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Blake Bordelon1,2, Cengiz Pehlevan1,2*

1John A Paulson School of Engineering and Applied Sciences, Harvard University, 
Cambridge, United States; 2Center for Brain Science, Harvard University, Cambridge, 
United States

Abstract Learning from a limited number of experiences requires suitable inductive biases. To 
identify how inductive biases are implemented in and shaped by neural codes, we analyze sample-
efficient learning of arbitrary stimulus-response maps from arbitrary neural codes with biologically-
plausible readouts. We develop an analytical theory that predicts the generalization error of the 
readout as a function of the number of observed examples. Our theory illustrates in a mathemat-
ically precise way how the structure of population codes shapes inductive bias, and how a match 
between the code and the task is crucial for sample-efficient learning. It elucidates a bias to explain 
observed data with simple stimulus-response maps. Using recordings from the mouse primary 
visual cortex, we demonstrate the existence of an efficiency bias towards low-frequency orientation 
discrimination tasks for grating stimuli and low spatial frequency reconstruction tasks for natural 
images. We reproduce the discrimination bias in a simple model of primary visual cortex, and further 
show how invariances in the code to certain stimulus variations alter learning performance. We 
extend our methods to time-dependent neural codes and predict the sample efficiency of readouts 
from recurrent networks. We observe that many different codes can support the same inductive bias. 
By analyzing recordings from the mouse primary visual cortex, we demonstrate that biological codes 
have lower total activity than other codes with identical bias. Finally, we discuss implications of our 
theory in the context of recent developments in neuroscience and artificial intelligence. Overall, 
our study provides a concrete method for elucidating inductive biases of the brain and promotes 
sample-efficient learning as a general normative coding principle.

Editor's evaluation
This important study presents a theory of generalization in neural population codes and proposes 
sample efficiency as a new normative principle. The theory can be used to identify the set of 'easily 
learnable' stimulus-response mappings from neural data and makes strong behavioral predictions 
that can be evaluated experimentally. Overall, the new method for elucidating inductive biases of 
the brain is highly compelling and will be of interest to theoretical and experimental neuroscientists 
working towards understanding how the cortex works.

Introduction
The ability to learn quickly is crucial for survival in a complex and an everchanging environment, and 
the brain effectively supports this capability. Often, only a few experiences are sufficient to learn a 
task, whether acquiring a new word (Carey and Bartlett, 1978) or recognizing a new face (Peterson 
et al., 2009). Despite the importance and ubiquity of sample efficient learning, our understanding of 
the brain’s information encoding strategies that support this faculty remains poor (Tenenbaum et al., 
2011; Lake et al., 2017; Sinz et al., 2019).
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In particular, when learning and generalizing from past experiences, and especially from few expe-
riences, the brain relies on implicit assumptions it carries about the world, or its inductive biases 
(Wolpert, 1996; Sinz et al., 2019). Reliance on inductive bias is not a choice: inferring a general rule 
from finite observations is an ill-posed problem which requires prior assumptions since many hypoth-
eses can explain the same observed experiences (Hume, 1998). Consider learning a rule that maps 
photoreceptor responses to a prediction of whether an observed object is a threat or is neutral. Given 
a limited number of visual experiences of objects and their threat status, many threat-detection rules 
are consistent with these experiences. By choosing one of these threat-detection rules, the nervous 
system reveals an inductive bias. Without the right biases that suit the task at hand, successful gener-
alization is impossible (Wolpert, 1996; Sinz et al., 2019). In order to understand why we can quickly 
learn to perform certain tasks accurately but not others, we must understand the brain’s inductive 
biases (Tenenbaum et al., 2011; Lake et al., 2017; Sinz et al., 2019).

In this paper, we study sample efficient learning and inductive biases in a general neural circuit 
model which comprises of a population of sensory neurons and a readout neuron learning a stimulus-
response map with a biologically-plausible learning rule (Figure 1A). For this circuit and learning rule, 
inductive bias arises from the nature of the neural code for sensory stimuli, specifically its similarity 
structure. While different population codes can encode the same stimulus variables and allow learning 
of the same output with perfect performance given infinitely many samples, learning performance can 
depend dramatically on the code when restricted to a small number of samples, where the reliance 
on and the effect of inductive bias are strong (Figure 1B, C and D). Given the same sensory examples 
and their associated response values, the readout neuron may make drastically different predictions 
depending on the inductive bias set by the nature of the code, leading to successful or failing gener-
alizations (Figure 1C and D). We say that a code and a learning rule, together, have a good inductive 
bias for a task if the task can be learned from a small number of examples.

