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Abstract Omics-based technologies are driving major advances in precision medicine, but efforts 
are still required to consolidate their use in drug discovery. In this work, we exemplify the use of 
multi-omics to support the development of 3-chloropiperidines, a new class of candidate anticancer 
agents. Combined analyses of transcriptome and chromatin accessibility elucidated the mechanisms 
underlying sensitivity to test agents. Furthermore, we implemented a new versatile strategy for the 
integration of RNA- and ATAC-seq (Assay for Transposase-Accessible Chromatin) data, able to accel-
erate and extend the standalone analyses of distinct omic layers. This platform guided the construc-
tion of a perturbation-informed basal signature predicting cancer cell lines’ sensitivity and to further 
direct compound development against specific tumor types. Overall, this approach offers a scalable 
pipeline to support the early phases of drug discovery, understanding of mechanisms, and poten-
tially inform the positioning of therapeutics in the clinic.
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Introduction
Omic technologies have revolutionized the classical hypothesis-driven paradigm of drug discovery, 
offering a new perspective for the systematic identification of targets and therapeutics (Dugger et al., 
2018; Paananen and Fortino, 2020). An increasing number of examples describe the use of these 
approaches to inspect the pharmacological profile of existing drugs, e.g., mechanism of action (MoA) 
and specific sensitivity biomarkers, as well as to assist their correct repositioning in clinical practice 
(Koromina et al., 2019; Matthews et al., 2016; Mun et al., 2020; Tsimberidou, 2015). Compared 
to traditional approaches, omics-based methods capture the complexity of biological systems and 
pathological processes in its entirety at increasingly affordable costs (Matthews et al., 2016). Indeed, 
significant cost reductions have been announced for sequencing technologies, making them acces-
sible to the scientific community with no impact on their robustness (Pennisi, 2022). For this reason, 
refined strategies to handle the high-dimensional information of omics data are continuously investi-
gated to expedite their routine use in preclinical drug development (Kagohara et al., 2020; Li et al., 
2014; Li et al., 2021; McFarland et al., 2020; Rendeiro et al., 2020; Shaheen et al., 2018; Srivatsan 
et al., 2020; Ye et al., 2018).

Studies from our group highlighted 3-chloropiperidines (3-CePs) as a novel class of candidate anti-
cancer agents developed to improve the pharmacological profile of nitrogen mustard-based chemo-
therapeutics, characterized by a fast and affordable synthesis (Carraro et al., 2021; Carraro et al., 
2019; Helbing et al., 2020; Sosic et al., 2017; Zuravka et al., 2015a; Zuravka et al., 2014; Zuravka 
et al., 2015b). As intended, these agents were demonstrated to induce DNA lesions, a mechanism 
conceivably responsible for their cytotoxicity on tested cancer cell lines (Carraro et al., 2021; Carraro 
et al., 2019; Helbing et al., 2020). Interestingly, despite their expected broad-acting MoA, a subset 
of derivatives showed preferential activity against pancreatic adenocarcinoma (PAAD)BxPC-3 cells 
in 2D and 3D cell culture when compared to other treatment-resistant cell lines (e.g. HCT-15 from 
colorectal cancer). This preferential activity requires more investigation for further preclinical and clin-
ical translation, especially in light of the broad resistance of pancreatic tumors to most of the available 
treatments (Carraro et al., 2021; Carraro et al., 2019; Helbing et al., 2020).

The contribution of multi-omics to support early phases of drug discovery is growing exponentially 
in the era of precision medicine (Li et al., 2021). Combined omics technologies have the potential 
to address some of the intrinsic difficulties of the traditional drug discovery and development path, 
assisting it early from target prioritization and hit identification up to the evaluation of candidates’ 
efficacy and safety (Mun et al., 2020). Drug-perturbation experiments have been employed to inspect 
the functionality of target proteins (Faivre et  al., 2020) and the MoA of therapeutics, efficiently 
guiding the decision-making process in the development of lead compounds (Mun et  al., 2020). 
The massive accumulation of genomic and transcriptomic profiles offers a precious substrate for the 
optimization of strategies capable of predicting susceptibility to known therapeutics (Barretina et al., 
2012; Lamb et  al., 2006; Subramanian et  al., 2017; Uhlen et  al., 2017). These approaches are 
further refined by the continuous acquisition of data from high-throughput single-cell platforms (Bush 
et al., 2017; Corsello et al., 2020; McFarland et al., 2020; Srivatsan et al., 2020; Ye et al., 2018). 
Beyond the most common transcriptome analysis, changes in gene regulation can be evaluated in 
terms of chromatin accessibility (Buenrostro et al., 2013; Granja et al., 2019; Schmidl et al., 2019). 
We hypothesized that combining the information from the transcriptome and chromatin state would 
enable a higher-resolution and extremely robust mapping of cell dynamics upon drug exposure. 
Examples of the joint use of these two omic techniques exist (Kagohara et al., 2020; Rendeiro et al., 
2020; Suzuki et al., 2019; Tung et al., 2021), but their synergistic employment on compounds under 
early development is still underexplored (Matthews et al., 2016).

In this study, representative mono- (M) and bi-functional (B) 3-CePs bearing a single or double 
alkylating units (Figure 1A) were selected to exemplify the use of a multi-omic approach to investi-
gate the molecular determinants of susceptibility to novel drug candidates and their MoA (Carraro 
et al., 2021; Carraro et al., 2019; Helbing et al., 2020). We analyzed transcriptional changes and 
chromatin status of cancer cell lines previously identified as high- (PAAD BxPC-3) and low-sensitive 
(colorectal adenocarcinoma HCT-15) after treatment by RNA- and ATAC-seq. In addition, we imple-
mented our multi-omics pipeline in drug discovery to derive perturbation-informed signatures 
predicting compound sensitivity. We validated the approach by assessing cancer cell sensitivity to 
both the early-discovered compound M and the established antineoplastic agent cisplatin. Overall, 

https://doi.org/10.7554/eLife.78012
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Figure 1. Cancer tropism of 3-chloropiperidines (3-CePs) is not explained by DNA damage. (A) Chemical structure of the analyzed 3-CePs 
(M=monofunctional and B=bifunctional). (B) Quantification of genomic DNA damage in BxPC-3 and HCT-15 cells treated with M (10 nM and 100 nM), 
B (200 nM and 2 µM), or DMSO (dimethyl sulfoxide) 0.5% (ctrl) for 6 hr and analyzed by the fast micromethod single-strand-break assay: alkaline 
denaturation of DNA is followed in time up to 20 min by monitoring the fluorescence of the dsDNA-specific PicoGreen dye. (C) Cell cycle distribution 

Figure 1 continued on next page
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the proposed pipeline not only allowed to identify potentially more susceptible target tumor types for 
further development of test compounds, but also offered a complete predictive framework to support 
precision oncology in a clinical setting.

Results
Cancer tropism of 3-CePs is not explained by DNA damage
The selected M and B3-CePs (Figure 1A) were shown in previous work to be particularly active in the 
nanomolar range against BxPC-3 PAAD cells (Carraro et al., 2019; Helbing et al., 2020). From this 
premise, the two compounds were chosen along with the highly sensitive BxPC-3 cell line and the low-
sensitive HCT-15 colorectal adenocarcinoma cell line (72 hr IC50 HCT-15/IC50 BxPC-3: 50 for M, 10 for 
B) (Carraro et al., 2019; Helbing et al., 2020) to illustrate how integrative omics approaches unveil 
the molecular mechanisms responsible for the described cellular tropism.

First, to assess whether 3-CePs-induced DNA damage itself would differ in the two cell lines upon 
treatment, we measured the accumulation of DNA single-strand breaks after 6 hr of treatment with 
both compounds at their cytotoxicity IC50s in BxPC-3 and at a 10-times higher concentration (10 nM 
and 100 nM M; 200 nM and 2 µM B) (Schröder et al., 2006). Surprisingly, the two cell lines showed 
very comparable DNA damage accumulation, in both cases higher after treatment with M compared 
to B (Figure 1B). These results clearly pointed toward differential responses in the two cell lines down-
stream of DNA damage.

Since alkylating agents are known to alter the progression of the cell cycle (Kaufmann and Paules, 
1996; Meyn and Murray, 1984; Tu et al., 2004), we next performed a cell cycle distribution analysis 
by flow cytometry after different times of treatment (6 hr, 12 hr, and 72 hr) with both compounds 
(Figure  1C, Figure  1—figure supplement 1A and B). While M induced a persisting block in G1 
throughout the observation time in BxPC-3 cells, this block was absent in HCT-15 cells. In contrast, B 
induced an early G2/S block in HCT-15 cells (6 hr), which was not observed at later time points, while 
such a block was most obvious at 12 hr for BxPC-3 cells. Despite similar DNA damage accumulation, 
these findings clearly indicated a different behavior for the two cancer cell lines in terms of cell cycle 
progression after treatment with the two 3-CePs.

To determine the additional mechanisms explaining differential sensitivity to 3-CePs, we measured 
the activation of the DNA repair machinery as another key aspect in the cellular response to geno-
toxicants (Li et al., 2020). To verify the ability of the two cancer cell lines to detect double-strand 
breaks (DSBs), we assessed the phosphorylation of H2AX (γH2AX), an early event of the DNA damage 
response (DDR) (Sharma et al., 2012), by flow cytometry after 6 hr and 12 hr of treatment with both 
agents (Figure 1D). Interestingly, despite the comparable DNA damage accumulation in the two cell 
lines, only HCT-15 showed an increase in the γH2AX-positive population, suggesting a more efficient 
engagement of the DNA repair machinery.

Taken together, these results indicated that cell-specific mechanisms after the first event of DNA 
damage are responsible for the different sensitivity to 3-CePs.

