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Abstract
Background: Neuronal- and circuit-level abnormalities of excitation and inhibition are shown to be 
associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer’s disease (AD). These 
relationships remain poorly understood in patients with AD.
Methods: Using empirical spectra from magnetoencephalography and computational modeling 
(neural mass model), we examined excitatory and inhibitory parameters of neuronal subpopulations 
and investigated their specific associations to regional tau and Aβ, measured by positron emission 
tomography, in patients with AD.
Results: Patients with AD showed abnormal excitatory and inhibitory time-constants and neural 
gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated 
with higher tau depositions while increased inhibitory time-constants distinctly correlated with 
higher Aβ depositions.
Conclusions: Our results provide critical insights about potential mechanistic links between 
abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic 
functions associated with tau and Aβ in patients with AD.
Funding: This study was supported by the National Institutes of Health grants: K08AG058749 
(KGR), F32AG050434-01A1 (KGR), K23 AG038357 (KAV), P50 AG023501, P01 AG19724 (BLM), 
P50-AG023501 (BLM and GDR), R01 AG045611 (GDR); AG034570, AG062542 (WJ); NS100440 
(SSN), DC176960 (SSN), DC017091 (SSN), AG062196 (SSN); a grant from John Douglas French 
Alzheimer’s Foundation (KAV); grants from Larry L. Hillblom Foundation: 2015-A-034-FEL (KGR), 
2019-A-013-SUP (KGR); grants from the Alzheimer’s Association: AARG-21-849773 (KGR); PCTRB-
13-288476 (KAV), and made possible by Part the CloudTM (ETAC-09-133596); a grant from Tau 
Consortium (GDR and WJJ), and a gift from the S. D. Bechtel Jr. Foundation.

Research Article

*For correspondence: 
kamalini.ranasinghe@ucsf.edu

Competing interest: See page 
14

Funding: See page 14

Received: 12 February 2022
Preprinted: 10 March 2022
Accepted: 19 May 2022
Published: 26 May 2022

Reviewing Editor: Inna Slutsky, 
Tel Aviv University, Israel

‍ ‍ Copyright Ranasinghe et al. 
This article is distributed under 
the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.77850
mailto:kamalini.ranasinghe@ucsf.edu
https://doi.org/10.1101/2022.03.09.483594
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Ranasinghe et al. eLife 2022;11:e77850. DOI: https://doi.org/10.7554/eLife.77850 � 2 of 26

Editor's evaluation
The authors explored the relationship between amyloid-β and tau deposition and neural oscilla-
tions in Alzheimer's disease (AD) by using a computational neural mass model that can generate 
neurophysiological power spectra comparable to EEG- or MEG-like, macroscopic brain activity 
assessments. This analysis demonstrates the different, frequency-specific effects of amyloid-β and 
tau proteins on excitation and inhibition, providing an integrated, multimodal explanation of AD 
pathogenesis.

Introduction
Aggregation and accumulation of amyloid-beta (Aβ) and tau proteins are a defining feature of Alzhei-
mer’s disease (AD) pathophysiology (Braak and Braak, 1991). Although the mechanisms by which 
AD proteinopathy exerts its effects remain an area of active research, disruption of the fine balance 
between excitatory and inhibitory neuronal activity has emerged as a potential driver for network 
dysfunction contributing to cognitive deficits in AD (Palop et al., 2006; Harris et al., 2020). Preclin-
ical AD models have demonstrated direct effects of tau and Aβ leading to impaired function in 
excitatory pyramidal neurons as well as inhibitory interneurons (Palop et al., 2007; Hoover et al., 
2010; Sun et al., 2012; Verret et al., 2012; Palop and Mucke, 2016; Zhou et al., 2017; Busche 
et  al., 2019; Zott et  al., 2019; Harris et  al., 2020; Chang et  al., 2021 ). In patients with AD, 
abnormalities in brain oscillations (Ranasinghe et al., 2014; Nakamura et al., 2018; Maestú et al., 
2019; Babiloni et al., 2020; Ranasinghe et al., 2020), which are essentially determined by relative 
contributions of excitatory and inhibitory synaptic currents (Buzsáki et al., 2012), are a display of 
perturbed balance of excitation and inhibition in local circuits. However, despite the fact that clinical 
studies have demonstrated associations between abnormal oscillatory signatures and AD proteinop-
athy (Nakamura et al., 2018; Smailovic et al., 2018; Pusil et al., 2019; Ranasinghe et al., 2020; 

Table 1. Participant demographics and clinical characteristics.

Characteristic
Controls
(N = 35)

Patients with AD
(N = 20) p†

Age (year) 69.3.6 ± 8.4 66.3 ± 9.8 0.237

Female sex, no. (%) 20 (57.1) 11 (55.0) 0.876

White, no. (%) ‡ 30 (90.9) 20 (100.0) 0.282

Education (year) 18 (16–18) 18 (16–18) 0.855

Right handedness, no. (%) 30 (85.7) 17 (85.0) 0.340

MMSE 30 (29–30) 23 (22–26) <0.0001

CDR* 0 (0–0) 0.5 (0.5–0.8) <0.0001

CDR-SOB* 0 (0–0) 3.5 (2.3–4.3) <0.0001

Age at disease onset . 59.4±9.39 .

Disease duration . 6.9±2.4 .

Values for age, age at disease onset, and disease duration are means ± SD. Values for education, 
Mini Mental State Exam (MMSE), Clinical Dementia Rating (CDR), and CDR-Sum of Boxes (CDR-
SOB) are medians with interquartile ranges within parentheses.

*Scores on the CDR range from 0 to 3 and scores on the CDR-SOB range from 0 to 18, with higher scores 
denoting more disability. Scores on the MMSE range from 0 to 30, with higher scores denoting better cognitive 
function. AD = Alzheimer’s disease.
†Statistical tests: p values are reported from unpaired t-test for age, Pearson χ2 test for sex and handedness, 
Fisher’s exact test for race, Wilcoxon–Mann–Whitney test for education, MMSE, CDR, and CDR-SOB.
‡Race or ethnic group was self-reported. Two control participants opted out from reporting the race.

https://doi.org/10.7554/eLife.77850
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Ranasinghe et al., 2021), the electrophysiological basis of aberrant excitatory and inhibitory activity 
of neuronal cell populations and how these relate to Aβ and tau remain largely unknown in patients 
with AD.

The goal of this study was to identify impaired neuronal parameters in excitatory and inhibitory 
neuronal subpopulations and determine their specific associations to regional Aβ and tau pathology 
in AD patients. We combined spectral signatures derived from magnetic field potentials via nonin-
vasive imaging in AD patients with mathematical modeling (neural mass model, NMM) (David and 
Friston, 2003; Raj et al., 2020; Verma et al., 2022), to estimate excitatory and inhibitory neuronal 
parameters. Specifically, we hypothesized that abnormal regional spectral signatures in AD patients 
related to altered activity of excitatory and inhibitory neuronal subpopulations will be associated with 
tau and Aβ depositions. We combined NMM, and multimodal imaging data from: magnetoencepha-
lography (MEG), Aβ-, and tau-positron emission tomography (PET), in a well-characterized cohort of 
AD patients. First, we leveraged the millisecond temporal resolution and superior spatial resolution of 
MEG signal to derive the oscillatory signatures of local neuronal synchrony. Next, we used a linearized 
NMM, which was recently described as a component of a spectral graph model, and which success-
fully reproduced the empirical macroscopic properties of oscillatory signatures (Raj et  al., 2020; 
Verma et al., 2022), to derive excitatory and inhibitory parameters of local neuronal ensembles. We 
then examined the specific associations of altered excitatory and inhibitory neuronal subpopulation 
parameters and Aβ- and tau-tracer uptake patterns and how these contribute to produce the charac-
teristic spectral changes in AD patients.