A

DC

B

Figure 1. Learning tasks through linear readouts exploit representations of the population code to approximate a target response. (A) The readout 
weights from the population to a downstream neuron, shown in blue, are updated to fit target values ‍y‍, using the local, biologically plausible delta rule. 
(B) Examples of tuning curves for two different population codes: Smooth tuning curves (Code 1) and rapidly varying tuning curves (Code 2). (C) (Left) 
A target function with low frequency content is approximated through the learning rule shown in A using these two codes. The readout from Code 1 
(turquoise) fits the target function (black) almost perfectly with only ‍P = 12‍ training examples, while readout from Code 2 (purple) does not accurately 
approximate the target function. (Right) However, when the number of training examples is sufficiently large (‍P = 120‍), the target function is estimated 
perfectly by both codes, indicating that both codes are equally expressive. (D) The same experiment is performed on a task with higher frequency 
content. (Left) Code 1 fails to perform well with ‍P = 12‍ samples indicating mismatch between inductive bias and the task can prevent sample efficient 
learning while Code 2 accurately fits the target. (Right) Again, provided enough data ‍P = 120‍, both models can accurately estimate the target function. 
Details of these simulations are given in Methods Generating example codes (Figure 1).

https://doi.org/10.7554/eLife.78606
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In order to understand how population codes shape inductive bias and allow fast learning of certain 
tasks over others with a biologically plausible learning rule, we develop an analytical theory of the 
readout neuron’s learning performance as a function of the number of sampled examples, or sample 
size. We find that the readout’s performance is completely determined by the code’s kernel, a function 
which takes in pairs of population response vectors and outputs a representational similarity defined 
by the inner product of these vectors. We demonstrate that the spectral properties of the kernel 
introduce an inductive bias toward explaining sampled data with simple stimulus-response maps 
and determine compatibility of the population code with the learning task, and hence the sample-
efficiency of learning. We apply this theory to data from the mouse primary visual cortex (V1) (Stringer 
et al., 2021; Pachitariu et al., 2019; Stringer et al., 2018a; Stringer et al., 2018b), and show that 
mouse V1 responses support sample-efficient learning of low frequency orientation discrimination and 
low spatial frequency reconstruction tasks over high frequency ones. We demonstrate the discrimina-
tion bias in a simple model of V1 and show how response nonlinearity, sparsity, and relative proportion 
of simple and complex cells influence the code’s bias and performance on learning tasks, including 
ones that involve invariances. We extend our theory to temporal population codes, including codes 
generated by recurrent neural networks learning a delayed response task. We observe that many 
codes could support the same kernel function, however, by analyzing data from mouse primary visual 
cortex (V1) (Stringer et al., 2021; Pachitariu et al., 2019; Stringer et al., 2018a; Stringer et al., 
2018b), we find that the biological code is metabolically more efficient than others.

Overall, our results demonstrate that for a fixed learning rule, the neural sensory representation 
imposes an inductive bias over the space of learning tasks, allowing some tasks to be learned by a 
downstream neuron more sample-efficiently than others. Our work provides a concrete method for 
elucidating inductive biases of populations of neurons and suggest sample-efficient learning as a 
novel functional role for population codes.

Results
Problem setup
We denote vectors with bold lower-case symbols ‍r‍ and matrices ‍K‍ with bold upper-case symbols. 
We denote an average of a function ‍g(θ)‍ over random variable ‍θ‍ as ‍⟨g(θ)⟩θ‍. Euclidean inner products 
between vectors are denoted either as ‍x · y‍ or ‍x⊤y‍ and real Euclidean ‍n‍-space is denoted ‍Rn‍. Sets of 
variables are represented with ‍{·}‍.

We consider a population of ‍N ‍ neurons whose responses, ‍{r1(θ), r2(θ), ..., rN(θ)}‍, vary with the input 
stimuli, which is parameterized by a vector variable ‍θ ∈ Rd‍, such as the orientation and the phase of 
a grating (Figure 1A). These responses define the population code. Throughout this work, we will 
mostly assume that this population code is deterministic: that identical stimuli generate identical 
neural responses.

