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Abstract Viral infection often causes severe damage to the lungs, leading to the appearance of 
ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far, the roles of these ectopic 
epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft 
cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells 
from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor 
functions have been suggested in other organs, pulmonary tuft cells don’t proliferate or give rise to 
other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2-labeled ectopic 
EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated 
post-viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that 
are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases 
the contribution of Trp63CreERT2-labeled cells to the alveolar epithelium. Although Trpm5 is known to 
regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar 
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regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration 
through a mechanism independent of tuft cells.

Editor's evaluation
In this manuscript, the authors describe the ectopic tuft cells that were derived from lineage-tagged 
Krt5+ Trp63+ cells post influenza virus infection. These tuft cells do not appear to proliferate or 
give rise to other lineages in the lung parenchyma. They then claim that Wnt inhibitors increase the 
number of tuft cells while inhibiting Notch signalling decreases the number of tuft cells within Krt5+ 
pods after infection in vitro and in vivo. The authors further show that genetic deletion of Trpm5 
results in an increase in AT2 and AT1 cells in p63CreER lineage-tagged cells compared to control. 
Lastly, they demonstrate that depletion of tuft cells caused by genetic deletion of Pou2f3 has no 
effect on the derivation of AT1 and AT2 cells from the p63+ Krt5- progenitor population, implying 
that tuft cells play no functional role in this process. This study provides new insights into the role of 
tuft cells and p63+Krt5- progenitor cells in lung repair.

Introduction
Postmortem examination of H1N1 influenza-infected lungs revealed extensive tissue remodeling 
accompanied by the presence of ectopic cytokeratin-5-positive (KRT5+) basal cells in the lung paren-
chyma (Xi et al., 2017). These ectopic basal cells (EBCs) are also present in the mouse parenchyma 
following infection with modified H1N1 influenza PR8 virus or treatment with a high dose of bleo-
mycin (Kanegai et al., 2016; Vaughan et al., 2015; Xi et al., 2017; Yuan et al., 2019; Zacharias 
et al., 2018; Zuo et al., 2015). Initial studies suggest that these EBCs contribute to alveolar regen-
eration (Zuo et al., 2015). However, studies from other groups suggest that EBCs do not meaning-
fully become alveolar epithelial cells, but rather provide structural supports to prevent the lung from 
collapsing (Basil et al., 2020; Kanegai et al., 2016; Vaughan et al., 2015).

Tuft cells are a minor cell population critical for chemosensory and relaying immune signals in 
multiple organs including the intestine and trachea (Howitt et  al., 2016; Montoro et  al., 2018; 
von Moltke et al., 2016). In the intestine tuft cells serve as immune sentinels during parasitic infec-
tion (Gerbe et  al., 2016; Howitt et  al., 2016; McGinty et  al., 2020; von Moltke et  al., 2016). 
Responding to helminth infection, tuft cells release the alarmin interleukin (IL)–25 which activates 
type 2 innate lymphoid cells (ILC2s) and their secretion of IL-13, initiating type 2 immune response to 
eliminate parasitic infection (Gerbe et al., 2016; Howitt et al., 2016; von Moltke et al., 2016). Tuft 
cells were initially identified in the rat trachea over six decades ago (Rhodin and Dalhamn, 1956). 
However, we just have begun to appreciate their functions in the respiratory system (Bankova et al., 
2018; Ualiyeva et  al., 2020). Recent single-cell RNA sequencing confirmed the presence of tuft 
cells in the mouse trachea where they express several canonical genes, such as Alox5ap, Pou2f3, and 
Gfi1b (Montoro et al., 2018). Following repeated allergen challenges, tuft cells expand and amplify 
immune reactions (Bankova et al., 2018). Intriguingly, tuft cells were found ectopically present in the 
lung parenchyma, co-localized with EBCs following PR8 viral infection (Rane et al., 2019). Although 
p63-expressing lineage-negative epithelial stem/progenitor cells (LNEPs) were considered as a source 
of tuft cells (Rane et al., 2019), it is still unclear whether these p63+ cells immediately give rise to 
tuft cells or through EBCs. More recently, we reported that ectopic tuft cells were also present in the 
parenchyma of COVID-19 lungs, and ablation of tuft cells dampens macrophage infiltration at the 
acute phase following viral infection in a mouse model (Melms et al., 2021). However, the role of tuft 
cells in lung regeneration following viral infection remains undetermined.

In this study, we showed that EBCs served as the cell of origin for the ectopic tuft cells present 
in the parenchyma during viral infection. Upon screening multiple signaling pathways we identified 
that Notch inhibition blocked tuft cell derivation, while Wnt inhibition significantly enhanced tuft cell 
differentiation from EBCs. We then used multiple mouse models to demonstrate that Trp63CreERT2 
labeled subpopulations of alveolar type 1 and 2 (AT1/AT2) cells during regeneration regardless of the 
presence of tuft cells in the parenchyma.

