MIT domains binding: (1) only the Type 1/3 
element (SPASTIN, ULK3, USP8, and SPARTIN), (2) only the Type 2 element (RPS6KC1), or (3) both 
MIMs (VPS4A, VPS4B, CAPN7, SNX15, LIP5, and MITD1) (Figure 3C). Although we did not directly 
detect binding between the IST1 Type 2 element and the LIP5 and CAPN7 MIT domains, the IST1 
Type 2 element appeared to contribute to LIP5 and CAPN7 binding because its absence reduced 
binding affinity >10 fold (vs. the full IST1 tail). Thus, both IST1 MIM elements can bind MIT domains, 
thereby contributing to promiscuity. Moreover, both MIM elements can simultaneously engage single 
MIT proteins in some cases, thereby increasing binding affinity (Osako et al., 2010; Bajorek et al., 
2009a).

At the other end of the spectrum, a fluorescently labeled CHMP4C peptide did not bind detect-
ably to any MIT domain tested. This was surprising, particularly as MITD1, USP8, and AMSH all bound 
the other two CHMP4 paralogs, CHMP4A and CHMP4B (Figure 2). CHMP4C is unique in containing 
a serine- rich insertion that is phosphorylated by AurB (Carlton et al., 2012; Capalbo et al., 2012; 
Figure 2—figure supplement 5A). We reasoned that this flexible insert might reduce the fluores-
cence anisotropy in bound complexes, thereby generating false negative results. To test this idea, 
we assayed whether the CHMP4C peptide could competitively inhibit AMSH, MITD1 and USP8 MIT 
binding to labeled CHMP4B (Figure 2—figure supplement 5B). These experiments revealed that 
CHMP4C bound AMSH MIT (Ki 14 µM), but still failed to bind MITD1 or USP8. CHMP4C performs 
a unique role in abscission checkpoint regulation (Carlton et al., 2012; Capalbo et al., 2012), and 
this specialized function may have relieved the selective pressure to maintain some MIT binding 
interactions.

As noted above, we were unable to express and purify the ULK1 or ULK2 tandem MIT domains in 
sufficient quantities for direct binding assays. Nevertheless, we felt it was important to test whether 
the MIT domains from these related kinases could bind ESCRT- III proteins because: (1) the MIT 
domains of yeast and human ULK1/2 kinases bind ATG13 within autophagosome initiation complexes 
(Chan et al., 2009; Fujioka et al., 2014), and (2) the MIT domain of the related ULK3 kinase binds 
tightly to IST1, and weakly to CHMP1A, CHMP1B, CHMP2A, and CHMP3 (Caballe et  al., 2015) 

https://doi.org/10.7554/eLife.77779
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and (Figure 2). We therefore performed pulldown assays from human HEK239T cell extracts to test 
whether ULK1(MIT)2 could bind ESCRT- III proteins (Figure 2—figure supplement 6A and B). Posi-
tive control pulldown assays recapitulated the known ULK3(MIT)2- ESCRT- III interactions, as well as 
ULK1(MIT)2- ATG13 binding. However, ULK1(MIT)2 did not bind detectably to any of the ESCRT- III 
binding partners of ULK3, implying that these ESCRT- III interactions are not conserved in the ULK 
family of protein kinases.

In summary, most MIT proteins can engage ESCRT- III proteins and their interactions span a range 
of specificities and affinities, indicating that they couple to ESCRT pathway functions in a variety of 
different ways.

SPASTIN, KATNA1, and CAPN7 as paradigms for MIT-ESCRT-III 
interactions
Three MIT proteins with specific ESCRT- III interactions and interesting associated enzymatic domains 
were selected for further characterization: (1) SPASTIN (IST1, CHMP1B, and CHMP3 binding), (2) 
KATNA1 (CHMP3 binding only), and (3) CAPN7 (IST1 binding only) (Figure 3A). ESCRT- III interactions 
with SPASTIN (Reid et al., 2005; Yang et al., 2008; Agromayor et al., 2009) and CAPN7 Yorikawa 
et al., 2008; Osako et al., 2010 have been described previously, whereas SPASTIN and KATNA1 
binding to CHMP3 have not. The single MIT domain of SPASTIN bound tightly to the IST1 MIM344- 

366 (Type 1/3 binding) and CHMP1B (Type 3) C- termini. The CAPN7 tandem MIT domain binds both 
MIM elements (Osako et al., 2010), and in this case multiple different binding modes are possible. 
SPASTIN and KATNA1 are microtubule severing AAA+ ATPases (Sharp and Ross, 2012). Both have 
been implicated in clearing midbody microtubules prior to abscission (Yang et al., 2008; Connell 
et al., 2009; Benz et al., 2012; Matsuo et al., 2013), but neither has been linked to abscission check-
point activity. CAPN7 is an understudied cysteine protease that has not previously been linked to any 
cytokinetic functions.

Structure and analysis of the SPASTIN MIT-IST1 complex
The SPASTIN MIT domain is unusual in binding specifically to three different ESCRT- III proteins: 
CHMP1B, CHMP3, and IST1. The SPASTIN MIT- CHMP1B complex has been characterized structurally 
(Yang et al., 2008; Figure 1C), whereas the SPASTIN MIT- IST1 and SPASTIN- CHMP3 interactions have 
not. We determined a high resolution (1.15 Å) crystal structure of the SPASTIN MIT- IST1 complex using 
a SPASTIN MIT112- 196 construct. (Figure 4A, and Figure 4—figure supplement 1A and B, and Supple-
mentary file 3; PDB 7S7J). The structure revealed that the IST1 MIM344- 366 adopts an amphipathic helix 
that buries its hydrophobic side chains in the SPASTIN MIT H1/H3 groove (Type 3 binding, Figure 4A, 
Figure 4—figure supplement 1). The IST1 and CHMP1B MIM elements exhibit similar binding modes 
(Figure 4A–D), but with two significant differences (Figure 4—figure supplement 1C): (1) The longer 
CHMP1B helix extends three additional turns beyond the IST1 N- terminus, and (2) the MIT H1/H3 groove 
expands to accommodate the longer CHMP1B helix, with a maximal displacement of 2.5 Å at the N- ter-
minus of helix 3. The structure of SPASTIN- IST1 is nearly identical to SPARTIN- IST1, which also adopts 
a Type 3 interaction (Guo and Xu, 2015; Figure 4—figure supplement 1D). IST1 binding is slightly 
tighter than CHMP1B binding, likely owing to enhanced hydrophobic interactions with the SPASTIN H1/
H3 groove (Figure 4—figure supplement 1C). IST1 buries two aromatic and two aliphatic side chains, 
whereas the CHMP1B binding element lacks aromatic residues and buries only three aliphatics.

Based on our structural analyses, we created SPASTIN MIT mutations designed to disrupt the 
binding of both CHMP1B and IST1 (F124D, red in Figure 4A–D) and to disrupt only CHMP1B binding 
without affecting IST1 binding (L177D, cyan in Figure 4A–D). As shown in Figure 4E and F, these 
mutations behaved as designed, thereby providing a set of mutants that we could use to compare the 
biological effects of disrupting SPASTIN binding to both CHMP1B and IST1 vs. specifically disrupting 
binding to CHMP1B alone. CHMP3 binding was also inhibited by both SPASTIN F124D and L177D 
mutants. Thus, CHMP3 also likely binds as an extended Type 3 helix in the SPASTIN MIT H1/H3 groove 
(Figure  4—figure supplement 2), and only IST1 retained binding to the SPASTIN L177D mutant 
owing to its shorter Type 3 helix.

KATNA1 and CAPN7 binding to ESCRT-III proteins
We also screened for MIT point mutations that could block ESCRT- III binding to KATNA1 and CAPN7 
by making a series of disruptive mutations in the MIT H1/H3 and H2/H3 grooves and testing whether 

https://doi.org/10.7554/eLife.77779
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Figure 4. Identification of MIT- MIM binding mutants. (A and B) Two orientations of the SPASTIN MIT- IST1 Type 3 structure (PDB 7S7J) displaying 
the locations of binding mutants (stick representation). See Figure 4—figure supplement 1A and B, for a detailed view of the interface and 
Supplementary file 3 for data collection and structure refinement statistics. (C) Cartoon depicting the positions of mutation sites in the SPASTIN MIT 
H1/H3 groove. (D) SPASTIN- CHMP1B structure (PDB 3EAB) showing the location of binding mutants (stick representation). See , Figure 4—figure 

Figure 4 continued on next page
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these mutations abrogated binding in our fluorescence polarization anisotropy binding assay. In 
the KATNA1- CHMP3 case, a point mutation in the MIT H1/H3 groove (V55D) eliminated CHMP3 
binding (Figure 4G). Our data therefore again indicate a Type 3 interaction for the helical CHMP3 
MIM element. CAPN7 has tandem MIT domains, and we found that IST1 binding was significantly 
reduced (~30–70 fold) by point mutations in the H1/H3 groove of either the first (V18D) or second 
(F98D) CAPN7 MIT domains (Figure 4H). Together with our MIM mapping experiments (Figure 3C), 
these data indicate that both CAPN7 MIT domains engage both IST1 MIM elements, employing Type 
2 (MIM316- 343) and Type 3 (MIM344- 366) binding modes.

SPASTIN, KATNA1, and CAPN7 localize to midbodies
As an initial screen for cytokinetic functions, we examined whether endogenous SPASTIN, KATNA1, 
and/or CAPN7 localize to the midbodies of dividing cells (Figure 5A–C, respectively). Midbodies were 
co- stained for microtubules and CEP55, which is recruited to either side of the Flemming body where 
it initiates ESCRT complex assembly (Fabbro et al., 2005; Carlton and Martin- Serrano, 2007; Morita 
et al., 2007). Antibody staining specificity was confirmed in parallel experiments in which each MIT 
protein was separately depleted using siRNA (Figure 5A–C; right panels).

In midbody- containing cells, all three MIT proteins co- localized with CEP55 ring structures on either 
side of the Flemming body (Figure 5A–C). Uniquely, KATNA1 also distributed along the midbody 
arms, reminiscent of localization observed for caveolae, and termed ‘midbody entry points’ (Andrade 
et al., 2022). Arm staining was particularly prominent in early midbody- stage cells (Figure 5B), and a 
similar KATNA1 staining pattern has been reported in rat cell lines (Matsuo et al., 2013). Our observa-
tions of SPASTIN and KATNA1 Flemming body localization are also in good agreement with previous 
reports (Yang et al., 2008; Connell et al., 2009; Matsuo et al., 2013). Importantly ours is the first 
report that CAPN7 localizes to midbodies.

