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Abstract Like neocortical structures, the archicortical hippocampus differs in its folding patterns 
across individuals. Here, we present an automated and robust BIDS- App, HippUnfold, for defining 
and indexing individual- specific hippocampal folding in MRI, analogous to popular tools used in 
neocortical reconstruction. Such tailoring is critical for inter- individual alignment, with topology 
serving as the basis for homology. This topological framework enables qualitatively new analyses 
of morphological and laminar structure in the hippocampus or its subfields. It is critical for refining 
current neuroimaging analyses at a meso- as well as micro- scale. HippUnfold uses state- of- the- art 
deep learning combined with previously developed topological constraints to generate uniquely 
folded surfaces to fit a given subject’s hippocampal conformation. It is designed to work with 
commonly employed sub- millimetric MRI acquisitions, with possible extension to microscopic reso-
lution. In this paper, we describe the power of HippUnfold in feature extraction, and highlight its 
unique value compared to several extant hippocampal subfield analysis methods.

Editor's evaluation
This study presents a useful automated package called 'HippUnfold' in form of a BIDS App. The 
approach is solid and validated by comparing it against other methods in the field and has the 
potential to be used by a wide audience.

Introduction
Most neurological or psychiatric diseases with widespread effects on the brain show strong and early 
impact on the hippocampus (e.g. Thom, 2014). This highly plastic grey matter (GM) structure is also 
critical in the fast formation of episodic and spatial memories (e.g. O’Keefe and Nadel, 1978). Exam-
ination of this structure with non- invasive neuroimaging, such as MRI, provides great promise for 
furthering our understanding, diagnosis, and subtyping of these diseases and cognitive processes in 
the hippocampus and its component subfields (Dill et al., 2015).
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In current neuroimaging analyses the hippocampus is typically modelled as a subcortical volume, 
but it is actually made up of a folded archicortical mantle, or ‘ribbon’ (Duvernoy, 1998). Representing 
the hippocampus as such can be leveraged to enable qualitatively new analyses, such as registration, 
despite inter- individual differences in gyrification or folding structure, through topological alignment. 
In previous work, this was shown to account for much inter- individual variability in MRI- based manual 
subfield segmentations (DeKraker et al., 2018). Additionally, representation as a ribbon allows the 
hippocampus to be factorized into surface area and thickness, which can be further subdivided for 
laminar analyses. These methods are thus critical in advancing MRI research from the macroscopic 
scale to the subfield, cortical column, and laminar scales. Similar approaches have already yielded 
advances in neocortical analysis methods (Van Essen et al., 2000; Waehnert et al., 2014).

Denoting the hippocampal archicortical ribbon is challenging because it is thin (0.5–2  mm), its 
folding pattern varies considerably between individuals (Chang et al., 2018; Ding and Van Hoesen, 
2015), and this folding may even continue to change from early development through adulthood (Cai 
et al., 2019). We present here a set of tools to overcome these challenges using a highly sensitive and 
generalizable ‘U- Net’ deep learning architecture (Isensee et al., 2021), combined with previous work 
that enforces topological constraints on hippocampal tissue (DeKraker et al., 2018).

In previous work (DeKraker et al., 2018), we developed a method to computationally unfold the 
hippocampus along its geodesic anterior- posterior (AP) and proximal- distal (PD, i.e. proximal to the 
neocortex, with the dentate gyrus [DG] being most distal) axes. We demonstrated for the first time 
several qualitative properties using in vivo MRI, such as the contiguity of all subfields along the curva-
ture of the hippocampal head (anterior) and tail (posterior), previously described only in histology. This 
pioneering work relied heavily on detailed manual tissue segmentations including the high- myelinated 
stratum radiatum, lacunosum, and moleculare (SRLM), a commonly used landmark that separates 
hippocampal folds along the inward ‘curl’ of the hippocampus. In this work we also considered curva-
ture and digitations along the AP axis of the hippocampus, most prominently occurring in the hippo-
campal head (Duvernoy, 1998; Chang et al., 2018; Ding and Van Hoesen, 2015; DeKraker et al., 
2018). Each of these features are highly variable between individuals, making them difficult to capture 
using automated volumetric atlas- based methods and time- consuming to detect manually.

The current work automates the detailed tissue segmentation required for hippocampal unfolding 
using a state- of- the- art ‘U- Net’ deep convolutional neural network (Isensee et al., 2021). In particular, 
we aimed to capture morphological variability between hippocampi at the level of digitations or gyri-
fications which are not typically considered using existing automated methods which employ either a 
single atlas or multi- atlas fusion (e.g. Yushkevich et al., 2015b; Chakravarty et al., 2013; Pipitone 
et al., 2014). U- Net architectures have been shown to be generalizable and sensitive to anatomical 
variations in many medical image processing tasks (Du et al., 2020), making them ideal to overcome 
this challenge.

Estimating hippocampal subfield boundaries in MRI is challenging since their histological hallmarks 
are not directly available in MRI due to lower spatial resolution and lack of appropriate contrasts, 
which is an ongoing hurdle in neuroimaging (Wisse et  al., 2017b; Yushkevich et  al., 2015a). 
However, post- mortem studies show that the subfields are topologically constrained according to 
their differentiation from a common flat cortical mantle (Duvernoy, 1998). Thus, a folded representa-
tion of hippocampal tissue provides a powerful intermediate between a raw MRI and subfield labels 
(DeKraker et al., 2021), analogous to the reconstruction of a 3D neocortical surface. This surface 
can then be parcellated into subregions without topological breaks (Van Essen et al., 2000), over-
coming many limitations of current subfield segmentation methods (Yushkevich et al., 2015a). Here, 
we apply surface- based subfield boundary definitions obtained via manual segmentation of BigBrain 
3D histology (Amunts et al., 2013) which was additionally supported by a data- driven parcellation 
(DeKraker et al., 2020). We additionally demonstrate how labels used in the popular Freesurfer (FS7) 
(Iglesias et al., 2015) and Automatic Segmentation of Hippocampal Subfields (ASHS) (Yushkevich 
et al., 2015b) software packages can be applied under our topologically constrained framework.