From the population responses, a readout neuron learns its weights ‍w‍ to approximate a stimulus-
response map, or a target function ‍y(θ)‍, such as one that classifies stimuli as apetitive (‍y = 1‍) or aver-
sive (‍y = −1‍), or a more smooth one that attaches intermediate values of valence. We emphasize that 
in our model only the readout neuron performs learning, and the population code is assumed to be 
static through learning. Our theory is general in its assumptions about the structure of the population 
code and the stimulus-response map considered (Methods Theory of generalization), and can apply 
to many scenarios.

The readout neuron learns from ‍P‍ stimulus-response examples with the goal of generalizing to 
previously unseen ones. Example stimuli ‍θµ‍, (‍µ = 1, . . . , P‍) are sampled from a probability distribution 
describing stimulus statistics ‍p(θ)‍. This distribution can be natural or artificially created, for example, 
for a laboratory experiment (Appendix Discrete stimulus spaces: finding eigenfunctions with matrix 
eigendecomposition). From the set of learning examples, ‍D = {θµ, y(θµ)}P

µ=1‍, the readout weights are 
learned with the local, biologically-plausible delta-rule, ‍∆wj = η

∑
µ rj(θµ)(y(θµ) − r(θµ) · w)‍,where ‍η‍ 

is a learning rate (Figure 1A). Learning with weight decay, which privileges readouts with smaller 
norm, can also be accommodated in our theory as we discuss in (Appendix Weight decay and ridge 
regression). With or without weight decay, the learning rule converges to a unique set of weights 

‍w∗(D)‍ (Appendix Convergence of the delta-rule without weight decay). Generalization error with 
these weights is given by

https://doi.org/10.7554/eLife.78606
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	﻿‍ Eg(D) =
´

p(θ) (w∗(D) · r(θ) − y(θ))2dθ,‍� (1)

which quantifies the expected error of the trained readout over the entire stimulus distribution 

‍p(θ)‍. This quantity will depend on the population code ‍r(θ)‍, the target function ‍y(θ)‍ and the set of 
training examples ‍D‍. Our theoretical analysis of this model provides insights into how populations of 
neurons encode information and allow sample-efficient learning.

Kernel structure of population codes controls learning performance
First, we note that the generalization performance of the learned readout on a given task depends 
entirely on the inner product kernel, defined by ‍K(θ, θ′) = 1

N
∑N

i=1 ri(θ)ri(θ′)‍, which quantifies the simi-
larity of population responses to two different stimuli ‍θ‍ and ‍θ′‍. The kernel, or similarity matrix, encodes 
the geometry of the neural responses. Concretely, distances (in neural space) between population 
vectors for stimuli ‍θ, θ′‍ can be computed from the kernel ‍

1
N ||r(θ) − r(θ′)||2 = K(θ, θ) + K(θ′, θ′) − 2K(θ, θ′)‍ 

(Edelman, 1998; Kriegeskorte et  al., 2008; Laakso and Cottrell, 2000; Kornblith et  al., 2019; 
Cadieu et al., 2014; Pehlevan et al., 2018). The fact that the solution to the learning problem only 
depends on the kernel is due to the convergence of the learning rule to a unique solution ‍w∗(D)‍ for 
the training set ‍D‍ (Neal, 1994; Girosi et al., 1995). The dataset-dependent fixed point ‍w∗(D)‍ of the 
learning rule is a linear combination of the population vectors on the dataset ‍w

∗(D) = 1
N
∑P

µ=1 α
µr(θµ)‍. 

Thus, the learned function computed by the readout neuron is

	﻿‍
f(θ) = w∗(D) · r(θ) =

P∑
µ=1

αµ
(

1
N r(θµ) · r(θ)

)
=

P∑
µ=1

αµK(θµ, θ),
‍�

(2)

where the coefficient vector satisfies ‍α = K+y‍ (Appendix Convergence of the delta-rule without 
weight decay), and the matrix ‍K‍ has entries ‍Kµν = K(θµ, θν )‍ and ‍yµ = y(θµ)‍. The matrix K+ is the 
pseudo-inverse of ‍K‍. In these expressions the population code only appears through the kernel 
‍K ‍, showing that the kernel alone controls the learned response pattern. This result applies also to 