Treatments elicit cell-specific transcriptional changes
Different genetic and epigenetic factors define the responsiveness of tumor cells to chemotherapeutic 
agents (Vasan et al., 2019). To address these globally, we analyzed changes in the transcriptome of 
the high- and low-sensitive cell lines after treatment with the two 3-CePs (Figure 1E). RNA-seq was 
performed on total RNA of HCT-15 and BxPC-3 cells exposed to DMSO 0.5% (control) or treated 

(accumulation in G1 vs G2/S phases) of BxPC-3 and HCT-15 cells treated with M (10 nM), B (200 nM), or DMSO 0.5% for 6 hr and 72 hr analyzed by 
FACS (Fluorescence Activated Cell Sorting). At least three biological replicates were obtained per condition and unpaired two-tailed Student’s t-test 
was performed to assess statistical significance (p<0.05). (D) Analysis of H2AX phosphorylation in BxPC-3 and HCT-15 cells treated with M (10 nM), B 
(200 nM), or DMSO 0.5% for 6 hr and 12 hr analyzed by FACS. At least three biological replicates were obtained per condition, and unpaired two-tailed 
Student’s t-test was performed to assess statistical significance (p<0.05). (E) Schematic representation of the adopted omic-based approach.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Cancer tropism of 3-CePs is not explained by DNA damage—supporting data.

Figure 1 continued
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with M (10 nM) or B (200 nM) for 6 hr and 12 hr (Figure 2A, Figure 2—figure supplement 1A) as in 
previous experiments.

Principal component analysis (PCA) of all transcripts separated samples within each cell line 
according to treatment and time point (Figure 2—figure supplement 1B), suggesting a clear tran-
scriptional reprogramming after treatment. In fact, differential expression (DE) analysis showed that 
the expression of a large number of genes changed significantly in both cell lines after exposure 
to 3-CePs (p<0.05, independent hypothesis weighting [IHW] multiple testing correction) (Figure 2B, 
Figure 2—figure supplement 1C), especially at 6 hr in BxPC-3 cells and upon treatment with B in 
HCT-15 cells.

Gene ontology (GO) enrichment was performed on the DE genes to determine signaling pathways 
and transcriptional programs explaining the observed differences. In a first explorative approach, we 
generated the union of DE genes per cell line irrespective of compound and time point, which allowed 
us also to distinguish between cell type-specific and shared DE genes (Figure  2—figure supple-
ment 1D). The most representative biological processes identified by this analysis (Figure 2—figure 
supplement 1E, Supplementary file 1) are reported in Figure 2C (see Methods and Figure 2—figure 
supplement 1F for further details).

Unexpectedly, we identified a strong translational response in BxPC-3 cells after treatment, a 
process which is typically attenuated in stress conditions, as was the exposure to our DNA damaging 
agents, to allow proper recovery of the protein quality control machinery (Burger et  al., 2010; 
Shenton et al., 2006). In contrast, a strong regulation of genes mediating protein stability and catab-
olism was observed in the low-sensitive cell line. In addition, HCT-15 cells activated genes involved in 
the DDR, consistent with their higher ability to detect and respond to DSBs. Both these two mecha-
nisms pointed toward the activation of an adaptive stress response in the low-sensitive cell line.

To further characterize these transcriptional changes over time in a cell type-specific context, we 
grouped the DE genes at 6 hr and 12 hr in modules according to the similarity in their expression 
profiles and performed a functional enrichment on genes with similar expression patterns (Figure 2D 
and Figure 2—figure supplement 2A, Supplementary file 2). Genes involved in ribosome biogen-
esis and DNA repair turned out to be upregulated, particularly after 6  hr of treatment in BxPC-3 
cells (Clusters 2 and 3, Figure 2D). Besides, silencing of pro-survival genes involved in microtubule 
organization and the JAK-STAT cascade (Cluster 1, Figure 2D) was detected at the same time point. 
Only after 12 hr of treatment (Figure 2—figure supplement 2A), BxPC-3 cells boosted carbohydrate 
metabolism, most likely an attempt to recover in extremis (Lin et al., 2020).

Also, HCT-15 cells upregulated clusters of genes mediating DNA repair, protein stability, and mito-
chondrial activity as early as 6 hr of treatment, suggesting this time point as the most informative to 
describe the response to 3-CePs (Clusters 4 and 6, Figure 2D). In contrast to BxPC-3 cells, HCT-15 
downregulated genes involved in translation and ribosome biogenesis from 6 hr of exposure (Cluster 
7, Figure 2D), while intensifying their response to oxidative stress after 12 hr (Cluster 17, Figure 2—
figure supplement 2A).

This exploratory analysis showed clearly different transcriptional responses and distinct time 
dynamics in BxPC-3 compared to HCT-15 cells, most likely responsible for their different susceptibility 
to 3-CePs. In particular, our findings pointed toward DNA repair and proteostasis as key mechanisms 
tuning sensitivity to the compounds, as further confirmed by inspecting the complete rank of DE 
genes via gene set enrichment analysis (GSEA, Figure 2—figure supplement 2B; Subramanian et al., 
2005).

DNA repair and proteostasis are key modulators of the response to 
3-CePs
For their key role in the response to 3-CePs, DNA repair and protein homeostasis were further analyzed 
to clarify their contribution to BxPC-3 sensitivity.

Interestingly, DNA repair was activated in both cell lines early after 6 hr of treatment but with a 
different modulation (Figure 3A). First, base-excision repair (BER) was suggested as the preferen-
tial pathway of BxPC-3 by GO enrichment, while HCT-15 relied mostly on nucleotide-excision repair 
(NER), unleashing a generally stronger activation of the DDR. In detail, HCT-15 DE genes contributing 
to the response to the DNA damage stimulus were strongly upregulated already after 6 hr especially 
in response to B, while activated only after 12 hr in BxPC-3 (Figure 3—figure supplement 1A). In 

https://doi.org/10.7554/eLife.78012
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Figure 2. Treatments elicit cell-specific transcriptional changes. (A) An overview of the applied workflow for the RNA-seq analysis. (B) Number of up- 
(red) and down-regulated (blue) differential expression (DE) genes in BxPC-3 and HCT-15 cells after treatment with M (10 nM), B (200 nM), or DMSO 
0.5% (ctrl) for 6 hr and 12 hr (adjusted p threshold = 0.05, shrinkage = TRUE, and multiple testing method = independent hypothesis weighting [IHW]). 
(C) Gene ontology (GO) database functional enrichment gene set enrichment analysis (GSEA) on cell-specific and shared up- and down-regulated DE 

Figure 2 continued on next page
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contrast, genes such as PPP4R2 and RAD51AP1, both involved in the first phases of DSBs repair 
(Chowdhury et al., 2008; Modesti et al., 2007), were even downregulated in BxPC-3 cells at 6 hr.

The more efficient activation of DNA repair in HCT-15 was further confirmed on the overall rank of 
genes by GSEA at 6 hr of treatment (Figure 3B). As anticipated, most of the DE genes leading the 
enrichment in HCT-15 belonged to NER (e.g. GTF2H3 and RBX1) and other recombinational pathways 
such as homologous repair (HR) (e.g. MMS22L and BARD1) and fanconi anemia (FA) (e.g. BRIP1 and 
FANCM), all better suited for the efficient repair of bulky lesions and highly toxic DSBs and crosslinks 
(Cantor et al., 2001; Li and Jin, 2012; Niraj et al., 2019; Piwko et al., 2016; Satoh and Hanawalt, 
1996; Westermark et al., 2003). On the other hand, DE genes in BxPC-3 cells were mostly related to 
BER (e.g. APEX1 and UNG) and MMR (mismatch repair) (e.g. MSH6 and EXO1), which contribute to 
the repair of smaller lesions and mismatches (Fortini et al., 2003; Kunkel and Erie, 2005).

In the analysis, proteostasis was identified as a second key biological process strictly related to 
genotoxic stress (González-Quiroz et al., 2020; Hutt and Balch, 2010). HCT-15 cells engaged the 
protein folding and catabolism apparatus in response to 3-CePs, especially to B already at the early 
time point (Figure 3C). As observed for DNA repair, DE genes contributing to protein catabolism were 
upregulated as early as 6 hr of exposure in HCT-15 cells, whereas they were downregulated at the 
same time point in BxPC-3 and only upregulated after 12 hr (Figure 3—figure supplement 1B). This 
response involved chaperones and co-chaperones (e.g. HSPA8, HSPA1B, BAG2, and BAG5), other 
genes mediating protein catabolism (e.g. LAMP2 and CUL3), and ER morphogenesis (e.g. RTN4) 
(Eskelinen, 2006; Jozsef et al., 2014; Ran et al., 2007; Scott et al., 2016). Interestingly, a transcrip-
tional pattern revealed by GSEA at 6 hr of treatment highlighted an intense positive modulation of 
the PERK-mediated branch of the unfolded protein response (UPR) specifically in BxPC-3 (Figure 3D 
and E). Even more enlightening were the DE genes leading the enrichment: ATF4, DDIT3 (CHOP), 
and PPP1R15A (GADD34) were significantly upregulated after 6 hr of exposure only in this cell line 
(Figure 3F). These genes participate in the PERK-mediated UPR triggering cell death after prolonged 
ER stress through the aberrant recovery of translation, which induces proteotoxicity (Han et al., 2013; 
Urra et  al., 2013). This mechanism would reasonably explain the ribosome biogenesis signature 
observed in BxPC-3 cells. Consistently, recent work reported a particular susceptibility for pancreatic 
cancer adenocarcinoma to ER stress and protein dyshomeostasis (Garcia-Carbonero et al., 2018).

Furthermore, the ability of HCT-15 cells to control proteostasis may also depend on the activation 
of lipid and cholesterol biosynthesis in response to the compounds (Figure 3—figure supplement 
1C, D). In fact, among other known pro-survival functions, these pathways contribute to resolving ER 
stress through pathways involving, e.g., the Stearoyl-CoA Desaturase (SCD) enzyme, for which we 
detected a significant upregulation of the respective transcript in HCT-15 (Figure 3—figure supple-
ment 1D; Romero et al., 2018; Tadros et al., 2017).

Overall, the transcriptome analysis of this in vitro perturbation experiment allowed us to dissect the 
different responses to 3-CePs in our model cell lines, pointing toward protein homeostasis and DDR 
imbalances as mechanisms responsible for the high susceptibility of BxPC-3 cells.