Altogether, we combine novel U- Net tissue classification, previously developed hippocampal 
unfolding (DeKraker et al., 2018), and topologically constrained subfield labelling (DeKraker et al., 
2020) together into a single pipeline which we refer to as ‘HippUnfold’ hereinafter. We designed this 
pipeline to employ FAIR principles (findability, accessibility, interoperability, reusability) with support 
across a wide range of use- cases centred around sub- millimetric MRI.

https://doi.org/10.7554/eLife.77945
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Results
HippUnfold aligns and visualizes data on folded or unfolded surfaces
HippUnfold is presented here as a fully automated pipeline with outputs including hippocampal tissue 
and subfield segmentations, geodesic Laplace coordinates spanning over hippocampal GM voxels, 
and inner, midthickness and outer hippocampal surfaces. These surfaces have corresponding vertices, 
providing an implicit topological registration between individuals.

The overall pipeline for HippUnfold is illustrated briefly in Figure 1. A comprehensive breakdown 
of each step is provided in the Materials and methods.

In addition to subfield segmentation, HippUnfold extracts morphological features and can be 
used to sample quantitative MRI data along a midthickness surface to minimize partial voluming with 
surrounding structures (see Materials and methods section ‘HippUnfold detailed pipeline’ for details). 
This is visualized across n=148  test subjects on an unfolded surface and group- averaged folded 
surface in Figure 2. Note that the group averaging takes place on a surface and so does not break 
individual subjects’ topologies. Quantitative MRI features examined here include T1w/T2w ratio as a 
proxy measure for intracortical myelin (Ganzetti et al., 2014), mean diffusivity, and fractional anisot-
ropy (Hernández et al., 2013; Sotiropoulos et al., 2016).

Clear differences in morphological and quantitative MRI features can be seen across the hippo-
campus, particularly across subfields as defined here from a histologically derived unfolded reference 
atlas (3D BigBrain) (DeKraker et al., 2020). This highlights the advantages of the present method. 

Figure 1. Overview of HippUnfold pipeline. First, input MRI images are preprocessed and cropped around the left and right hippocampi. Second, a 
U- Net neural network architecture (nnUNet; Isensee et al., 2021) is used to segment hippocampal grey matter (GM), the high- myelinated stratum 
radiatum, lacunosum, and moleculare (SRLM), and structures surrounding the hippocampus. Segmentations are post- processed via template shape 
injection. Third, Laplace’s equation is solved across the anterior- posterior (AP), proximal- distal (PD), and inner- outer (IO) extent of hippocampal GM, 
making up a geodesic coordinate framework. Fourth, scattered interpolants are used to determine equivalent coordinates between native Cartesian 
space and unfolded space. Fifth, unfolded surfaces with template subfield labels (DeKraker et al., 2020) are transformed to subjects’ native folded 
hippocampal configurations. Morphological features (e.g. thickness) are extracted using Connectome Workbench (Glasser et al., 2013) on these folded 
native space surfaces. Sixth, volumetric subfields are generated by filling the voxels between inner and outer surfaces with the corresponding subfield 
labels. Additional details on this pipeline can be found in the Materials and methods.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Diagram of the nnU- net architecture used for HippUnfold.

https://doi.org/10.7554/eLife.77945
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These folded and unfolded representations of hippocampal characteristics are broadly in line with 
previous work examining differences in such morphological and quantitative MRI features across hippo-
campal subfields or along the hippocampal AP extent (e.g. Vos de Wael et al., 2018; Crombe et al., 
2018). However, in previous work these features differed between predefined subfields on average, 
but did not necessarily follow subfield contours as seen here. Some advantages of the current pipe-
line that likely contribute to this clarity include (i) the detail of the hippocampal GM segmentation, (ii) 
sampling along a midthickness surface to minimize partial voluming with surrounding structures, and 

Figure 2. Average hippocampal folded and unfolded surfaces showing subfields, morphometric, and quantitative MRI measures from the Human 
Connectome Project- Young Adult (HCP- YA) test dataset (see Table 1 of Materials and methods). The same topologically defined subfields were applied 
in unfolded space to all subjects (top), which are also overlaid on quantitative MRI plots (black lines). The dentate gyrus (DG) is represented as a distinct 
surface, reflecting its unique topology, and is mostly occluded in native space. Thickness was not measured across the DG surface. Note that many 
morphological and quantitative MRI measures show clear distinctions across subfield boundaries.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examination of distortions (or difference in vertex spacing) between an average folded and unfolded space.

https://doi.org/10.7554/eLife.77945
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(iii) the fact that subjects are topologically aligned across digitations or gyri, leading to less blurring of 
features after group- averaging.

Extant methods do not respect the topological continuity of 
hippocampal subfields
Several automatic methods for labelling hippocampal subfields in MRI exist, of which FS7 (Iglesias 
et  al., 2015) and ASHS (Yushkevich et  al., 2015b) are among the most widely adopted. These 
methods rely on volumetric registrations between a target hippocampus and a reference or atlas. 
Specifically, ASHS makes use of multi- atlas registration, wherein multiple gold standard manual hippo-
campal subfield segmentations are registered to a target sample. Typically the multi- atlas consists of 
roughly a dozen samples which are then fused together to generate a reliable yet oftentimes smooth 
or simplified final product. FS uses a combination of voxel- wise classification and, bijectively, volu-
metric registration between a target hippocampus and a probabilistic reference atlas, which is gener-
ated via combined in vivo MRI and 9.4T ex vivo hippocampal subfield segmentations (Iglesias et al., 
2015). When hippocampi take on different folding configurations, such registrations can become 
ill- posed. HippUnfold overcomes these limitations in two ways: with extensive training (in this case 
n=590), U- Net can capture detailed inter- individual differences in folding and, secondly, our unfolding 
technique ensures that subfield labelling is topologically constrained (DeKraker et al., 2021).

We made use of 100 randomly chosen subjects from the Human Connectome Project- Aging 
(HCP- A) dataset to compare the approach with the FS7 hippocampal subfields pipeline and ASHS 
using a recent manual subfield multi- atlas (Berron et  al., 2017). Figure  3A shows a side- by- side 
comparison of HippUnfold, ASHS, and FS7 to one representative 81- year- old female. Figure 3B shows 
Bland- Altmann plots comparing subfields CA1, CA3, and subiculum volume across the three methods 
in all 100 subjects, as well as their correlation with subjects’ ages. Quantitative comparison between 
methods shows an age- related decline in subfield volumes for all methods, with a relative sparing 
of CA3. Thus, HippUnfold replicates the widely observed phenomenon of age- related decline, with 
similar effect sizes to FS and ASHS (Figure 3—figure supplement 1). A similar pattern can be seen 
across the other subfield volumes and in total hippocampal volume. Bland- Altman plots show major 
differences in hippocampal subfield sizes between methods, which most likely results from inclusion 
of the hippocampal tail in HippUnfold.