Materials and methods
Participants
Twenty patients with AD (diagnostic criteria for probable AD or mild cognitive impairment due to AD) 
(Albert et al., 2011; McKhann et al., 2011; Jack et al., 2018) and 35 age-matched controls were 
included in this study (Table 1). Each participant underwent a complete clinical history, physical exam-
ination, neuropsychological evaluation, brain magnetic resonance imaging (MRI), and a 10-min session 
of resting MEG. All AD patients underwent PET with tau-specific radiotracer, 18F-flortaucipir and 
Aβ-specific radiotracer, 11C-PIB. Twelve AD patients in this study cohort overlapped with our previous 
multimodal imaging investigation of long-range synchrony assay (Ranasinghe et al., 2020). All partic-
ipants were recruited from research cohorts at the University of California San Francisco-Alzheimer’s 
Diesease Research Center(UCSF-ADRC). Informed consent was obtained from all participants and the 
study was approved by the Institutional Review Board (IRB) at UCSF (UCSF-IRB 10-02245).

Clinical assessments and MEG, PET, and MRI acquisition and analyses
AD patients were assessed via MMSE and a standard battery of neuropsychological tests. All partic-
ipants were assessed via a structured caregiver interview to determine the Clinical Dementia Rating 
(CDR) (Appendix 2).

MEG scans were acquired on a whole-head biomagnetometer system (275 axial gradiometers; 
MISL, Coquitlam, British Columbia, Canada) for 5–10 min, following the same protocols described 
previously (Ranasinghe et al., 2020). Tomographic reconstructions of source-space data were done 
using a continuous 60second data epoch, an individualized head model based on structural MRI, and 
a frequency optimized adaptive spatial filtering technique implemented in the Neurodynamic Utility 
Toolbox for MEG (NUTMEG; http://nutmeg.berkeley.edu). We derived the regional power spectra 
based on Desikan–Killiany atlas parcellations for the 68 cortical regions depicting neocortex and allo-
cortex, the latter including the entorhinal cortex. Regional power spectra were derived from FFT and 
then converted to dB scale for the following frequency bands: 2–7 Hz, delta–theta; 8–12 Hz, alpha; 
13–35 Hz, beta; and 1–35 Hz, broad-band (Appendix 2).

Flortaucipir and PIB-PET acquisitions were done based on the same protocols detailed previously 
(Schöll et al., 2016). Standardized uptake value ratios (SUVRs) were created using Freesurfer-defined 
cerebellar gray matter for PIB-PET. For 18F-flortaucipir, Freesurfer segmentation was combined with 
the SUIT template to include inferior cerebellum voxels, avoiding contamination from off-target 
binding in the dorsal cerebellum (Appendix 2).

https://doi.org/10.7554/eLife.77850
http://nutmeg.berkeley.edu
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Mathematical modeling and parameter estimation
We used a linearized NMM (Raj et al., 2020; Verma et al., 2022) to estimate excitatory and inhibitory 
neuronal subpopulation parameters. In this regional model, for every region k (k varies from 1 to N 
and N is the total number of regions) based on the Desikan–Killiany parcellation, the regional popula-
tion signal is modeled as the sum of excitatory signals xe(t) and inhibitory signals xi(t). Both excitatory 
and inhibitory signal dynamics consist of a decay of the individual signals with a fixed neural gain, 
incoming signals from populations that alternate between the excitatory and inhibitory signals, and 
input Gaussian white noise. The equations for the excitatory and inhibitory signals for every region 
are the following:
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The symbols used in the equations are as following: * stands for convolution; parameters gee, gii, 
and gei are neural gains for the excitatory, inhibitory, and alternating populations, respectively; τe and 
τi are time-constants of excitatory and inhibitory populations, respectively; p(t) is the input Gaussian 
white noise; fe(t) and fi(t) are Gamma-shaped ensemble average neural impulse response functions 
(see Appendix 2 for step-by-step details). The parameters, gee, gii, τe, and τi were estimated for each 
region-of-interest (ROI) and parameter gei was fixed at 1. The excitatory and inhibitory time-constant 
parameters characterize the duration of the neural responses (modeled by a Gamma-shaped func-
tion) in each neuronal subpopulation, respectively. It also characterizes the rate at which a local signal 
dissipates in absence of other inputs. A lower time-constant indicates a faster rate of change in signals 
while a higher time-constant indicates a slower rate. The excitatory and inhibitory gain parameters 
correspond to the postsynaptic gain on the impulse response function of each neuronal subpopulation, 
respectively. Each region’s spectrum was modeled using the above equations, and the power spectral 
density was generated for frequencies 1–35 Hz. The goodness of fit of the model was estimated by 
calculating the Pearson’s correlation coefficient between the simulated model power spectra and the 
empirical source localized MEG spectra for frequencies 1–35 Hz. This goodness of fit value was used 
to estimate the model parameters. Parameter optimization was done using the basin hopping global 
optimization algorithm in Python (Wales and Doye, 1997). The model parameter values and bounds 
were specified as: 17, 5, and 30 ms, respectively, for initial, lower-boundary, and upper-boundary, for 
τe and τi ; 0.5, 0.1, and 10, respectively, for initial, lower-boundary, and upper-boundary, for gee and 
gii. The hyperparameters of the algorithm which included the number of iterations, temperature, and 
step size were set at 2000, 0.1, and 4, respectively. If any of the parameters was hitting the specified 
bounds, parameter optimization was repeated with a step size of 6 for that specific ROI. Finally the set 
of parameters which led to the highest Pearson’s correlation coefficient was chosen. The cost function 
for this optimization was negative of Pearson’s correlation coefficient between the source localized 
MEG spectra in dB scale and the model power spectral density in dB scale as well. This procedure was 
performed for every ROI for every subject.

Statistical analyses
Statistical tests were performed using SAS software (SAS9.4; SAS Institute, Cary, NC). To compare the 
demographics and clinical characteristics between controls and patients with AD, we used unpaired 
t-tests for age, Pearson χ2 test for sex and handedness, Fisher’s exact test for race, Wilcoxon–Mann–
Whitney test for education, MMSE, CDR, and CDR-SOB.

We used a one-way analysis of variance (ANOVA) to compare the broad-band power spectra , 
and a two-way ANOVA to compare across the three frequency bands, delta–theta, alpha, and beta, 
between controls and patients. Each model included a repeated measures design to incorporate 
the 68 cortical ROIs per subject. Post hoc comparisons were derived from comparing least-squares 
means with the adjustment of multiple comparisons using Tukey–Kramer test. The regional patterns 
of spectral power distributions incorporated unpaired t-tests at regional level and thresholded with 
10% false discovery rate.

To compare the neuronal parameters between the controls and patients we used a linear mixed-
effects model (PROC MIXED) with repeated measures design to incorporate the multiple ROIs per 

https://doi.org/10.7554/eLife.77850
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subject. We reported the estimated least-squares means and the statistical differences of least-squares 
means based on unpaired t-tests between patients and controls.