The response to 3-CePs is further regulated at the chromatin level
The transcriptome analysis unveiled a defined framework of responses tuning the sensitivity to 3-CePs. 
To further characterize them at the epigenetic level, we examined chromatin accessibility in nuclei of 
BxPC-3 and HCT-15 cells treated with M and B for 6 hr and 12 hr (Figure 4A, Figure 4—figure supple-
ment 1A) by ATAC-seq.

3-CePs induced evident epigenetic changes in both cell lines, as suggested by PCA (Figure 4—
figure supplement 1B) and confirmed by the number of differentially accessible regions (DARs) 

genes. For each identified biological process, enrichments in terms of count and p-value of representative terms are reported (p<0.05). (D) Expression 
level of cell-specific 6 hr DE genes across test conditions. GSEA was performed on modules with similar regulation identified by hierarchical clustering: 
for each cluster, representative GO terms and genes of the associated load are reported.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Treatments elicit cell-specific transcriptional changes—supporting data.

Figure supplement 2. Treatments elicit cell-specific transcriptional changes—supporting data 2.

Figure 2 continued

https://doi.org/10.7554/eLife.78012
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Figure 3. DNA repair and proteostasis are key modulators of the response to 3-chloropiperidines (3-CePs). (A) Gene set enrichment analysis (GSEA) 
for terms related to DNA damage and repair performed on differential expression (DE) genes detected in each of the considered treated vs control 
comparisons. For each gene ontology (GO) term (p<0.05), enrichments in terms of count and p-value are reported. (B) GSEA enrichment plots for the 
DNA repair pathway obtained from log2FC ranks for each of the considered treated vs control comparisons. The expression of leading edge genes 

Figure 3 continued on next page
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identified especially in BxPC-3 cells (p<0.05, Figure 4B, Figure 4—figure supplement 1C). For further 
downstream analyses, we focused on DARs mapping to promoters, whose specific condensation or 
compaction contribute to modulation of transcription of associated genes (Figure 4B).

Also in this case, to better describe the timing of chromatin remodeling, cell-specific promoter-
associated DARs elicited after 6 hr and 12 hr of treatment were grouped in clusters sharing a similar 
pattern of regulation and functional enrichment was performed on the associated genes (Figure 4C, 
Figure 4—figure supplement 1D, Supplementary file 3).

In BxPC-3 cells, we observed condensation of promoters involved in protein catabolism and DNA 
damage detection after 6 hr of exposure (Cluster 1 and 2, Figure 4C), most likely contributing to the 
transcriptional downregulation of such processes observed at the same time point and in line with the 
reported improper detection of DNA lesions (Ran et al., 2007; Zhou et al., 2017). On the contrary, 
relaxation of peaks involved in apoptosis and redox regulation was detected, in line with evidence 
from RNA-seq (Cluster 5, Figure 4C). In HCT-15 cells, relaxation of promoters involved in the DDR as 
well as protein catabolism (Cluster 9 and 10, Figure 4C) was observed, again supporting our obser-
vations on transcriptome level. Accordingly, we also evidenced a cluster of downregulated promoters 
involved in rRNA transcription (Cluster 6, Figure 4C). Altogether, these results attested that the regu-
lation of elicited transcriptional pathways was accommodated by changes at the chromatin level, 
adding new information on the possible mechanisms determining the cellular responses to 3-CePs.

A critical step in the analysis of multi-omic datasets is the integration of information obtained 
from the different layers. Though valuable strategies have been developed in recent years to inte-
grate RNA- and ATAC-seq data, alternatives are still required to optimize and enlarge the functional 
information obtained from the combination of these powerful techniques (Ackermann et al., 2016; 
Höllbacher et al., 2020; Yan et al., 2020). In this study, we approached data integration through two 
alternative strategies, that we called pairwise and crosswise.

As a first level of integration, we identified genes with concordant regulation in RNA- and ATAC-seq 
upon treatment. In this pairwise integration, we compared the direction of transcriptional regulation 
of genes to the accessibility of their promoters, as specified in the Methods section and shown in 
Figure 4D (M 6 hr), Figure 4—figure supplement 2A (B 6 hr), and Figure 4—figure supplement 2B 
(12 hr). Given the biological delay that could exist between chromatin remodeling and a detectable 
variation in transcript level, pairwise comparisons were also considered between chromatin changes 
after 6 hr and transcriptional responses after 12 hr of treatment (Figure 4—figure supplement 2C). 
We then applied GSEA to the identified groups of genes across all conditions to point out functional 
processes of interest.

Overall, the integration efficiently identified key regulators of previously described processes, 
once more highlighting the value of applying multi-omics to gain a higher resolution and robustness 
in the analysis of drug responses. As described in Figure 4D for compound M, and similarly for B 
(Figure 4—figure supplement 2A), we observed coherent upregulation of genes involved in ribo-
some biogenesis (e.g. RNPS1), apoptosis (e.g. AEN), BER (e.g. APEX1), and cell cycle regulation (e.g. 

is also shown, where key DE genes are reported with the same color of their associated DNA repair pathways (BER = base excision repair, NER = 
nucleotide-excision repair, MMR = mismatch repair, HR = homologous recombination, NHEJ = non-homologous end joining, and FA = Fanconi anemia 
pathway) (Cantor et al., 2001; Charles Richard et al., 2016; Ferretti et al., 2016; Fortini et al., 2003; Fousteri and Mullenders, 2008; Jaafar et al., 
2017; Johnson et al., 1999; Kunkel and Erie, 2005; Liu and Kong, 2021; Li and Jin, 2012; Li et al., 2009a; Lou et al., 2017; Lu et al., 2007; Mazin 
et al., 2010; McVey et al., 2016; Nijman et al., 2005; Niraj et al., 2019; Overmeer et al., 2010; Parsons et al., 2009; Pascucci et al., 2018; Piwko 
et al., 2016; Poletto et al., 2014; Poulsen et al., 2013; Prasad et al., 2000; Rajendra et al., 2014; Satoh and Hanawalt, 1996; Smirnova et al., 
2005; Tellier and Chalmers, 2019; Westermark et al., 2003; Xu et al., 2008; Yard et al., 2016). (C) GSEA for terms related to protein stability and 
endoplasmic reticulum (ER) load performed on DE genes detected in each comparison. For each GO term, enrichments in terms of count and p-value 
are reported. (D) NES (normalized enrichment score) and -log10 pval for the log2FC rank-based GSEA enrichment of the GO term PERK-mediated 
unfolded protein response (UPR) in treated vs control comparisons. (E) GSEA enrichment plot for the PERK-mediated UPR pathway obtained from 
log2FC rank in the M 6 hr vs control comparison in BxPC-3 cells. The expression of leading edge genes is also shown, where key DE genes of the 
mentioned pathway are reported. (F) Boxplots showing the expression level of ATF4, DDIT3, and PPP1R15A (vst-transformed normalized counts) in 
BxPC-3 cells (n=3).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. DNA repair and proteostasis are key modulators of the response to 3-chloropiperidines (3-CePs)—supporting data.

Figure 3 continued

https://doi.org/10.7554/eLife.78012
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Figure 4. The response to 3-chloropiperidines (3-CePs) is further regulated at the chromatin level. (A) An overview of the applied workflow for the 
ATAC-seq analysis. (B) Number of up- (red) and down-regulated (blue) differentially accessible regions (DARs) in BxPC-3 and HCT-15 cells after 
treatment with M (10 nM), B (200 nM), or DMSO 0.5% (ctrl) for 6 hr and 12 hr (p-value threshold = 0.05, shrinkage = TRUE). Light blue/red = all detected 
DARs, dark blue/red = protein coding DARs mapping in promoter regions. (C) Accessibility level of cell-specific 6 hr DARs across test conditions. Gene 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.78012
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CDC45) at 6 hr of treatment in BxPC-3 cells. Meanwhile, at the same conditions, genes regulating 
the DDR (e.g. MDM2), proteostasis, and redox balance (e.g. GPX1) were found to be downregulated 
consistently in both omic layers.

Instead, the last mentioned processes were activated in HCT-15 cells, as anticipated from previous 
findings. Indeed, the integration highlighted double-regulated modulators of protein catabolism 
(e.g. PSMA3), DNA repair (e.g. DTL), and lipid metabolism, such as the previously described SCD. 
Interestingly, these cells also turned out to activate TGF β signaling (e.g. BMPR1A), an important 
player in cancer drug resistance, in response to B (Figure 4—figure supplement 2A; Brunen et al., 
2013). Furthermore, BxPC-3 cells downregulated, early after 6 hr, genes involved in actin remod-
eling, a mechanism affecting morphology and function of cancer cells (e.g. CARMIL1) (Figure 4—
figure supplement 2A; Caridi et  al., 2019; Tafazzoli-Shadpour et  al., 2020). Additional insights 
on double regulation of further processes were evidenced at 12 hr (Figure 4—figure supplement 
2B), suggesting for instance autophagy (e.g. CALCOCO2) as a putative pathway accounting for the 
enhanced catabolism in HCT-15 cells (Chang and Zou, 2020).

Collectively, pairwise integration of RNA- and ATAC-seq shed light on genes with robust regulation 
at the transcriptional and chromatin level, adding further details to the previously identified response 
pathways.

Crosswise integration expedites the comprehension of multi-omic data
Through the pairwise approach, we identified genes with both transcriptional and chromatin regu-
lation which significantly contributed to the observed cellular response. We further evaluated the 
crosstalk between RNA- and ATAC-seq at a different level by focusing on groups of genes co-regu-
lated in the two omic layers. The identification of genes sharing similar regulation across conditions 
either at the transcriptional or chromatin level would maximize the detection of interacting pathways 
and regulatory processes, e.g., as a result of chromatin changes in promoters tuning the transcrip-
tion of a certain gene set. This approach, which we termed crosswise integration, was achieved by a 
combination of horizontal and vertical construction of co-expression network analysis (hCoCena and 
vCoCena).