Within the HCP- YA test set, we compared subfield segmentations from ASHS and FS7 to those 
generated via HippUnfold in unfolded space, which is shown in Figure 4 in one representative subject. 
We then generated an unfolded subfield atlas using the maximum probability labels from all ASHS and 
FS7 subjects, which can be used in place of the default HippUnfold atlas generated via 3D BigBrain 
histology (DeKraker et al., 2020). For comparison, we additionally show native space HippUnfold 
results obtained when using these alternative unfolded atlases.

Both ASHS and FS showed subfield discontinuities in unfolded space in at least some subjects, 
and FS even showed discontinuities in the group- averaged unfolded subfields. That is, some pieces 
of a given label were separated from the rest of that label. ASHS does not include an SRLM label and 
the SRLM produced by FS was not consistently aligned with that used in unfolding. Thus, subfields 
sometimes erroneously crossed the SRLM, breaking topology and explaining why discontinuities were 
sometimes observed in unfolded space. Ordering of labels was also not consistent in ASHS and FS. 
For example, sometimes CA1 would border not only CA2 but also CA3, CA4, and/or DG. Additionally, 
neither ASHS nor FS extends all subfields to the full anterior and posterior extent of the hippocampus. 
Instead, both methods simplify most of the anterior hippocampus as being CA1 and opt not to label 
subfields in the posterior hippocampus at all. These qualities are not in line with the anatomical 
ground truth shown in both classic and contemporary ex vivo histological studies (Duvernoy, 1998; 
Ding and Van Hoesen, 2015), which were indeed well captured by HippUnfold. FS also over- labelled 
hippocampal tissue, which can be seen reaching laterally into the ventricles in the coronal view. Similar 
errors have been documented for FS in other recent work (Wisse et al., 2014; Haast et al., 2021).

Trained U-Net performance is similar to manual segmentation
From the HCP- YA dataset, a set of 738 (left and right from 369 subjects) gold standard hippocampal 
tissue (i.e. hippocampal GM and surrounding structures) segmentations were generated according to 
the manual protocol defined in DeKraker et al., 2020. Specifically, this was done by raters JD, MY, 

https://doi.org/10.7554/eLife.77945


 Tools and resources      Neuroscience

DeKraker et al. eLife 2022;11:e77945. DOI: https://doi.org/10.7554/eLife.77945  6 of 21

and BK using an incremental learning U- Net training regime described in the Materials and methods 
‘nnUNet training’ section. Automated tissue segmentation was performed using nnUNet, a recent and 
highly generalizable implementation of a U- Net architecture (Isensee et al., 2021). This software was 
trained on 80% (n=590) of the gold standard segmentation data described above, with the remaining 
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Figure 3. Out of sample performance of HippUnfold, Automatic Segmentation of Hippocampal Subfields (ASHS), and Freesurfer (FS7). (A) Side- by- side 
comparison of results obtained from each method from one representative individual from the Human Connectome Project- Aging (HCP- A) datasets, 
which was not seen during training. (B) Quantitative comparison of subfield volumes (left) and age- related volume changes (right) between methods. 
For a full set of snapshots illustrating the differences between these methods, see Supplementary file 2, Supplementary file 3.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional comparisons of results obtained from Freesurfer (FS7), Automatic Segmentation of Hippocampal Subfields (ASHS), 
and HippUnfold in 100 Human Connectome Project- Aging (HCP- A) subjects.

https://doi.org/10.7554/eLife.77945
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20% (n=148) making up a test set. Dice overlap scores on the test set are shown in Figure 5. Left 
and right hippocampi from the same participant were never split across training and testing sets due 
to their high symmetry. Note that all input images were preprocessed, resampled, and cropped (see 
Figure 1 and Materials and methods) prior to training. Within the training set, fivefold cross- validation 
was performed as implemented in the nnUNet code. Training took place on an NVIDIA T4 Turing GPU 
over 72 hr. This process was carried out using either T1w or T2w input data with the same training/
testing data split. All default nnUNet data augmentation and hyperparameters were used.

Dice overlap depends heavily on the size of the label in question, being lower for smaller labels. 
Typically a score of >0.7 is considered good, and many fully manual protocols show dice scores of >0.8 
for the larger subfields like CA1 or the subiculum, and 0.6–0.8 for smaller subfields like CA2 or CA3 
(see Yushkevich et al., 2015a, for overview). Within the HCP- YA test set, performance was similar or 
better than most fully manual protocols for T1w and T2w data. Performance on T1w images was only 
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Figure 4. Comparison of HippUnfold, Automatic Segmentation of Hippocampal Subfields (ASHS), and Freesurfer (FS7) subfield segmentations in 
native and unfolded space. Sagittal and coronal slices and 3D models are shown for one representative subject. Note that for HippUnfold hippocampal 
subfields are the same for all individuals in unfolded space, but for ASHS and FS we mapped all subjects’ subfield boundaries which are shown in 
the black lines in column 4 rows 2 and 4. We then took the maximum probability subfield label from ASHS and FS in unfolded space and used it for 
HippUnfold subfield segmentation in native space, which is shown in rows 3 and 5.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of HippUnfold and fully manual subfield segmentations (data from Thom, 2014) in native and unfolded space from 
one representative subject.

https://doi.org/10.7554/eLife.77945
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marginally poorer than T2w images which typically better show the SRLM and are popular in manual 
subfield segmentation protocols (Yushkevich et al., 2015a).

Generalizability to unseen datasets and populations
We aimed to determine whether our pipeline would generalize to unseen datasets with different 
acquisition protocols and sample populations. Hippocampal morphometry, integrity, and subfields are 
often of interest in disease states where atrophy or other structural abnormalities are observed (Thom, 
2014; Haukvik et al., 2018; Steve et al., 2014; Carr et al., 2017). For this reason, we examined 
the HCP- A datasets in which we anticipated cases of severe atrophy would be present in some older 
subjects. Figure 5 shows results from one representative individual (an 80- year- old female with signs 
of age- related atrophy but good scan quality). Another common use- case for hippocampal subfield 
segmentation is on anisotropic T2w data which is considered optimal for performing manual segmen-
tation in most protocols (Yushkevich et al., 2015a), but may impose challenges for our method due 
to the difference in resolution. We thus applied HippUnfold to 7T- TSE data and also illustrate one 
representative subfield segmentation result in Figure 5.