We ran mixed effects models to examine the associations between tau- and Aβ-tracer uptake and 
excitatory and inhibitory neuronal parameters derived from NMM. The predictor variables of models 
included the flortaucipir (tau) SUVR and 11C-PIB (Aβ) SUVR, at each ROI in patients with AD. The 
dependent variables included the z-score measures depicting the change of each neuronal parameter 
in patients, based on age-matched control cohort. A seperate mixed model was used for each param-
eter including the neuronal time-constants, τe and τi, and neural gains, gee and gii. Each model included 
a repeated measures design to incorporate the 68 ROIs per subject and modeled the heterogeneity 
in residual variances at each ROI. Mixed models to examine the associations between average scaling 
difference between the MEG spectra and the model output did not show any significant relationships.

We ran separate mixed effect models where the dependent variable included the z-score measures 
depicting the change of spectral power in patients, based on age-matched control cohort, within (1) 
broad-band spectrum (1–35 Hz), (2) delta–theta spectrum (2–7 Hz), (3) alpha spectrum (8–12 Hz), and 
(4) beta spectrum (13–35 Hz). Each model included a repeated measures design and modeled the 
heterogeneity in residual variances at each ROI.

As our analyses on NMM parameters and AD proteinopathy revealed that inhibitory and excit-
atory neuronal time-constants are associated with Aβ and tau accumulations, respectively, we next 
utilized the PROC MIXED procedure in SAS to perform a mediation analysis (Bauer et al., 2006) to 
examine the role of altered time-constants in mediating the characteristic spectral changes associated 
with Aβ and tau in AD. Specifically, we examined whether Aβ associated increased spectral power 
is mediated by increased inhibitory time-constants (τi) and whether tau associated reduced spectral 
power is mediated by increased excitatory time-constants (τe). The mediation models included spec-
tral power (in each frequency band) as dependent variable and protein accumulation (Aβ or tau) and 
time-constant parameter (τi)(τe) as predictor variables. The mediation models estimated the overall 
association between a given frequency band oscillation and Aβ or tau (which is equivalent to the asso-
ciations derived from the mixed models described in the previous section), and then determined the 
time-constant mediated effect (effect that is dependent on time-constant abnormality) and the direct 
effect (effect that is independent of time-constant abnormality). The mediation analyses examined 
the following effects: (1) direct and τi mediated effects of Aβ on delta–theta; (2) direct and τi mediated 
effects of Aβ on alpha and beta; (3) direct and τe mediated effects of tau on alpha and beta.

Results
On average, the patients were mild to moderately impaired with a mean MMSE score of 22.8 ± 4.5 
(MMSE range: 22–26), mean CDR of 0.72 ± 0.47 (CDR range: 0.5–0.8), and mean CDR-SOB of 3.8 ± 
2.5, with characteristic cognitive deficits (Table 1; Appendix 1—table 1).

Regional spectral changes in AD: increased delta–theta and reduced 
alpha and beta
Patients with AD showed a clear leftward shift in their power spectra when compared to age-matched 
controls. Specifically, AD patients showed a reduced spectral power within alpha (CI, 58.04–59.85 dB, 
60.33–61.69  dB, AD and controls, respectively) and beta (CI, 53.16–54.11B, 56.03–56.75  dB, AD 
and controls, respectively) but increased power within delta–theta bands (60.14–61.79 dB, 57.60–
58.85 dB, AD and controls, respectively) (Figure 1A, B). A direct region-wise comparison showed 
a frontal predominant spatial distribution for the spectral power increase within delta–theta and a 
posterior predominant distribution for the spectral power reduction in alpha and beta, in patients with 
AD (Figure 1C; Appendix 1—figure 1). These results demonstrate the frequency-specific and region-
dependent characteristics of oscillatory abnormalities in AD.

Estimated NMM parameters demonstrate altered excitatory and 
inhibitory subpopulation activity
We used a linear NMM, capable of reproducing spectral properties of neural activity, to predict the 
empirical spectra at regional level (i.e., 68 cortical regions) in patients with AD and controls. NMM 

https://doi.org/10.7554/eLife.77850
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Figure 1. Spectral power changes and altered excitatory and inhibitory neuronal subpopulation parameters in patients with AD. Patients with AD 
showed higher delta–theta (2–7 Hz) spectral power and lacked a clear alpha peak (8–12 Hz) as opposed to controls (A). A two-way ANOVA comparing 
patients and controls showed significantly higher spectral power within delta–theta frequency band and showed significantly lower spectral power within 
alpha and beta (13–35 Hz) bands, in AD patients (B). The markers depict the least-square means, and the error bars depict the 95% confidence intervals. 
Regional patterns of spectral power changes in patients with AD showed increased delta–theta power is predominant in the frontal regions and reduced 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.77850
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predicted four parameters for neuronal populations: excitatory time-constant (τe), inhibitory time-
constant (τi), excitatory neural gain (gee), and inhibitory neural gain (gii). Specifically, in each subject, 
and for each cortical region, the NMM parameters were estimated based on the best fit (highest 
Pearson correlation coefficient) between observed MEG power spectrum and the predicted NMM 
spectrum (Figure  1D; Appendix  1—figure 2). Statistical mixed models with repeated measures 
demonstrated that AD patients have significantly increased time-constant parameters of excitatory 
and inhibitory neurons (τe and τi) than controls (Figure 1E; τe: CI, 15.27–16.19, 11.49–12.18; p < 0.0001; 
τi: CI, 16.03–16.96, 15.02–15.73; p = 0.0002, AD and controls, respectively). Furthermore, AD patients 
showed increased gee and reduced gii compared to controls indicating abnormal neural gains in both 

Figure 2. Regional patterns of neuronal subpopulation parameters and protein tracer uptakes in patients with AD. 
Subplots A–D depict the regional differences (z-scores) for excitatory time-constant (A), inhibitory time-constant 
(B), excitatory gain (C), and inhibitory gain (D) parameters in AD patients when compared to age-matched controls. 
Subplots E and F depict the average regional patterns of flortaucipir standardized uptake value ratio (SUVR) (E) 
and 11C-PIB SUVR (F) for patients with AD showing high flortaucipir retention in temporal lobe, posterior and lateral 
parietal regions, and high 11C-PIB retention in bilateral frontal and posterior parietal cortices. Abbreviations: AD, 
Alzheimer’s disease; Aβ, amyloid-beta.

alpha and beta spectral power is predominant in the temporoparietal and occipital cortices (C). Images show the t-values from statistical comparison 
of regional data, based on DK atlas parcellations, and thresholded at FDR 10%. Schematic representation of the linear neural mass model (NMM) (D), 
where the NMM represents local assemblies of excitatory and inhibitory neurons at each region of interest (ROI) lumped into linear systems. External 
inputs and outputs are gated through both excitatory and inhibitory neurons. The recurrent architecture of the two pools within a local area is captured 
by the neuronal time-constants, τe and τi, and neural gain terms, gee and gii, indicating the loops created by recurrents within excitatory, inhibitory, and 
cross-populations. At each ROI, the model delivers these parameters as it predicts the broad-band spectrum (1–35 Hz) optimized to the empirical 
spectrum derived from MEG. Patients with AD showed significantly increased neuronal time-constants, τe and τi compared to age-matched controls (E). 
Patients with AD also showed increased excitatory neural gains (gee) and reduced inhibitory neural gains (gii) than controls (c). The markers and error bars 
depict the least-square means and 95% confidence intervals. Abbreviations: AD, Alzheimer’s disease; MEG, magnetoencephalography.