MIT protein localization was also examined in cells in which abscission checkpoint signaling was 
sustained by nucleoporin depletion (Strohacker et al., 2021; Figure 5D–F). In these experiments, 
cells were synchronized using thymidine treatment and release, together with siRNA depletion of 
NUP153 and NUP50 (siNups), which sustains the abscission checkpoint. In all cases, the MIT proteins 
again localized to Flemming bodies, although in each case abscission checkpoint signaling led to 
more diffuse staining and spreading of the signals to midbody arms. Thus SPASTIN, KATNA1, and 
CAPN7 localize to midbodies under both unperturbed and checkpoint active conditions, where they 
are poised to function in abscission and/or the abscission checkpoint.

SPASTIN, KATNA1, and CAPN7 function in abscission
To test for abscission functions, we depleted SPASTIN, KATNA1, and CAPN7 and quantified abscis-
sion failure, as reflected by increased numbers of multi- nucleated cells and cells with persistent inter-
cellular bridges (Figure 5G and Figure 5—figure supplement 1). Specific depletion and abscission 
phenotypes were confirmed using two different siRNA oligonucleotides in each case, and successful 
target protein depletion was confirmed by Western blot (Figure 5—figure supplement 1).

Cells lacking KATNA1 and CAPN7 both showed strong abscission failure phenotypes, with near 
doubling of the percentages of cells with midbodies or multiple nuclei (vs. control cells transfected 
with non- targeting (NT) siRNA). These pronounced phenotypes resembled the abscission defects 
observed with moderate knockdown of the essential IST1 protein (positive control) (Bajorek et al., 
2009a, Agromayor et al., 2009). Cells lacking SPASTIN also exhibited significant abscission defects, 
although the effects were weaker. Our results are consistent with previously reported roles for KATNA1 

supplement 1C for an overlay of both SPASTIN structures. (E–G) Binding isotherms for WT and mutant MIT domains with the designated MIM 
elements. (E) SPASTIN- IST1. (F) SPASTIN- CHMP1B. (G) KATNA1- CHMP3, and (H) CAPN7- IST1. For E and H, binding was measured using IST1 peptides 
composed of both MIM elements (residues 316–366). MIT groove binding cartoons within the figures show locations of mutations in the relevant MIT 
domain. See also Figure 4—figure supplement 2 for binding isotherms for WT and mutant SPASTIN MIT domains with the CHMP3 MIM element.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Analysis of SPASTIN- IST1 complex and comparisons with SPASTIN- CHMP1B and SPARTIN- IST1.

Figure supplement 2. Binding isotherms for WT and mutant SPASTIN MIT domains with the CHMP3 MIM element.

Figure 4 continued
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Figure 5. ESCRT- III- interacting proteins SPASTIN, KATNA1, and CAPN7 are recruited to the midbody and are differentially required for abscission and 
maintenance of the abscission checkpoint. Immunofluorescence images of SPASTIN (A, D), KATNA1 (B, E), and CAPN7 (C, F) after treatment with the 
indicated siRNAs. Checkpoint Active samples (D–F) were generated by additional treatment with siNups combined with a thymidine synchronization/
release. Antibodies specific for α-TUBULIN and CEP55 were used to identify midbody- stage cells and the Flemming body, respectively. Enlargements of 

Figure 5 continued on next page
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and SPASTIN in promoting abscission by clearing midbody spindle microtubules from abscission 
sites (Matsuo et al., 2013; Yang et al., 2008; Connell et al., 2009). The observation that CAPN7 is 
required for efficient cytokinetic abscission is a new discovery.

SPASTIN and CAPN7 are required for abscission checkpoint 
maintenance
We also tested whether SPASTIN, KATNA1, or CAPN7 were required to maintain the AurB- mediated 
abscission checkpoint. As described above, co- depletion of the nuclear pore proteins NUP153 and 
NUP50 sustains abscission checkpoint activity, leading to an accumulation of midbody- connected 
cells (Mackay et al., 2010). However, simultaneous co- depletion of either SPASTIN or CAPN7 signifi-
cantly reduced midbody accumulation, indicating roles for both proteins in abscission checkpoint 
maintenance (Figure 5H, Figure 5—figure supplement 1). Indeed, the effects of depleting either 
SPASTIN or CAPN7 were at least as penetrant as depleting CHMP4C (positive control), which plays 
a well- characterized role in inhibiting abscission in response to checkpoint signaling (Capalbo et al., 
2012; Carlton et al., 2012). Unlike SPASTIN or CAPN7 depletion, KATNA1 depletion did not signifi-
cantly alter midbody numbers, although a second oligo targeting KATNA1 showed a modest but 
significant decrease in cells undergoing an abscission checkpoint arrest (Figure 5H, Figure 5—figure 
supplement 1). Thus, our data indicate that SPASTIN and CAPN7 are required to sustain abscission 
checkpoint arrest, and KATNA1 may also contribute weakly.

ESCRT-III proteins recruit SPASTIN, KATNA1, and CAPN7 to midbodies
To unite our binding and functional data, we tested whether ESCRT- III interactions were responsible 
for recruiting SPASTIN, KATNA1 and CAPN7 to function at midbodies. This was done by generating 
cell lines that expressed doxycycline (DOX)- inducible, siRNA- resistant mCherry constructs fused to 
wildtype (WT) and mutant MIT proteins. We then treated with siRNA to deplete the respective endog-
enous MIT proteins (Figure 6—figure supplement 1) while inducing expression of the mCherry fusion 
proteins and imaging the cells to test for midbody localization (Figure 6). As in Figure 5, cells were 
also synchronized with sustained checkpoints to maximize the number of midbody- stage cells (Stro-
hacker et al., 2021). Importantly, all three WT mCherry fusion constructs recapitulated localization 
of the endogenous MIT counterpart within the midbody (Figure 6). The percentages of “arms only” 
localization patterns were higher for the endogenous constructs in every case, however, potentially 
reflecting reduced antibody epitope accessibility at the protein- rich Flemming body. We found some 
additional differences between expression constructs and their individual endogenous counterparts, 
such as a larger population of “Flemming Body + Arms” in mCherry- SPASTIN cells, which again may 
reflect epitope exposure (Figure  6A). These observations suggest that there may be more varia-
tion in SPASTIN localization than currently appreciated, particularly when the abscission checkpoint 
is sustained. For purposes here, however, this assay provides a robust system in which to probe the 
requirements for ESCRT- III- mediated recruitment to the midbody.

Like WT mCherry- SPASTIN, the L177D mutant SPASTIN localized to more than half of all midbodies 
(Figure  6A and B). The proportion of midbodies occupied by SPASTIN may reflect a temporally 
restricted role and/or be influenced by overall sensitivity of the assay. Strikingly, however, the F124D 
mutant did not localize to midbodies. These data imply that ESCRT- III binding is required to localize 
SPASTIN to the midbody. The SPASTIN F124D mutation disrupts binding to CHMP1B, IST1, and 
CHMP3 whereas the L177D mutation selectively permits only IST1 binding (Figure 4, Figure 4—figure 

selected regions are shown at the right of each image, with the target protein shown alone (top) or together with CEP55 (bottom). (G, H) Quantification 
of abscission defects (midbody- stage cells and multinucleate cells) under asynchronous conditions (G) or with a sustained abscission checkpoint 
(H). Bars represent the average and standard deviation from n=5 independent experiments where N>500 cells were counted per experiment. Statistical 
analysis was performed using ANOVA, comparing total abscission defects (Midbody- stage cells + Multinucleate cells) after each individual siRNA 
treatment to siNT. ****p<0.0001, ***p<0.0005, **p<0.02, ns = not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Figure supplement 1. Confirmation of the efficiency and specificity of protein depletion by siRNA treatments.

Figure supplement 1—source data 1. Annotated uncropped western blots and raw images for Figure 5—figure supplement 1A and B.

Figure 5 continued
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Figure 6. ESCRT- III binding to SPASTIN, KATNA1, and CAPN7 is required for midbody localization when the abscission checkpoint is sustained. 
(A) Immunofluorescence of DOX- inducible cell lines expressing siRNA- resistant mCherry- SPASTIN- WT, mCherry- SPASTIN- F124D, and mCherry- 
SPASTIN- L177D constructs under sustained abscission checkpoint conditions (see Materials and methods). Endogenous SPASTIN was depleted by 
siRNA treatment of the DOX- inducible cell lines and induced protein expression/localization was detected using an anti- mCherry antibody. Antibodies 
to α-TUBULIN and CEP55 were used to identify midbody- stage cells and the Flemming Body, respectively. Enlargements of selected regions are 
shown at the right of each image with the target protein shown alone (top) or together with CEP55 (bottom). (B) Quantification of midbody localization 
for endogenous SPASTIN from Figure 5 (Endo) and the indicated DOX- inducible cell lines. Bars are the average and standard deviation from three 
independent experiments where >100 midbody- stage cells were counted. Statistical analysis was performed using ANOVA, comparing total midbody 
localization of the F124D and L177D mutants to WT. (C, D) Immunofluorescence and quantification of midbody localization for endogenous KATNA1 
(Figure 5) and DOX- inducible cell lines expressing siRNA- resistant mCherry- KATNA1- WT and mCherry- KATNA1- V55D constructs as in A and B, 

Figure 6 continued on next page
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supplement 2). Therefore, our data imply that CHMP1B and CHMP3 binding are dispensable for 
midbody localization when IST1 binding capability is maintained.

The KATNA1 MIT domain binds the C- terminal domain of the KATNB1 subunit to form the KATNA1 
holoenzyme (Faltova et al., 2019; Rezabkova et al., 2017). KATNB1 activates and localizes KATNA1 
to centrosomes where it severs mitotic spindle microtubules (Matsuo et al., 2013). However, KATNB1 
does not appear to be responsible for localizing KATNA1 for cytokinesis function, as the two proteins 
reportedly do not co- localize within the midbody (Matsuo et al., 2013). It has therefore not been 
clear how KATNA1 is recruited to the midbody to function in abscission. Our localization data demon-
strate that WT mCherry- KATNA1 localizes to Flemming bodies and midbody arms, but the V55D 
mutant does not (Figure 6C and D). CHMP3 is the sole ESCRT- III binding partner of KATNA1, and 
the V55D mutation disrupts this partnership (Figure 3), implying that CHMP3 localizes KATNA1 to the 
midbody for abscission.