To demonstrate generalizability to pathological cases where hippocampal abnormalities can be 
confirmed, we also applied HippUnfold to a surgical epilepsy patient case. A 37- year- old female right- 
handed patient was investigated for surgical treatment of temporal lobe epilepsy, and clinical MR 
imaging at 1.5 T revealed a FLAIR hyper- intensity in the right hippocampus. The patient was imaged 
pre- surgically for a 7 T MRI research study, and the 0.7 mm MP2RAGE T1w (UNI- DEN) image was 
segmented using HippUnfold, which is shown in Figure 5. The patient underwent a right anterior 
temporal lobectomy and has been seizure- free (Engel class 1) for 4 years. Bilateral asymmetry is a 
strong indicator of epileptogenesis, and so results are examined for both the left and right hippo-
campi. Note that in addition to a loss in overall volume, the afflicted hippocampus showed relative 
sparing of CA2 which is a common observation in hippocampal sclerosis (Blümcke et al., 2013), as 
well as reduced digitations compared to the left hemisphere. Examining additional patients in future 
work may reveal whether morphometry could be a clinical marker of epileptogenesis in patients with 
no remarkable clinical lesions.

T1w T2w

Sub
CA1
CA2
CA3
CA4
DG
SRLM
Cyst

Figure 5. Test set performance in Dice overlaps between HippUnfold and manually unfolded subfields. All values 
are compared to ground truth manually defined tissues followed by unfolded subfield definition (manual unfold) to 
determine how small differences in grey matter parcellation propagate through the unfolding, subfield definition, 
and re- folding. Two models were trained in parallel using the same labels but different input MRI data modalities 
consisting of T1w or T2w data. Dotted black lines indicate corresponding values from Yushkevich et al., 2015b, 
who include stratum radiatum, lacunosum, and moleculaire (SRLM) in all labels and combine CA4 and DG into one 
label.

https://doi.org/10.7554/eLife.77945
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Automated error flagging
Gold standard manual segmentations under the protocol used for subsequent unfolding were not 
available in novel datasets. Manually inspecting results from hundreds of subjects is time- consuming. 
We thus streamlined this process by flagging potential segmentation errors by examining Dice overlap 
with a more conventional segmentation approach: deformable registration. For all datasets described 
above, we applied deformable fast B- spline registration (Modat et al., 2010) to the corresponding 
T1w or T2w template. Tissue segmentation results (generated at the nnUNet stage) were then prop-
agated to template space and overlap with standard template hippocampal masks were examined, 
which is shown in Figure 5. Any subject with a Dice overlap score of less than 0.7 was flagged and 
manually inspected for quality assurance. This made up 34/2126 (1.6%) samples in the HCP- YA T2w 
set (including training and testing subsets), 188/1312 (14.3%) samples from the HCP- A T2w set, 
37/1312 (2.8%) samples from the HCP- A T1w set, and 3/92 (3.3%) samples from the 7T- TSE set. Closer 

HCP-A 
T2w
(80y.o. F)

HCP-A 
T1w
(80y.o. F)

7T-TSE
(young 
adult)

Sagittal unlabelled Sagittal subfields Coronal unlabelled Coronal subfieldsA 3D 
model

Temporal lobe epilepsy 
patient with surgically-
confirmed right 
hippocampal sclerosis

1.5T FLAIR (clinical) 7T MP2RAGE (0.7mm iso) HippUnfold Segmentations 
HippUnfold Subfield

z-scores

Right hipp. Left hipp. Right hipp. Left hipp. Top Bottom

RH
LH

RH
LH

B

Figure 6. Examination of HippUnfold performance on additional datasets Human Connectome Project- Aging (HCP- A) (T1w and T2w) and anisotropic 
7T- TSE data. (A) Sample subjects’ HippUnfold subfield segmentation in native resolution. The first two rows come from the same subjects but using 
different input data modalities. (B) HippUnfold results from a 7 T MRI of a temporal lobe epilepsy patient with surgically confirmed right hippocampal 
sclerosis.

https://doi.org/10.7554/eLife.77945
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inspection revealed that the vast majority of flagged cases were due to missed tissue in the nnUNet 
segmentation, an example of which is shown in Figure 5. It is interesting to note that the most flagged 
cases were seen in the HCP- A T2w dataset even though T2w is a popular acquisition protocol for 
hippocampal subfield segmentation (Yushkevich et al., 2015a; Wisse et al., 2021), and showed the 
best performance within the HCP- YA test set (Figure 5; Figure 6A and B). This was likely not due to 
the age of subjects since few of the HCP- A T1w were flagged as possible errors, but instead may have 
been due to T2w scan quality, which was observed to be poor in some subjects, causing poor defini-
tion of the outer hippocampal boundaries. We recommend that future users carefully inspect results 
from any flagged subjects, and cases with errors can be either discarded or manually corrected. Some 
work has already demonstrated that it is possible to synthesize or convert between MRI modalities 
(Iglesias et al., 2021), which could be used to alleviate the dependency on any single MR contrast. 
We cannot determine whether HippUnfold will work as intended on all new datasets, but within the 
generalization datasets examined here, results were excellent.

It is interesting to note that fewer failures were observed in HippUnfold using T1w data compared 
to T2w data (Figure 7), even though performance of nnUNet tissue classification were slightly higher 
with T2w images (Figure 5) and these are more common in hippocampal subfield imaging literature. 
Examining some failed cases, we see that these often had poor image quality, with subsequent issues 
like linear misregistration to the common CITI168 atlas or catastrophic nnUNet tissue classification 
failures.

FAIR principles in development
We designed this pipeline to employ FAIR principles. As such, we have made use of several tools, 
conventions, and data standards to make HippUnfold extensible and easy to use.

The default file input- output structure of the HippUnfold command- line interface was built in 
compliance with the Brain Imaging Data Standards (BIDS) (Gorgolewski et al., 2016) Applications 
(BIDS- Apps) guidelines (Gorgolewski et al., 2017), and easily findable amongst the list of available 
BIDS Apps [https://bids-apps.neuroimaging.io/apps/]. This is achieved via Snakebids, a tool designed 
to interface between BIDS datasets and Snakemake (Khan and Haast, 2021). All aspects of HippUn-
fold use Snakemake (Mölder et al., 2021), a workflow management system based on Python which is 
reproducible, scalable, and seamlessly combines shell commands, Python code, and external depen-
dencies in a human- readable workflow. There is no need to install these dependencies, which are 
containerized within the Singularity or Docker versions of HippUnfold.