https://doi.org/10.7554/eLife.78217
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Results
Tuft cells expanded in response to challenges with influenza, 
bleomycin, or naphthalene
Tuft cells are rarely present in the proximal airways of normal adult mice (Montoro et  al., 2018). 
However, they were present in the distal airways at birth when tuft cells were first detected (Figure 1A 
and B). Tuft cells continued to be present throughout the airways when examined at postnatal (P)10 
and P20 but were no longer detected in the terminal bronchiole at P56 (Figure 1A and B). Notably, 
tuft cells reappeared in the terminal airways approximately 7 days post infection (dpi) with PR8 virus 
(Figure 1C). The number of tuft cells also significantly increased in the large airways at 30 dpi (4.9±1.1 
vs 25.7±3.3 per 1000 epithelial cells) (Figure 1C). As previously described, tuft cells were present in 
the EBC area (Melms et al., 2021; Rane et al., 2019). Further analysis revealed that tuft cells were 
first detected in the EBC area at approximately 15 dpi and peaked at 21 dpi (Figure 1—figure supple-
ment 1). The numbers of tuft cells also expanded in the large airways following naphthalene (13.4±1.1 
per 1000 epithelial cells) or bleomycin challenge (8.6±0.8 per 1000 epithelial cells) (Figure 1D). In 
addition, tuft cells were ectopically present within EBCs 28 days following challenge with a high dose 
of bleomycin (Figure 1D). These findings suggest that tuft cell expansion in the airways is a general 
response to lung injuries, and that severe injuries induce ectopic tuft cells in the parenchyma.

The ectopic tuft cells in the parenchyma did not proliferate or give rise 
to other cell lineages
Previous studies suggest that Dclk1+ cells serve as progenitor cells in the small intestine and pancreas 
(May et al., 2008; May et al., 2009; Westphalen et al., 2016). We asked whether the ectopic tuft 
cells in the lung parenchyma also possess progenitor potential. We performed lineage tracing with 
a knock-in Pou2f3CreERT2 mouse line (McGinty et  al., 2020). Tuft cells (Dclk1+) in the large airways 
were specifically labeled with the lineage tracing maker (tdT+) upon three Tamoxifen (Tmx) injections 
into Pou2f3CreERT2;R26Ai14 mice (Figure 2A). Notably,~92% tdT+ cells expressed Dclk1 in the trachea, 
whereas all tdT+ cells expressed Dclk1 in the large intrapulmonary airways (Figure 2A and Figure 2—
figure supplement 1A). We then analyzed the mice challenged with PR8 virus. Tmx was continuously 
given from 14 to 27 dpi and the lungs were analyzed at 60 dpi (Figure 2B). The majority (~93%) 
of the ectopic tuft cells were lineage labeled in the lung parenchyma of Pou2f3CreERT2;R26Ai14 mice 
(Figure 2B). These labeled tuft cells solitarily distributed in the injured lung parenchyma (Figure 2B), 
indicating that they had not undergone expansion. Consistently, none of the tuft cells was positive for 
the proliferation marker Ki67 (Figure 2—figure supplement 1B). To further test whether tuft cells give 
rise to other cell lineages, immunostaining with various cell type markers was performed, including 
Scgb1a1 (club cells), FoxJ1 (ciliated cells), and Clca3 (goblet cells). The results showed that tuft cells 
did not contribute to other cell types following a chasing period up to 60 days (Figure 2C). These data 
suggest that tuft cells in the lung unlikely serve as progenitor cells.

The ectopic tuft cells in the parenchyma originated from EBCs in PR8-
infected mice and COVID-19 lungs
Basal cells serve as the origin of tuft cells in the mouse trachea (Montoro et al., 2018). By contrast, 
p63-expressing lineage-negative epithelial stem/progenitor cells (LNEPs) were considered as the 
origin of tuft cells in the lung parenchyma following viral infection (Rane et al., 2019). While char-
acterizing ectopic tuft cells in the parenchyma, we noticed approximately 5% tuft cells co-expressed 
Dclk1 and the basal cell marker Krt5 (Figure 2—figure supplement 1C), suggesting that these tuft 
cells are in a transitioning state from EBCs towards tuft cells. To test this hypothesis, Trp63CreERT2;R26Ai14 
mice were infected with PR8 virus followed by daily Tmx injection from 14 dpi to 18 dpi as tuft cells 
were initially detected at around 15 dpi (Figure  2D). The majority of tuft cells within EBCs were 
labeled with tdT (Figure 2D). We also used KRT5-CreERT2;R26Ai14 mice to trace EBCs-derived tuft 
cells. Consistently, about 80% of tuft cells were labeled with tdT (Figure 2E). These findings confirmed 
that EBCs serve as the cell origin for the ectopic tuft cells. EBCs can be derived from multiple cell 
sources including a subpopulation of Scgb1a1+ club cells (Yang et al., 2018). To test whether EBCs 
derived from the club cell subpopulation give rise to tuft cells, we lineage labeled club cells before 
exposing Scgb1a1CreERT;R26Ai14 mice to PR8 virus. 21.0% ± 2.0% tuft cells that were ectopically present 

https://doi.org/10.7554/eLife.78217
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Figure 1. Tuft cells in homeostasis and their expansion in response to severe injuries. (A) Tuft cells are present in the distal airways at P0, P10, P20 but 
not P56. n=4 for each group. (B) Quantification of tuft cells from panel (A). (C) Tuft cells expand in the large airway and are ectopically present in the 
terminal airways following viral infection. (D) Tuft cells expand in the airways following naphthalene and bleomycin challenge and are ectopically present 
in parenchyma following bleomycin challenge. Scale bars, 50 μm.

Figure 1 continued on next page
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in the parenchyma were labeled with tdT when examined at 30 dpi (Figure 2—figure supplement 
1D), suggesting that club cells also generate a portion of tuft cells in the lung parenchyma upon viral 
infection.