A

CB

Figure 2. The inner product kernel controls the generalization performance of readouts. (A) Tuning curves ‍r(θ)‍ 
for three example recorded Mouse V1 neurons to varying static grating stimuli oriented at angle ‍θ‍ (Stringer 
et al., 2021; Pachitariu et al., 2019) (Left) are compared with a randomly rotated version (Middle) ‍̃r(θ)‍ of the 
same population code. (Right) These two codes, original (Ori.) and rotated (Rot.) can be visualized as parametric 
trajectories in neural space. (B) The inner product kernel matrix has elements ‍K(θ1, θ2)‍. The original V1 code and 
its rotated counterpart have identical kernels. (C) In a learning task involving uniformly sampled angles, readouts 
from the two codes perform identically, resulting in identical approximations of the target function (shown on the 
left as blue and red curves) and consequently identical generalization performance as a function of training set size 
‍P‍ (shown on right with blue and red points). The theory curve will be described in the main text.

https://doi.org/10.7554/eLife.78606
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nonlinear readouts (Appendix Convergence of Delta-rule for nonlinear readouts), showing that the 
kernel can control the learned solution in a variety of cases.

Since predictions only depend on the kernel, a large set of codes achieve identical desired perfor-
mance on learning tasks. This is because the kernel is invariant with respect to rotation of the popu-
lation code. An orthogonal transformation ‍Q‍ applied to a population code ‍r(θ)‍ generates a new 
code ‍̃r(θ) = Qr(θ)‍ with an identical kernel (Appendix Alternative neural codes with same kernel) since 

‍
1
N r̃(θ) · r̃(θ′) = 1

N r(θ)⊤Q⊤Qr(θ′) = 1
N r(θ) · r(θ′)‍. Codes ‍r(θ)‍ and ‍̃r(θ)‍ will have identical readout perfor-

mance on all possible learning tasks. We illustrate this degeneracy in Figure 2 using a publicly avail-
able dataset which consists of activity recorded from ∼20,000 neurons from the primary visual cortex 
of a mouse while shown static gratings (Stringer et al., 2021; Pachitariu et al., 2019). An original 
code ‍r(θ)‍ is rotated to generate ‍̃r(θ)‍ (Figure 2A) which have the same kernels (Figure 2B) and the 
same performance on a learning task (Figure 2C).

Code-task alignment governs generalization
We next examine how the population code affects generalization performance of the readout. We 
calculated analytical expressions of the average generalization error in a task defined by the target 
response ‍y(θ)‍ after observing ‍P‍ stimuli using methods from statistical physics (Methods Theory of 
generalization). Because the relevant quantity in learning performance is the kernel, we leveraged 
results from our previous work studying generalization in kernel regression (Bordelon et al., 2020; 
Canatar et al., 2021), and approximated the generalization error averaged over all possible realiza-
tions of the training dataset composed of ‍P‍ stimuli, ‍Eg =

⟨
Eg(D)

⟩
D‍. As ‍P‍ increases, the variance in 

‍Eg‍ due to the composition of the dataset decreases, and our expressions become descriptive of the 
typical case. Our final analytical result is given in Equation (11) in Methods Theory of generalization. 
We provide details of our calculations in Methods Theory of generalization and Appendix Theory of 
generalization, and focus on their implications here.

One of our main observations is that given a population code ‍r(θ)‍, the singular value decomposition 
of the code gives the appropriate basis to analyze the inductive biases of the readouts (Figure 3A). 
The tuning curves for individual neurons ‍ri(θ)‍ form an ‍N ‍-by-‍M ‍ matrix ‍R‍, where ‍M ‍, possibly infinite, 
is the number of all possible stimuli. We discuss the SVD for continuous stimulus spaces in Appendix 
Singular value decomposition of continuous population responses. The left-singular vectors (or prin-
cipal axes) and singular values of this matrix have been used in neuroscience for describing lower 
dimensional structure in the neural activity and estimating its dimensionality, see e.g. (Stopfer 
et al., 2003; Kato et al., 2015; Bathellier et al., 2008; Gallego et al., 2017; Sadtler et al., 2014; 
Stringer et al., 2018b, Stringer et al., 2021; Litwin-Kumar et al., 2017; Gao et al., 2017; Gao and 
Ganguli, 2015). We found that the function approximation properties of the code are controlled by 
the singular values, or rather their squares ‍{λk}‍ which give variances along principal axes, indexed 
in decreasing order, and the corresponding right singular vectors ‍{ψk(θ)}‍, which are also the kernel 
eigenfunctions (Methods Theory of generalization and Appendix Singular value decomposition of 
continuous population responses). This follows from the fact that learned response (Equation (2)) is 
only a function of the kernel ‍K ‍, and the eigenvalues ‍λk‍ and orthonormal (uncorrelated) eigenfunc-
tions ‍ψk(θ)‍ collectively define the code’s inner-product kernel ‍K(θ, θ′)‍ through an eigendecomposition 

‍K(θ, θ′) = 1
N
∑N

i=1 ri(θ)ri(θ′) =
∑

k λkψk(θ)ψk(θ′)‍ (Mercer, 1909) (Methods Theory of generalization 
and Appendix Theory of generalization).