Altogether, this means that in a single line this pipeline can be applied intelligently to any BIDS- 
complaint dataset containing a whole- brain T1w image or a T2w image (whole- brain or limited field of 
view) without having to specify further details. Typical runtimes on a standard desktop are 30–60 min 
per subject, but this is further parallelized for faster processing when multiple subjects and added 
compute resources (or cloud computing) are available. Additional flags can be used to extend func-
tionality to many other use- cases, including T1w only, T2w only, diffusion- weighted imaging, cases 
where a manual tissue segmentation is already available, or ex vivo tissue samples.

Figure 7. Automated error flagging via overlap with coarse, registration- based segmentation. (A) Subjects flagged for quality assurance from each 
dataset based on Dice overlap with a reference mask approximated via deformable registration. (B) Failed subject example illustrating missed tissue 
(red arrows) at the nnUNet stage of the HippUnfold pipeline.
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Outputs of HippUnfold follow the standards for BIDS derivatives, and include preprocessed input 
images, volumetric subfield segmentations, inner, midthickness, and outer hippocampal surfaces, 
vertex- wise morphometric measures of thickness, curvature, and gyrification, and a brief quality 
control (QC) report. All surface- based outputs are combined into a Connectome Workbench (Marcus 
et al., 2013) specification file for straightforward visualization analogous to HCP neocortical recon-
structions. Outputs can be specified to include images in the original T1w space or in the resampled, 
cropped space that processing is performed in.

All code, code history, documentation, and support are offered online (Khan, 2022) (https:// 
github.com/khanlab/hippunfold).

Discussion
One of the most powerful features of HippUnfold is its ability to provide topological alignment 
between subjects despite differences in folding (or digitation) structure. This is a critical element of 
mainstream neocortical analysis methods that, until now, has not been carried out systematically in 
the archicortex, or hippocampus. The power of this form of topological alignment is evident when 
mapping morphological or quantitative features across the hippocampus in a large population, which 
we demonstrate in Figure 2.

Segmentation of subfields is a task that is conceptually simplified through unfolding of the hippo-
campus to provide intrinsic anatomical axes. The axis we define as PD, which follows along the SLM in 
a coronal slice, is also a landmark relied upon in many manual segmentation protocols for the hippo-
campal subfields, including a histologically validated protocol that defines subfield boundaries by the 
proportional distance along the SLM (Steve et al., 2017). The head and tail are areas where these 
heuristics have conventionally been very difficult to apply, since the slice angulation optimal for the 
body is not optimal for the curved head and tail, and work using multiplanar reformatting provides 
one alternative for curved regions of the hippocampus (Gross et al., 2020). Our unfolding approach 
is conceptually analogous to these approaches, however, the added strength of our approach is that 
we apply the same conceptual rule (proportional distance along the SLM) while considering the entire 
3D structure of the hippocampus.

We compare HippUnfold to other commonly used tools for hippocampal analysis, FS7 and ASHS 
(Figure 4). Both of these methods rely on smooth deformation of single or multi- atlas references, 
indicating they do not easily transfer to drastically different hippocampal folding patterns, which 
are often seen in the hippocampal head and tail across individuals. Both of these methods showed 
unfolded subfield patterns that were less consistent with ground truth histological literature than 
the output provided by HippUnfold. Common issues in other methods include introducing breaks in 
subfield topology, simplifications like the exclusion of the hippocampal tail, or inconsistent ordering 
of subfields. This highlights some of the advantages of HippUnfold, which was designed to overcome 
these issues explicitly.

Several factors make surface- based methods difficult to implement in the hippocampus, including 
its small size, and the difficulty of distinguishing the hippocampal sulcus or SRLM laminae that separate 
hippocampal folds. Here, we have overcome these issues using a highly generalizable and sensitive 
neural network ‘U- Net’ architecture, combined with our previously developed topological unfolding 
framework. Together, these methods achieved similar or better Dice overlap scores than what is 
typically seen between two manual raters on all subfields. We tested performance on new data-
sets (‘generalization’ datasets with different characteristics than the HCP training set) and saw good 
performance in nearly all cases. Specifically, we tested other common imaging protocols including 
different sample age groups (HCP- A) and thick- slice 7T- TSE acquisitions often used in targeted hippo-
campal subfield imaging (Yushkevich et al., 2015a). Though error rates were low, we do show how 
and why such errors sometimes occur, highlighting the importance that future users examine the brief 
QC reports included for each subject. Thus, while HippUnfold is shown to work well with all datasets 
examined here, we expect that the widespread adoption of higher- resolution acquisition techniques 
will further improve feasibility at other research institutes.

One important limitation of our method is that HippUnfold did not consistently show clear digi-
tation in the hippocampal head, body, and tail which was sometimes seen in manual segmentation 
in the training set and in other work (see Figure 4—figure supplement 1). This reflects a lack of 
detail compared to histological ground truth materials, and affects downstream processing. That is, an 
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overly smoothed hippocampal surface will appear thicker and have a smaller surface area compared 
to one that captures the full extent of digitations. This smaller surface area also results in each subfield 
boundary being proportionally shifted. Future work could improve this pipeline by training and testing 
with higher- resolution data where digitations can more clearly be distinguished both in labelmaps and 
in the underlying images.

A single unfolded subfield atlas based on 3D BigBrain ground truth histology (DeKraker et al., 
2020) was employed within HippUnfold for all subjects here. As illustrated in Figure 4, alternative 
unfolded subfield atlases can be used as well. Though previous work demonstrated reduced inter- 
individual variability of subfield boundaries in unfolded space (DeKraker et al., 2018), the extent to 
which subfield boundaries vary after unfolding is not yet known. In the neocortex, this issue is also 
present but partially mitigated with surface- based registration of available features like intracortical 
myelin, sulcal patterns, or thickness (e.g. Glasser et al., 2016). Such information could also be used 
in the unfolded hippocampus to further refine subject- specific subfield delineation, but would require 
histological ground truth data from multiple subjects to evaluate, ideally in 3D to avoid common out- 
of- plane sampling issues (DeKraker et al., 2021). This level of precision is likely beyond current typical 
MRI resolution levels, but should be investigated in future work aiming to combine in vivo and ex vivo 
or other more specialized imaging.