Figure 1 continued

https://doi.org/10.7554/eLife.77850
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excitatory and inhibitory subpopulations (Figure 1E; gee: CI, 1.88–2.21, 1.59–1.87; p = 0.0005; gii: CI, 
3.04–3.42, 3.52–3.81; p = 0.0003, AD and controls, respectively). The regional patterns of increased 
excitatory time-constants and neural gains showed the highest changes in a spatial pattern involving 
thetemporal lobe and the precuneus (Figure 2A, C). Increased inhibitory time-constants showed a 
distributed spatial pattern involving frontal and parietal cortices (Figure 2B), while the reduced inhib-
itory neural gains showed the highest reductions in the right temporal and posterior parietal regions 
(Figure 2C).

Tau and Aβ distinctly modulate excitatory and inhibitory time-
constants, respectively
Next, we examined the functional associations of model parameters with flortaucipir (tau) and 11C-
PiB (Aβ) uptake patterns (Figure 2E, F). linear mixed-effects models showed that increased τe was 
correlated with higher tau-tracer uptake, while increased τi was correlated with higher Aβ-tracer 
uptake (Figure 3A, D; τe: tau, t = 4.11, p < 0.0001; τi: Aβ, t = 3.38, p = 0.0008). In contrast, there were 
no correlations between τe and Aβ-tracer uptake and between τi and tau-tracer uptake (Figure 3B, C; 
τe: Aβ, t = −1.59, p = 0.1131; τi: tau, t = 0.54, p = 0.5863). In contrast to time-constant associations, 
altered neural gains did not show statistically significant associations to either flortaucipir or 11C-PiB 
uptakes (Appendix 1—figure 3). Distinctive association of tau with excitatory time-constants and Aβ 
with inhibitory time-constants may support the hypothesis of distinct roles of tau- and Aβ-mediated 
pathomechanisms on excitatory and inhibitory synaptic functions.

Spectral changes associated with tau and Aβ are partially mediated by 
altered excitatory and inhibitory time-constants
Next, we tested the hypothesis that effects of tau and Aβ on the frequency-specific spectral power 
changes would be mediated by their unique modulatory effects on τe and τi, respectively. To this 
end, we first demonstrated the specific relationships between frequency-specific spectral changes 
and regional tracer uptake (flortaucipir and 11C-PiB). Consistent with previous reports (Canuet et al., 
2015; Nakamura et  al., 2018; Pusil et  al., 2019; Ranasinghe et  al., 2020), linear mixed model 

Figure 3. Associations between tau- and Aβ-tracer uptake and excitatory and inhibitory neuronal time-constants in 
patients with AD. Increased time-constants showed distinct associations with tau and Aβ in AD patients. Increased 
excitatory time-constant (τe) was positively correlated with tau, but not with Aβ (A, B). Increased inhibitory time-
constant (τi) was positively correlated with Aβ, but not with tau (C, D). Subplots A–D indicate the model estimates 
from linear mixed-effects models predicting the changes (z-scores) in each neuronal parameter from flortaucipir 
(tau) standardized uptake value ratio (SUVR) and 11C-PIB (Aβ) SUVR, in patients with AD. The fits depicting tau 
predictions were computed at the average SUVR of Aβ (1.99), and the fits depicting Aβ were computed at average 
SUVR of tau (1.64). The scatter plots indicate the predicted values from each model incorporating a repeated 
measures design. Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta.

https://doi.org/10.7554/eLife.77850
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analyses showed that associations of tau and Aβ on the power spectrum were frequency specific. For 
example, delta–theta was only associated with Aβ (positive correlation) and showed no associations 
to tau (Figure 4A, B). In contrast, alpha and beta power spectra showed significant associations to 
both tau and Aβ, where higher tau reduced spectral power and higher Aβ increased spectral power 
(Figure 4D, E, G, H). Including regional cortical atrophy as a covariate into the models did not influ-
ence these relationships, indicating that spectral changes are robust to neuronal loss (Appendix 1—
figure 4). In summary, delta–theta power was uniquely associated with Aβ while reduced alpha and 
beta spectral power were the result of a dual modulation by tau and Aβ with a net negative modula-
tory effect from tau.

Next, we used a mediation analysis to examine whether the distinct effects of tau and Aβ on 
frequency-specific spectral changes are mediated via altered τe and τi , respectively. The mediation 
analyses specifically examined: (1) the direct and the τi mediated effects of Aβ on delta–theta power; 
(2) the direct and the τe mediated effects of tau on alpha and beta power; and (3) the direct and the τi 
mediated effects of Aβ on alpha and beta power. We found that Aβ modulation of delta–theta power 
was significantly mediated through τi in addition to direct modulation (Figure 4C). We also found that 

Figure 4. Frequency-specific spectral power modulations of tau and Aβ are partially mediated via increased excitatory (τe) and inhibitory (τi) time-
constants. Associations between tau- and Aβ-tracer uptake and spectral power changes in patients with AD are depicted in subplots A, B, D, E, G, 
and H. Tau was not associated with the delta–theta (2–7 Hz) spectral changes (A), while it was positively modulated by Aβ (B). Both alpha (8–12 Hz) and 
beta (13–35 Hz) spectra showed significant negative associations with tau (D, G) and significant positive associations with Aβ (E, H). Subplots indicate 
the model estimates from linear mixed-effects analyses predicting the spectral power changes from flortaucipir (tau) SUVR and 11C-PIB (Aβ) SUVR, for 
patients with AD. The fits depicting tau predictions were computed at the average SUVR of Aβ (1.99), while the fits depicting Aβ were computed at 
average SUVR of tau (1.64). The scatter plots indicate the predicted values from each model incorporating a repeated measures design to account for 
68 regions per subject. Subplots C, F, and I depict mediation models to examine the direct effects of tau and Aβ, and the effects mediated through 
excitatory (τe) and inhibitory (τi) time-constants on different frequency bands. Delta–theta power increases were significantly affected by Aβ and were 
partially mediated through the effect of Aβ on inhibitory (τi) time-constant (C). Alpha power reductions were affected by tau and a small, but a significant 
fraction of this effect was mediated through the effect of tau on excitatory (τe) time-constant (F). Beta power reductions were significantly affected by tau, 
although there was no statistically significant effect mediated through the effect of tau on excitatory (τe) time-constant (I). Aβ effects on alpha and beta 
spectral changes were only direct effects with no statistically significant effects mediated through altered inhibitory (τi) time-constants. Abbreviations: 
AD, Alzheimer’s disease; Aβ, amyloid-beta; SUVR, standardized uptake value ratio.

https://doi.org/10.7554/eLife.77850


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Ranasinghe et al. eLife 2022;11:e77850. DOI: https://doi.org/10.7554/eLife.77850 � 10 of 26

tau modulation of alpha power was significantly mediated through τe in addition to the direct modula-
tion (Figure 4F), whereas Aβ modulation of alpha power was only through a direct effect. Tau as well 
as Aβ modulation of beta power occurred only though direct effects (Figure 4I). Collectively, τe and τi 
partially mediated the effects of AD proteinopathy toward signature spectral changes observed in AD.

Discussion
This is the first study, in patients with AD, showing quantitative links between altered neuronal 
subpopulation dynamics of excitatory and inhibitory function, and abnormal accumulations of tau and 
Aβ. We combined electrophysiology, molecular imaging, and NMM model, to examine the excitatory 
and inhibitory parameters of regional neural subpopulations in patients with AD and how these relate 
to tau and Aβ depositions. AD patients showed abnormal excitatory and inhibitory neuronal param-
eters compared to controls and with distinct associations to tau and Aβ where higher tau correlated 
with increased excitatory time-constants and higher Aβ correlated with increased inhibitory time-
constants. Furthermore, the frequency-specific associations of spectral changes to tau and Aβ were 
partially mediated by increased excitatory and inhibitory time-constants, respectively. Collectively, 
our findings demonstrate distinct functional consequences of tau and Aβ at the level of circuits where 
cellular and molecular changes of AD pathophysiology possibly converge, and provide a rationale 
to identify potential mechanisms of excitation–inhibition imbalance, hyperexcitability, and abnormal 
neural synchronization in AD patients that could help guide future clinical trials.