The structure of the KATNA1 MIT- KATNB1 heterodimer reveals that V55 sits adjacent to the 
KATNB1 binding site (Rezabkova et al., 2017; Figure 6—figure supplement 2A), and we therefore 
tested the possibility that the V55D mutation might also disrupt the canonical KATNA1- KATNB1 part-
nership. This was not the case, however, as KATNB1 co- precipitated with full length KATNA1 WT and 
V55D mutant proteins equally well from HEK293T cell extracts (Figure 6—figure supplement 2B). 
In contrast, a KATNA1 MIT mutation known to disrupt KATNB1 binding, R14A (Rezabkova et al., 
2017), abolished KATNB1 binding, demonstrating that the pulldown assay was sensitive to specific 
disruption. Hence, our data imply that the KATNA1 V55D mutation discriminates between CHMP3 
and KATNB1 binding, and therefore that CHMP3 is likely responsible for localizing KATNA1 to Flem-
ming bodies. Consistent with this model, CHMP3 localizes to Flemming bodies (Mierzwa et al., 2017; 
Dukes et al., 2008), and its depletion increases the propensity of cells to develop multiple nuclei and 
midbody bridges (Morita et al., 2010), thereby phenocopying KATNA1 loss (Figure 5G).

Finally, our MIT screening data suggested that IST1 could be responsible for localizing CAPN7 to 
midbodies (Figure 2). In support of this model, a point mutation in the second CAPN7 MIT domain 
that decreased IST1 binding ~30- fold (F98D, see Figure 3) also potently suppressed CAPN7 targeting 
to the Flemming body (Figure 6E and F). Thus, in all three cases we examined in detail, our MIT 
screening data identified potential ESCRT- III binding partners and point mutations that blocked 
binding, and in every case the point mutations also abolished MIT protein midbody localization.

Discussion
We have comprehensively surveyed the MIT- ESCRT- III interactions between human ESCRT- III and MIT 
domain- containing proteins. We tested 228 pairwise interactions between MIT domains and ESCRT- III 
C- terminal tails, observed 60 positive interactions, and discovered 18 new interactions (Figures 2 
and 3, see Supplemental discussion). We found that most human MIT domains can mediate ESCRT- III 
binding, further implicating MIT proteins as a major class of ESCRT pathway cofactors.

SPASTIN, KATNA1, and CAPN7 served as paradigms for using the binding data to discover new 
ESCRT cofactors that function in cytokinesis. Our screening assays identified ESCRT- III binding partners 
and interaction sites (Figure 3), enabled new structure determinations (Figure 4, Figure 4—figure 
supplement 1), and supported mutational analyses of MIT protein midbody localization (Figure 4, 

except that endogenous KATNA1 was depleted by siRNA in the DOX- inducible cell lines. Statistical analysis was performed using an unpaired t- test, 
comparing the V55D mutant to WT. (E, F) Immunofluorescence and quantification of midbody localization for endogenous CAPN7 (Figure 5) and DOX- 
inducible cell lines expressing siRNA- resistant CAPN7- mCherry and CAPN7- F98D- mCherry constructs as in A and B, except that endogenous CAPN7 
was depleted by siRNA in the DOX- inducible cell lines. Statistical analysis was performed using an unpaired t- test comparing the F98D mutant to WT. 
****p<0.0001, ***p=0.0005, **p=0.0024, ns = not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. Confirmation of the efficiency and specificity of protein depletion by siRNA and DOX- inducible protein expression.

Figure supplement 1—source data 1. Annotated uncropped western blots and raw images for Figure 6—figure supplement 1 (A–C).

Figure supplement 2. The KATNA1 V55D mutation does not disrupt KATNB1 binding.

Figure supplement 2—source data 1. Annotated and uncropped western blots and raw images for Figure 6—figure supplement 2B.

Figure 6 continued

https://doi.org/10.7554/eLife.77779
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Figure 6). Together with previous studies, our work indicates that the primary biological function of 
MIT domains is to localize proteins to sites of ESCRT- driven membrane remodeling. MIT domains 
have also evolved to mediate protein- protein interactions in other pathways, most notably in auto-
phagosome initiation (Fujioka et al., 2014; Young et al., 2019). Collectively, MIT- MIM interactions 
constitute a complex recognition network, and several principles that emerged from our studies are 
highlighted below. A more comprehensive discussion of the different interactions is provided in the 
Supplemental discussion.

MIT recruitment by ESCRT-III polymers
Although we studied the pairwise interactions of MIT domains and ESCRT- III tails, these interactions 
likely occur predominantly in the context of polymeric ESCRT- III filaments. Polymerization creates the 
potential for high avidity binding, and variations in ESCRT- III subunit compositions can alter binding 
modes and tune binding affinities. These properties are important because subunit compositions 
change as filaments mature and constrict membranes (Pfitzner et al., 2021; Banjade et al., 2021; 
Pfitzner et al., 2020). Current models for ESCRT- III assembly, derived from studies in simpler yeast 
systems, hold that CHMP6 initially nucleates the assembly of ESCRT- III strands composed of CHMP4 
subunits. CHMP4 strands then recruit partner strands composed of CHMP2/CHMP3 subunits (Teis 
et  al., 2008; Babst et  al., 2002), which are subsequently exchanged for CHMP1/IST1 subunits 
(Pfitzner et al., 2020). Hence, the cadre of recruited MIT protein binding partners may evolve as 
filaments mature.

These different principles are nicely illustrated by VPS4 enzymes and their associated activator LIP5 
(Vta1 in yeast), which form ‘supercomplexes’ that display 30 MIT domains; six from the VPS4 hexamer 
and 24 from the 12 associated LIP5(MIT)2 elements (Skalicky et al., 2012; Yang et al., 2012). VPS4 
MIT domains bind promiscuously to many ESCRT- III tails, and although binding is often weak avidity 
effects can presumably create high affinity binding. We measured strong to moderate, Type 1 VPS4 
MIT binding to the late- acting CHMP1, CHMP2 and IST1 subunits (nM to mid-μM KDs), with three- to 
20- fold higher affinities consistently seen for VPS4A MIT vs. VPS4B MIT. CHMP3 binding was below 
our 200 μM binding affinity cutoff for both VPS4 MIT domains, and the only case in which weaker, early- 
acting Type 2 interactors CHMP6 and CHMP4 made our binding cutoff was in the VPS4A MIT- CHMP6 
complex. Nevertheless, there is good evidence that interactions between CHMP4 (Snf7 in yeast) and 
VPS4 are biologically important (Kieffer et al., 2008, Stuchell- Brereton et al., 2007; Shestakova 
et al., 2010; Buysse et al., 2020). The first of the tandem LIP5 MIT domains similarly binds ESCRT- III 
tails promiscuously, and again favors late- acting ESCRT- III subunits (Yang et al., 2012), whereas the 
second LIP5 MIT domain binds specifically and with high affinity to CHMP5 (Skalicky et al., 2012; 
Yang et al., 2012). Thus, these MIT interactions can collectively explain how (VPS4)6(LIP5)12 supercom-
plexes can bind and remodel ESCRT- III filaments that contain essentially any combination of the 12 
different human ESCRT- III subunits. Moreover, their different binding affinities can explain why VPS4 
remodeling activity increases as ESCRT- III filaments mature and accumulate increasing fractions of the 
late- acting, and higher affinity CHMP2, CHMP1, and IST1 subunits (Pfitzner et al., 2020).

In a similar fashion, ESCRT- III subunit binding specificities and affinities are also likely tuned to 
recruit other MIT cofactors as needed. It is therefore of interest that IST1, CHMP3, and CHMP1 were 
the most promiscuous ESCRT- III binders in our screen because each of these ESCRT- III subunits func-
tions at transitional stages of ESCRT- III polymer maturation (Pfitzner et al., 2020). Our binding data 
suggest that many MIT proteins will bind best to mature, IST1- containing filaments that form late, 
when membrane constriction is greatest and fission is most imminent. In contrast, MIT proteins like 
AMSH and MITD1 bind many different ESCRT- III subunits with similar affinities, perhaps because 
deubiquitination (AMSH) and midbody stabilization (MITD1) are required throughout abscission and 
other ESCRT- dependent processes.

IST1 as a versatile hub for cytokinetic cofactor recruitment
IST1 is the most promiscuous MIT binding ESCRT- III protein, and it binds most targets with high 
affinity (Figure 2, Figure 3C). IST1 promiscuity is achieved through combined use of two different 
MIM elements, and through multi- modal binding by the IST1 MIM1/3 element (Bajorek et al., 2009a, 
Guo and Xu, 2015; Figure 3). Our screen revealed that both IST1 MIM elements can mediate MIT- 
binding, and that they often collaborate to enhance binding (Figure  3C). The SPASTIN MIT- IST1 

https://doi.org/10.7554/eLife.77779
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structure shows that the IST1 MIM344- 366 element can make Type 3 MIT interactions, as seen previously 
in the SPARTIN- MIT- IST1 complex (Yang et al., 2008; Guo and Xu, 2015). However, the same hydro-
phobic surface of the IST1 MIM344- 366 helix can also form Type 1 interactions with the MIT domains of 
ULK3, VPS4B, and LIP5 (Guo and Xu, 2015; Skalicky et al., 2012; Caballe et al., 2015). IST1 deple-
tion induces severe cytokinetic defects (Bajorek et al., 2009a, Agromayor et al., 2009; Figure 5), 
reflecting its central role in abscission and as a versatile hub for MIT cofactor recruitment.

Comparison of the SPASTIN MIT complexes with IST1 and CHMP1B allowed us to design a muta-
tion that specifically permitted only IST1 binding (Figure 4). This SPASTIN mutant still localized to 
intercellular bridges (Figure 6A,B) demonstrating that IST1 binding is sufficient (and CHMP1B and 
CHMP3 are dispensable) for midbody recruitment. Others have reported that SPASTIN midbody 
localization is impaired by CHMP1B depletion (Yang et al., 2008), but this observation can be recon-
ciled because IST1 recruitment is also likely affected by the absence of CHMP1B (Dimaano et al., 
2008; Rue et al., 2008; Bajorek et al., 2009b, Goliand et al., 2018).

MIT binding modes of CHMP1 and CHMP3 proteins
CHMP1B and CHMP3 are also promiscuous MIT binders. CHMP1B binds two MIT domains (SPASTIN, 
USP8) that the closely related CHMP1A protein does not. This expanded binding range apparently 
reflects the ability of CHMP1B to access the Type 3 interaction mode. The Type 3 interaction extends 
the N- terminus of the CHMP1B MIM helix by three additional turns (vs. its Type 1 interactions). Addi-
tional interactions with this extended helix could allow SPASTIN to discriminate between CHMP1B 
and CHMP1A, whose sequences are highly similar at the C- terminus but diverge N- terminally (Yang 
et al., 2008). The USP8 MIT domain can also discriminate between CHMP1B and CHMP1A (Figure 2), 
and we therefore speculate that USP8 MIT may also form a Type 3 interaction with CHMP1B.