The current work has applications beyond subfield imaging, enabling new investigations of the 
hippocampus on a columnar and laminar scale. For example, rather than employing subfield ROI- 
based analyses, statistics can be performed on a per- vertex basis for vertices generated at different 
depths. This is in line with state- of- the- art neocortical analysis methods (Van Essen et al., 2000), and 
opens up the possibility of more precise localization of hippocampal properties. Similarly, it is worth 
noting that the methods used here are not necessarily restricted to MRI, as we have used the same 
surface- based unfolding in combination with manual segmentation to characterize the hippocampus 
in 3D BigBrain histology (DeKraker et al., 2020).

Altogether, we show that the BIDS App ‘HippUnfold’ that we have developed in this work (i) 
respects the different internal hippocampal folding configurations seen between individuals, (ii) can 
be applied flexibly to T1w or T2w data, sub- millimetric isotropic or thick- slice anisotropic data, and 
(iii) compares favourably to other popular methods including manual segmentation, ASHS and FS7. 
We believe this tool will open up many avenues for future work including examination of variability 
in hippocampal morphology which may show developmental trajectories or be linked to disease, or 
the examination of hippocampal properties perpendicular or tangential to its laminar organization 
with diffusion- weighted imaging. Finally, it is worth noting that the methods described here stand to 
improve existing techniques by providing greater anatomical detail and, critically, greater precision 
through topological alignment across individuals who vary in anatomical structure.

Table 1. MRI datasets used in training, evaluation, and comparison to extant methods.
Methods employed include those proposed here (HippUnfold), the same processing but with 
manual segmentation (similar to previous work; DeKraker et al., 2020) (manual unfold), Freesurfer 
v7.2.0 (FS7) (Iglesias et al., 2015), and an atlas of manual segmentations (Berron et al., 2017) used 
in ASHS (Yushkevich et al., 2015b).

Name Modalities Resolution Sample size (L+R) Methods employed

HCP- YA T1w, T2w 0.7 × 0.7 × 0.7 mm3 n=590 (training) HippUnfold
Manual unfold

n=148 (testing) HippUnfold
Manual unfold
FS7

HCP- A T1w
T2w SPACE
T2w TSE

0.8 × 0.8 × 0.8 mm3

0.8 × 0.8 × 0.8 mm3

0.4 × 0.4 × 2.0 mm3

n=1312 for T1w, T2w 
SPACE
n=200 for T2w TSE 
(FS7, ASHS)
n=200 for T1w 
(HippUnfold)

HippUnfold
FS7
ASHS

7T- TSE (from 
ASHS atlas)

T2w 0.4 × 0.4 × 1.0 mm3 n=70 HippUnfold
Manual subfields

https://doi.org/10.7554/eLife.77945
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Materials and methods
Data
HippUnfold was designed and trained with the HCP 1200 young adult subject data release (HCP- YA) 
(Van Essen et al., 2013), and additionally tested on the HCP- A dataset (Bookheimer et al., 2019), 
and anisotropic (or thick- slice) 7T data (7T- TSE) from Berron et al., 2017, which is considered optimal 
by many hippocampal subfield researchers (Yushkevich et al., 2015a). Informed consent and consent 
to publish were obtained by the original authors of the open source data examined here. Each of 
the three datasets included research ethics board approvals, as well as informed consent and, in 
the HCP- A dataset, assessment of the subjects’ ability to provide consent. For the single epilepsy 
patient case examined here, research ethics board approval and informed consent were collected at 
the Western University (HSREB # 108952, Lawson: R- 17- 156). These data are summarized briefly in 
Table 1.

nnUNet training
U- Nets perform classification of each input image voxel, and it is not constrained by smooth displace-
ments used in deformable atlas registration. This is important because smooth deformable registra-
tion can be ill- posed for an atlas with a different hippocampal folding configuration than the target. 
For example, when trying to register a hippocampus with two anterior digitations to one with four 
anterior digitations, topological breaks may be seen which leads to loss of detail and disproportionate 
stretching or compression of some subfields, an issue that is discussed in DeKraker et al., 2021. 
Instead, a U- Net classifies voxels individually based on a combination of local low- level and global 
high- level image features with no explicit smoothness constraints.

In the current work, gold standard training and test comparison segmentations were generated in 
a semi- automated but heavily supervised manner: a U- Net implementation (NiftyNet; Gibson et al., 
2018, which is no longer maintained) was trained on existing data from DeKraker et al., 2018. This 
was then applied to new HCP- YA data and results were manually inspected. In many cases, results were 
poor due to the relatively small training sample size, but good quality segmentations from roughly 
50% of subjects were selected and corrected by a manual rater (JD or MY) before being added to 
the initial training set for a new, de novo application of U- Net training. The process of inspection and 
manual correction was always performed according to the protocol outlined in DeKraker et al., 2018, 
to avoid systematic drift in rater performance. This process is typically referred to as incremental 
learning, and was applied in four iterations until a larger set of high quality, manually inspected and 
corrected segmentations (738 samples from 369 subjects) was achieved.

Once the gold- standard training data was obtained, we applied a U- Net implementation called 
nnUNet (Isensee et  al., 2021). nnUNet was built to include many state- of- the art deep learning 
techniques including sensible hyperparameter selection, built- in fivefold cross- validation, and other 
features that have been shown to perform well and minimize possible sources of bias in medical 
imaging. We thus applied all default parameters in our use of this tool. Training was repeated using 
the same labelmaps but different underlying images for T1w, T2w, and DWI images. For each of these 
modalities, training took place on an NVIDIA T4 Turing GPU over 72 hr. Additional new models (or 
fine- tuned models) can also be trained and supplied within our code framework. Training data is avail-
able online at Dekraker and Khan, 2022.

HippUnfold detailed pipeline
The command- line interface and options for HippUnfold are fully described online and in Supplemen-
tary file 1. A brief description of this pipeline is outlined here:

1. Preprocessing and resampling. Data is gathered via snakebids (Khan and Haast, 2021), which 
automatically and flexibly queries the specified BIDS directory for T1w and T2w images. Data 
is loaded and saved using NiBabel (Brett et al., 2020). Processing of each image is as follows:
a. T1w: N4 bias correction is performed using the Advanced Normalization Toolkit (ANTs) 

(Avants et al., 2008) followed by affine registration (NiftyReg; Modat et al., 2010) to CITI168 
atlas (Pauli et al., 2018). This transformation is composed (Convert 3D or c3d; Yushkevich 
et al., 2019) with a precomputed transform from CITI168 to oblique to the long axis of the 
hippocampus. Images are resampled to 0.3 mm3 and cropped to 128 × 256 × 128 voxels 
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centred on the CITI168 left and right hippocampi. Left hippocampi are flipped sagittally to 
resemble right hippocampi. We refer to this as cropped coronal oblique space.

b. T2w: N4 bias correction is performed as above, and if multiple T2w images are present 
then they are rigidly registered (NiftyReg) and then averaged, a rudimentary form of super- 
resolution sampling (e.g. Winterburn et al., 2013). Rigid registration to the corresponding 
T1w image is then performed (NiftyReg), and resampled to cropped coronal oblique space 
as above.