Abnormal excitatory and inhibitory time-constants represent 
differential functional consequences of AD pathophysiology at circuit 
level
Unlike invasive basic science approaches that can be designed to examine causal relationships, clinical 
investigations for the most part are limited to examine associative relationships. Nonetheless, the 
associative links from clinical studies provide essential building blocks to link the findings from preclin-
ical models to clinical manifestations in patients. NMM is currently by far the most sophisticated tool 
to investigate circuit function at the level of excitatory and inhibitory neuronal subpopulations in the 
human brain using noninvasive imaging modalities. The finding that excitatory and inhibitory time-
constant abnormalities are uniquely correlated with higher tau and Aβ, respectively, draws a few key 
insights in the context of our evolving understanding of AD pathobiology.

The distinctive association of higher tau accumulations to increased excitatory time-constants 
which indicate aberrant excitatory function within local ensembles of neuronal subpopulations, is 
consistent with multiple lines of evidence suggesting how tau affects excitatory function of neural 
circuits. For example, neuropathological studies in human patients with AD detailing the morphology 
and location of cells that accumulate tau and degenerate indicate an increased vulnerability of excit-
atory neurons to tau-related pathomechanisms (Hyman et al., 1984; Braak and Braak, 1991). In basic 
science studies, mice expressing mutant human tau demonstrate impaired synaptic transmission of 
glutamate leading to reduced firing of pyramidal neurons (Hoover et al., 2010; Fu et al., 2017; Fu 
et al., 2019) while tau reduction in transgenic mice produce an overall decrease in baseline excitatory 
neuronal activity and modulate the inhibitory neuronal activity leading to reduced network excitation 
(Chang et al., 2021). The collective insight from these observations indicates a relative vulnerability of 
excitatory function in neural networks to tau and a resulting network hypoactivity (Harris et al., 2020). 
Two key findings from the current study are consistent with this discernment which include: (1) excit-
atory neuronal parameters uniquely associated with increased tau depositions; (2) reduced oscillatory 
activity of alpha band associated with higher tau being partially mediated by abnormal excitatory 
time-constants. Although these findings do not exclude the possibility of tau directly altering firing 
patterns of inhibitory neurons (Chang et al., 2021), they support the hypothesis that the effects of tau 
pathophysiology within local networks manifest as excitatory function deficits.

In contrast to intracellular aggregates of tau, accumulation of Aβ is extracellular (Braak and Braak, 
1991; Nagy et al., 1995). AD basic science models have demonstrated a range of Aβ-associated 
pathomechanisms that ranges from toxic effects of different Aβ forms affecting both excitatory and 
inhibitory synaptic functions (Meyer-Luehmann et  al., 2008; Busche et  al., 2012; Busche et  al., 
2015; Zott et  al., 2019). A potential means by which Aβ leads to network dysfunction in animal 

https://doi.org/10.7554/eLife.77850


 Research article﻿﻿﻿﻿﻿﻿ Medicine | Neuroscience

Ranasinghe et al. eLife 2022;11:e77850. DOI: https://doi.org/10.7554/eLife.77850 � 11 of 26

models of AD is abnormal hyperactivity in cortical and hippocampal neurons (Palop and Mucke, 
2016). Compelling evidence from AD transgenic mice indicate impaired inhibitory synaptic function as 
a contributory cause for Aβ-related neuronal hyperactivity (Busche et al., 2008; Busche et al., 2012; 
Verret et al., 2012). Our findings draw remarkable parallels to these basic science observations by 
showing unique associations between inhibitory time-constant abnormalities and higher Aβ tracer 
uptake. It is important to reiterate that the current findings indicate an overall inhibitory functional 
deficit at the level of local networks which in turn may be contributed by abnormal inhibitory as well 
as excitatory deficits at cellular level. Basic science experiments indeed have identified reduced inhib-
itory interneuron activity as well as aberrant glutamate transmission as potential underlying causes of 
network hyperactivity in AD transgenic mice (Busche et al., 2008; Verret et al., 2012; Zott et al., 
2019).

Collectively, findings from this clinical imaging investigation, together with comparable basic 
science evidence, help bridge a crucial gap between circuit- and cellular-level abnormalities in AD. 
A key finding from preclinical AD models is that cellular-level changes associated with tau and Aβ 
produces a combined functional consequence of altered excitatory–inhibitory balance in neural 
networks (Palop and Mucke, 2016; Harris et al., 2020; Chang et al., 2021; Maestú et al., 2021). The 
emerging picture from basic science models of AD also suggest that abnormally increased neuronal 
activity associated with Aβ most likely dominate during preclinical stage of the disease (Zott et al., 
2019), whereas the firing suppression of tau will become predominant at later stages (Busche et al., 
2019). The current results highlight these distinct roles played by tau and Aβ in network dysfunction 
and suggest that neurophysiological markers are sensitive indices to pursue each pathway, conceiv-
ably along different disease stages. Future studies delineating the mechanistic relationships between 
increased excitatory and inhibitory time-constants and network hyperexcitability are crucial to under-
stand how tau and Aβ impair excitatory–inhibitory balance along the biological progression of AD.

Although we found significant impairments in both excitatory and inhibitory gain parameters in 
AD patients, these did not show significant associations with tau and Aβ. This result maybe explained 
in part by the relative smaller effect sizes of gain parameters (compared to time-constants). Another 
possible explanation may be related to the type of molecular form associated with pathophysiolog-
ical effects. In both tau and Aβ, not only that the soluble molecular forms are important mediators of 
neurotoxicity but also their effects predominate during the preclinical stages of the disease (Busche, 
2019; Zott et al., 2019). However, PET tracer uptake represents mostly the deposited nonsoluble 
forms of protein accumulations. As such it is possible that abnormal neural gains may represent an 

Figure 5. Schematic representation of the modulation of frequency-specific neuronal activity by Aβ and tau, and 
associated network dysfunction in AD. Tau and Aβ have distinct effects on excitatory and inhibitory neuronal 
parameters of local neuronal subpopulations, as well as alpha, beta and delta–theta oscillatory changes in AD. 
Positive modulation of delta/theta rhythms by Aβ (left panel), may potentially contribute to a status of increased 
network activity. Alpha/beta, on the other hand, reflects activity of inhibitory regulation of network activity (right 
panel). Negative modulation of alpha/beta oscillations by tau may therefore contribute to a status of less regulated 
network activity.
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early effect of soluble neurotoxins, while abnormal time-constants may represent dynamic effects of 
network changes indicatingprogressive pathophysiological events.