Our analysis shows the existence of a bias in the readout towards learning certain target 
responses faster than others. The target response ‍y(θ) =

∑
k vkψk(θ)‍ and the learned readout 

response ‍f(θ) =
∑

k v̂k(D)ψk(θ)‍ can be expressed in terms of these eigenfunctions ‍ψk‍. Our theory 
shows that the readout’s generalization is better if the target function ‍y(θ)‍ is aligned with the top 
eigenfunctions ‍ψk‍, equivalent to ‍v

2
k‍ decaying rapidly with ‍k‍ (Appendix Spectral bias and code-task 

alignment). We formalize this notion by the following metric. Mathematically, generalization error 

‍
⟨
Eg

⟩
‍ can be decomposed into normalized estimation errors ‍Ek‍ for the coefficients of these eigen-

functions ‍ψk‍, ‍
⟨
Eg

⟩
D =

∑
k v2

kEk‍, where 
‍
Ek =

⟨
(v̂k(D) − vk)2

⟩
D

/v2
k‍
. We found that the ordering of the 

eigenvalues ‍λk‍ controls the rates at which these mode errors ‍Ek‍ decrease as ‍P‍ increases (Methods 

Theory of generalization, Appendix Spectral bias and code-task alignment), (Bordelon et al., 2020): 

‍λk > λℓ =⇒ Ek < Eℓ‍. Hence, larger eigenvalues mean lower generalization error for those normalized 

https://doi.org/10.7554/eLife.78606
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VS
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B

D

C

Figure 3. The singular value decomposition (SVD) of the population code reveals the structure and inductive bias 
of the code. (A) SVD of the response matrix ‍R‍ gives left singular vectors ‍uk‍ (principal axes), kernel eigenvalues 

‍λk‍, and kernel eigenfunctions ‍ψk(θ)‍. The ordering of eigenvalues provides an ordering of which modes ‍ψk‍ can 
be learned by the code from few training examples. The eigenfunctions were offset by 0.5 for visibility. (B) (Left) 
Two different learning tasks ‍y(θ)‍, a low frequency (blue) and high frequency (red) function, are shown. (Middle) 
The cumulative power distribution rises more rapidly for the low frequency task than the high frequency, indicating 
better alignment with top kernel eigenfunctions and consequently more sample-efficient learning as shown in the 
learning curves (right). Dashed lines show theoretical generalization error while dots and solid vertical lines are 
experimental average and standard deviation over 30 repeats. (C) The feature space representations of the low 
(left) and high (middle and right) frequency tasks. Each point represents the embedding of a stimulus response 
vector along the ‍k‍-th principal axis ‍r(θµ) · uk =

√
λkψk(θµ)‍. The binary target value ‍{±1}‍ is indicated with the 

color of the point. The easy (left), low frequency task is well separated along the top two dimensions, while the 
hard, high frequency task is not linearly separable in two (middle) or even with four feature dimensions (right). (D) 
On an image discrimination task (recognizing birds vs mice), V1 has an entangled representation which does not 
allow good performance of linear readouts. This is evidenced by the top principal components (middle) and the 
slowly rising ‍C(k)‍ curve (right).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Kernels, spectra and eigenfunctions are well preserved across a variety of bin counts.

https://doi.org/10.7554/eLife.78606
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mode errors ‍Ek‍. We term this phenomenon the spectral bias of the readout. Based on this observa-
tion, we propose code-task alignment as a principle for good generalization. To quantify code-task 
alignment, we use a metric which was introduced in Canatar et al., 2021 to measure the compatibility 
of a kernel with a learning task. This is the cumulative power distribution ‍C(k)‍ which measures the total 
power of the target function in the top ‍k‍ eigenmodes, normalized by the total power (Canatar et al., 
2021):

	﻿‍
C(k) =

∑k
ℓ=1 v2

ℓ∑∞
ℓ=1 v2

ℓ

.
‍�

(3)

Stimulus-response maps that have high alignment with the population code’s kernel will have 
quickly rising cumulative power distributions ‍C(k)‍, since a large proportion of power is placed in the 
top modes. Target responses with high ‍C(k)‍ can be learned with fewer training samples than target 
responses with low ‍C(k)‍ since the mode errors ‍Ek‍ are ordered for all ‍P‍ (Appendix Spectral bias and 
code-task alignment).