The CHMP3 MIM appears to be another example of a promiscuous helical MIM element that can 
bind in at least two separate grooves of different MIT domains. The CHMP3 MIM element binds the 
MIT domains of AMSH using a Type 4 mode (Figure 1C; Solomons et al., 2011), and LIP5 (MIT1 using 
a Type1/4 mode; Skalicky et al., 2012). Remarkably, our study suggests that CHMP3 can also adopt 
yet another binding mode (Type 3), as we mapped binding to the H1/H3 grooves of SPASTIN and 
KATNA1 MIT. The ability to adopt multiple different binding modes increases the number of possible 
partnerships with MIT domain proteins, and helps to explain why IST1, CHMP3 and CHMP1B are the 
most promiscuous MIT binders.

SPASTIN and KATNA1 midbody recruitment and microtubule severing
ESCRT- III proteins coordinate the recruitment of the microtubule severing enzymes KATNA1 and 
SPASTIN to complete abscission. Following anaphase, densely packed midbody microtubules must 
be cleared from the midbody to facilitate cytokinetic membrane abscission (Sharp and Ross, 2012). 
Both SPASTIN and KATNA1 form hexameric rings (Hartman and Vale, 1999; Eckert et al., 2012) 
that can engage the C- terminal tails of TUBULIN subunits within the central pore (Kuo and Howard, 
2021). ATP hydrolysis then drives polypeptide translocation, thereby promoting subunit exchange 
and/or microtubule severing (Roll- Mecak and Vale, 2008; Zehr et al., 2017). We observed distinct 
but overlapping midbody localization patterns for SPASTIN and KATNA1 (Figure 5), which may reflect 
their recruitment by similar ESCRT- III proteins (CHMP1B, IST1, and CHMP3) and could allow the two 
enzymes to act on different pools of midbody microtubules.

Our discovery that SPASTIN, but not necessarily KATNA1, is required for abscission checkpoint 
maintenance further underscores that these enzymes likely mediate different aspects of microtu-
bule dynamics during abscission. Furthermore, the surprising checkpoint requirement for SPASTIN 
suggests that microtubule severing may also be required to support abscission arrest (in addition 
to physically removing microtubule barriers to allow abscission). Possible roles for SPASTIN in main-
taining abscission arrest include: (1) slowing microtubule catastrophe via an ATP- independent activity 
(Kuo et al., 2019) and thereby paradoxically stabilizing severed midbody microtubules, or (2) creating 
shorter microtubules that promote regrowth and dynamically increase microtubule networks (Kuo 
et al., 2019; Vemu et al., 2018), and could thereby stabilize the midbody and/or traffic abscission 
factors into or out of the abscission zone (Frémont and Echard, 2018). Our findings point to the 
need for more detailed studies of the mechanistic roles of microtubule remodeling in abscission and 
in checkpoint regulation.

https://doi.org/10.7554/eLife.77779
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The discovery that CHMP3 and KATNB1 (Rezabkova et al., 2017) share overlapping binding sites 
on the KATNA1 MIT domain has important functional implications (Figure  6—figure supplement 
2). KATNB1 targets KATNA1 to centrosomes during mitosis (Matsuo et al., 2013), whereas CHMP3 
targets KATN1A to midbody arms during cytokinesis (Figure 6). Thus, KATNA1 likely switches part-
nerships from KATNB1 to CHMP3 during this cell cycle transition. KATNB1 binding also regulates 
KATNA1 microtubule severing activities (Faltova et al., 2019), specificities (Faltova et al., 2019), and 
binding partners (Jiang et al., 2017; Jiang et al., 2018), and it will therefore be of interest to learn 
how CHMP3 replacement alters these KATNA1 activities.

Finally, a CHMP3 mutation, T173I, located within the MIM used in our binding studies, is associated 
with spastic paraplegia, a disease associated with SPASTIN defects (Cohen- Barak et al., 2022). Our 
identification of CHMP3 as a SPASTIN binding partner suggests that CHMP3 may play a direct role in 
supporting neuronal SPASTIN functions.

CAPN7 functions in abscission and the abscission checkpoint
Finally, we have discovered that the cysteine protease, CAPN7, localizes to midbodies and supports 
abscission and the abscission checkpoint. Our screen identified IST1 as the sole ESCRT- III binding 
partner for the CAPN7 MIT domains (Figure 2, Figure 3), in good agreement with previous reports 
of IST1 binding in pulldown assays (Osako et al., 2010; Maemoto et al., 2011). The CAPN7 MIT 
domain also reportedly binds the second alpha- helical region of the CHMP1B core domain (but not 
the C- terminal MIM region) (Maemoto et al., 2011). We did not survey this interaction because our 
screen included only C- terminal ESCRT- III tails, but our mutational and localization analyses indicate 
that CAPN7 midbody recruitment is dependent on IST1 binding (Figure 4, Figure 6).

IST1 recruitment may also enhance CAPN7 proteolytic activity within the midbody as IST1 binding 
was shown to activate CAPN7 proteolysis of an artificial substrate (Osako et al., 2010; Maemoto 
et al., 2013). CAPN7 orthologues in Aspergillus (PalB) and budding yeast (Rim13) function together 
with ESCRT- III binding partners to cleave the PEST peptide sequences of the transcription factors 
Rim101 and PacC, and thereby enhance gene expression (Rodríguez- Galán et  al., 2009; Subra-
manian et al., 2012). Similarly, human CAPN7 reportedly binds and cleaves PEST elements of the 
HOXA10 transcription factor (Yan et al., 2018). Thus, IST1 recruitment of CAPN7 to the midbody 
could provide spatial and temporal control of proteolysis, leading to downstream signaling activities 
required for checkpoint maintenance and/or abscission.

Cofactors for other ESCRT-dependent processes
Although we have focused on cytokinetic abscission, the same experimental framework can be used 
to characterize MIT cofactors for other cellular ESCRT functions, including intralumenal vesicle forma-
tion at the multi- vesicular body, nuclear envelope resealing, plasma membrane repair, and envel-
oped virus budding (Christ et al., 2017; Vietri et al., 2020; Zhen et al., 2021). Many of the newly 
discovered partnerships merit investigation in these other ESCRT functions. For example, CHMP7 is a 
specialized ESCRT- III protein that functions in post- mitotic closure and repair of the nuclear envelope 
(Vietri et al., 2015; Gu et al., 2017; Olmos et al., 2015; von Appen et al., 2020; Denais et al., 
2016; Thaller et al., 2019). Our observation that CHMP7 interacts exclusively with the MIT domain of 
the AMSH deubiquitinase supports the possibility that these events may be dynamically regulated by 
ubiquitin- dependent processes, as has been recently reported (Wallis et al., 2021). More generally, 
our quantitative definition of the ESCRT- III- MIT interactome should provide a basis for probing how 
disruption of ESCRT- III and MIT cofactor activities can contribute to disease states such as hereditary 
spastic paraplegia (Ciccarelli et al., 2003), or can be used therapeutically, for example in anti- cancer 
strategies based on VPS4 synthetic lethality (Neggers et al., 2020; Szymańska et al., 2020).

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) Hela- N Maureen Powers Lab HeLa cells selected for transfectability

https://doi.org/10.7554/eLife.77779
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) HEK293T ATCC CRL- 3216

Antibody
Anti- CAPN7
(Rabbit polyclonal) Proteintech Cat#26985–1- AP

IF (1:1000)
WB (1:5000)

Antibody
Anti- CEP55
(Sheep polyclonal) Bastos and Barr, 2010 IF (1:3500)

Antibody
Anti- IST1
(Rabbit polyclonal) Sundquist Lab/Covance UT560 WB (1:1000)

Antibody
Anti- CHMP4C
(Rabbit polyclonal) Sadler et al., 2018 WB (1:500)

Antibody
Anti- KATNA1
(Rabbit polyclonal) Proteintech 17560–1- AP IF (1:1000)

Antibody
Anti- KATNA1
(Rabbit polyclonal) Abcam ab111881

IF (1:500)
WB (1:1000)

Antibody
Anti- SPASTIN
(Mouse monoclonal) Sigma S7074

IF (1:1000)
WB (1:1000)

Antibody
Anti- NUP153 (SA1)
(Mouse monoclonal) Brian Burke WB (1:50)

Antibody
Anti- NUP50
(Rabbit polyclonal) Mackay et al., 2010 WB (1:2500)

Sequence- based reagent siNT Mackay et al., 2010 siRNA GCAAAUCUCCGAUCGUAGA

Sequence- based reagent siCHMP4C Strohacker et al., 2021 siRNA CACUCAGAUUGAUGGCACA

Sequence- based reagent sIST1 Bajorek et al., 2009a siRNA AGAUACCUGAUUGAAAUUG

Sequence- based reagent siNUP153 Mackay et al., 2010 siRNA GGACUUGUUAGAUCUAGUU

Sequence- based reagent siNUP50 Mackay et al., 2010 siRNA GGAGGACGCUUUUCUGGAU

Sequence- based reagent siCAPN7 This Paper siRNA GCACCCAUACCUUUACAUU

Sequence- based reagent siCAPN7- b This Paper siRNA GGCCGUUACUGAUUGAGCU

Sequence- based reagent siKATNA1 This Paper siRNA GGACAGCACUCCCUUGAAA

Sequence- based reagent siKATNA1- b Horizon Discovery CAT# L- 005157
ON- TARGET- PLUS siRNA-
SMARTPOOL

Sequence- based reagent siSPAS This Paper siRNA GAACAGUGUGAAAGAGCUA

Sequence- based reagent siSPAS- b This Paper siRNA CGUUAUUGAUACUUGGAUA

Chemical compound, 
drug Thymidine CalBiochem CAS 50- 89- 5 2 mM

Chemical compound
Oregon Green 488 
maleimide Life Technologies/Molecular Probes O6034 Fluorescent label for peptides