Both algorithms are based on CoCena, which inspects the pattern of gene regulation across condi-
tions in a single transcriptome dataset. Its evolution hCoCena can inspect gene regulatory patterns 
across omic datasets of the same type and integrate them in a single network (Aschenbrenner et al., 
2021). Instead, vCoCena was designed to define modules of genes and/or genomic markers, such as 
DARs, with a similar pattern of regulation across the same conditions in different types of omic data, 
acting as a multi-omics integration approach.

As a first step, we created separate co-expression networks for the RNA- and ATAC-seq layers 
(Figure 5A, Figure 5—figure supplement 1A). For each of the omic layers, to prevent the construction 
of a network mostly describing the difference between the two cell lines, we first created independent 
networks for BxPC-3 and HCT-15 cells. We then integrated the cell-type specific networks separately 
for transcriptome and chromatin accessibility using hCoCena (RNA-seq BxPC-3 with RNA-seq HCT-
15; ATAC-seq BxPC-3 with ATAC-seq HCT-15) (Aschenbrenner et al., 2021). The union of the top 
1000 most variable DE and top 1000 variable promoter DAR-associated genes detected in treated 
conditions was selected as input for constructing individual networks (overall 1919 input genes). Clus-
tering of the resulting RNA- and ATAC-seq networks identified a relevant number of gene modules 
with highly specific regulatory patterns (Figure 5—figure supplement 1B and C). At this point, the 
vertical, inter-omic integration (vCoCena) was applied to construct the final network consolidating the 

set enrichment analysis (GSEA) was performed on genes associated with DARs with similar regulation, grouped in modules identified by hierarchical 
clustering: for each cluster, representative gene ontology (GO) terms and genes of the associated load are reported. (D) Pairwise integration: ratio-ratio 
plots report the RNA- and ATAC-seq log2FCs of genes showing the same direction of transcriptional and chromatin accessibility regulation and their 
GSEA. Integration was performed not only at the same time point of 6 hr in both omic layers. For each GO term (p<0.05), enrichments in terms of count 
and p-value are reported.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The response to 3-chloropiperidines (3-CePs) is further regulated at the chromatin level—supporting data.

Figure supplement 2. The response to 3-chloropiperidines (3-CePs) is further regulated at the chromatin level—supporting data 2.

Figure 4 continued
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Figure 5. Crosswise integration expedites the comprehension of multi-omic data. (A) Overview of the applied 
workflow for the crosswise integration analysis. (B) Integrated modules of genes from the RNA- and ATAC-seq 
layers obtained with vertical construction of co-expression network analysis (vCoCena) and associated group fold 
change (GFC) pattern of regulation across conditions. The relative contribution of hits from the RNA- or ATAC-
seq layers is also reported for each module. (C) Representative gene ontology (GO) terms (p<0.05) for the most 
relevant modules of genes, identified by gene set enrichment analysis (GSEA). Enrichments in terms of count and 
p-value are reported. (D) Expression and chromatin accessibility levels in HCT-15 cells of genes included in the 
steelblue module (nodes can come from the RNA- or ATAC-seq layer). (E) Most representative GO terms from 
GSEA on genes of the steelblue module (key areas: EMT (Epithelial-Mesenchymal Transition), protein catabolism, 
TGF β signaling, and DNA repair). For each GO term (p<0.05), enrichments in terms of count and p-value are 
reported.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Crosswise integration expedites the comprehension of multi-omic data—supporting data.

https://doi.org/10.7554/eLife.78012
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information from transcriptome and chromatin accessibility (Figure 5—figure supplement 1D, see 
Methods for details). The new overall network was then reclustered resulting in integrated modules 
of co-regulation including nodes originally derived from the two separate layers in different ratios, as 
shown in Figure 5B.

The approach combined genes sharing similar regulation in the respective omic dataset, as approx-
imated by the group fold-change (GFC) pattern, with the postulate that genes grouped together 
cooperate in specific cellular processes. To define the underlying mechanisms, GO enrichment was 
performed on genes included in each of the modules, and representative biological terms for the 
most relevant clusters were reported in Figure 5C, Supplementary file 4. Some modules validated 
the information obtained through previous analyses (Figure  5—figure supplement 1E): both the 
orchid and light blue clusters suggested macroautophagy as a putative pathway accounting for the 
enhanced catabolism observed in HCT-15 cells (Chang and Zou, 2020). Consistently, the former RNA-
seq-based module was downregulated at 6 hr in BxPC-3 but upregulated already after 6 hr with B 
in HCT-15, while the latter ATAC-seq-based module included peaks condensing after 6  hr only in 
BxPC-3, confirming the latter cell line as refractory to a rapid engagement of its protein catabolism 
apparatus. Another mostly RNA-seq-based module validating our previous approach was the maroon 
module, upregulated after 6 hr in BxPC-3, containing genes involved in ribosome biogenesis, BER, 
and apoptosis. Furthermore, the dark green and dark gray ATAC modules, downregulated in BxPC-3 
cells, include genes modulating redox metabolism and ER stress.

Other modules offered instead a new perspective on the reactions of the two cell lines: the dark 
orange RNA module includes genes downregulated in HCT-15 cells at 6 hr but upregulated in BxPC-3 
responding to M. Interestingly, these hits belong to the Wnt signaling pathway, well-known for regu-
lating ribosome biogenesis and cell growth, adding further information on our initial findings. In addi-
tion, the indian red module, upregulated in HCT-15 cells, points toward the tumorigenic JAK-STAT as 
an additional pathway modulating drug resistance (Brooks and Putoczki, 2020).

The crosswise integration also identified additional regulation, exemplified by the steelblue 
module. As approximated by the associated GFCs pattern, its 174 genes are positively modulated in 
HCT-15 cells especially after 6 hr of treatment (Figure 5D). Interestingly, functional enrichment iden-
tified hits both from RNA- and ATAC-seq involved in the tumorigenic epithelial-mesenchymal transi-
tion (Figure 5E), a mechanism regulating morphology and invasiveness of cancer cells (e.g. KBTBD8, 
Figure 5—figure supplement 1F, from the RNA-seq layer) (Brabletz et al., 2018). Other module 
genes belonged to TGF β signaling (e.g. FURIN and CREB1; Figure 5E), a pathway identified already 
from the pairwise approach and involved in cancer drug resistance (Brunen et al., 2013). In addition, 
the module included genes of recombinational DNA repair belonging to both omic layers, which is in 
line with our initial findings (e.g. AUNIP; Figure 5E and Figure 5—figure supplement 1F).

Overall, the crosswise integration of RNA- and ATAC-seq data allowed an efficient combination 
of the functional information from the two omics layers. Clearly, the whole integration added further 
biology to what we had identified when analyzing transcriptional and chromatin landscape regulation 
individually.

Perturbation-informed basal signatures efficiently predict sensitivity to 
candidate drugs
The information derived from the crosswise integration was employed to construct a signature of 
sensitivity to 3-CePs. Being more potent, M was selected as reference to describe a sensitivity predic-
tion framework based on the use of a perturbation-informed omic signature (Figure 6A, Figure 6—
figure supplement 1A, Methods).

First, we selected vCoCena clusters based on the highest difference in regulation between the two 
cell lines after treatment with M, considering only the most informative time point of 6 hr (selected 
modules: maroon, dark green, steelblue, indian red, light green, pink, sandy brown; module selec-
tion criteria are described in detail in the Methods section). According to our hypothesis, genes that 
belong to these modules, coming both from RNA- and ATAC-seq analyses, are expected to be the 
major determinants of the differential susceptibility in the two cell lines.

Importantly, we postulated that features accounting for sensitivity should be intrinsic for the two 
cell lines, thus explained already by significant differences in their basal status. For this reason, we 
performed DE analysis between untreated BxPC-3 and HCT-15 control groups, identifying genes 

https://doi.org/10.7554/eLife.78012
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Figure 6. Perturbation-informed basal signatures efficiently predict sensitivity to our candidate drugs. (A) Overview 
of the applied workflow for the sensitivity signature construction and associated drug susceptibility prediction. 
(B) M sensitivity signature genes (red = signature up and blue = signature down) pinpointed from all differential 
expression (DE) genes in the BxPC-3 vs HCT-15 baseline comparison. (C) Pearson correlation between predicted 
sensitivity score and viability decrease in a subset of human protein atlas (HPA) (cell atlas) cell lines (validation set). 
(D) Sensitivity scores predicted from gene set variation analysis (GSVA) enrichment of our up and down signatures 
in RNA-seq profiles of TCGA tumor samples. Median values for all sample scores and within each tumor type 
are reported. (E) Overview of the applied workflow for the LASSO-based ML setup. (F) Predictive outcome of the 
trained model (Pearson correlation R and RMSE (root-mean-square error) are reported). (G) Pearson correlation 
between predicted cisplatin sensitivity score and IC50 in a subset of HPA (cell atlas) cell lines (validation set). 

Figure 6 continued on next page
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up- and down-regulated at the transcriptional level in the high-sensitive cell line (p<0.01, IHW correc-
tion, abs[log2FC]>1), and sorted out only those belonging to previously selected modules. This 
approach resulted in a subgroup of genes with different basal expression in BxPC-3 cells as well as a 
sufficiently compound- and cell line-specific regulation upon perturbation. This perturbation-informed 
signature was composed of 307 genes upregulated (signature up) and 123 genes downregulated 
(signature down) in the high-sensitive BxPC-3 cells (Figure  6B, gene list available in Supplemen-
tary file 5). GO enrichment on these genes identified protein synthesis, folding and catabolism, lipid 
metabolism, matrix organization, and actin remodeling among the most significant biological func-
tions (Figure 6—figure supplement 1B). Some interesting genes in the up signature were BNIP3, 
proapoptotic, SCD, the already discussed regulator of lipid metabolism and SLFN11, involved in DDR 
and known response biomarker (Zoppoli et al., 2012). Among those composing the down signature, 
we identified YOD1, HERPUD1, and HSPA5, involved in protein homeostasis and ER stress, but also 
ERCC6 and AUNIP of the DDR (Figure 6B; Ernst et al., 2009; Lou et al., 2017; Pascucci et al., 2018; 
Schulze et al., 2005).