We recently reported expansion of tuft cell in COVID-19 lungs (Melms et al., 2021). Upon SARS-
CoV-2 infection club and ciliated cells were almost completely ablated (Fang et al., 2020), exposing 
the underlying basal cells in the affected intrapulmonary airways (Figure 3A). A significant number of 
the dispositioned basal cells remained proliferative while lodged in the alveoli, presumably initiating 
EBCs (Figure 3B–C). Tuft cells were occasionally present in the established EBCs in addition to the 
airways (Figure 3D). Similar to the EBC-derived tuft cells in influenza-infected mice, the ectopic tuft 
cells in the parenchyma of COVID-19 lungs co-expressed KRT5 and POU2F3 (Figure 3D), suggesting 
a similar differentiation scheme. By contrast, tuft cells in the airways did not express KRT5 (Figure 3E).

Inhibition of Wnt and Notch signaling has opposite effects on the 
differentiation of EBCs into tuft cells
We next sought to identify the signaling pathways that can influence tuft cell differentiation from 
EBCs. Lineage-labeled EBCs were isolated and purified from the lungs of KRT5-CreERT2;R26Ai14 mice 
following viral infection and were expanded using the protocol for culturing basal cells (Mou et al., 
2016; Figure 4—figure supplement 1A). The expanded EBCs maintained the lineage tag (tdT+) and 
expressed p63 and Krt5 (Figure  4—figure supplement 1B). In addition, they also expressed the 
respiratory protein markers Nkx2.1 and Foxa2 (Figure 4—figure supplement 1B). We then used the 
expanded EBCs to assess the impact of major signaling pathways which have been implicated in the 
determination of cell fate during lung development. The tested pathways include Tgfß/Bmp, Yap, 
Shh, Wnt, Notch, IL-6, and IL-4/IL-13 (Ahdieh et al., 2001; Barkauskas et al., 2013; Ikonomou et al., 
2020; Lee et al., 2014a; Li et al., 2017; Nabhan et al., 2018; Pardo-Saganta et al., 2015; Tadokoro 
et al., 2014; Vaughan et al., 2015; Yuan et al., 2019; Zacharias et al., 2018). We observed that 
treatment with IL-4 or IL-13 promoted tuft cell derivation from EBCs in air-liquid interface (ALI) culture 
(data not shown), in agreement with the previous reports of IL-4Rα-dependent tuft cell expansion 
from the intestinal crypts (Gerbe et al., 2016; von Moltke et al., 2016). Notably, treatment of the 
WNT signaling activator CHIR9902 blocked the derivation of tuft cells by 35.3% ± 3.1%. Conversely, 
treatment with the Wnt inhibitor IWR-1 promoted tuft cell differentiation by 32.4% ± 6.4% (Figure 4—
figure supplement 1C). Inhibition of WNT signaling with the Porcupine inhibitor Wnt-C59 also led 
to increased tuft cell differentiation of airway basal cells isolated from Dclk1-GFP mice (Figure 4A). 
Consistently, daily injection of Wnt-C59 induced abundant tuft cells in the lung parenchyma following 
viral infection (Figure  4B). By contrast, Notch inhibition with the γ-secretase inhibitor Dibenzaze-
pine (DBZ) reduced tuft cell differentiation from EBCs in ALI culture (Figure 4C). Daily DBZ injection 
also decreased the number of tuft cells in the parenchyma by 63.6% ± 1.5% following viral infection 
(Figure 4D). To further confirm the role of Notch signaling in tuft cell derivation, KRT5-CreERT2;Rbpjkf/

f;R26Ai14 mice were infected with PR8 virus and injected with Tmx daily from 14 dpi to 18 dpi to specifi-
cally delete the Notch effector Rbpjk in EBCs. Consistent with the in vitro finding, tuft cells were barely 
present in the lung parenchyma of KRT5-CreERT2;Rbpjkf/f;R26Ai14 mice (Figure 4—figure supplement 
1D). Together these findings suggest that inhibition of the WNT signaling pathway promotes while 
Notch signaling inhibition blocks the differentiation of EBCs into tuft cells.

Enhanced generation of Trp63CreERT2 lineage labeled alveolar epithelium 
in Trpm5-/- but not Pou2f3-/- mutants
Given tuft cell ablation reduces macrophage infiltration in PR8-infected mouse lungs (Melms et al., 
2021), we asked whether loss of tuft cells improves alveolar regeneration. The first mouse model 
we examined was Trpm5 null mutant which demonstrates ~80% reduction of tuft cells in the intes-
tine (Howitt et al., 2016). The number of tuft cells was reduced but not significantly following viral 
infection in the lung parenchyma of Trp63CreERT2;Trpm5-/-;R26Ai14 mice as compared to control mice 

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Ectopic tuft cells appear after viral infection.