Software, algorithm Fiji NIH RRID:SCR_002285

Software, algorithm KaleidaGraph Synergy Software

 Continued

Identification and cloning of human MIT domains
MIT domains were selected from the literature (Ciccarelli et al., 2003; Rigden et al., 2009; Row 
et  al., 2007; Skalicky et  al., 2012; Xiao et  al., 2008; Fujioka et  al., 2014). Bacterial expression 
constructs were designed using previous reports (when available) (Stuchell- Brereton et al., 2007; 
Caballe et al., 2015; Fujioka et al., 2014; Hadders et al., 2012; Solomons et al., 2011; Avvakumov 
et al., 2006; Yang et al., 2008; Guo and Xu, 2015; Iwaya et al., 2010; Yorikawa et al., 2008; Osako 
et al., 2010; Skalicky et al., 2012) (NRBF2; PDB 2CRB; unpublished) or were guided by secondary 
structure predictions using Phyre2 (Kelley et al., 2015).

https://doi.org/10.7554/eLife.77779
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Bacterial expression constructs for ULK3, VPS4A, VPS4B, and LIP5 have been reported (Caballe 
et al., 2015; Scott et al., 2005; Stuchell- Brereton et al., 2007; Skalicky et al., 2012). Other DNAs were 
obtained from Addgene (RPS6KC1: 23460; ULK1: 31961), Dharmacon (SPARTIN: MHS6278- 2028092; 
Clone ID: 5313379) and DNASU (NRBF2: HSCD00424935; KATNA1:HSCD00445516; KATN-
L1:HSCD00079435; KATNAL2: HSCD00733526; KATANA1B: HSCD00042784; RPS6K-
L1:HSCD00045064; AMSH: HSCD00078710; AMSHLP: HSCD00438568; USP8: HSCD004366965; 
SNX15: HSCD00404630; CAPN7: HSCD00404981; VPS9D1:HSCD00620221; MITD1: HSCD00356996; 
NRBF2:HSCD00434935). Bacterial and mammalian expression constructs for CAPN7 were further 
mutated to match the reference sequence NP055111.1 by making the following substitutions using 
quick change mutagenesis: G151S, E173V, E495K. SPASTIN was subcloned from EST ACCT 7491861 
(Han et al., 2020). USP54 MIT was made as a gene string (Thermofisher), and the Myc- ATG13 expres-
sion construct was a gift from Do- Hyung Kim (Addgene plasmid #31965; http://n2t.net/addgene: 
31965; RRID: Addgene_31965) (Jung et al., 2009).

Expression inserts for cell lines were generated by PCR amplification and ligated into the pLVX- 
tight- Puro vector (Clontech) using the NEB HiFi DNA Assembly Kit (New England Biolabs) according 
to the manufacturer’s instructions. Human SPASTIN has four major isoforms (Mancuso and Rugarli, 
2008; Claudiani et  al., 2005), and we used the most abundant (M87) isoform, including residues 
encoded by exon 4.

A slightly longer SPASTIN MIT construct (residues 108–200) bound  five- fold more tightly to 
CHMP1B and IST1 (CHMP1B, KD = 2.3 µM; Figure 2) compared to the minimal MIT sequence (resi-
dues 112–196; CHMP1B KD ~12–15 µM; data not shown and Yang et al., 2008) thus we used the 
longer construct for binding measurements. Using this construct, we were able to detect binding 
between SPASTIN and CHMP3; a previously unknown interaction.

Gene names, DNA sources, and amino acid sequences are given in Supplementary file 1 and 
Supplementary file 2. All plasmids generated by this study have been deposited to Addgene for 
distribution (See Supplementary file 2A for Addgene accession numbers).

Bacterial expression of MIT domains
Proteins were expressed in BL21 RIPL cells grown in ZYP- 5052 autoinduction media (Studier, 2005). 
Transformed cells were initially grown for 3–6 hr at 37 °C, and then switched to 19 °C for an additional 
20 hr. Cells were harvested by centrifugation at 5,400 x g and cell pellets were stored at –80 °C. MIT 
domains from VPS4A, VPS4B, ULK3, and LIP5 were expressed and purified as described previously 
(Caballe et al., 2015; Skalicky et al., 2012; Scott et al., 2005; Stuchell- Brereton et al., 2007).

Purification of (His)6-fusion proteins
All steps were carried out at 4 °C except where noted. Frozen cell pellets were thawed and resus-
pended in lysis buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 1 mM Dithioreitol (DTT), 0.5 mM EDTA 
supplemented with 0.125% sodium deoxycholate, lysozyme (25 µg/mL) PMSF (35 µg/mL), pepstatin 
(1 µg/mL), leupeptin (0.5 µg/mL), aprotinin (0.1 µg/mL), DNAse1 (25 µg/mL), and 1 mM MgSO4. Cells 
were lysed by sonication and lysates were clarified by centrifugation at 37,000 x g for 60 min. The 
clarified supernatant was filtered through a 0.45  μM cartridge filter and incubated with 10  mL of 
cOmplete His- Tag purification beads (Roche, Germany) for 45 min. Beads were washed with 500 mL 
of wash buffer: 25 mM Tris (pH 8.0), 500 mM NaCl, 1 mM DTT, 0.5 mM EDTA, and then with 500 mL 
wash buffer with 200 mM NaCl. Fusion proteins were eluted with 50 mL of 200 mM NaCl wash buffer 
supplemented with 200 mM imidazole, pH 8.0. Eluted protein solutions were treated with 100 μg of 
protease ((His)6- ULP1 for (His)6- SUMO fusions; GST- HRV3C preScission protease for (His)6- GST fusions) 
in 3.5 kDa cutoff dialysis bags while dialyzing against 2x2 L of 200 mM NaCl wash buffer for 16–24 h. 
Uncut (His)6- SUMO- MIT fusion, (His)6- SUMO tag, and (His)6- ULP1 proteases were removed with 5 mL 
of cOmplete His- Tag purification beads, and the MIT fusion proteins were concentrated and prepared 
for gel filtration chromatography.

For (His)6 fusions of RPS6KL1, RPS6KC1, AMSH, AMSHLP, and USP8, NRBF2, MITD1, and SPARTIN, 
nickel column eluates were dialyzed against 2x2 L of 25 mM Tris pH 8.0 (25 °C), 50 mM NaCl, 1 mM 
EDTA, 1 mM DTT in the presence of ~100 µg protease ((His)6ULP1 for (His)6SUMO fusions; GST- HRV3C 
preScission protease for (His)6GST fusions). Dialyzed cleavage reactions were purified by chromatog-
raphy on a 5 mL HiTrapQ Sepharose Column (GE Healthcare Life Sciences, USA) (or for SPARTIN, a 
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HiTrap SP column) and eluted with gradient of 50–1000 mM NaCl to separate HIS- SUMO, or HIS- GST 
from pure MIT fractions. Pure MIT fractions were pooled, concentrated, and further purified by gel 
filtration chromatography.

Purification protocols for the CAPN7, SNX15 and VSP9D1 MIT domains were sufficiently different 
to merit separate descriptions (below).

(His)6- GST- CAPN7(MIT)2 was bound to GST- sepharose beads (10 mL,GE Healthcare Life Sciences, 
USA, 6 hr), washed with 1 L wash buffer: 25 mM Tris (pH 8), 500 mM NaCl, 1 mM DTT, 0.5 mM EDTA, 
and eluted with ~50 mL of wash buffer supplemented with 20 mM reduced L- glutathione (pH 8). 
The fusion tag was removed using ~100 µg GST- HRV3C (preScission) protease in a 3.5 kDa cutoff 
dialysis bag while dialyzing against 2x2 L wash buffer and 2 L of wash buffer with low salt (50 mM 
NaCl) over two days. The dialysate was purified by Q Sepharose chromatography (50 mL; GE Health-
care Life Sciences, USA) with a linear gradient of 50–500 mM NaCl. Fractions containing highly pure 
CAPN7(MIT)2 were pooled and concentrated for gel filtration chromatography.

(His)6- GST- SNX15 MIT was bound to cOmplete His- Tag purification beads (5 mL, Roche, Germany, 
2 hr) and washed with 2 L wash buffer: 25 mM Tris (pH 8), 500 mM NaCl, 1 mM DTT, 0.5 mM EDTA, and 
eluted with wash buffer supplemented with 250 mM imidazole (pH 8). The eluent was bound to gluta-
thione sepharose beads (10 mL, GE Healthcare Life Sciences, USA, 6 hr), washed with 1 L wash buffer: 
25 mM Tris (pH 8), 500 mM NaCl, 1 mM DTT, 0.5 mM EDTA, and eluted with ~50 mL of wash buffer 
supplemented with 20 mM reduced L- glutathione (pH 8). The fusion tag was removed using ~100 µg 
GST- HRV3C (preScission) protease in a 3.5 kDa cutoff dialysis bag while dialyzing against 2x2 L wash 
buffer and 2x2 L of wash buffer with low salt (25 mM NaCl) over 2 days. The dialysate was purified by 
Q Sepharose chromatography (50 mL, GE Healthcare Life Sciences, USA). SNX15 MIT eluted in the 
flow through and was concentrated for gel filtration chromatography.

(His)6- GST- VPS9D1 MIT was lysed in 50 mM Tris pH 7.4 (25 °C), 500 mM NaCl, 0.5 mM EDTA, 
and 1  mM TCEP supplemented with 0.125% sodium deoxycholate, lysozyme, PMSF, pepstatin, 
leupeptin, aprotinin and DNAse I (as described above). The clarified cell lysate was bound to 10 mL 
of cOmplete His- Tag purification resin (Roche, Germany, 30 min), washed with 1 L base buffer, and 
eluted with ~50 mL of base buffer supplemented with 250 mM imidazole (pH 8.0). The fusion tag 
was removed by incubation with ~100 µg GST- HRV3C protease in 3.5 kDa cutoff dialysis bag while 
dialyzing against 2x2 L of 25 mM Tris pH 7.4 (25 °C), 50 mM NaCl, 1 mM DTT, 0.5 mM EDTA. The 
dialysate was purified by Q Sepharose chromatography (50 mL, GE Healthcare Life Sciences, USA) and 
eluted with a 50–1000 mM NaCl linear gradient. VPS9D1 eluted in the flow through and was concen-
trated for gel filtration chromatography.

Finally, all MIT proteins were purified by Superdex 75 gel filtration chromatography (GE Healthcare 
Life Sciences, USA) in 25 mM Tris (pH 7.2 at 25 °C), 150 mM NaCl, 1 mM DTT, and 0.5 mM EDTA. MIT 
protein fractions were pooled and concentrated. MIT domain masses were confirmed with ESI- MS or 
MALDI- TOF (University of Utah Mass Spectrometry Core Facility, see Supplementary file 1A). Yields 
ranged between 0.5–35 mg/L of bacterial culture.