To determine the robustness of the obtained signature and its ability to predict sensitivity to M, we 
next performed a gene set variation analysis (GSVA) on publicly available transcriptomes of common 
cell lines,(Uhlén et al., 2015) testing for both the up and down signatures (Figure 6—figure supple-
ment 1C). A sensitivity score was calculated for each cell line as the difference between the enrichment 
scores (ESs) of the up and the down signatures. The predicted rank was validated experimentally on 
representative cell lines (A-431, A549, HEK-293, NTERA-2, PC-3, and SH-SY5Y), for which we assessed 
the residual cell viability after 72 hr treatment with M 10 nM (see Methods, Supplementary file 6). As 
shown in Figure 6C, our perturbation-informed signature demonstrated a strong predictive capacity 
as attested by the high positive correlation between viability decrease and predicted sensitivity score 
(Pearson’s R: 0.834, p: 0.0398; Figure 6C). This signature outperformed a random one containing the 
same number of genes (R: −0.023, p: 0.97, Figure 6—figure supplement 1D) and also a signature of 
equal size composed by the top up- and down-regulated genes between the two cell lines (R: 0.33, p: 
0.52, Figure 6—figure supplement 1E, gene list available in Supplementary file 7). Collectively, our 
crosswise integration approach resulted in a perturbation-informed signature capable of predicting 
drug sensitivity in a wide range of untreated tumor cell lines commonly used in cancer research.

Encouraged by these results, we adapted our strategy to mimic a clinical setting utilizing the primary 
tumor samples of the Cancer Genome Atlas TCGA database. By applying GSVA, we examined the 
relative distribution of samples from different tumor types based on the calculated sensitivity score, 
unveiling which cancer types were predicted as generally more susceptible (i.e. kidney renal clear cell 
carcinoma [KIRC], PAAD, glioblastoma multiforme [GBM], and kidney renal papillary cell carcinoma 
[KIRP]) or less sensitive (i.e. rectum adenocarcinoma, colon adenocarcinoma [COAD], uterine corpus 
endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma) to M, 
providing a framework for further in vivo development of this compound (Figure 6D).

Interestingly, the predicted tumor type with the highest sensitivity turned out to be KIRC, demon-
strating that the designed signature was not driven by the original cell type of the cell lines used for 
its extrapolation and could go beyond the original cancer type. At the same time, PAAD and COAD 
(as BxPC-3 and HCT-15 cells) were still among the most and least sensitive, confirming that cell type 
intrinsic determinants of susceptibility exist and are represented in our signature. Interestingly, intra-
tumor variability resulted in a continuous distribution of samples scores within each cancer group, 
confirming the importance of clinically translating such predictions beyond the tumor type to better 
address patient-specific therapeutic needs.

(H) Cisplatin sensitivity scores predicted from GSVA enrichment of our up and down signatures in RNA-seq profiles 
of TCGA tumor samples. Median values for all sample scores and within each tumor type are reported.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Perturbation-informed basal signatures efficiently predict sensitivity to our candidate 
drugs—supporting data.

Figure supplement 2. Validation analysis on cisplatin sensitivity confirms the versatility of the pipeline.

Figure 6 continued
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To enlarge the accessibility and clinical translatability of our framework, we finally introduced a 
LASSO regression model to predict the sensitivity of tumor samples in the external reference dataset 
(Figure 6E). We trained a regression model using TCGA basal transcriptomic profiles labeled with 
the previously predicted sensitivity scores in order to create a self-supervised system able to emulate 
the prediction irrespective of the context dataset, detaching the predictive tool from the data space. 
From a clinical perspective, this further step would allow one to collect a patient basal transcriptome 
and feed it to the model, not only improving the performance of the prediction but also avoiding any 
issue related to data sharing since the model itself does not contain any patients’ sensitive data.

In detail, TCGA samples were labeled according to the calculated continuous sensitivity scores. 
Next, the model was trained on 80% of the data and tested on the remaining 20%, which efficiently 
predicted drug sensitivity within the test samples (R: 0.97, RMSE: 0.069) (Figure 6F). Notably, such 
predictive capacity was maintained even when excluding from the transcriptomes all the signature 
genes used to define the sensitivity score label of the samples, suggesting the biological robustness 
of the predictive system (R: 0.97, RMSE: 0.072; Figure 6—figure supplement 1F). In fact, while the 
signature itself was good enough to rank samples based on experimental biological evidence, the 
model went beyond the initial signature by relying on additional predictive features previously not 
identified. Moreover, the classifier performed well also on separate cancer types, demonstrating its 
capacity to address intra-tumor type heterogeneity (Figure 6—figure supplement 2A).

As a last validation step to confirm the versatility of our approach, we applied the pipeline to the 
prediction of cancer cell lines’ sensitivity to cisplatin, a thoroughly reported broad-acting chemother-
apeutic introduced as a DNA damaging agent (Kelland, 2007). We applied the same analysis pipe-
line as outlined for the 3-CePs. First, we selected Jurkat and BxPC-3 cells as high- and low-sensitive 
cancer cell lines based on the IC50s reported in the Genomics of Drug Sensitivity in Cancer database 
(Jurkat: 3 µM, BxPC-3: 55 µM) (Yang et al., 2013). Then, we acquired RNA- and ATAC-seq profiles 
after 6 hr of 3 µM cisplatin treatment in both cell lines. Next, we processed data as reported for 
3-CePs (Figure 6—figure supplement 2B, C, D), up to the construction of an integrated vCoCena 
network (Figure 6—figure supplement 2E). At this point, we built the perturbation-based sensitivity 
signature specific for cisplatin. Due to the higher number of DE genes between the cell lines using 
previous parameters, we applied a higher logFC threshold in the call between the untreated controls 
(p<0.01, IHW correction, abs[logFC]>2.5). In this way, we obtained an overall signature comparable 
in size to the M one (signature up: 107, signature down: 363, see Methods for details, Supplemen-
tary file 8). The signature was then tested on Human Cell Atlas (HCA) transcriptomes, subsetting 
for cancer cell lines whose IC50 was available in the Genomics of Drug Sensitivity in Cancer database 
(Supplementary file 9). Results confirmed the applicability of our approach, which predicted sensi-
tivity to this reference drug with high accuracy, showing a strong anticorrelation between predicted 
sensitivity score and actual IC50 (Pearsons’s R: −0.76, p: 0.007, Figure 6G). Even more promising, 
despite the fact that our model was not trained on data derived from testicular cancer, the prediction 
on TCGA tumor transcriptomes highlighted testicular germ cell tumor TGCT as the most sensitive 
cancer type (Figure 6H), a finding that is clinically confirmed being testicular cancer efficiently treated 
with cisplatin since decades (Kelland, 2007).

Overall, we demonstrated how to further employ the integrated RNA- and ATAC-seq information 
to assemble an accurate and clinically-accessible predictive strategy capable of orienting drug devel-
opment and supporting medical practice in the context of precision oncology.

Discussion
Despite the advances of the last decades, efforts are required to expedite routine use of omic-scale 
approaches in preclinical and clinical settings. Recent work illustrated the potential for omics tech-
nologies to accelerate the process of drug discovery from the initial identification of candidate lead 
compounds up to their preclinical and clinical development (Kagohara et al., 2020; Li et al., 2014; 
McFarland et al., 2020; Rendeiro et al., 2020; Shaheen et al., 2018; Srivatsan et al., 2020; Ye et al., 
2018). Furthermore, improvements in computational approaches for omics data analyses (Koromina 
et al., 2019; Li et al., 2021; Mun et al., 2020) and an ever-increasing availability of public reference 
datasets (Perez-Riverol et al., 2019) make it now possible to develop completely new pipelines to 
address the pharmacological profile of any given drug, from its MoA to sensitivity biomarkers (Dugger 
et al., 2018; Matthews et al., 2016; Paananen and Fortino, 2020).

https://doi.org/10.7554/eLife.78012
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Here, we combined transcriptome and chromatin accessibility analyses within perturbation exper-
iments to investigate the specific activity profile of 3-CePs, a new class of potential anticancer agents 
acting as DNA alkylators (Carraro et al., 2021; Carraro et al., 2019; Helbing et al., 2020; Sosic et al., 
2017; Zuravka et al., 2015a; Zuravka et al., 2014; Zuravka et al., 2015b). Our analysis unveiled the 
basis of the preferential activity of 3-CePs against the pancreatic cancer cell line BxPC-3, which was 
demonstrated to be unable to properly control proteostasis and DDR under stress conditions upon 
exposure to the alkylating agents. On the contrary, the low-sensitive colorectal adenocarcinoma cell 
line HCT-15 potentiated protein folding and catabolism all together activating a more efficient DNA 
repair after treatment. Due to unresolved genotoxic stress and proteostasis dysregulation, widely 
described as crosstalking events (González-Quiroz et al., 2020; Hutt and Balch, 2010), BxPC-3 cells 
activated the apoptotic branch of the PERK-mediated UPR via CHOP and GADD34, both upregulated 
after treatment (Han et al., 2013; Urra et al., 2013). Accordingly, such behavior is in line with the 
described sensitivity of pancreatic cancer adenocarcinoma to ER stress and protein dyshomeostasis 
(Garcia-Carbonero et al., 2018).

Beyond validating the described results, the analysis of chromatin accessibility was first employed 
to identify genes with concordant transcriptional and epigenetic regulation, a step we called pairwise 
integration. The approach revealed both epigenetic and transcriptional regulation of key response 
pathways, identifying apoptotic and ribosome biogenesis mediators upregulated in BxPC-3 and 
downregulated in HCT-15, as well as redox balance and proteostasis hits upregulated in HCT-15 and 
downregulated in BxPC-3. In addition, actin dynamics, shown to assist DSBs repair (Caridi et  al., 
2019), were identified to be silenced in the more sensitive cell line.