Figure 1 continued
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Figure 2. Tuft cells in the parenchyma are derived from ectopic basal cells (EBCs) following H1N1 PR8 viral infection. (A) Pou2f3CreERT2;R26Ai14 mouse line 
specifically labels Dclk1+ tuft cells in the large airways at homeostasis. (B) Lineage tracing of Pou2f3+ cells in the parenchyma after PR8 virus infection. 
Arrow indicates a tdT+Dclk1- cell. (C) Lineage labeled tuft cells do not contribute to other cell lineages, including Scgb1a1+ club cells, FoxJ1+ ciliated 
cells and Clca3+ goblet cells. (D) Lineage tracing confirms that tuft cells are derived from EBCs in the lung parenchyma of Trp63CreERT2;R26Ai14 mice 

Figure 2 continued on next page
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(Trp63CreERT2;Trpm5+/-;R26Ai14) (P>0.05, Figure  5—figure supplement 1A). We did not observe any 
apparent reduction in the size of Krt5+ EBC clones in the lung parenchyma (Figure 5—figure supple-
ment 1B). Consistently, KRT5-CreERT2 lineage labeled cells did not contribute to AT1 or AT2 cells 
no matter Tmx was administered before or after viral infection (data not shown), which is in line 
with previous studies (Kanegai et  al., 2016; Vaughan et  al., 2015). Surprisingly, when Tmx was 
injected after viral infection, we observed 7.9% ± 1.4% Trp63CreERT2 lineage-labeled cells expressed 
the AT2 cell marker SftpC but not p63 or Krt5 in the areas that surrounded the injured foci, and the 
number was increased to 19.4%±4.2% in Trp63CreERT2;Trpm5-/-;R26Ai14 mice (Figure 5A and Figure 5—
figure supplement 1C). Lineagelabeled AT2 cells were further confirmed by Abca3, another mature 
AT2 cell marker (Figure 5—figure supplement 1D). In addition, lineage-labeled cells also included 
AT1 epithelium (Hopx+, T1α+) which was increased in the parenchyma of Trp63CreERT2;Trpm5-/-;R26Ai14 
mutants (6.5% ± 0.9% vs 2.5% ± 0.8% at 60 dpi) (Figure 5B and Figure 5—figure supplement 1E). 
To assess whether Trpm5-/- mice exhibited improved pulmonary mechanics after viral infection, we 
assessed airway resistance when challenged with increasing concentrations of methacholine. Total 
respiratory system resistance (Rrs) and central airway resistance (Rn) were significantly attenuated in 
Trpm5-/- mice (Figure 5C).

We next examined the contribution of Trp63CreERT2 lineage-labeled cells to lung regeneration in 
Pou2f3-/- mice which have no tuft cells (Matsumoto et al., 2011). We subjected Trp63CreERT2;Pou2f3-/-

;R26Ai14 mutants and controls (Trp63CreERT2;Pou2f3+/-;R26Ai14) to viral infection followed by continuous 
Tmx injection from 14 to 18 dpi. In the controls prominent bronchiolization occurred in the paren-
chyma with the extensive presence of Krt5+ EBCs (Figure 6A), and approximately 8% of the lineage-
labeled cells co-expressed Sftpc but not Krt5 (Figure 6B). We did not detect improved contribution of 
lineage-labeled alveolar epithelium in the mutants as compared to the controls (p>0.05) (Figure 6B), 
suggesting that loss of the ectopic tuft cells has no impact on alveolar regeneration initiated by 
Trp63CreERT2 labeled epithelium.

Discussion
Tuft cells are observed in the large airways at homeostasis in adults. Here, we showed that tuft cells 
are present in both large and terminal airways during early postnatal development. In response to 
severe injuries, tuft cells expanded in the airways and ectopically presented in the parenchyma of 
severely injured lungs. These tuft cells did not generate other cell lineages. Lineage tracing confirmed 
that they were derived from EBCs, which was promoted by Wnt inhibition. By contrast, pharmacolog-
ical or genetic inhibition of Notch signaling blocked EBC differentiation into tuft cells. We confirmed 
that EBCs (Krt5+, p63+) do not contribute to alveolar regeneration. Instead, we found a Trp63CreERT2 
labeled population generated alveolar cells independent of the presence of tuft cells.

Tuft cells were detected throughout the airways including the terminal airways at around the 
neonatal stage, and they were no longer present in the terminal airways when examined at P56. Upon 
viral infection, tuft cells expanded in large airways and re-appeared in terminal airways, suggesting 
re-activation of developmental signaling during injury-repair. Our pilot screen of signaling inhibitors/
activators demonstrated that Wnt blockage resulted in significantly increased differentiation of EBCs 
towards tuft cells. In consistence, treatment of the Wnt inhibitor Wnt-C59 also led to significant expan-
sion of tuft cells in the airways and parenchyma. Along this line, influenza infection has been shown to 
cause downregulation of Wnt signaling in mouse lungs (Hancock et al., 2018). By contrast, we found 
that both pharmacological and genetic inhibition of Notch signaling suppressed tuft cell expansion. 
Additionally, IL-4 and IL-13 treatments increased the derivation of tuft cells from EBCs, which is in 
contrast to the findings from the co-submitted manuscript where deletion of Il4 had no impact on 
tuft cell differentiation. This could be due to the extra IL-4/IL-13 we supplied to the cell culture, which 
may not be present in an in vivo setting during viral infection. Re-expression of the transcription factor 

following PR8 infection. (E) Lineage tracing shows about 80% of tuft cells are derived from EBCs in the lung parenchyma of KRT5-CreERT2;R26Ai14 mice 
following PR8 infection. Data represent mean ± s.e.m. Scale bars, 20 μm (A) and 50 μm (B to G).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Tuft cells in the lung parenchyma are derived from ectopic basal cells (EBCs).