Expression and purification of ESCRT-III C-terminal peptides
ESCRT- III C- terminal peptides were prepared as described previously (Talledge et al., 2018). Briefly, 
most peptides were expressed as (His)6- SUMO- fusions, except for IST1- MIM316- 343 and IST1 MIM344- 

366 which were made synthetically by the University of Utah Peptide Synthesis Core. Peptides were 
expressed in BL21- Codon Plus (DE3) RIPL cells (Agilent, Santa Clara, CA, USA) in ZYP- 5052 auto- 
induction media (Studier, 2005). Cells were lysed by sonication in lysis buffer (40  mL/L of culture) 
containing 50 mM Tris, pH 7.2, 150 mM NaCl, 5 mM imidazole, 2 mM DTT, 0.5 mM EDTA, and 0.125% 
sodium deoxycholate, supplemented with lysozyme, protease inhibitors, and DNAse I (Roche, Germany) 
(as described above). Clarified cell lysates were incubated with 10 mL of cOmplete His- Tag purification 
resin (Roche, Germany) for 30 min, washed with 500 mL wash buffer: 50 mM Tris, pH 7.2, 500 mM NaCl, 
5 mM imidazole, 5 mM DTT, 0.5 mM EDTA, and then with 500 mL wash buffer containing 150 mM 
NaCl. (His)6- SUMO affinity tags were removed by on- column cleavage with (His)6- ULP1 (0.7 mg, over-
night, 4  °C) in 40 mL of the 150 mM NaCl wash buffer. Cleaved peptides were collected from the 
column flow through and dialyzed against 25 mM sodium phosphate, pH 6.5, 50 mM NaCl, 2 mM DTT, 
0.5 mM EDTA, and then purified by Q- sepharose ion exchange chromatography (GE Healthcare Life 
Sciences, USA) with a linear gradient from 50 mM to 1 M NaCl. Peptide fractions were pooled and 
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dialyzed against 25 mM Tris, pH 7.2, 150 mM NaCl, 1 mM TCEP, 0.5 mM EDTA, and further purified by 
Superdex- 75 size exclusion chromatography (GE Healthcare Life Sciences, USA). Typical IST1 peptide 
yields were 4.5 mg/L culture. Purified ESCRT- III C- terminal fragments contained non- native ‘GlyCys’ or 
‘Cys’ residues at their N- termini, and masses were confirmed by mass spectrometry (see Supplemen-
tary file 1B) either before labeling (CHMP4C, CHMP1A140- 196, CHMP1B143- 199) or after labeling (all other 
peptides; dye adds a mass shift of 463.4 Da). Competition experiments used peptides lacking N- ter-
minal ‘Cys’ residues to avoid disulfide cross- linking (see Supplementary file 1C).

Peptide fluorescent labeling
Fluorescent labeling was performed by the University of Utah DNA/Peptide Synthesis Core as 
described previously (Caballe et al., 2015; Talledge et al., 2018). Briefly, peptides were labeled in 
DMSO using ~1.3- fold molar excess of Oregon Green 488 maleimide (Life Technologies/Molecular 
Probes #O6034, USA) dissolved in a 1:1 solution of acetonitrile:DMSO. Reversed phase HPLC was used 
to monitor the reactions and separate labeled peptides from unreacted dye and unlabeled peptides 
using reversed phase HPLC. Labeled peptide fractions were dried under vacuum and dissolved in 
water. Peptide concentrations were quantified using the absorbance of Oregon Green 488 at 491 nm 
(e=83,000 cm−1 M−1 in 50 mM potassium phosphate, pH 9.0).

Fluorescence polarization anisotropy binding assays
Binding experiments were performed as described previously (Caballe et al., 2015) in 25 mM Tris, pH 
7.2, 150 mM NaCl, 0.1 mg/mL Bovine Serum Albumin (BSA), 0.01% Tween- 20, and 1 mM DTT, with 
250–500 pM fluor- labeled ESCRT- III peptides and purified MIT domains at the indicated concentra-
tions. A Biotek Synergy Neo Multi- Mode plate reader (Biotek, USA) was used to measure fluorescence 
polarization with excitation at 485 nm and emission (detection) at 535 nm. Binding isotherms were fit 
to 1:1 models using KaleidaGraph (Synergy Software) as described previously (Skalicky et al., 2012; 
Talledge et al., 2018). Reported KD values are averages from at least three independent isotherms. 
Non- binding (KD >200 µM) was confirmed at least twice independently. The interactions between 
IST1 and SPASTIN as well as IST1 and USP8 failed to generate the large changes in polarization 
needed to reliably fit dissociation constants. We therefore used a C- terminal labeled IST1 peptide to 
measure binding with SPASTIN, and competitive binding experiments were used to calculate the Ki 
for the interaction of USP8 with IST1 (Figure 2—figure supplement 5E). Competition experiments 
were performed as described previously (Sadler et al., 2018). Briefly, complexes of MIT domains and 
fluorescently labeled peptides (26.6 µM MITD1 and 0.5 nM CHMP4B peptide; 0.75 µM USP8 and 
0.5 nM IST1 peptide, 12.5 µM USP8 MIT and 0.5 nM CHMP4B peptide) were titrated with the indi-
cated concentrations of unlabeled peptides. IC50s were calculated using KaleidaGraph (Synergy Soft-
ware) and then converted to Ki values (Cer et al., 2009). Competitive binding curves were measured 
independently three or more times for each peptide, and one to three times for each positive control 
peptide.

Co-immunoprecipitation experiments
KATNA1 pulldowns
HEK293T cells were seeded at 0.5x106 cells per well in six- well plates and transfected 24 hr later with 
1 µg of plasmid encoding Myc- KATNB1 and one of the following: 2 µg empty vector control, 1.5 µg 
OSF- KATNA1- WT, 2 µg of OSF- KATNA1- R14A, or 1.5 µg of OSF- KATNA1- V55D P60 using PEI (10 
ul per well of 1 mg/mL). Empty vector was added as necessary to bring the total transfected DNA 
to 3 µg/well. Cells were harvested 48 hr post- transfection and lysed in 400 µl of 50 mM Tris, pH 7.2, 
150 mM NaCl, 0.5% Triton- X100, 1 mM DTT, protease inhibitors (1:100, Sigma). Lysates were clarified 
by centrifugation at 16,100 x g for 10 min at 4 °C, and clarified lysates were incubated with 20 µl of a 
50% slurry of Strep- Tactin resin (IBA Biosciences) for 30 min. Beads were washed 4 x with 500 µl lysis 
buffer. After the final wash, Strep- Tactin beads were aspirated to near dryness and bound proteins 
were eluted by boiling in 40 µl of 2 x Laemmli sample buffer, resolved by SDS- PAGE, and detected by 
Western blotting.

ULK(MIT)2 pulldowns
HEK293T cells were seeded in 6 well plates and transfected using PEI as above and DNA levels were 
optimized to normalize expression levels: 3 µg pCAG- OSF- ULK3(MIT)2 (residues 277–449) and 250 ng 

https://doi.org/10.7554/eLife.77779


 Research article      Cell Biology | Structural Biology and Molecular Biophysics

Wenzel, Mackay, Skalicky et al. eLife 2022;11:e77779. DOI: https://doi.org/10.7554/eLife.77779  22 of 36

of pCAG- CHMP1A- myc, pCAG- CHMP1B- myc, or pCAG- Myc- IST1; 1.5 µg pCAG- OSF- PP- ULK1(MIT)2 
(residues 833–1050) and 500 ng of pCAG- CHMP1A- myc, pCAG- CHMP1B- myc, or pCAG- Myc- IST1; 
500 ng pCAG- OSF- PP- ULK1(MIT)2 and 2 µg Myc- ATG13; 2.5 µg pCAG- OSF empty vector and 500 ng 
of pCAG- CHMP1A- myc, pCAG- CHMP1B- myc, or pCAG- Myc- IST1; 1  µg pCAG- OSF empty vector 
and 2 µg Myc- ATG13. Cells were harvested 24 hr post transfection and lysed in 50 mM Tris, pH 7.2, 1% 
Triton, 150 mM NaCl, 1 mM DTT, 1:100 mammalian protease inhibitors (Sigma). Lysates were clarified 
by centrifugation at 16,100 x g for 10 min at 4 °C, and incubated with 20 µl of a 50% slurry of Strep- 
Tactin resin (IBA Biosciences) for 30 min at 4 °C. Beads were washed 4 x with 500 µl lysis buffer. After 
the final wash, Strep- Tactin beads were aspirated to near dryness and bound proteins were eluted and 
detected by Western blotting as described above.

For ULK(MIT)2 pulldowns with CHMP2A (Figure  2—figure supplement 6); 10  cm dishes of 
60–80% confluent HEK293T cells were individually transfected with PEI and 12 µg of pCAG- OSF- 
ULK3(MIT)2, pCAG- OSF- PP- ULK1(MIT)2, pCAG- CHMP2A- myc, pCAG- CHMP2A- L216D/L219D, Myc- 
ATG13, or pCAG- OSF- empty vector control. Cells were harvested 24 hr post- transfection, lysed in 
25 mM Tris, pH 7.2, 150 mM NaCl, 1 mM DTT, 1% Triton- X100 supplemented with 1:100 mammalian 
protease inhibitors (Sigma), and lysates were clarified by centrifugation at 16,100 x g for 10 min at 
4 °C. Clarified lysates expressing CHMP2A- Myc were mixed with lysates expressing OSF- ULK(MIT)2 or 
empty vector controls and incubated overnight at 4 °C. Lysate mixes were then incubated with 20 µl 
of a 50% slurry of Strep- Tactin resin (IBA Biosciences) for 1 hr at 4 °C. Beads were washed 5 x with 
500 µl of 25 mM Tris, pH 7.2, 150 mM NaCl, 1 mM DTT, 0.5% Triton- X100 buffer. After the final wash, 
Strep- Tactin beads were aspirated to near dryness, and bound proteins were eluted and detected by 
Western blotting.

X-ray crystallography
SPASTIN MIT (residues 112–196) and IST1 peptide (residues 344–366) were prepared as described 
above, mixed at a 1:1.2 molar ratio (14.25 mg/ml SPASTIN MIT and 4.8 mg/ml IST1 peptide), and 
filtered using a 0.2 μM cartridge filter. This complex was mixed in a 2:1, 1:1, and 1:2 (v/v) ratio with 
100 mM sodium cacodylate/ hydrochloric acid pH 6.5, 40% (v/v) PEG 300, 200 mM calcium acetate 
(0.6 μL final volume; Wizard Cryo 1/2 screen (Rigaku, USA), condition D1). Crystals formed by sitting 
drop vapor diffusion after ten days at 4 °C in 1:1 and 1:2 (v/v) rations. A crystal from 1:1 or 1:2 ratio 
was suspended in a small nylon loop and cryocooled by plunging in liquid nitrogen. Supplemental 
cryoprotection was not used for the crystals grown in these conditions.