Probing learning biases in neural data
Our theory can be used to probe the learning biases of neural populations. Here, we provide various 
examples of this using publicly available calcium imaging recordings from mouse primary visual cortex 
(V1). Our examples illustrate how our theory can be used to analyze neural data.

We first analyzed population responses to static grating stimuli oriented at an angle ‍θ‍ (Stringer 
et al., 2021; Pachitariu et al., 2019). We found that the kernel eigenfunctions have sinusoidal shape 
with differing frequency. The ordering of the eigenvalues and eigenfunctions in Figure  3A (and 
Figure 3—figure supplement 1) indicates a frequency bias: lower frequency functions of ‍θ‍ are easier 
to estimate at small sample sizes.

We tested this idea by constructing two different orientation discrimination tasks shown in 
Figure 3B and C, where we assign static grating orientations to positive or negative valence with 
different frequency square-wave functions of ‍θ‍. We trained the readout using a subset of the exper-
imentally measured neural responses, and measured the readout’s generalization performance. We 
found that the cumulative power distribution for the low frequency task has a more rapidly rising ‍C(k)‍ 
(Figure 3B). Using our theory of generalization, we predicted learning curves for these two tasks, 
which express the generalization error as a function of the number of sampled stimuli ‍P‍. The error for 
the low frequency task is lower at all sample sizes than the hard, high-frequency task. The theoretical 
predictions and numerical experiments show perfect agreement (Figure 3B). More intuition can be 
gained by visualizing the projection of the neural response along the top principal axes (Figure 3C). 
For the low-frequency task, the two target values are well separated along the top two axes. However, 
the high-frequency task is not well separated along even the top four axes (Figure 3C).

Using the same ideas, we can use our theory to get insight into tasks which the V1 population code 
is ill-suited to learn. For the task of identifying mice and birds (Stringer et al., 2018b, Stringer et al., 
2018a) the linear rise in cumulative power indicates that there is roughly equal power along all kernel 
eigenfunctions, indicating that the representation is poorly aligned to this task (Figure 3D).

To illustrate how our approach can be used for different learning problems, we evaluate the ability 
of linear readouts to reconstruct natural images from neural responses to those images (Figure 4). 
The ability to reconstruct sensory stimuli from a neural code is an influential normative principle for 
primary visual cortex (Olshausen and Field, 1997). Here, we ask which aspects of the presented 
natural scene stimuli are easiest to learn to reconstruct. Since mouse V1 neurons tend to be selective 
towards low spatial frequency bands (Niell and Stryker, 2008Bonin et al., 2011; Vreysen et al., 
2012), we consider reconstruction of band-pass filtered images with spatial frequency wave-vector 

‍k ∈ R2‍ constrained to an annulus 
‍
|k| ∈

[√
max(s2

max − r2, 0), smax
]
‍
 for ‍r = 0.2‍ (in units of ‍pixels−1

‍) and 

plot the cumulative power ‍C(k)‍ associated with each choice of the upper limit ‍smax‍ (Figure 4C and D). 
The frequency cutoffs were chosen in this way to preserve the volume in Fourier space to ‍Vk = πr2

‍ 
for ‍r < smax‍, which quantifies the dimension of the function space. We see that the lower frequency 
band-limited images are easier to reconstruct, as evidenced by their cumulative power ‍C(k)‍ and 
learning curves ‍Eg‍ (Figure 4D and E). This reflects the fact that the population preferentially encodes 
low spatial frequency content in the image (Figure 4F). Experiments with additional values of ‍r‍ are 

https://doi.org/10.7554/eLife.78606
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provided in the Figure 4—figure supplement 1 with additional details found in the Appendix Visual 
scene reconstruction task.

Mechanisms of spectral bias and code-task alignment in a simple model 
of V1
How do population level inductive biases arise from properties of single neurons? To illustrate that a 
variety of mechanisms may be involved in a complex manner, we study a simple model of V1 to eluci-
date neural mechanisms that lead to the low frequency bias at the population level. In particular, we 
focus on neural nonlinearities and selectivity profiles.