Figure 2 continued

https://doi.org/10.7554/eLife.78217
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Sox9 has been observed during the repair of the airway epithelium following naphthalene challenge 
(Jiang et al., 2021). Interestingly, Sox9 is expressed by tuft cells as shown by the accompanied manu-
script. It will be interesting in future experiments to determine whether Sox9 is required to promote 
the generation of tuft cells.
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Figure 3. EBCs likely give rise to tuft cells in the parenchyma of COVID-19 lungs. (A) SARS-CoV-2 infection causes the loss of club and ciliated cells 
(arrows in a), exposing the underlying basal cells (B) in the small airways. Note the detached basal cells (C). (B) EBCs proliferate in the parenchyma of 
COVID-19 lungs. H&E staining shows the presence of EBC clusters in COVID-19 lungs. (C) Representative clusters of EBCs are present in COVID-19 
lungs. (D) Tuft cells within EBCs express both KRT5 and the tuft cell marker POU2F3. (E) Solitary tuft cells without KRT5 expression are present in the 
airways of COVID-19 lung. Abbreviation: bv, blood vessel. Scale bars, 100 μm (A, B and C) and 50 μm (D and E).
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Figure 4. Wnt inhibition promotes EBC differentiation into tuft cells while Notch inhibition has an opposite effect. 
(A) Treatment with the WNT signaling inhibitor Wnt-C59 promotes tuft cell differentiation of Dclk1-GFP basal 
cells in ALI culture. (B) Wnt-C59 treatment increases the number of tuft cells in the lung parenchyma following 
viral infection. (C) Treatment with the Notch signaling inhibitor DBZ completely blocks tuft cell differentiation of 

Figure 4 continued on next page
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Recent lineage tracing studies indicated that EBCs did not contribute meaningfully to the regen-
erated alveolar cells (Kanegai et al., 2016; Vaughan et al., 2015). We also injected Tmx into KRT5-
CreERT2;R26Ai14 mice after viral infection and did not observe contribution of lineage labeled cells to 
alveolar epithelium (data not shown). By contrast, we observed significant contribution of Trp63CreERT2 
lineage labeled cells to the alveolar epithelium when Tmx was injected after viral infection. AT2 
cells were recently found to generate p63+ Krt5+ basal cells in vitro (Kathiriya et  al., 2022). It is 
possible that our strategy labels these AT2 cell-derived basal cell subpopulations during regeneration. 
However, we did not observe KRT5-CreERT2 lineage-labeled alveolar epithelium no matter Tmx is 
injected before or after viral infection. This led us to postulate that we indeed labeled a progenitor cell 
population that transiently expressed p63 but not Krt5 following viral infection. Trp63CreERT2 lineage-
labeled progenitor cells have been shown to give rise to AT1 and AT2 cells when Tmx is injected at the 
very early stage of mouse lung development (embryonic day 10.5) (Yang et al., 2018). Therefore, it is 
possible that subpopulations of AT1/AT2 cells regain the transcription program of fetal lung progeni-
tors and transiently express p63 prior to becoming alveolar cells.

We observed increased contribution of Trp63CreERT2-labeled cells to the alveolar epithelium in 
Trpm5-/- but not Pou2f3-/- mutants, suggesting that lung regeneration is independent of the presence 
of ectopic tuft cells in the parenchyma. Trpm5 is a calcium-activated channel protein that induces 
depolarization in response to increased intracellular calcium (Prawitt et al., 2003). This protein is also 
expressed in B lymphocytes (Sakaguchi et al., 2020). Notably, we observed decreased accumulation 
of B lymphocytes in the lungs of Trpm5-/- mutants following viral infection (unpublished data, H.H. and 
J.Q.). It will be interesting in the future to determine whether reduced B lymphocytes facilitate lung 
regeneration.

In summary, we demonstrated that tuft cells are present in the airways at the early postnatal stages 
and later are restricted to the large airways. In response to severe injuries tuft cells expand in the 
airways and are ectopically present in the parenchyma where EBCs serve as their progenitor cells. 
Moreover, we identified Trp63CreERT2 labeled alveolar epithelial cells arising during lung regeneration 
independent of tuft cells.

Materials and methods

Dclk1-GFP basal cells in ALI culture. (D) Daily injection of DBZ following PR8 infection dramatically reduces tuft cell 
derivation in the lung parenchyma. n=4 per group. Data represent mean ± s.e.m. *p<0.05, ***p<0.001; statistical 
analysis by unpaired two-tailed Student’s t-test. Scale bars, 50 μm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Isolation and expansion of Krt5+ EBCs from the lungs of Trp63CreERT2; R26Ai14 mice that were 
infected with PR8 virus.

Figure 4 continued

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus 
musculus) Trp63CreERT2

Lee et al., 2014b; 
Lee et al., 2014a 
PMID:25210499 Dr. Jianming Xu (Baylor College of Medicine)

Genetic reagent (Mus 
musculus) Tg(KRT5-CreERT2)

Rock et al., 2009 
PMID:19625615

Dr. Brigid Hogan (Duke University); A 
transgenic mouse strain in which human KRT5 
promoter drives CreERT2

Genetic reagent (Mus 
musculus) Scgb1a1CreERT

Rawlins et al., 2009
PMID:19497281 MGI:3849566 Dr. Brigid Hogan (Duke University)

Genetic reagent (Mus 
musculus) Pou2f3CreERT2

McGinty et al., 2020 
PMID:32160525 MGI:6755141

Dr. Jakob von Moltke (University of 
Washington)

Genetic reagent (Mus 
musculus) Tg(Trpm5-GFP)

Clapp et al., 2006
PMID:16573824 16573824 Dr. Tod Clapp (Colorado State University)