X- ray diffraction data were collected at the Stanford Synchrotron Radiation Lightsource (SSRL) 
using beamline 9.1. The crystal was maintained at 100 °K with the aid of a cold nitrogen gas stream 
during data collection. Data were integrated and scaled using XDS (Kabsch, 2010a, Kabsch, 2010b) 
and AIMLESS (Evans and Murshudov, 2013; Evans, 2011). Initial phases were obtained from phenix- 
phaser (Bunkóczi et al., 2013) using SPASTIN MIT (PDB 3EAB) (Yang et al., 2008) as a search model. 
The resulting electron density was readily interpretable and further built using Coot (Emsley and 
Cowtan, 2004; Emsley et al., 2010) and phenix- refine (Liebschner et al., 2019).

The model was evaluated using Molprobity (Davis et al., 2007; Williams et al., 2018) and judged 
to be of good quality. Two regions of unexplained density were present in the Fo- Fc electron density 
map. PEG 300 is present at 40% (v/v) in the crystallization condition and the density resembled smaller 
PEG molecules. Several molecules were tested by model building and refinement and the best fit 
to the density was obtained with one molecule of triethylene glycol (PGE) and one of tetraethylene 
glycol (PG4). The PEG molecules improved the model statistics and maintained good geometry. Two 
initially assigned water molecules also produced unexplained density in the Fo- Fc electron density 
map. Several ions were tested by model building and refinement until the best fit was obtained with 
one chloride ion and one calcium ion. Both ions are present in the crystallization condition (hydro-
chloric acid and calcium acetate), and their inclusion improved the model statistics and maintained 
good geometry. The final model refined to Rwork = 0.149 and Rfree = 0.159. Structure coordinates have 
been deposited in the RCSB Protein Data Bank under PDB ID 7S7J. Full statistics and data collection 
details are provided in Supplementary file 3.

An omit map of the IST1 portion of the complex was generated for figure presentation. This map 
was calculated by removing IST1 from the final model followed with phenix refinement and simulated 
annealing (Cartesian) to minimize phase bias (Figure 4—figure supplement 1).
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Cell culture
HEK293T and HeLa cells were cultured and maintained at 37 °C and 5% CO2 in DMEM supplemented 
with 10% FBS. TetOn- HeLa cells were supplemented with 500 μg/mL G418 (Invitrogen) to maintain 
expression of the Tet- On Advanced protein. DOX- inducible cell lines generated in the parental TetOn- 
HeLa cell line were supplemented with 500 μg/mL G418 + 0.5 μg/mL puromycin (Invivogen).

Cell lines
Our parental HeLa cell line was authenticated by genomic sequencing of 24 loci (University of Utah 
Sequencing Core) and confirmed to be mycoplasma- free by routine PCR testing (ABM) following 
the manufacturer’s protocols. HeLa cells were transfected with the pLVX- TetOn- Advanced plasmid 
(Clontech) and selected with 500 μg/mL G418 for 14 days. Single colonies were isolated, expanded, 
and screened for TetOn- Advanced expression by western blot using a TetR monoclonal antibody. 
The optimal clone, which was selected based on a combination of TetOn Advanced expression and 
tight control of DOX- inducible expression, was used as the parental HeLa TetOn line. To generate 
stable cell lines with doxycycline- inducible expression, the parental TetOn cell line was transfected 
with pLVX- tight puro plasmids containing the MIT genes of interest (see Supplementary file 2A) and 
selected for 14 days in 500 μg/mL G418 +0.5 μg/mL puromycin. Single colonies were expanded and 
screened for expression by immunofluorescence and western blotting. Selected clones were further 
validated by sequencing the PCR amplified MIT gene of interest from genomic DNA. Protein expres-
sion was induced by addition of 1 μg/mL doxycycline.

siRNA transfections
For experiments in Figure 5, transfection protocols were as follows: Day 1–350,000 cells were reverse 
transfected with 20 nM siRNA targeting MIT protein (as indicated) in a 35 mm dish using Lipofect-
amine RNAiMAX and following manufacturer’s instructions; Day 2 – cells from Day 1 were trypsinized, 
resuspended in a total volume of 6 mL DMEM, and divided as follows: 0.5 mL into each of four wells 
of a 24- well dish containing 12 mm circle glass coverslips, and 2 mL into each of two 35 mm dishes. 
These samples were again reverse transfected with 20 nM siRNA (as indicated); for active abscission 
checkpoint samples, cells in two wells of a 24- well dish (for Immunofluorescence) and one 35 mm 
dish (for Western blot) were also reverse transfected with 10 nM siNUP153 and 10 nM siNUP50 at 
this time, incubated for 8 hr, then treated with 2 mM thymidine for 24 hr; Day 3 – thymidine was 
removed, cells were washed 2 x with warm PBS, and fresh medium added to all cells; Day 4–16 hr after 
thymidine release cells were harvested for analysis. For localization experiments in Figure 6, protein 
expression was induced by incubating cells in the presence of 1 μg/mL doxycycline for the duration of 
the 48 hr experiment. siRNA transfection protocols (in the presence of doxycycline) were as follows: 
Day 1 – either 70,000 cells (in one well of a 24- well dish containing a 12 mm glass coverslip for IF) or 
350,000 cells (in a 35 mm dish for Western Blot) were reverse transfected with 20 nM siRNA targeting 
the indicated MIT protein plus 10 nM siNUP153 and 10 nM siNUP50 (siNups), incubated for 8 hr, then 
treated with 2 mM thymidine for 24 hr; Day 2 – thymidine was removed and fresh medium including 
1 μg/mL doxycycline was added to all cells (as described above); Days 3–16 hr after thymidine release 
cells were harvested for analysis. siRNA sequences are reported in Supplementary file 2B.

Immunoblotting
Cells were lysed in RIPA buffer (Thermo Fisher) supplemented with mammalian protease inhibitor 
cocktail (Sigma; used at 1:100 dilution) for 15 min on ice with brief vortexing every 5 min. Lysates 
were cleared by centrifugation at 17,000 x g for 10 min at 4 °C. Lysate protein concentrations were 
determined using the BCA Assay (Thermo Fisher) and normalized prior to SDS- PAGE. 12 μg lysate per 
sample were prepared with SDS loading buffer, resolved by SDS- PAGE, and transferred to either PVDF 
or nitrocellulose. Membranes were blocked for 1 hr at room temperature in 5% milk in TBS, then incu-
bated overnight at 4 °C with primary antibodies (see Supplementary file 2C for dilutions). Following 
3x10 min washes in TBS- T, membranes were incubated with the corresponding secondary antibodies 
for 1 hr at 23 °C, washed again with TBS- T, and imaged using a LiCor Odyssey infrared scanner.

Immunofluorescence imaging and phenotype quantification
Cells were seeded on fibronectin- coated glass coverslips and treated with the indicated siRNAs, 
according to the individual experimental protocol as described in ‘siRNA transfections’. For analysis, 
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cells were briefly washed with 1 X PHEM buffer (60 mM PIPES, 25 mM HEPES, pH 6.9, 1 mM EGTA, 
2 mM MgCl2) and then fixed for 20 min at 23 °C in 4% formaldehyde + 0.5% Triton X- 100 (in 1 X 
PHEM buffer). Following fixation, cells were washed with PBS and incubated 30 min in blocking buffer 
(3% FBS +0.1% Triton X- 100 in PBS). Primary antibodies were incubated for least 1 hr at 23 °C (see 
Supplementary file 2C for dilutions). Coverslips were then washed with PBS and incubated with the 
secondary antibodies (Thermo Fisher) for 1 hr at 23 °C. Following a final wash in PBS, coverslips were 
mounted onto glass microscope slides using Prolong Gold Antifade Reagent with or without DAPI 
(Thermo Fisher). In the case of KATNA1, localization was confirmed with two independent antibodies 
(Proteintech – #17560–1- AP; Abcam – ab111881) and two different fixation conditions: –20 °C Meth-
anol for 10 min and PFT (1 x PHEM + 4% PFA +0.5% Triton as described above) (data not shown).

Images were acquired using a Nikon Ti- E inverted microscope equipped with a 60X PlanApo 
oil immersion objective, an Andor Zyla CMOS camera, and an automated Prior II motorized stage 
controlled with the Nikon Elements software. For phenotype quantification in Figure  5, the soft-
ware was used to acquire 49 images using a randomized 7 x 7 grid pattern. The images were then 
blinded and scored independently by four individuals. For Figure 6, 25 images for each treatment 
were acquired, blinded, and scored independently by three individuals. Quantification and statistical 
analyses were performed using GraphPad Prism.
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Appendix 1
Supplemental discussion
Meiotic clade AAA-ATPases
Single N- terminal MIT domains are prominent in most meiotic clade AAA+ ATPases including 
VPS4A, VPS4B, SPASTIN, KATNA1, and KATNAL1 (Monroe and Hill, 2016). These ATPases function 
as hexamers and avidity will therefore enhance their binding to polymeric ESCRT- III binding partners. 
KATNAL2 and FIDGETIN are the only meiotic clade ATPases that appear to lack MIT domains. In the 
place of a MIT domain, KATNAL2 contains an LisH domain (Iwaya et al., 2010), which did not bind 
any ESCRT- III proteins in our screen (Figure 2—figure supplement 4A), and secondary structure 
predictions do not reveal three characteristic MIT alpha helices at the N- terminus of FIDGETIN 
(data not shown). Of the AAA+ ATPases, the VPS4A and B MIT domains are the most promiscuous 
ESCRT- III interactors, and previous studies using biosensor binding and yeast two hybrid approaches 
had identified CHMP1A, 1B, 2 A, 3, 4 A- C, 6, and IST1 as VPS4 binding partners (von Schwedler 
et al., 2003; Scott et al., 2005; Stuchell- Brereton et al., 2007; Kieffer et al., 2008, Bajorek et al., 
2009a). Our screen confirmed VPS4 binding to CHMP1A, 1B, 2 A, 2B, 6, and IST1, with 1:1 KD’s 
ranging from 0.5 to 54 μM, with VPS4B consistently showing 3–20 fold weaker binding than VPS4A. 
CHMP3 and the CHMP4 proteins are also likely biologically relevant VPS4 MIT binding partners (Lin 
et al., 2005; Kieffer et al., 2008, Stuchell- Brereton et al., 2007; Adell et al., 2014), but their 1:1 
binding affinities were below our cutoff. Thus, VPS4 enzymes bind all ESCRT- III paralogs, except the 
specialized CHMP5 and CHMP7 subunits, consistent with the central role that VPS4 enzymes play in 
remodeling ESCRT- III filaments.

