Typhoid toxin sorting and exocytic transport from Salmonella Typhi infected cells

  1. Shu-Jung Chang
  2. Yu-Ting Hsu
  3. Yun Chen
  4. Yen-Yi Lin
  5. Maria Lara-Tejero
  6. Jorge E Galan  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. National Taiwan University, Taiwan

Abstract

Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; source data files for all figures have been provided

Article and author information

Author details

  1. Shu-Jung Chang

    1Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yu-Ting Hsu

    Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  3. Yun Chen

    Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yen-Yi Lin

    Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria Lara-Tejero

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1339-0859
  6. Jorge E Galan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    For correspondence
    jorge.galan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-0355

Funding

National Institute of Allergy and Infectious Diseases (AI079022)

  • Jorge E Galan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Preprint posted: August 10, 2021 (view preprint)
  2. Received: March 11, 2022
  3. Accepted: May 15, 2022
  4. Accepted Manuscript published: May 17, 2022 (version 1)
  5. Version of Record published: May 27, 2022 (version 2)

Copyright

© 2022, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,695
    Page views
  • 302
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shu-Jung Chang
  2. Yu-Ting Hsu
  3. Yun Chen
  4. Yen-Yi Lin
  5. Maria Lara-Tejero
  6. Jorge E Galan
(2022)
Typhoid toxin sorting and exocytic transport from Salmonella Typhi infected cells
eLife 11:e78561.
https://doi.org/10.7554/eLife.78561

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Vanessa Dumeaux, Samira Massahi ... Michael T Hallett
    Research Article Updated

    Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Taylor J Abele, Zachary P Billman ... Edward A Miao
    Research Article

    Pyroptosis and apoptosis are two forms of regulated cell death that can defend against intracellular infection. When a cell fails to complete pyroptosis, backup pathways will initiate apoptosis. Here, we investigated the utility of apoptosis compared to pyroptosis in defense against an intracellular bacterial infection. We previously engineered Salmonella enterica serovar Typhimurium to persistently express flagellin, and thereby activate NLRC4 during systemic infection in mice. The resulting pyroptosis clears this flagellin-engineered strain. We now show that infection of caspase-1 or gasdermin D deficient macrophages by this flagellin-engineered S. Typhimurium induces apoptosis in vitro. Additionally, we engineered S. Typhimurium to translocate the pro-apoptotic BH3 domain of BID, which also triggers apoptosis in macrophages in vitro. During mouse infection, the apoptotic pathway successfully cleared these engineered S. Typhimurium from the intestinal niche but failed to clear the bacteria from the myeloid niche in the spleen or lymph nodes. In contrast, the pyroptotic pathway was beneficial in defense of both niches. To clear an infection, cells may have specific tasks that they must complete before they die; different modes of cell death could initiate these ‘bucket lists’ in either convergent or divergent ways.