Natural Scenes Eigen-ImagesA B

C D E

F

Figure 4. Reconstructing filtered natural images from V1 responses reveals preference for low spatial frequencies. (A) Natural scene stimuli ‍θ‍ were 
presented to mice and V1 cells were recorded. (B) The images weighted by the top eigenfunctions ‍vk =

⟨
ψk(θ)θ

⟩
θ‍. These “eigenimages" collectively 

define the difficulty of reconstructing images through readout. (C) The kernel spectrum of the V1 code for natural images. (D) The cumulative power 

curves for reconstruction of band-pass filtered images. Filters preserve spatial frequencies in the range 
‍
|k| ∈

[√
max(s2

max − 0.22, 0), smax

]
‍
, chosen to 

preserve volume in Fourier space as ‍smax‍ is varied. (E) The learning curves obey the ordering of the cumulative power curves. The images filtered with 

the lowest band-pass cutoff are easiest to reconstruct from the neural responses. (F) Examples of a band-pass filtered image with different preserved 
frequency bands.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The inductive bias to reconstruct low spatial frequency components of natural scenes from the population responses holds over 

several band-pass filters of the form 
‍
|k| ∈

[√
max(s2

max − r2, 0), smax

]
‍
.

https://doi.org/10.7554/eLife.78606
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We model responses of V1 neurons as photoreceptor inputs passed through Gabor filters and a 
subsequent experimentally motivated power-law nonlinearity (Adelson and Bergen, 1985; Olshausen 
and Field, 1997; Rumyantsev et al., 2020), modeling a population of orientation selective simple 
cells (Figure 5A) (see Appendix A simple feedforward model of V1). In this model, the kernel for 
static gratings with orientation ‍θ ∈ [0,π]‍ is of the form ‍K(θ, θ′) = κ(|θ − θ′|)‍, and, as a consequence, 
the eigenfunctions of the kernel in this setting are Fourier modes. The eigenvalues, and hence the 
strength of the spectral bias, are determined by the nonlinearity as we discuss in Appendix Gabor 
model spectral bias and fit to V1 data. We numerically fit the parameters of the nonlinearity to the V1 
responses and use these parameters our investigations in Figure 5—figure supplement 1.

Next, to further illustrate the importance of code-task alignment, we study how invariances in 
the code to stimulus variations may affect the learning performance. We introduce complex cells in 
addition to simple cells in our model with proportion ‍s ∈ [0, 1]‍ of simple cells (Appendix Gabor model 
spectral bias and fit to V1 data; Figure 5A), and allow phase, ‍ϕ‍, variations in static gratings. We use 
the energy model (Adelson and Bergen, 1985; Simoncelli and Heeger, 1998) to capture the phase 
invariant complex cell responses (Appendix Phase variation, complex cells and invariance, complex 
cell populations are phase invariant). We reason that in tasks that do not depend on phase informa-
tion, complex cells should improve sample efficiency.

In this model, the kernel for the V1 population is a convex combination of the kernels for the simple 
and complex cell populations ‍KV1(θ, θ′,ϕ,ϕ′) = sKs(θ, θ′,ϕ,ϕ′) + (1 − s)Kc(θ, θ′)‍ where ‍Ks‍ is the kernel 
for a pure simple cell population that depends on both orientation and phase, and ‍Kc‍ is the kernel of a 
pure complex cell population that is invariant to phase (Appendix Complex cell populations are phase 
invariant). Figure 5C shows top kernel eigenfunctions for various values of ‍s‍ elucidating inductive bias 
of the readout.

Figure 5D and E show generalization performance on tasks with varying levels of dependence 
on phase and orientation. On pure orientation discrimination tasks, increasing the proportion of 
complex cells by decreasing ‍s‍ improves generalization. Increasing the sensitivity to the nuisance 
phase variable, ‍ϕ‍, only degrades performance. The cumulative power curve is also maximized at 
‍s = 0‍. However, on a task which only depends on the phase, a pure complex cell population cannot 
generalize, since variation in the target function due to changes in phase cannot be explained in the 
codes’ responses. In this setting, a pure simple cell population attains optimal performance. The 
cumulative power curve is maximized at ‍s = 1‍. Lastly, in a nontrivial hybrid task which requires utili-
zation of both variables ‍θ,ϕ‍, an optimal mixture ‍s‍ exists for each sample budget ‍P‍ which minimizes 
the generalization error. The cumulative power curve is maximized at different ‍s‍ values depending 
on ‍k‍, the component of the target function. This is consistent with an optimal heterogenous mix, 
because components of the target are learned successively with increasing sample size. V1 must 
code for a variety of possible tasks and we can expect a nontrivial optimal simple cell fraction ‍s‍. 
We conclude that the degree of invariance required for the set of natural tasks, and the number of 
samples determine the optimal simple cell, complex cell mix. We also considered a more realistic 
model where the relative selectivity of each visual cortex neuron to phase ‍ϕ‍, measured with the 
F1/F0 ratio takes on a continuum of possible values with some cells more invariant to phase and 
some less invariant. In (Appendix Energy model with partially phase-selective cells, Figure  5—
figure supplement 3) we discuss a simple adaptation of the energy model which can interpolate 
between a population of entirely simple cells and a population of entirely complex cells, giving 
diverse selectivity for the intermediate regime. We show that this model reproduces the inductive 
bias of Figure 5.