SPASTIN MIT, in contrast, binds specifically to three ESCRT- III proteins: CHMP1B (Yang et al., 
2008), IST1 (Yang et al., 2008; Renvoisé et al., 2010), and CHMP3. We confirmed the previously 
described interactions, the newly discovered CHMP3 interaction, and the lack of interaction with 
the remaining nine non- binding ESCRT- III proteins (KD >200 μM). Both CHMP1B and IST1 form an 
amphipathic helix that binds in the MIT groove formed by helices H1 and H3 (Yang et al., 2008) 
(Type 3 binding, Figure 4, and Figure 4—figure supplement 1). The CHMP1B and IST1 binding 
surfaces on the MIT are overlapped, leading to mutually exclusive and competitive binding. A longer 
construct of SPASTIN (residues 108–200) enabled detection of a novel binding interaction with 
CHMP3 with the H1- H3 groove. Although we lack structural data for this interaction, our mutational 
analysis supports the idea that all three ESCRT- III proteins, CHMP1B, CHMP3 and IST1 compete 
for the same binding site (Figure 4 and Figure 4—figure supplement 2). The moderate affinity 
of CHMP3 for SPASTIN may have precluded detection by previous studies using yeast two hybrid 
approaches (Reid et al., 2005; Yang et al., 2008; Agromayor et al., 2009).

Our screen revealed for the first time that KATNA1 and KATNAL1 MITs are also specific binders, 
in this case interacting with only CHMP3 (Figure 2). CHMP3 binding to the KATNA1 MIT domain was 
eliminated by the H1/3 groove mutant V55D, which is consistent with Type 3 binding (Figure 4G). 
Though KATNA1 and KATNAL1 binding constants are relatively weak, 32 and 120 μM respectively, 
avidity is likely prevalent for these interactions in cell due to the hexameric association of KATNA1/
KATNAL1 subunits and polymeric CHMP3 assemblies.

Proteases
The deubiquitinases AMSH, AMSHLP, USP8 and USP54, and the protease CAPN7 all contain MIT 
domains that can bind ESCRT- III subunits. CAPN7 is discussed in the main text, and therefore will 
not be extensively discussed here, and structures of the MIT domains of USP8 (Avvakumov et al., 
2006) and AMSH (Solomons et al., 2011) have been determined by others. The MIT domain from 
the deubiquitinase AMSH is promiscuous, binding 10/12 ESCRT- III proteins: CHMP1A, 1B, 2 A, 
2B, 3, 4 A, 4B, 4 C, 5 and 7. Seven of these interactions have been reported (Tsang et al., 2006; 
Ma et al., 2007; Agromayor and Martin- Serrano, 2006; Row et al., 2007; Solomons et al., 
2011), whereas the CHMP5 and CHMP7 interactions are new. The CHMP5 (Colcher et al., 1977; 
Tsang et al., 2006) and CHMP4C (Tsang et al., 2006) interactions tested negative in previous 
screens, and the CHMP7 interaction had not been tested previously. CHMP3 makes a tight (KD 
= 0.011  µM) Type 4 interaction with AMSH MIT (Solomons et  al., 2011; Figures  1C and 2). 
The remaining ESCRT- III proteins are strong to moderate binders (KD’s = 7–85 µM), and CHMP6 
and IST1 do not bind (KD >200 µM). The AMSH paralogue, AMSHLP, also binds preferentially to 
CHMP3, albeit weakly. To our knowledge, this protein had not previously been tested for ESCRT- 
III interactions.

https://doi.org/10.7554/eLife.77779
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USP54 is a catalytically inactive deubiquitinase, and was predicted to contain an MIT domain in 
a bioinformatics study (Rigden et al., 2009). We found that the USP54 MIT domain bound weakly 
to all 12 ESCRT- III proteins (KD = 70–170 µM, see Figure 2—figure supplement 3), suggesting 
nonspecific binding in our assay. CHMP1B, CHMP2A, CHMP2B, CHMP4C and CHMP6 were 
previously identified as USP54 MIT binding partners in in vitro pulldown binding assays (Rigden 
et  al., 2009). USP54 is overexpressed in colorectal cancer (Fraile et  al., 2016) and mutations 
outside of the predicted MIT domain are enriched in patients relapsing with acute lymphoblastic 
leukemia (Xiao et al., 2016). Mechanistic roles for WT and mutant USP54 proteins in tumorigenesis 
remain to be determined.

The USP8 MIT domain bound CHMP1B, CHMP2A, CHMP2B, CHMP3, CHMP4A, CHMP4B, and 
IST1 in our screen (Figure 2, Figure 2—figure supplement 1). We did not observe the CHMP1A or 
CHMP4C binding reported in other studies (Row et al., 2007; Rigden et al., 2009), but we uniquely 
detected CHMP4A and CHMP4B binding (Figure 2, Figure 2—figure supplement 1, Figure 2—
figure supplement 5). The tightest interactions were with IST1 (KD = 0.5 µM) and CHMP3 (KD = 
12 µM) while the other interactions were weak (KD = 70–185 µM). IST1 binding had been reported 
previously (Agromayor et al., 2009).

Kinases
Three MIT proteins contain kinase domains: ULK3, RPS6KC1, and RPS6KL1. Of these, only ULK3 has 
been shown to have catalytic activity (Caballe et al., 2015; Maloverjan et al., 2010a, Maloverjan 
et al., 2010b), and RPS6KC1 and RSP6KL1 are predicted to contain pseudo- kinase domains (Hayashi 
et al., 2002). Our screen confirmed ULK3 MIT interactions with CHMP1A, CHMP1B, CHMP2A and 
IST1, which were previously identified by pulldown and yeast two hybrid assays (Caballe et al., 2015), 
and we found that ULK3 (MIT)2 also binds CHMP3. The MIT domains of RPS6KC1 and RPS6KL1 had 
not previously been assayed for ESCRT- III binding, and our new findings that they interact with IST1 
and CHMP3, now link these understudied proteins to the ESCRT pathway. Interestingly, RPS6KC1 
binds sphingosine kinase 1 (SPHK1) and localizes to endosomes (Hayashi et al., 2002; Liu et al., 
2005), where ESCRT machinery creates cargo- carrying intralumenal (Hurley, 2015) and cytoplasmic 
vesicles (McCullough et al., 2015; Allison et al., 2013).

Other MIT proteins
MITD1 showed the broadest ESCRT- III promiscuity of the other MIT proteins tested, binding 
CHMP1A, 1B, 2 A, 3, 4 A, 4B, 6 and IST1. The CHMP1A, 1B, 2 A, and IST1 interactions were detected 
previously using pulldowns and yeast two hybrid assays (Hadders et al., 2012; Lee et al., 2012; 
Agromayor et al., 2009), and a structure of the MITD1 MIT- CHMP1A complex has been reported 
(Hadders et al., 2012). Interestingly, in their structure, Hadders and colleagues identified a PEG 
molecule bound to the H1/H3 groove of one of two inequivalent MITD1 MIT domains and noted 
that this might indicate a propensity for binding ESCRT- III molecules in this groove (Hadders et al., 
2012). The new interactions that we identified with CHMP3, CHMP4A, CHMP4B, and CHMP6 could, 
in principle, all utilize the H1/H3 groove because CHMP4A, 4B, and 6 all make Type 2 interactions 
(Kieffer et al., 2008, Samson et al., 2008), and CHMP3 can apparently bind in this groove in a Type 
3 mode (see main text for details). A key difference between our experiments and those reported 
previously is that our screen employed isolated MIT domains whereas others have used full- length 
proteins. In the full- length protein, the H1/H3 groove may be autoinhibited by the C- terminal PLD 
domain (Figure 1B) and may therefore only be accessible in specific biological contexts, such as 
when the protein binds membranes or dimerizes. As noted in the main text, MITD1 stabilizes the 
intercellular bridge to promote proper abscission (Hadders et al., 2012; Lee et al., 2012), and this 
extended function may explain the need for promiscuous ESCRT- III binding.

LIP5 was also quite promiscuous, and bound CHMP1A, 1B, 2 A, 2B, 3, 5, and IST1. We, and 
others had previously reported these interactions (Shim et al., 2008; Ward et al., 2005; Skalicky 
et al., 2012; Guo and Xu, 2015). In contrast to Guo et al (Guo and Xu, 2015), however, we found 
that the IST1 MIM316- 343 element contributed to binding, as an IST1 peptide that encompassed both 
MIM elements bound ~10 fold more tightly than a peptide spanning MIM344- 366 alone (Figure 3C). 
As mentioned in the main text, the LIP5(MIT)2- CHMP5 complex was the highest affinity interaction 
seen in all of our studies (2.5 nM), which is explained by the Type 5 interaction mode, in which the 
extended CHMP5 tail and associated linkers wrap almost completely around the second MIT domain 
(Skalicky et al., 2012; Yang et al., 2012; see Figure 1C). In contrast, other ESCRT- III proteins bind 

https://doi.org/10.7554/eLife.77779
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in the H2/H3 groove of the first MIT domain in a Type 1 interaction (Guo and Xu, 2015; Skalicky 
et al., 2012).

The MIT domains of SNX15 and SPARTIN both bind exclusively to IST1. The SPARTIN- IST1 
interaction had been reported previously (Renvoisé et  al., 2010; Guo and Xu, 2015), and we 
found that the IST1 MIM344- 366 element provided most of the binding energy (Figure 3C), in good 
agreement with previous studies. This Type 3 interaction was visualized in a structure of the SPARTIN 
MIT- IST1 complex (Guo and Xu, 2015). Ours is the first report of ESCRT- III binding by SNX15, and 
we found that both IST1 MIM elements contribute significantly, indicating that both elements can 
simultaneously occupy both the H1/H3 and H2/H3 grooves. SNX15 has been reported to function 
in endosomal protein trafficking (Phillips et al., 2001), which is also a major site of ESCRT function 
(see above).

As discussed in the main text, the MIT domains ULK1, VPS9D1 and NRBF2 did not bind ESCRT- III 
proteins in our screen.

https://doi.org/10.7554/eLife.77779
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