A ‘modality’ flag is used to determine which image modalities should be used if multiple 
are present in the input BIDS directory. Within the HippUnfold code, optional flags 
can be used to skip preprocessing and registration. Manually segmented hippocampal 
tissues can also be specified, which can be useful in ex vivo MRI or other modalities on 
which the current nnUNet- based segmentation is not expected to work. In all cases, 
data are resampled to cropped coronal oblique space to match the nnUNet training 
setup. It is possible to skip this step only if a manually segmented hippocampal tissue 
class image is also provided (in which case nnUNet is not applied).

2. Tissue class segmentation. If a manually segmented hippocampal tissue image is not supplied, 
then the input image will be run through nnUNet (Isensee et al., 2021), a state- of- the- art imple-
mentation of a deep convolutional neural network (U- Net) designed for image segmentation 
(Wiestler and Menze, 2020; Lu et  al., 2017). The output of nnUNet is a segmentation of 
tissue classes: hippocampal GM and the surrounding tissues which are used in defining unfolded 
coordinate boundaries: SRLM, medial temporal lobe cortex (MTLc), pial surface, hippocampal- 
amygdalar transition area (HATA), indusium griseum (IndGris), cysts, and the DG granule cell 
layer (which also makes up part of hippocampal GM but which marks an endpoint of the 
unfolding coordinate framework and so it was given a distinct label).

3. Post- processing. Here, we employed template shape injection (Qiu and Miller, 2008) to correct 
possible segmentation errors, making labelmaps more amenable to the previously developed 
hippocampal unfolding methods. The basic principle of template shape injection is to perform 
highly fluid deformable registration of a template segmentation labelmap to a given subject’s 
segmentation labelmap. This differs from typical registration- based segmentation methods in 
that the registration is optimizing labels rather than image feature similarity (i.e. registration is 
performed with binarized and smoothed labels as multiple contrasts, rather than on MRI inten-
sities). Specifically, we used mean squared error between labels as the cost function, which is 
minimized when identical labels are overlapping. In our implementation, we apply multi- contrast 
deformable registration using Greedy (Yushkevich et al., 2019). It should be noted that in prin-
ciple this step is not necessary for our pipeline, but in practice it helps avoid possible errors due 
to nnUNet segmentation faults (see main text Figure 5).
The reference template that we applied was created using manual segmentations from an 
open source ex vivo dataset (Wisse et al., 2017a) that was manually segmented according 
to our previous manual hippocampal unfolding protocol (DeKraker et al., 2018). Labelmaps 
from 22 samples were combined using a standard template building ANTs script ‘ buil dtem 
plat epar allel. sh’ (Avants et al., 2008). This template generation entails averaging all images 
and then registering each sample to the average, iteratively refining and sharpening the 
average image. This ex vivo dataset was selected for template building because we had high 
confidence in the quality of these segmentation since they contained higher resolution and 
contrast than other datasets while still including multiple samples.

4. Unfolding. This code is described in DeKraker et al., 2018, and was modified in DeKraker 
et al., 2020, but we will provide a short summary here.

Intuition
Imagine we have a tangled piece of wire. We attach one end to something hot (100°C) and the other 
to something cold (0°C), and then wait for the temperature to equilibrate along the entire wire. We 
then have a second wire that is tangled up in a different pattern (and possibly with a different length). 
We attach the same hot and cold endpoints, and wait for it to equilibrate as well. Then, when we want 
to find topologically homologous points between the two wires, we find the spot where they have the 
same temperature, say 10°C (or 10% its length), or the same for any other pair of homologous points. 
This explanation works since the heat equation describing the equilibrium temperatures is the same as 
the Laplace equation if we assume that the heat conductance (or thermal diffusivity) is constant. These 
wires make up a 1D example, but the same principle also applies to a folded 2D sheet, where the 
endpoints are edges rather than ends. Here, we apply endpoints in two perpendicular directions: AP 
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(or HATA to  ind. gris.) and PD (sub to DG), making up a standardized 2D indexing system (or ‘unfolded 
space’).

Details
A Laplace field varying from 0 to 1 is generated across hippocampal GM, with 0 being at its anterior 
boundary with the HATA and 1 being at its posterior boundary with the IndGris (AP). This provides 
a scaled, smooth, geodesic way to index points along this axis. Another Laplace field is generated 
across the PD axis of the hippocampus (MTLc to DG), and together these two fields provide a coordi-
nate system spanning hippocampus GM along two dimensions, which we plot as a flat rectangle (with 
a 2:1 aspect ratio to reflect the fact that the hippocampus is longer than it is wide). A third field is 
generated across the thickness of hippocampal GM (SRLM to outer boundary, or inner to outer, or IO). 
By default, the IO Laplace field is replaced by an equivolumetric model (Waehnert et al., 2014; Hunt-
enburg et al., 2018), which helps account for the effects of curvature on laminar features (though this 
replacement can optionally be disabled). We then compute displacement fields for transforming each 
voxel from native space to the ‘unfolded’ space spanned by these three (AP, PD, and IO) fields, and 
vice versa.

Specifically, transformations for going between this unfolded space and native space are defined 
from Cartesian coordinates (x,y,z) to each Laplace field (AP, PD, and IO) for all hippocampal GM 
voxels. We performed piecewise linear interpolation (griddata from SciPy; Virtanen et al., 2020) to 
go from each unfolded coordinate (AP, PD, IO) to back to Cartesian coordinates (x,y,z). Rather than 
map Cartesian coordinates to Laplace coordinates ranging from 0 to 1 (as in previous work; DeKraker 
et al., 2018), we scale these gradients to make up a standard rectangular prism with a size of 256 × 
128 × 16 voxels (dimensions corresponding to AP, PD, and IO, respectively), at a voxel size of 0.15625 
mm3 isotropic. This reference space is easily changed in the config file if a different unfolded resolu-
tion, size, or aspect ratio is desired. Each of these displacement fields is saved as a standard ITK 3D 
warp file in NIfTI format that can subsequently be applied to NIfTI or GIfTI files.