To further evaluate the interaction between transcriptional and chromatin accessibility responses, 
we proposed here a new versatile approach for the crosswise integration of RNA- and ATAC-seq, 
based on vCoCena. This approach identified modules of genes co-regulated in the two omic layers 
across the analyzed experimental conditions. Combined with the pairwise integration, this standalone 
method not only recapitulated the result of the independent transcriptomic and epigenomic anal-
ysis, but also highlighted additional pathways, e.g., EMT and TGF β signaling, which modulate the 
response to the compounds. Indeed, a protumorigenic role was established for TGF β in mediating 
carcinogenicity linked to epithelial-mesenchymal transition, both processes that could additionally 
explain the more efficient response of HCT-15 cells to 3-CePs (Brunen et al., 2013). Efficient and 
versatile, this approach represents a valid option to integrate the information from multi-omic studies 
substituting the separate examination of each omic dataset.

To further assist the development of 3-CePs, we set up a pilot sensitivity prediction framework 
readily transferable from the bench to the clinics. We designed a perturbation-informed signature 
derived from the integrated omic layers filtering the differentially expressed genes between the two 
cell lines at a steady state for those specifically involved in the cellular response to the treatment. 
Though based on a limited number of perturbed profiles, this gene signature predicted with high 
precision the sensitivity to 3-CePs only relying on the untreated transcriptome of test cell lines. Not 
only did this approach work when applied to our candidate drugs, but it also efficiently predicted 
sensitivity to the clinically established antineoplastic agent cisplatin. The possibility to improve predic-
tions from basal transcriptomes sounds attractive from a clinical perspective since it overcomes the 
need to screen for thousands of drugs and collect the same amount of profiles from limitedly-available 
patient samples, such as biopsies (Adam et al., 2020). Applied to TCGA tumor samples, this approach 
provided a list of susceptible cancer types, e.g., KIRC and PAAD, to support the further development 
of our drug candidate, and, once transferred on an ML platform, could offer a versatile predictive 
strategy translatable to the clinics (Koromina et al., 2019; Warnat-Herresthal et al., 2021).

In this study, we combined transcriptomic and epigenetic data to guide our exemplary analysis. 
Nevertheless, the modularity of our framework allows, with only minimal adjustment, its application to 
other omic technologies or experimental designs. The pipeline showed to be versatile, being appli-
cable to other drugs and, as a consequence, generalizable to other diseases and target cell popula-
tions. Indeed, the vCoCena integration, which is instrumental for both the biological interpretation of 
the data and the definition of the perturbation-informed signature, is agnostic of the type of data used 
as soon as this is reduced to a network of co-regulation.

In conclusion, we present a complete end-to-end workflow to implement the use of multi-omics 
in drug development, providing a human-readable toolbox to interrogate pharmacological questions 
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in both preclinical and clinical settings. We applied this framework to understand the MoA of 3-CePs 
revealing the cellular determinants of sensitivity to this novel class of drugs and providing additional 
information for their clinical development as anticancer candidates. Given its versatility, we envision 
our workflow to be a broadly applicable resource to assist researchers in different steps of the drug 
discovery and development process.

Methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Cell line (Homo-sapiens) HCT-15 ATCC #CCL-225

Cell line (Homo-sapiens) BxPC-3 ATCC #CRL-1687

Cell line (Homo-sapiens) A549 ATCC #CRM-CCL-185

Cell line (Homo-sapiens) HEK-293 ATCC #CRL-1573

Cell line (Homo-sapiens) Jurkat ATCC #TIB-152

Cell line (Homo-sapiens) PC-3 Others (see Cell lines culturing)

Cell line (Homo-sapiens) NTERA-2 Others (see Cell lines culturing)

Cell line (Homo-sapiens) SH-SY5Y Others (see Cell lines culturing)

Cell line (Homo-sapiens) A-431 Others (see Cell lines culturing)

Antibody
Anti-human H2A.X, (mouse 
monoclonal, clone 2F3) Biolegend #613405 (FC = 1:25)

Peptide, recombinant protein Tn5 In-house

Commercial assay or kit
Foxp3 Transcription Factor Staining 
Buffer Set eBioscience #00-5523-00

Commercial assay or kit miRNeasy mini kit QIAGEN

Commercial assay or kit TruSeq stranded total RNA kit Illumina

Chemical compound, drug
Pico488 dsDNA quantification 
reagent Lumiprobe

Chemical compound, drug Propidium Iodide Sigma #P4864

Chemical compound, drug LIVE/DEAD Near-IR fixable dye Invitrogen

Chemical compound, drug M, B
Carraro et al., 2019; Zuravka et al., 
2014

Chemical compound, drug cisplatin Sigma

Software, algorithm FlowJo BD

Software, algorithm bcl2fastq2 Illumina

Software, algorithm STAR Dobin et al., 2013

Software, algorithm R https://www.r-project.org/

Software, algorithm DESeq2 Bioconductor

Software, algorithm clusterProfiler Bioconductor

Software, algorithm Trimmomatic Bolger et al., 2014

Software, algorithm bowtie2 Langmead and Salzberg, 2012

Software, algorithm Picard http://broadinstitute.github.io/picard

Software, algorithm deeptools Ramírez et al., 2014

Software, algorithm samtools Ernst et al., 2009

https://doi.org/10.7554/eLife.78012
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Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm MACS2 Lawrence et al., 2013

Software, algorithm GenomicRanges Zhang et al., 2008

Software, algorithm GenomicAlignments Zhang et al., 2008

Software, algorithm ChIPseeker Bioconductor

Software, algorithm hCoCena
https://github.com/MarieOestreich/​
hCoCena; Oestreich, 2022

Software, algorithm vCoCena This publication

Software, algorithm glmnet Friedman et al., 2010

 Continued

Cell lines culturing
Colon (HCT-15, #CCL-225), pancreatic (BxPC-3, #CRL-1687), lung (A549, #CRM-CCL-185) carcinoma 
cell lines, human embryonic kidney (HEK-293, #CRL-1573) and acute T cell leukemia cells (Jurkat, 
#TIB-152) were purchased from ATCC (American Type Culture Collection). Prostate (PC-3) and testis 
(NTERA-2) carcinoma cell lines were kindly provided by Prof. W. Kolanus (LIMES institute; University 
of Bonn), neuroblastoma (SH-SY5Y) by Prof. D. Schmucker (LIMES institute; University of Bonn), and 
epidermoid (A-431) carcinoma by Prof. G. Zunino (Istituto Nazionale dei Tumori di Milano). Cell lines 
were maintained in logarithmic phase at 37°C in a 5% carbon dioxide atmosphere using RPMI-1640 
(for BxPC-3, HCT-15, PC-3, Jurkat), DMEM (for A-431, HEK-293, NTERA-2, SH-SY5Y), or Ham’s F-12K 
(for A549) media (by Gibco or Euroclone) containing 10% fetal calf serum, antibiotics (50 units/mL 
penicillin and 50 μg/mL streptomycin) and 2 mM L-glutamine (Euroclone).

Direct detection and quantification of early DNA damage
The extent of early DNA damage induced by 3-CePs in treated cells was assessed by the Fast Micro-
method single-strand-break assay. This approach can detect both single and DSBs, as well as alkali-
labile adduct sites in the DNA of treated cells. 5000 cells/well were seeded in 96-well microplates 
and treated next day for 6 hr with M (10 nM and 100 nM), B (200 nM and 2 µM), or DMSO 0.5%. 
After treatment, we measured the effect of double and single-strand breaks on the rate of unwinding 
of cellular DNA in denaturing alkaline conditions by monitoring the fluorescence of a dye that pref-
erentially binds to dsDNA up to 20  min (Pico488 dsDNA quantification reagent, Lumiprobe). The 
assay was performed following the protocol of Schröder et al., 2006. Two experimental replicates 
were performed, each one including three technical repeats. Fluorescence signal was acquired by 
the FLUOstar Omega microplate reader using Omega 5.11 software (BMG LABTECH). The resulting 
curves based on mean normalized fluorescence values obtained for each treatment and the control 
(DMSO 0.5%) are reported in Figure 1B.

Cell cycle and flow cytometric H2AX phosphorylation analyses
Possible effects of 3-CePs treatments on the cell cycle distribution of both cell lines were analyzed by 
FACS, staining cellular DNA with the PI (propidium iodide, Sigma) dye. In addition, we monitored by 
antibody staining the phosphorylation of histone H2AX, upstream event of the DDR cascade, after 6 hr 
and 12 hr of treatment in order to investigate the ability of BxPC-3 and HCT-15 cells to detect DSBs. 
200,000 cells/well were seeded in 12-well plates and treated next day for 6 hr, 12 hr, or 72 hr with M 
(10 nM), B (200 nM), or DMSO 0.5%. Cells were harvested, washed with PBS, fixed, and permeabilized 
with the Foxp3 transcription factor staining buffer set (eBioscience, cat. #00-5523-00). In detail, cell 
suspensions were fixed for 1 hr at room temperature with FixBuffer, washed twice with PermBuffer, 
and stained with anti-human γH2AX AlexaFluor 488 (Biolegend, clone 2F3, cat. #613405) for 1 hr 
at 4°C. After the first staining, cells were washed first with PermBuffer, then with PBS and stained 
secondly with PI (30 min, dark). Samples were acquired on a BD Symphony instrument equipped with 
five lasers (UV, violet, blue, yellow-green, and red), the spectral overlap between the channels were 
determined with single stained samples using FACSDiva (v 9.1.2). Samples were analyzed in FlowJo 
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(BD, v 10.7.1). Events were gated first according to FSC-A and SSC-A and cleaned from cell doublets 
with three consecutive gates (FSC-A vs FSC-H; SSC-A vs SSC-H; and PI-A vs PI-H). The frequency of 
cells within each phase of the cell cycle was calculated using the PI-A signal with the FlowJo built-in 
algorithm (Watson model with constrained G2 peak). Three biological replicates were obtained per 
condition and unpaired two-tailed Student’s t-test was performed to assess statistical significance 
(p<0.05).