Frequency-specific spectral changes may indicate distinct processes 
leading to network dysfunction in AD
How the opposing phenomena of Aβ- and tau-associated abnormal hyper- and hypoactivity of neurons 
lead to a status of abnormal network dysfunction remains a conundrum. In Figure 5, we speculate the 
possible interactions of molecular and oscillatory mechanisms that could lead to network dysfunction. 
Although a unifying principle governing the physiology of rhythmic oscillations remains obscure, a 
commonly accepted principle is that oscillations regulate the top-down processing of local neuronal 
firing and facilitate long-range interactions (Uhlhaas et al., 2009). Low-frequency delta–theta and 
mid-frequency alpha and beta oscillations employ diverse physiological mechanisms determined by 
different ionic currents (Wang, 2010) and have distinct functional roles (Engel et al., 2001). The prom-
inent view in the current literature is that delta–theta oscillations are positive top-down modulators of 
local neural activity whereas the power of alpha and beta exert an inhibitory modulation of irrelevant 
neuronal activity thus reducing the neural noise (Klimesch, 1999). We posit that higher delta–theta 
power associated with increased Aβ therefore may predispose a dysregulated increase of local firing 
(Figure 5, left panel). In patients with epilepsy increased focal and generalized slow waves are charac-
teristic features during the interictal period, although the mechanistic relationship between network 
hyperexcitability and slow oscillations remains unknown. In patients with temporal lobe epilepsy 
higher incidence of slow waves are associated with greater volume loss in medial temporal lobe struc-
tures (Cascino et al., 1996; Cendes et al., 1996). Although it is possible that Aβ-associated unknown 
mechanisms may relate to both neuronal death and hyperexcitability, the relationship between Aβ and 
atrophy in AD is weak as the two phenomena are widely apart in temporal evolution and anatomical 
distribution.

Our results are also consistent with opposing modulations from tau and Aβ, and an overall net 
effect of tau resulting in reduced neuronal activity (Harris et al., 2020). For example, alpha and beta 
oscillations were positively modulated by Aβ and negatively modulated by tau, albeit a stronger net 
negative effect with reduced alpha and beta power. Because alpha oscillations are considered as 
inhibitory gain controllers of local circuits (Klimesch et al., 2007; Lorincz et al., 2009), we posit that 
a net reduction of alpha may yet again be favorable for a status of dysregulated network activity 
(Figure 5, right panel). Collectively, the multimodal neuroimaging in AD patients in the current study 
demonstrates how positive oscillatory modulators (delta–theta) are associated with Aβ, while negative 
oscillatory modulators (alpha) are associated with tau. Together, these findings suggest that the para-
doxical relationship between tau, Aβ, and network dysfunction, could be better understood by the 
frequency-specific nature of oscillatory abnormalities. Future studies are warranted to further delin-
eate the contributions from excitatory and inhibitory subpopulation functions toward network hyper-
excitability and their interplay with oscillatory spectral changes. Overall, this framework offers a new 
perspective for evaluating and understanding future efforts in network stabilizing therapies.

Oscillatory spectral changes reflect dynamic functional deficits in AD
Previous MEG/EEG studies have further shown that abnormal neurophysiological indices also repre-
sent dynamic changes of AD pathophysiology. Individuals with preclinical stages of AD and APOE4 
carriers who carry an elevated risk of developing AD show increased alpha power and synchrony in 
select regions including medial frontal and posterior parietal cortices (Cuesta et al., 2015; Nakamura 
et al., 2018; Pusil et al., 2019), whereas in patients with AD dementia syndrome the alpha power and 
long-range synchrony are reduced (Sami et al., 2018; Ranasinghe et al., 2020). For example, a study 
using Aβ-PET in cognitively normal controls and MCI patients showed that Aβ-positive cognitively 
normal participants have higher alpha power than Aβ-negative cognitively normal whereas, Aβ-pos-
itive MCI patients had reduced alpha spectral power compared to cognitively normal regardless of 
Aβ status (Nakamura et al., 2018). These data support the hypothesis that hyperactive effects of 
Aβ dominate in the preclinical and prodromal stages of AD with subsequent effects of tau and the 
complex synergy of both proteins leading to hypoactivity in neural circuits. The dynamic association of 
the dual proteinopathy is a crucial factor in developing new disease modifying drugs for AD for they 
may not only explain that the dominance of tau as a possible reason for the relative lack of efficiency 
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in anti-Aβ trials, but also indicate the importance of targeting the dual modulation of tau and Aβ. 
Frequency-specific oscillatory signatures provide attractive biomarkers to track the dynamics of AD 
pathophysiology in the next generation of AD therapeutic trials.

NMMs in AD research
Although quantitative electrophysiological assays of neural oscillations provide the most direct 
measures of neuronal and synaptic function in the human brain (Buzsáki et al., 2012), it is only by 
combining these fine spectral details with mathematical modeling (David and Friston, 2003) that we 
can delineate neuronal level details from noninvasive neuroimaging in human subjects. Current NMMs 
are capable of depicting more realistic forms of synaptic and network interactions and have proved 
especially successful in simulating the pathological alterations of distinct excitatory and inhibitory 
neurons in diseases such as AD (de Haan et al., 2017). Furthermore, using a nonlinear NMM a recent 
study also showed consistent findings of a positive relationship between inhibitory time-constant and 
higher Aβ suggesting an association between Aβ accumulation and spectral slowing (Stefanovski 
et al., 2019). A key difference is the use of a nonlinear form of NMM model by Stefanovski et al. as 
opposed to the linear version in our study. While linearizing is a simplification of the detailed under-
lying biophysics, recent comparisons among different models demonstrate that linear models suffi-
ciently capture neuroimaging data with higher accuracy compared to nonlinear models. In addition, 
the small set of model parameters and the closed-form solution in the frequency domain in our model 
makes the parameter inference more tractable compared to nonlinear versions of NMM. Indeed, we 
were able to show accurate fits to empirical spectra capturing the empirical peak frequency as well 
as the frequency fall-off. We do not however, observe bifurcation points and other bistable behaviors 
that can be observed in a nonlinear NMM. Notwithstanding the differences, these studies collec-
tively illustrate an important role of NMM applications in expressing abnormalities in excitatory and 
inhibitory neuronal parameters which may help unify the electrophysiological findings from clinical 
AD populations and from AD transgenic mice. Future experiments extending the NMM applications 
to global network properties in addition to local neuronal synchrony may elucidate the relationships 
between altered neuronal parameters and hierarchical network organizations in AD.

Limitations
Our findings should be considered in the context of the following limitations. First, it is important to 
point out that any computational model may not perfectly capture the complex dynamics of struc-
ture–function coupling in the human brain. Nonetheless, our model has the advantage of using only 
a few parameters which were interpretable in terms of the underlying biophysics. Second, PET signal 
represents the deposited proteins and is mostly insensitive to soluble forms of proteins, although 
basic science models suggest that soluble oligomers are concentrated around deposited proteins 
(Busche et al., 2008). Another limitation includes the known off-target binding of flortaucipir in the 
basal ganglia, choroid plexus, and the meninges. However, these off-target sources of signal are 
unlikely to have driven our results because the flortaucipir increases in the current study were seen in 
brain areas remote from these sites. While the current study was limited to examine the pathophys-
iological consequences on network properties in AD patients, it is equally important to understand 
the same phenomena in normal aging. It is also noteworthy that functional changes associated with 
AD pathophysiology are dynamic along the biological progression of the disease and will be best 
investigated in future longitudinal study designs. Finally, the current sample size limited the ability to 
establish a natural history of the excitatory and inhibitory neuronal parameters, which will be the focus 
of future investigations.
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Appendix 1

Appendix 1—figure 1. Regional patterns of spectral power change in patients with AD. Regional change in 
spectral power distributions within delta–theta (2–7 Hz), alpha (8–12 Hz), and beta (13–35 Hz) frequency bands 
in patients with AD (A–C) as depicted in z-scores estimated based on age-matched controls. Patients with AD 
showed frontal predominant increases in delta–theta spectral power and posterior predominant reductions in 
alpha and beta spectral power. Over the frontal regions AD patients showed a trend toward increased alpha and 
beta spectral power. Abbreviation: AD, Alzheimer’s disease.