Unfolding of the DG is introduced in the current work. This is performed with the same methods 
described above but over the domain of the DG rather than all hippocampal GM. IO and PD fields 
are swapped with respect to the rest of the hippocampus reflecting the fact that during its develop-
ment, the DG breaks from the rest of the cortical mantle and wraps around its terminus (CA4), making 
it topologically perpendicular to the rest of the hippocampus (Duvernoy, 1998). Endpoints for the 
DG are defined within the template shape used in step 3. Due to the thinness of the DG, it is often 
thinner than one voxel and so Laplace fields cannot easily be generated with the methods used in 
previous work. Thus, template shape injection is used to define the AP, PD, and IO fields within the 
DG, which were precomputed in the reference template with an idealized DG shape for unfolding. 
Thus, topological alignment between individuals does not perfectly follow the same Laplacian coordi-
nate framework used in the rest of the hippocampus. Rather, this represents a more traditional volu-
metric approach to alignment via a template. The unfolded DG was defined by a rectangular prism 
with a size of 256 × 32 × 16, reflecting the fact that it is smaller than the rest of the hippocampus (PD) 
but still spans the same long (AP) axis.

5. Subfield definition. In previous work (DeKraker et al., 2020) we performed a highly detailed 
3D ground truth segmentation of hippocampal subfields using 3D BigBrain histology (DeKraker 
et al., 2020). We mapped subfields using our Laplace coordinate framework, which provides 
implicit, topologically constrained registration between hippocampi. Thus, HippUnfold applies 
the same subfield boundary definitions to new samples in unfolded space, which are then prop-
agated back to native space. Specifically, reference subfield labels already in unfolded space are 
warped to each subjects’ native space using the warp files generated in step 4. Other unfolded 
subfield atlases can also be used, but BigBrain is the default since it is the most complete and 
detailed model of the hippocampal subfields to date.

6. GIfTI formatted outputs. In order to facilitate integration with other popular neuroimaging anal-
ysis tools, we have provided outputs in commonly used gifti surface formats in addition to volu-
metric nifti formats. Standardized unfolded surfaces corresponding to the inner, midthickness, 
and outer surface were generated for one standard unfolded template and propagated to each 
subjects’ native, folded space using the warp files generated in step 4. Note that unfolded 
space is mapped to a rectangle rather than a sphere as is typically used in the neocortex, and 
so surfaces are not fully enclosed. Tessellation of vertices are available in a variety of densities 
categorized by their average vertex spacing in the native space: 0.5 mm (7262 vertices), 1 mm 
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(2004 vertices), 2 mm (419 vertices), or the legacy unfoldiso (32,004, ~32K, corresponding to the 
number of unfolded coordinates used in previous work, or 254×126).

Standardized unfolded tessellations were generated by starting with a 512×256 grid with each 
point connected to its neighbours, making a uniform mesh in unfolded space. Mesh vertices were iter-
atively removed until vertex distances after transforming to an averaged native space were achieved 
with the above spacings. In the case of the 32K surfaces, meshes were generated with 254×126 points 
with no vertices being removed, meaning that vertex distances are uniformly spaced in unfolded 
space but distorted in native space. In addition to hippocampal surfaces, DG surfaces are also gener-
ated, with the following unfolded meshes: 0.5 mm (1788 vertices), 1 mm (449 vertices), 2 mm (64 
vertices), and unfoldiso (7620 vertices, 254×30).

7. Morphometry. Connectome Workbench commands (Glasser et al., 2013; Marcus et al., 2011) 
are used to extract measures of thickness between inner and outer surfaces, as well as curvature 
and gyrification along midthickness surfaces. The curvature metric is calculated using the mean 
curvature, calculated on a midthickness surface smoothed with the mean curvature midthick-
ness surfaces, first smoothed by neighbourhood averaging (strength = 0.6, iterations = 100). 
The gyrification metric is defined as the ratio of native space surface area over unfolded space 
surface area, where the surface area is calculated at each vertex as the average of areas of 
connected triangles. Additional data (e.g. fMRI, DWI, or others) can be sampled at each vertex 
with the code provided in HippUnfold (the volume to surface mapping command in Connec-
tome Workbench). With the implicit registration provided by unfolded space and the tessella-
tion of these surfaces, such data can readily be compared across hippocampal samples without 
the need for further registration. These data can be subgrouped according to subfield labels, 
as in ROI analysis styles, or each vertex can be examined separately as in searchlight or data- 
driven analysis styles. Alternatively, gradient- based analyses can be applied based on Laplace 
coordinates and their corresponding surface mesh tessellations (see Vos de Wael et al., 2018, 
for example).

For even more implementation details, see Supplementary file 4 – HippunFold algorithms.
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information including worked examples and useful tips on viewing data in other common platforms.

•  Supplementary file 2. Side- by- side snapshot comparison of Human Connectome Project- Aging 
(HCP- A) segmentations results from HippUnfold, Freesurfer (FS7), and Automatic Segmentation 
of Hippocampal Subfields (ASHS) from the left hemisphere. Snapshots were taken at the conronal 
centroid, centroid + 15 slices, centroid + 30 slices, and the sagittal centroid.

•  Supplementary file 3. Side- by- side snapshot comparison of Human Connectome Project- Aging 
(HCP- A) segmentations results from HippUnfold, Freesurfer (FS7), and Automatic Segmentation of 
Hippocampal Subfields (ASHS) from the right hemisphere. Snapshots were taken at the conronal 
centroid, centroid + 15 slices, centroid + 30 slices, and the sagittal centroid.

•  Supplementary file 4. Detailed mathematical formulation of algorithms used throughout 
HippUnfold.

•  Transparent reporting form 

Data availability
All code for the HippUnfold application has been made available at https://github.com/khanlab/ 
hippunfold, (v1.2.0 release at https://zenodo.org/record/7063098). Data and code to generate the 
Figures shown in this study have been made available at https://zenodo.org/record/6360647. Training 
data for machine learning models have been made available at https://zenodo.org/record/7007362.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Khan AR, DeKraker J 2022 HippUnfold HCP- YA 
Training Data

https:// doi. org/ 10. 
5281/ zenodo. 7007362

Zenodo, 10.5281/
zenodo.7007362

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Bookheimer H 2018 Human Connectome 
Project - Aging

https:// doi. org/ 10. 
15154/ 1520707

Connectome Coordination 
Facility, 10.15154/1520707
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