Cells treatments for RNA-seq and ATAC-seq experiments
For both RNA- and ATAC-seq analyses, 300,000 cells/well were seeded in 6-well plates and treated 
next day for 6 hr, 12 hr, or 72 hr with M (10 nM), B (200 nM), cisplatin (3 µM, Sigma), or DMSO 0.5%. 
Both for RNA- and ATAC-seq samples, three experimental replicates were obtained for each condition 
in case of 3-CePs datasets, four replicates were instead produced for the cisplatin datasets.

RNA-seq experiment
At the end of the treatment, cells were washed, resuspended in 1 mL QIAzol reagent (Qiagen), and 
stored at −80°C. We extracted the RNA using the miRNeasy mini kit (Qiagen) and checked the RNA 
integrity and quantity using the tapestation RNA assay on a tapestation 4200 instrument (both from 
Agilent). We used 750 ng total RNA to generate NGS libraries using the TruSeq stranded total RNA 
kit (Illumina) following manufacturer’s instructions. We checked library size distribution via tapesta-
tion using D1000 on a tapestation 4200 instrument (Agilent) and quantified the libraries via Qubit 
HS dsDNA assay (Invitrogen). We clustered the libraries at 250pM final clustering concentration on 
a NovaSeq6000 instrument using SP and S2 v1 chemistry (Illumina) and sequenced paired-end 2×50 
cycles before demultiplexing using bcl2fastq2 v2.20.

ATAC-seq experiment
At the end of the treatment, cells were washed, harvested, resuspended in PBS with 1 mM EDTA, 
stained with the LIVE/DEAD Near-IR fixable dye (Invitrogen, cat. #10119) for 10 min at 4°C, centri-
fuged and suspended in PBS with 1 mM EDTA. 20,000 living cells/sample were sorted by FACS and 
further processed for nuclei isolation and transposition reaction following the protocol of Buenrostro 
et al., 2013. Being the number of dead cells found out to be negligible, sorting before transposition 
was not applied to samples treated with cisplatin.

We generated ATAC-libraries from tagmented cells following the protocol of Buenrostro et al. 
We checked library size distribution via tapestation using D5000 assay (ATAC) on a Tapestation 4200 
instrument (both from Agilent) and quantified the libraries via Qubit HS dsDNA assay (Invitrogen). We 
clustered the libraries at 250pM final clustering concentration on a NovaSeq6000 instrument using 
SP and S2 v1 chemistry (Illumina) and sequenced paired-end 2×50 cycles before demultiplexing using 
bcl2fastq2 v2.20.

RNA-seq data analysis
Reads were aligned and quantified with STAR (v 2.5.2 a) (Dobin et al., 2013) using standard param-
eters and mapped against the GRCh38p13 human reference genome (Genome Reference Consor-
tium). Raw counts were imported, prefiltered to exclude low-count genes (3-CePs:>100 reads, 17.693 
transcripts; cisplatin:>10 reads, 27.404 transcripts), normalized and VST-transformed (variance stabi-
lizing transformation) following the DESeq2 (Bioconductor, v 1.26.0) pipeline using default param-
eters (Gentleman et al., 2004; Love et al., 2014). SVA (surrogate variable analysis) was applied to 
identify latent variables responsible for batch effects and included in the DESeq2 model (3-CePs: 4 
SVs, cisplatin: 3 SVs) (Leek et al., 2012). All present transcripts were used as input for PCA. The call 
for differentially expressed genes was performed for all treated vs control comparisons (separate 
cell lines) using an adjusted p-value threshold equal to 0.05, where IHW was adopted for multiple 
testing and shrinkage was applied. Only protein-coding hits were considered for further functional 
analyses on DE genes. GSEA based on the GO (gene ontology) biological process database was 
employed for functional enrichments, both based on DE genes (Supplementary files 1 and 2) or 
log2FC-based ranks. All enrichment dotplots report the count and p-value associated with each term, 
when p<0.05. Representative enrichment terms in Figure 2C were selected manually from enrichment 
maps obtained for each group of genes depicted in the dotplot (Supplementary file 10): to remove 
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semantic redundancy, only the most significant nodes among those converging into the same hub 
were reported (higher count and lower p-value, example in Figure 2—figure supplement 1F). SVA 
batch-corrected normalized VST-transformed counts were used as input for boxplots, heatmaps, and 
log2FC-based GSEA. Hierarchical clustering was applied to identify blocks of DE genes with similar 
regulations across conditions as reported in the presented heatmaps (Figure 2D, Figure 2—figure 
supplement 2A). In the same heatmaps, row-scaled expression levels of cell-specific DE genes elic-
ited at 6 hr and 12 hr were reported separately for each of the analyzed conditions.

ATAC-seq data analysis
After adapter trimming using Trimmomatic v 0.36 (Bolger et al., 2014), the sequencing reads were 
aligned bowtie2 v 2.3.5 against the GRCh38p13 human reference genome (Langmead and Salz-
berg, 2012). Subsequently, duplicated reads were removed using Picard dedup function, and the 
transposase-induced offset was corrected using the deeptools v 3.1.3 alignmentSieve function 
(Ramírez et al., 2014). After sorting and indexing bam files with samtools v 1.9 (Li et al., 2009b), 
peak calling was performed using MACS2 v 2.1.2 (Lawrence et al., 2013). Peak regions from sample-
specific peak calling results were unified in R v 3.6.2 using the reduce function implemented in the 
GenomicRanges package v 1.38.0 (Zhang et al., 2008) prior to quantification of sequencing reads 
in these unified peak regions using the summarizeOverlaps function implemented in the Genomi-
cAlignments package v 1.22.1 (Zhang et al., 2008). Raw counts were prefiltered to exclude low-count 
peaks (<20 reads, 3-CePs: 63.434 peaks, cisplatin: 170.844 peaks), normalized and VST-transformed 
following the DESeq2 (Bioconductor, v 1.26.0) pipeline using default parameters (Gentleman et al., 
2004; Love et al., 2014). Peak regions were annotated using ChIPseeker (Bioconductor, v1.22.1). All 
present peaks were used as input for PCA. The call for DARs was performed for all treated vs control 
comparisons (separate cell lines) considering a p<0.05 threshold. Only peaks mapping in promoters 
of protein-coding regions (according to ChIPseeker annotation) were considered for further func-
tional analyses. GSEA based on the GO biological process database was employed for functional 
enrichments based on DAR-associated genes (Supplementary file 3). Normalized and, where spec-
ified, vst-transformed counts were used as input for heatmaps and boxplots. Hierarchical clustering 
was applied to identify blocks of DAR-associated genes with similar regulations across conditions 
as reported in the presented heatmaps (Figure 4C, Figure 4—figure supplement 1D). In the same 
heatmaps, row-scaled accessibility levels of cell-specific DARs at 6 hr and 12 hr were reported sepa-
rately for each of the analyzed conditions. Reference promoter peaks in case of multiple mapping to 
the same gene were chosen based on higher variance. For the pairwise integration between tran-
scriptional and chromatin accessibility data, we identified hits having the same sign of regulation in 
RNA- and ATAC-seq which were DE (protein-coding) and/or DAR-associated (protein-coding mapping 
in promoters). Reference peaks in case of multiple mapping to the same gene were chosen based on 
lower p-value in the specific comparison. Since a delay could exist between a prior chromatin remod-
eling and a detectable variation in the respective transcript level, pairwise comparisons were consid-
ered not only at the same time point in both omic layers but also between chromatin changes at 6 hr 
and transcriptional responses at 12 hr. Interesting gene names for each of the considered comparisons 
were also reported, and GSEA enrichment was applied as specified above.

Crosswise integration of RNA-seq and ATAC-seq data
The crosswise integration of transcriptomic and chromatin accessibility data was achieved through an 
adaptation of the CoCena (construction of co-expression network analysis - automated) tool which 
inspects the pattern of regulation of genes across conditions in a single transcriptome dataset. The 
core principles driving both network construction and gene modules detection by CoCena have been 
described previously (Aschenbrenner et al., 2021). In this analysis, we first optimized the design of 
separate co-expression networks for the RNA- and ATAC-seq layers. To avoid the creation of networks 
mostly describing cell type differences, we calculated separate networks for BxPC-3 and HCT-15 cells 
which were then integrated horizontally through hCoCena (Aschenbrenner et al., 2021). The union 
of all top 1000 variable DE and top 1000 variable promoter DAR-associated genes detected in treated 
conditions was selected as input for constructing all networks. For the construction of cell-specific 
networks, the specified Pearson correlation cutoffs, edges and nodes for RNA-seq (3-CePs: BxPC-3 
cutoff = 0.75, edges = 104002, and nodes = 1711; HCT-15 cutoff = 0.707, edges = 54222, and nodes 
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= 1747; cisplatin: BxPC-3 cutoff = 0.863, edges = 107434, and nodes = 1766; Jurkat: cutoff = 0.955, 
edges = 21708, and nodes = 1735) and ATAC-seq (3-CePs: BxPC-3 cutoff = 0.693, edges = 7092, and 
nodes = 1559; HCT-15 cutoff = 0.707, edges = 5431, and nodes = 1510; cisplatin: BxPC-3 cutoff = 
0.783, edges = 297385, and nodes = 1685; Jurkat cutoff = 0.876, edges = 6140, and nodes = 1620) 
were used. The horizontally integrated networks contained the union of all nodes and edges coming 
from parent networks, where edges between nodes connected in both parent layers were recalcu-
lated as a mean of their original weights. Clustering of the resulting RNA- and ATAC-seq networks 
was performed based on the infomap (RNA-seq network 3-CePs and ATAC-seq network cisplatin) or 
walktrap (ATAC-seq network 3-CePs and RNA-seq cisplatin) algorithm, where a threshold of minimum 
of 15 nodes per cluster was applied (Figure 5—figure supplement 1B, C; Rosvall et al., 2009). To 
select the threshold, we inspected different values from a minimum of 10 and chose such threshold 
empirically with the overall goal to maximize the number of detected modules with specific regulation 
patterns (also in horizontally integrated networks) without compromising the possibility to get effi-
cient functional enrichments.