Genetic reagent (Mus 
musculus) Trpm5-/-

Damak et al., 2006
PMID:16436689 Dr. Robert Margolskee (Mount Sinai)

https://doi.org/10.7554/eLife.78217
https://pubmed.ncbi.nlm.nih.gov/25210499/
https://pubmed.ncbi.nlm.nih.gov/19625615/
https://pubmed.ncbi.nlm.nih.gov/19497281/
https://pubmed.ncbi.nlm.nih.gov/32160525/
https://pubmed.ncbi.nlm.nih.gov/16573824/
https://pubmed.ncbi.nlm.nih.gov/16436689/


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Stem Cells and Regenerative Medicine

Huang et al. eLife 2022;11:e78217. DOI: https://doi.org/10.7554/eLife.78217 � 11 of 20

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Genetic reagent (Mus 
musculus) Pou2f3-/-

Matsumoto et al., 2011
PMID:21572433 MGI:5140071 Dr. Keiko Abe (The University of Tokyo)

Genetic reagent (Mus 
musculus) Rbpjkloxp/loxp

Han et al., 2002
PMID:12039915 MGI:3583755 Dr. Tasuku Honjo (Kyoto University)

Genetic reagent (Mus 
musculus) B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J

Madisen et al., 2010
PMID:20023653 MGI: 4436847 Jackson Laboratories (#007914, R26Ai14)

Antibody
Anti-Dclk1
(Rabbit polyclonal) Abcam ab31704 1:200

Antibody
Anti-CC10 (E-11)
(Mouse monoclonal) Santa Cruz sc-365992 1:200; Scgb1a1

Antibody
Anti-SCGB1A1
(Rat monoclonal) R&D MAB4218 1:500

Antibody
Anti-Krt5
(Chicken polyclonal) BioLegend 905901 1:500

Antibody
Anti-Krt5
(Mouse monoclonal) Abcam ab17130 1:500

Antibody
Anti-Krt5
(Rabbit polyclonal) Abcam ab53121 1:500

Antibody
Anti-p63
(Rabbit polyclonal) Genetex GTX102425 1:200

Antibody
Anti-p63
(Mouse monoclonal) Abcam ab735 1:200

Antibody
Anti-Acetylated tubulin
(Mouse monoclonal) Sigma T7451 1:500

Antibody
Anti-TTF1
(Rabbit monoclonal) Abcam ab76013 1:500; Nkx2.1

Antibody
Anti-FOXA2
(Mouse monoclonal) Abcam ab60721 1:200

Antibody
Anti-POU2F3
(Rabbit polyclonal) Sigma HPA019652 1:200

Antibody
Anti-ABCA3
(Rabbit polyclonal) Seven Hills WRAB-70565 1:500

Antibody
Anti-Hop (E-1)
(Mouse monoclonal) Santa Cruz sc-398703 1:100; Hopx

Antibody
Anti- Prosurfactant Protein C
(Rabbit polyclonal) Abcam ab90716 1:500; SftpC

Antibody
Anti-Pro-SP-C
(Rabbit polyclonal) Seven Hills WRAB-9337 1:1000

Antibody
Anti-tdTomato
(Goat polyclonal) Biorbyt orb182397 1:1000

Antibody
Anti-Pdpn
(Syrian hamster monoclonal) DSHB 8.1.1 c 1:500; T1α

Antibody
Anti- Green Fluorescent Protein
(Chicken polyclonal) Fisher (Aves Lab) GFP1020 1:200; GFP

Antibody
Anti-Ki-67
(Rat monoclonal) Invitrogen 14-5698-82 1:50

Antibody
Alexa Fluor 488 Donkey Anti-Chicken
(Donkey polyclonal) Jackson Immuno Research 703-546-155 1:500

Antibody
Alexa Fluor 488 Donkey Anti-Mouse
(Donkey polyclonal) Jackson Immuno Research 715-545-151 1:500

 Continued on next page

 Continued

https://doi.org/10.7554/eLife.78217
https://pubmed.ncbi.nlm.nih.gov/21572433/
https://pubmed.ncbi.nlm.nih.gov/12039915/
https://pubmed.ncbi.nlm.nih.gov/20023653/
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Antibody
Cy5 AffiniPure Donkey Anti-Rat IgG
(Donkey polyclonal) Jackson Immuno Research 712-175-150 1:500

Antibody
Cy3 AffiniPure Donkey Anti-Mouse IgM
(Donkey polyclonal) Jackson Immuno Research 715-165-140 1:500

Antibody
Alexa Fluor 488 Donkey anti-Rat IgG
(Donkey polyclonal) Invitrogen A21208 1:500

Antibody
Alexa Fluor 555 Donkey anti-Rabbit IgG
(Donkey polyclonal) Invitrogen A31572 1:500

Antibody
Alexa Fluor 555 Donkey anti-Goat IgG
(Donkey polyclonal) Invitrogen A21432 1:500

Antibody
Alexa Fluor 555 Donkey anti-Mouse IgG
(Donkey polyclonal) Invitrogen A31570 1:500

Antibody
Alexa Fluor 647 Goat anti-Chicken IgG
(Goat polyclonal) Invitrogen A21449 1:500