Appendix 1—figure 2. Observed and predicted power spectra in patients with AD and age-matched controls. 
Observed and model predicted spectra for each participant in the age-matched controls (A, B) and patients 
with AD (C, D). Each individual line depicts the average spectrum for a given subject across 68 cortical ROIs. The 
dark lines depict group averages. The observed spectra were derived from the source space reconstructed MEG 
time-series data. The model spectra were generated from the linear neural mass model with optimized neuronal 
parameters for time-constants (excitatory, τe and inhibitory, τi) and neural gains (excitatory, gee and inhibitory, gii) to 
predict the broad-band spectrum (1–35 Hz) optimized to the empirical spectrum derived from MEG. Abbreviations: 
AD, Alzheimer’s disease; MEG, magnetoencephalography; ROI, regions-of-interest.

https://doi.org/10.7554/eLife.77850
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Appendix 1—figure 3. Associations between tau- and Aβ-tracer uptake and neuronal gain parameters in patients 
with AD. Altered gain parameters did not show significant associations with tau and Aβ in AD patients. Subplots 
A–D indicate the model estimates from linear mixed-effects models predicting the changes (z-scores) in each 
neuronal parameter from flortaucipir (tau) SUVR and 11C-PIB (Aβ) SUVR, in patients with AD. The fits depicting tau 
predictions were computed at the average SUVR of Aβ (1.99), and the fits depicting Aβ were computed at average 
SUVR of tau (1.64). The scatter plots indicate the predicted values from each model incorporating a repeated 
measures design. Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta; gee, excitatory gain; gii, inhibitory gain; 
MEG, magnetoencephalography; SUVR, standardized uptake value ratio.

https://doi.org/10.7554/eLife.77850
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Appendix 1—figure 4. Associations between spectral power changes and tau- and Aβ-tracer uptake after 

correcting for regional atrophy. Tau showed a significant negative association (A), while Aβ showed a significant 

positive association (B), with the broad-band power spectrum (2–35 Hz). These effects were distinct within each 

frequency-specific spectrum. Tau was not associated with the delta–theta (2–7 Hz) spectral changes (C), while it 

was positively modulated by Aβ (D). Both alpha (8–12 Hz) and beta (13–35 Hz) spectra showed significant negative 

associations with tau and significant positive associations with Aβ (E–H). Each subplot indicates the estimates 

from linear mixed-effects models predicting the spectral power changes from flortaucipir (tau) SUVR and 11C-
Appendix 1—figure 4 continued on next page
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PIB (Aβ) SUVR, after including the additional covariate of cortical atrophy in each ROI, in patients with AD. The 
fits depicting tau predictions were computed at the average SUVR of Aβ (1.99), while the fits depicting Aβ were 
computed at average SUVR of tau (1.64), each at the average w-score of cortical volume (−0.62). The scatter 
plots indicate the predicted values from each model incorporating a repeated measures design to account for 
68 regions per subject. Z-scores for spectral power values were calculated based on the normal control cohort. 
Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-beta; SUVR, standardized uptake value.

Appendix 1—table 1. Neuropsychological test performance in patients with AD.

Variable
Test score

(mean ± SD)

Episodic memory function

Visual free recall (Benson 10 min) 4.9 ± 3.2

Short delay verbal memory (CVLT 30 s) 3.9 ± 2.4

Verbal free recall (CVLT 10 min) 2.3 ± 2.9

Executive function and working memory

Design fluency 6.4 ± 2.9

Information processing speed (Stroop color naming) 48.2 ± 17.6

Cognitive control (Stroop Inhibition) 21.3 ± 12.9

Verbal working memory (Digit span forward) 5.3 ± 1.33

Attention (Digit span backward) 3.8 ± 1.2

Set shifting (Modified trails – speed) 0.2 ± 0.2

Verbal learning (CVLT total score) 17.9 ± 6.6

Language function

Reading irregular words 5.6 ± 0.7

Syntax comprehension 3.9 ± 1.2

Verbal agility 4.6 ± 1.2

Boston Naming Test 12.3 ± 3.1

Lexical fluency (D words/1 min) 10.8 ± 5.0

Category fluency (animals/1 min) 11.4 ± 5.0

Repetition 3.3 ± 1.4

Visuospatial function

Face discrimination (CATS – face matching) 10.8 ± 1.7

Visuoconstruction (Benson copy) 12.8 ± 4.2

Location discrimination (VOSP number location) 7.5 ± 2.5

Calculations 3.4 ± 1.4

Emotion naming (CATS – affect matching) 12.7 ± 1.0

CVLT = California Verbal Learning Test containing nine items. CATS = Comprehensive Affect Testing System. 
VOSP = Visual Object and Space Perception.

Appendix 1—figure 4 continued

https://doi.org/10.7554/eLife.77850
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Appendix 2

Supplementary methods
Resting state MEG data acquisition
Each subject underwent MEG recording on a whole-head biomagnetometer system consisting of 
275 axial gradiometers (MISL, Coquitlam, British Columbia, Canada), for 5–10 min. Three fiducial 
coils including nasion, left and right preauricular points were placed to localize the position of 
head relative to sensor array, and later coregistered to each individual’s respective MRI to generate 
an individualized head shape. Data collection was optimized to minimize within-session head 
movements and to keep it below 0.5 cm. 5–10 min of continuous recording was collected from each 
subject while lying supine and awake with eyes closed (sampling rate: 600 Hz). We selected a 60-s 
(1 min) continuous segment with minimal artifacts (minimal excessive scatter at signal amplitude 
<10 pT), for each subject, for analysis. The study protocol required the participant to be interactive 
with the investigator and be awake at the beginning of the data collection. Spectral analysis of each 
MEG recording and whenever avaiable, a the simultaneously collected scalp EEG recording were 
examined to confirm that the 60-s data epoch represented awake, eyes closed resting state for each 
participant. Artifact detection was confirmed by visual inspection of sensor data and channels with 
excessive noise within individual subjects were removed prior to analysis.

Source space reconstruction of MEG data and spectral power estimation
Tomographic reconstructions of the MEG data were generated using a head model based on each 
participant’s structural MRI. Spatiotemporal estimates of neural sources were generated using a 
time–frequency optimized adaptive spatial filtering technique implemented in the Neurodynamic 
Utility Toolbox for MEG (NUTMEG; https://nutmeg.berkeley.edu/). Tomographic volume of source 
locations (voxels) was computed through an adaptive spatial filter (10-mm lead field) that weights 
each location relative to the signal of the MEG sensors (Dalal et  al., 2008; Dalal et  al., 2011). 
The source space reconstruction approach provided amplitude estimations at each voxel derived 
through the linear combination of spatial weighting matrix with the sensor data matrix (Dalal et al., 
2008). A high-resolution anatomical MRI was obtained for each subject (see below) and was spatially 
normalized to the Montreal Neurological Institute (MNI) template brain using the SPM software 
(http://www.fil.ion.ucl.ac.uk/spm), with the resulting parameters being applied to each individual 
subject’s source space reconstruction within the NUTMEG pipeline (Dalal et al., 2011).