Subsequently, inter-omic integration by vCoCena was applied to construct the final network. In 
this case, the correlation between the mean GFC pattern of modules belonging to the two layers 
was calculated to identify clusters of genes with similar regulation, suitable for crosswise integration. 
The GFCs are obtained by calculating the mean expression of a gene over all conditions and then 
computing the fold change of the mean gene expression within each condition from the overall mean 
(Aschenbrenner et  al., 2021). Edges from the two separate networks were selected for contrib-
uting to the integrated one based on a minimum cross-layer correlation which could guarantee the 
maximum mixture between layers in identified module pairs (3-CePs: minimum correlation cutoff = 
0.665, edges = 206200, and nodes = 3030; cisplatin: minimum correlation cutoff = 0.69, edges = 
796517, and nodes = 3104). The new network was reclustered exploiting the walktrap (3-CePs) or 
infomap (cisplatin) algorithm, applying the same threshold of a minimum of 15 nodes per cluster, 
and mean GFCs were recalculated: the resulting integrated modules included nodes originally 
derived from the two separate layers in different ratios, as shown in the relative heatmap (Figure 5B, 
Figure 6—figure supplement 2E). Clustering algorithms were chosen empirically based on the eval-
uation of the resulting modules in terms of size, represented regulatory complexity/diversification as 
well as functional validity. GO-based GSEA was performed on detected modules of genes (Supple-
mentary file 4) and the most significant terms (p<0.05) were reported.

Sensitivity signature construction and prediction pipeline
For the signature of sensitivity to M and cisplatin, relevant modules from the crosswise vCoCena 
integration were selected as follows (Figure 6—figure supplement 1A): for each module, in both cell 
lines separately, we calculated the difference between the GFC of the control and the M (or cisplatin) 
6 hr treated groups (∆GFC [cell line]=GFC(M6h) − GFC [ctrl]). The early time point was selected to 
guide the signature construction since from upstream analyses it turned out to be the most informa-
tive of cell responses to 3-CePs. The threshold score was then calculated as the difference between 
the previously obtained ∆GFCs for the two cell lines (thrscore = ∆GFC [BxPC-3] − ∆GFC [HCT-15]). 
Modules with thrscore above q50, thus modules where the regulation was sufficiently different in the 
two cell lines after treatment with M, were selected (M: maroon, dark green, steelblue, indian red, 
light green, pink, sandy brown; cisplatin: orchid, maroon, dark orange, gold, indian red, light blue, and 
khaki). Genes from the identified modules were grouped together and further considered to drive the 
definition of our signature of interest.

Further on, DE analysis was performed between BxPC-3 and HCT-15 untreated control groups 
to identify baseline DE genes up- and down-regulated in the high-sensitive cell line (abs[log2FC]>1 
[M] or  >2.5 [cisplatin], padj  <0.01). In fact, given the much higher availability and clinical spend-
ability of RNA-seq compared to ATAC-seq profiles, the signature was finally constructed only from 
basal transcriptomes. In particular, we further selected among the identified module genes only those 
that were also DE between the two untreated controls, ending up with a restricted group of genes 
showing compound- and cell line-specific regulation upon perturbation but, meanwhile, a significantly 
different basal expression in BxPC-3 cells. This perturbation-informed signature for M was composed 
of 307 genes upregulated (signature up) and 123 genes downregulated (signature down) in the high-
sensitive BxPC-3 cells (listed in Supplementary file 5). For cisplatin, the signature was composed by 
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107 genes upregulated (signature up) and 363 genes downregulated (signature down) in the high-
sensitive Jurkat cells (Supplementary file 8).

To validate the predictive performance of the obtained signature, GSVA was performed both with 
up and down signatures on the basal RNA-seq profiles of cancer cell lines included in the HPA (human 
protein atlas) (Uhlén et al., 2015). A sensitivity score was calculated for each cell line as the difference 
between the ESs of the up and the down signatures. The predicted rank was validated on selected 
cell lines (A-431, A549, HEK-293, NTERA-2, PC-3, and SH-SY5Y) as described in the next paragraph, 
and Pearson correlation between predicted sensitivity scores and viability decrease in cells treated 
with M 10 nM for 72 hr was calculated. Two control signatures of the same size were also tested: (1) a 
random genes signature (composed by random genes among those annotated in the RNA-seq profile 
of HPA cell lines) and (2) a control signature composed by the top up- and down- log2FC DE genes 
between the two cell lines (listed in Supplementary file 7). The cisplatin signature was also tested on 
HCA transcriptomes, subsetting for cancer cell lines whose IC50 was available in the Genomics of Drug 
Sensitivity in Cancer database. Only cell lines with IC50 no higher than the one of low-sensitive BxPC-3 
cells (55 µM) were included in the correlation plot.

GSVA (v 1.38.2) was applied also on basal transcriptomes of samples from the Cancer Genome 
Atlas TCGA database, and their sensitivity score was calculated as previously indicated. The relative 
distribution of samples from different tumor types in terms of calculated sensitivity score was plotted 
together with the indicated median value for each group, to identify possibly more susceptible tumor 
types.

Finally, the signature-based prediction was used to train a LASSO-based classifier (​cv.​glmnet func-
tion in glmnet package v 4.1 to assess lambda penalty, predict function in stats package v 4.0.3 for 
actual prediction) (Friedman et  al., 2010). Briefly, TCGA samples were assigned to a continuous 
label based on the previously inferred sensitivity scores. We next trained the classifier with 80% of 
these profiles and tested it on the remaining 20%: Pearson correlation and RMSE were calculated to 
evaluate the predictive performance of the classifier. The classifier was also tested on separate tumor 
types to assess accuracy in predicting intra-tumor heterogeneity. To assess the biological robustness 
of our signature and of the obtained model, the classifier was trained and tested also using transcrip-
tomes cleaned up from genes belonging to our signature.

Validation of 3-CePs sensitivity prediction on cancer cell lines
The rank of sensitivity to M obtained from the newly constructed signature was validated on a subset 
of available cell lines included in the Human Cell Atlas. The selected cell lines spanned quite well 
between the max and min detected susceptibility scores. Here are the screened cell lines from the 
one predicted as most sensitive: PC-3, A549, A-431, SH-SY5Y, NTERA-2, and HEK-293. 5000 cells/
well were seeded in 96-well microplates and after 24 hr treated with M 10 nM for 72 hr. Cell viability 
was assessed at the end of the treatment by MTT, following previously adopted protocols (Carraro 
et al., 2019). Mean values of residual viability and SDs obtained from two independent experiments 
in duplicated microplates, each one containing three technical replicates, are reported in Supplemen-
tary file 6. Pearson correlation between mean residual viability and predicted susceptibility score in 
considered cell lines was calculated and reported in Figure 6.

Statistics and reproducibility
Unpaired two-tailed Student’s t-test was performed to assess statistically significant differences 
(p<0.05) in cell cycle and H2AX phosphorylation analyses between treated and control conditions 
(n=3). All correlation coefficients were calculated with a Pearson’s test. The adopted statistical tests, 
the considered significance levels, and the number of biological replicates are also reported in figure 
legends. Boxplots are in the style of Tukey, where the center of the box represents the median of 
values, hinges represent the 25th and 75th percentile, and the whiskers are extended not further 
than the 1.5×IQR (inter quartile range). The analysis was performed on R (v. 3.6.2 or 4.0.3): the 
specific packages used for the analysis, their version and relevant parameters used are explained 
in the Methods sections. All plots were generated with ggplot (v. 3.3.2) except for the heatmaps 
which were generated with the R package complexheatmap (v. 2.2.0). To ensure the reproducibility of 
the manuscript results, all the analyses were conducted within a containerized environment (Docker). 
RNA- and ATAC-seq analyses were performed with the docker image jsschrepping/r_docker:jss_R362 
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(https://hub.docker.com/r/jsschrepping/r_docker). The rest of the analysis was conducted with the 
image lorenzobonaguro/cocena:v3 (https://hub.docker.com/r/lorenzobonaguro/cocena) for compati-
bility with the CoCena pipeline.

Data availability
All raw data included in this study are available at gene expression omnibus (GEO). For 3-CePs, raw 
RNA-seq data and count matrix are under the GEO accession number GSE179057. Raw ATAC-seq 
data and peak matrix are available under the accession number GSE179059. Both datasets are 
collected in a GEO SuperSeries (GSE179064). Cisplatin RNA-seq data and count matrix are available 
at the accession number GSE207611, the raw ATAC-seq data and peak matrix are available under 
the number GSE207607. Both are collected in a GEO SuperSeries (GSE207612).The cell line expres-
sion data employed in the prediction pipeline were downloaded from https://www.proteinatlas.org/​
about/download. The file RNA HPA cell line gene data contains transcript expression levels summa-
rized per gene in 69 cell lines and is based on the Human Protein Atlas version 20.0 and Ensembl 
version 92.38.Similarly, the TCGA expression data from cancer cell samples (the Cancer Genome 
Atlas) were downloaded from the same web page of the Human Cell Atlas (Transcript expression 
levels summarized per gene in 7932 samples from 17 different cancer types). Data are based on 
The Human Protein Atlas version 20.0 and Ensembl version 92.38. Cisplatin IC50s in different cell 
lines can be accessed through the Genomics of Drug Sensitivity in Cancer database (https://www.​
cancerrxgene.org/compound/Cisplatin/1005/overview/ic50) (Yang et  al., 2013). Codes to repro-
duce both pre-processing and downstream analyses reported in this manuscript are available at 
the public repository https://github.com/ccarraro/3-CePs_prediction, (Carraro, 2022 copy archived 
at swh:1:rev:16c71c7857a4980f6ce2a054994d62b78a991e0d). The hCoCena script is accessible at 
https://github.com/MarieOestreich/hCoCena (Oestreich, 2022, copy archived at swh:1:rev:0ff2b-
77fa7371ce88801b5798dd3c87e0b03d2b1) (vertical integration code available upon request). 
Supplementary Data are available as .xlsx or .pdf files.
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