Chemical compound, drug DBZ Tocris 4489

Chemical compound, drug Wnt-C59 Tocris 5148

Chemical compound, drug CHIR99021 Tocris 4423

Chemical compound, drug IWR-1 Tocris 3532

Chemical compound, drug Dorsomorphin Sigma P5499

Chemical compound, drug Verteporfin Sigma SML0534

Chemical compound, drug GDC-0449 Selleckchem S1082

Chemical compound, drug Dexamethasone Sigma D2915

Chemical compound, drug 3-Isobutyl-1-methylxanthine (IBMX) Sigma I5879

Peptide, recombinant 
protein Recombinant Il-6 Peprotech 200–06

Peptide, recombinant 
protein Recombinant Il-4 Peprotech 200–13

Peptide, recombinant 
protein Recombinant Murine Il-13 Peprotech 210–13

Chemical compound, drug
8-Bromoadenosine 3′,5′-cyclic 
monophosphate (8-Br-cAMP) Sigma B5386

Chemical compound, drug Bleomycin Fresenius Kabi 63323013610

Chemical compound, drug Naphthalene Sigma-Aldrich 84679

Commercial assay or kit Small Airway Epithelial Cell Medium Lonza CC-3118

Commercial assay or kit Small Airway Epithelial Cell Medium Promocell medium C-21170

Commercial assay or kit Complete Pneumacult-ALI medium StemCell Technology 05001

Other
Antigen unmasking solution, Citric acid 
based Vector Laboratories H-3300 Antigen retrieval buffer for immunostaining

Other Normal donkey serum Jackson Immuno Research 017-000-121 Blocking reagent for immunostaining

 Continued

Mouse models
All animal studies used a minimum of three mice per group. All mouse studies were approved by 
Columbia University Medical Center Institutional Animal Care and Use Committees (Approval protocol 
number AC-AABM6565). Trp63CreERT2 (Lee et  al., 2014b), Tg(KRT5-CreERT2) (Rock et  al., 2009), 
Rbpjkloxp/loxp (Han et al., 2002), Scgb1a1CreERT (Rawlins et  al., 2009), Pou2f3CreERT2 (McGinty et  al., 
2020), Tg(Trpm5-GFP) (Clapp et  al., 2006), Trpm5-/- (Damak et  al., 2006), and Pou2f3-/- (Matsu-
moto et al., 2011) mouse strains were previously described. B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J 
(R26Ai14) (Madisen et  al., 2010) mouse strain was purchased from The Jackson Laboratory (Stock 
#007914). All mice were maintained on a C57BL/6 and 129SvEv mixed background and housed in the 

https://doi.org/10.7554/eLife.78217
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Figure 5. Increased generation of Trp63CreERT2 labeled alveolar epithelium in Trpm5 null mutants following PR8 infection. (A) Trpm5 deletion leads to 
the increased presence of tdT+SftpC+Krt5- cells in the lung parenchyma at 60 dpi. (B) Increased tdT-labeled AT1 cells in the mutant lungs as compared 
to controls at 60 dpi. (C) Whole lung airway resistance improves in Trpm5-/- mice following viral infection (left panel). Central airway resistance is also 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.78217
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mouse facility at Columbia University according to institutional guidelines. Eight–12 weeks old animals 
of both sexes were used in equal proportions.

Administration of tamoxifen
Tamoxifen was dissolved in sunflower seed oil to 20 mg/mL as stock solution. For lineage analysis and 
genetic targeting, Pou2f3CreERT2 mouse strain were administered 2 mg tamoxifen by oral gavage at 
days 0, 2, and 4 for control or 1 mg tamoxifen by oral gavage at days 14, 17, 20, 23, 25, 27 post-viral 
infection. Trp63CreERT2 mice were administered with tamoxifen at a dose of 0.25 mg/g bodyweight by 
daily oral gavage for a total five doses as indicated. For Scgb1a1CreERT mice, a period of 10 or 21 days 
as indicated was used to wash out the residual tamoxifen before any further treatments.

Injury models (influenza, bleomycin, and naphthalene)
For influenza virus infection, 260 plaque forming units (pfu) of influenza A/Puerto Rico/8/1934 H1N1 
(PR8) virus were dissolved in 40 µl of RPMI medium and then pipetted onto the nostrils of anesthetized 
mice, whereupon mice aspirated the fluid directly into their lungs. Post procedure, mice were weighed 
weekly and monitored for mortality rate. For bleomycin injury, mice were anesthetized and intratra-
cheally instilled with 4 unit/kg body weight of bleomycin hydrochloride. For naphthalene treatment, 
naphthalene solution (25 mg/ml) was freshly prepared before the procedure by dissolving naphtha-
lene in sunflower seed oil. A single dose of naphthalene was delivered by intraperitoneal injection at 
275 mg/kg body weight. For all procedures listed above, the administration of the same volumes of 
vehicle (PRMI medium or saline or sunflower seed oil) was used as control.

Mouse EBC isolation, culture, and differentiation
KRT5-CreERT2; R26Ai14 mice were infected with PR8 influenza virus and were administered with tamox-
ifen intraperitoneally as indicated. At 18 dpi mouse peripheral lungs were dissected and dissoci-
ated according to the protocol as previously described (Barkauskas et al., 2013; Rock et al., 2011). 
tdT+ cells were sorted by FACS and cultured using the protocol as previously reported (Mou et al., 
2016), and the protocol for inducing the differentiation of basal-like cells was previously described 
(Feldman et al., 2019; Mou et al., 2016). Air-liquid interface (ALI) culture was used to test the effects 
of the major signaling pathway inhibitors on the differentiation of EBCs towards tuft and mucous cell 
lineages. Moreover, tracheal basal cells isolated from Trpm5-GFP mice were cultured and tested for 
drug effects in ALI. The tested inhibitors include the BMP signaling inhibitor Dorsomorphin (5 µM), 
YAP signaling inhibitor verteporfin (100 nM), NOTCH signaling inhibitor DBZ (2 µM), SHH signaling 
inhibitor GDC-0449 (1 µM), WNT signaling inhibitor IWR-1 (5 µM), WNT signaling activator CHIR99021 
(2 µM) which inhibits glycogen synthase kinase (GSK) 3, IL-6 (10 ng/ml), IL-4 (10 ng/ml) and IL-13 
(10 ng/ml) were also used to treat ALI culture of EBCs.