To prepare for source localization, all MEG sensor locations were coregistered to each subject’s 
anatomical MRI scans. The lead field (forward model) for each subject was calculated in NUTMEG 
using a multiple local-spheres head model (three-orientation lead field) and an 8-mm voxel grid 
which generated more than 5000 dipole sources, all sources were normalized to have a norm of 
1. The MEG recordings were projected into source space using a beamformer spatial filter. Source 
estimates tend to have a bias towards superficial currents and the estimates are more error-prone 
when we approach subcortical regions, therefore, only the sources belonging to the 68 cortical 
regions were selected for further analyses. Specifically, all dipole sources were labeled based on the 
Desikan–Killiany parcellations, then sources within a 10-mm radial distance to the centroid of each 
brain region were extracted for each region. In this study, we examined the broad-band (1–35 Hz) 
and also the regional power spectra of three frequency bands: 2–7 Hz delta–theta band, 8–12 Hz 
alpha band, and 13–35 Hz beta band. The low-frequency oscillatory band in our design spanned 
across the conventional delta (2–4 Hz) and theta (4–8 Hz) oscillatory band. This approach was chosen 
to capture the full range of low-frequency oscillatory activity described in human neurophysiology 
(Jacobs, 2014; Goyal et al., 2020), which includes the complete window where increased spectral 
signature is observed in patients with AD. Power spectra were derived by applying FFT on the time-
course data and then converted to dB scale.

Mathematical modeling and parameter estimation
We used an NMM (David and Friston, 2003; Moran et al., 2013; Hartoyo et al., 2020) based 
on an analytical and linearized version published previously (Raj et al., 2020; Verma et al., 2022) 
for estimation of regional model parameters. In this model, for every region k, where k varies 
from 1 to N and ‍N ‍ is the total number of regions based on the Desikan–Killiany parcellation the 
regional population signal is modeled as the sum of excitatory signals xe(t) and inhibitory signals xi(t) 
(Figure 1D).

https://doi.org/10.7554/eLife.77850
https://nutmeg.berkeley.edu/
http://www.fil.ion.ucl.ac.uk/spm
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Both excitatory and inhibitory signal dynamics consist of a decay of the individual 
signals with a fixed neural gain, incoming signals from populations that alternate 
between the excitatory and inhibitory signals, and input Gaussian white noise. The 
equations for the excitatory and inhibitory signals for every region are the following: 
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where * stands for convolution, parameters gee, gii, and gei are neural gains for the excitatory, 
inhibitory, and alternating populations, respectively, τe and τi are characteristic time-constants of the 
excitatory and inhibitory populations, respectively, p(t) is the input Gaussian white noise, and fe(t) and 
fi(t) are Gamma-shaped ensemble average neural impulse response functions written as following:
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Since these are linear equations, the closed-form solution of xe(t) and xi(t) can be obtained in 
the Fourier domain as Xe(ω) and Xi(ω) respectively, where ω is the frequency, by taking a Fourier 
transform of Equations 1 and 2 as the following:
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where j is the imaginary unit, P(ω) is the Fourier transform of p(t), and Fe(ω) and Fi(ω) are written 
as the following:
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Solving Equations 6 and 7 yields the following:
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The parameters, gee, gii, τe, and τi were estimated for each ROI and parameter gei was fixed at 1. 
Each region’s spectrum was modeled using the above equations, and the power spectral density was 
generated for frequencies 1–35 Hz. The goodness of fit of the model was estimated by calculating 
the Pearson’s correlation coefficient between the simulated model power spectra and the empirical 
source localized MEG spectra for frequencies 1–35  Hz. This goodness of fit value was used to 
estimate the model parameters. Parameter optimization was done using the basin hopping global 
optimization algorithm in Python (Wales and Doye, 1997). The model parameter values and bounds 
were specified as: 17, 5, and 30 ms, respectively, for initial, upper-boundary, and lower-boundary, for 
τe and τi ; 0.5, 0.1, and 10, respectively, for initial, upper-boundary, and lower-boundary, for gee and 
gii. The hyperparameters of the algorithm which included the number of iterations, temperature, and 
step size were set at 2000, 0.1, and 4, respectively. If any of the parameters was hitting the specified 
bounds, parameter optimization was repeated with a step size of 6 for that specific ROI, and finally 
the set of parameters which led to a higher Pearson’s correlation coefficient was chosen. The cost 
function for this optimization was negative of Pearson’s correlation coefficient between the source 
localized MEG spectra in dB scale and the model power spectral density in dB scale as well. This 
procedure was performed for every ROI of every subject.

In order to examine the effects of model parameters on excitatory and inhibitory activity, 
Xe(ω)/Xi(ω) was calculated while varying each of the parameters gee, gii, τe, and τi one-by-one, keeping 
others fixed at their estimated mean values calculated for the control cohort. This exploration 
demonstrated the complex dependency of Xe(ω)/Xi(ω) on parameters which varied in a frequency-
dependent manner. The complex predictions from gee and gii illustrated their control effect on the 
decay terms in Equations 1 and 2. For instance, when gee is increased, xe(t) decays sooner whereas 
when gii is increased, xi(t) decays sooner, leading to a reduction in xe(t) inhibition and subsequently 
an increase in Xe(ω)/Xi(ω).

PET data acquisition and image processing
Detailed descriptions of flortaucipir and PiB PET acquisition are available in previous publications 
(Ossenkoppele et al., 2016; Schöll et al., 2016). All PET scans were acquired at Lawrence Berkeley 
National Laboratory (LBNL) on Siemens Biograph 6 Truepoint PET/CT scanner (Siemens Medical 
Systems) in 3D acquisition mode. Flortaucipir was synthesized at the LBNL Biomedical Isotope 
Facility (BIF) using a GE TracerLab FXN-Pro synthesis module with a modified protocol based on 
an Avid Radiopharmaceuticals protocol supplied to the facility. Participants were injected with 10 
mCi of tracer and scanned in listmode 80- to 100-min postinjection (4 × 5 min frames). 11C-PIB was 
also synthesized at the LBNL BIF according to a previously published protocol (Mathis et al., 2003). 
Beginning at the start of an injection of 15 mCi of PIB into an antecubital vein, 90 min of dynamic 
emission data were acquired and subsequently binned into 35 frames (4 × 15, 8 × 30, 9 × 60, 2 × 
180, 10 × 300, and 2 × 600 s). Flortaucipir and 11C-PIB PET images were reconstructed using an 
ordered subset expectation maximization algorithm with weighted attenuation and smoothed with 
a 4-mm Gaussian kernel with scatter correction. Image resolution, calculated using a Hoffman brain 
phantom, was 6.5 × 6.5 × 7.25 mm3. Ninety minutes of dynamic postinjection data for PIB and 80- to 
100-min postinjection data for flortaucipir were used for the following PET processing.

Each patient’s MRI was segmented using Freesurfer 5.3 (http://surfer.nmr.mgh.harvard.edu; 
Fischl et al., 2002). PET data were realigned and coregistered onto their corresponding T1 image 
using the Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). SUVR 
images were created using Freesurfer-defined cerebellar gray matter for PIB-PET. For FTP, Freesurfer 
segmentation was combined with the SUIT template (Diedrichsen, 2006) to only include inferior 
cerebellum voxels therefore avoiding contamination from off-target binding in the dorsal cerebellum 
(Baker et al., 2017).

Magnetic resonance image acquisition and analysis
Structural brain images were acquired from all participants using a unified MRI protocol on a 3 Tesla 
Siemens MRI scanner at the Neuroscience Imaging Center (NIC) at UCSF. Structural MRIs were used 
to generate invidualized head models for source space reconstruction of MEG sensor data. The 
structural MRI scans were also used in the clinical evaluations of patients with AD to identify the 
pattern of gray matter volume loss to support the diagnosis of AD.

https://doi.org/10.7554/eLife.77850
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