Treatment of mice with the Porcupine inhibitor Wnt-C59 and the γ 
secretase inhibitor DBZ
Wnt-C59 was resuspended by sonication for 20 minutes in a mixture of 0.5% methylcellulose and 0.1% 
tween-80. Wnt-C59 (10 mg/kg body weight) or vehicle was administrated via oral gavage from day 
14 to 29 post-viral infection (n=4 for each group). For DBZ administration, either vehicle or DBZ was 
administered intranasally at 30 mmol/kg body weight (n=4 per group) from day 14 to 29 post-viral 
infection. DBZ was suspended in sterile PBS mixed with 2.5 µg/g body weight dexamethasone.

Tissue and ALI culture processing and immunostaining
Human and mouse lung tissues were fixed in 4% paraformaldehyde (PFA) at 4℃ overnight and then 
dehydrated and embedded in paraffin for sections (5–7 µm). ALI culture membranes were fixed with 

reduced following viral infection (right panel). n=7 for WT group, n=9 for Trpm5-/- group. Data represent mean ± s.e.m. *p<0.05, **p<0.01; statistical 
analysis by unpaired two-tailed Student’s t-test. Scale bars, 100 μm (A), 20 µm (B).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Increased Trp63CreERT2 labeled AT1 and AT2 cells in virus-infected Trpm5-/- mice.

Figure 5 continued

https://doi.org/10.7554/eLife.78217
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Figure 6. A complete loss of tuft cell does not increase the generation of Trp63CreERT2 labeled alveolar cells following PR8 infection. (A) Extensive 
Krt5+SftpC- EBCs are present in the parenchyma of control (Trp63CreERT2;Pou2f3+/-;R26Ai14) and mutant (Trp63CreERT2;Pou2f3-/-;R26Ai14) lungs when examined 
at 60 dpi following PR8 infection. (B) Representative areas show Trp63CreERT2 labeled AT2 cells in both control and mutant lungs. Ns: not significant; 
statistical analysis by unpaired two-tailed Student’s t-test. Scale bar, 50 μm (A), 100 µm (B).
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4% PFA for direct wholemount staining or were embedded in OCT for frozen sections. All slides and 
membranes were stained following the protocol reported previously (Feldman et  al., 2019; Mou 
et al., 2016). The primary antibodies used for immunostaining are listed in the Resources Table.

Pulmonary function assessment
Trpm5+/- and Trpm5-/- mice ( +/- days after viral injury) were anesthetized with pentobarbital (50 mg/
kg, i.p.). After surgical anesthesia was achieved, a tracheotomy was performed for the insertion of an 
18 G cannula, and mice were immediately connected to a flexiVent (SciReq, Montreal, QC, Canada) 
with an FX1 module and an in-line nebulizer. Body temperature was monitored and maintained with 
a thermo-coupled warming blanket and rectal temperature probe. Heart rate was monitored by EKG 
(electrocardiography). Mice were mechanically ventilated with a tidal volume of 10 mg/kg, frequency 
of 150 breaths/min, and a positive end expiratory pressure of 3 mmHg. Muscle paralysis was achieved 
with succinylcholine (10 mg/kg, i.p.) to prevent respiratory effort and to eliminate any contribution of 
chest wall muscle tone to respiratory measurements. By using the forced oscillation technique, base-
line measurements of lung resistance (Rrs and Rn, representing total and central airway resistance) 
were performed. Resistance was then measured during nebulization of increasing concentrations of 
methacholine (10 s nebulization, 50% duty cycle). Methacholine dissolved in PBS was nebulized at 
0, 6.25, 12.5, 25, and 50 mg/ml and resistance (Rrs and Rn) was measured after each concentration. 
Values for all measurements represent an average of triplicate measurements. Statistical significance 
was established by comparing the area under the curve for each mouse.

COVID-19 lung specimens
The lung specimens from deceased COVID-19 patients with short post-mortem interval (PMI) 
(2.5–9 hr) were obtained from the Biobank at Columbia University Irving Medical Center. All experi-
ments involving human samples were performed in accordance with the protocols approved by the 
Institutional Review Boards at Columbia University Irving Medical Center.

Microscopic imaging and quantification
Slides were visualized using a ZeissLSM T-PMT confocal laser-scanning microscope (Carl Zeiss). The 
staining of cells on culture dishes and the staining on transwell membranes were visualized with 
the Olympus IX81 inverted fluorescence microscope. For quantification of lineage tracing, the lung 
sections were tiled scanned with 20 X images from at least three mice for each genotype. Cells were 
counted from at least five sections per mouse including at least three individual lung lobes. The 
production of various airway epithelial cell types was counted and quantified on at least 5 random 
fields of view with a 10 X or a 20 X objective, and the average and standard deviation was calculated.

Quantification and statistical analysis
Data are presented as means with standard deviations of measurements unless stated otherwise (n≥3). 
Statistical differences between samples are assessed with Student two-tailed T-test. p-Values below 
0.05 are considered significant (*p<0.05, **p<0.01, ***p<0.001).
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