Small and large sample size behaviors of generalization
Recently, Stringer et al., 2018b argued that the input-output differentiability of the code, governed 
by the asymptotic rate of spectral decay, may be enabling better generalization. Our results provide 
a more nuanced view of the relation between generalization and kernel spectra. First, generaliza-
tion with low sample sizes crucially depend on the top eigenvalues and eigenfunctions of the code’s 
kernel, not the tail. Second, generalization requires alignment of the code with the task of interest. 
Non-differentiable codes can generalize well if there is such an alignment. To illustrate these points, 
here, we provide examples where asymptotic conditions on the kernel spectrum are insufficient to 
describe generalization performance for small sample sizes (Figure 6, Figure 6—figure supplement 

https://doi.org/10.7554/eLife.78606
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Complex Cells

A

B

C
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Figure 5. A model of V1 as a bank of Gabor filters recapitulates experimental inductive bias. (A) Gabor filtered 
inputs are mapped through nonlinearity. A grating stimulus (left) with orientation ‍θ‍ and phase ‍ϕ‍ is mapped 
through a circuit of simple and complex cells (middle). Some examples of randomly sampled Gabor filters (right) 
generate preferred orientation tuning of neurons in the population. (B) We plot the top 12 eigenfunctions ‍ψk(θ,ϕ)‍ 
(modes) for pure simple cell population, pure complex cell population and a mixture population with half simple 
and half complex cells. The pure complex cell population has all eigenfunctions independent of phase ‍ϕ‍. A pure 
simple cell population ‍s = 1‍ or mixture codes ‍0 < 1‍ depend on both orientation phase in a nontrivial way. (C) Three 
tasks are visualized, where color indicates the binary target value ± 1. The left task only depends on orientation 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.78606
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1 and Appendix Asymptotic power law scaling of learning curves), and where non-differentiable 
kernels generalize better than differentiable kernels (Figure 6—figure supplement 2).

Our example demonstrates how a code allowing good generalization for large sample sizes can 
be disadvantageous for small sizes. In Figure  6A, we plot three different populations of neurons 
with smooth (infinitely differentiable) tuning curves that tile a periodic stimulus variable, such as the 
direction of a moving grating. The tuning width, ‍σ‍, of the tuning curves strongly influences the struc-
ture of these codes: narrower widths have more high frequency content as we illustrate in a random 
3D projection of the population code for ‍θ ∈ [0, 2π]‍ (Figure 6A). Visualization of the corresponding 
(von Mises) kernels and their spectra are provided in Figure  6B. The width of the tuning curves 
control bandwidths of the kernel spectra Figure 6B, with narrower curves having an later decay in 
the spectrum and higher high frequency eigenvalues. These codes can have dramatically different 
generalization performance, which we illustrate with a simple “bump" target response (Figure 6C). In 
this example, for illustration purposes, we let the network learn with a delta-rule with a weight decay, 
leading to a regularized kernel regression solution (Appendix Weight decay and ridge regression). For 
a sample size of ‍P = 10‍, we observe that codes with too wide or too narrow tuning curves (and kernels) 
do not perform well, and there is a well-performing code with an optimal tuning curve width ‍σ‍, which 
is compatible with the width of the target bump, ‍σT ‍. We found that optimal ‍σ‍ is different for each ‍P‍ 
(Figure 6C). In the large-‍P‍ regime, the ordering of the performance of the three codes are reversed 
(Figure 6C). In this regime generalization error scales in a power law (Appendix Asymptotic power 
law scaling of learning curves) and the narrow code, which performed worst for ‍P ∼ 10‍, performs the 
best. This example demonstrates that asymptotic conditions on the tail of the spectra are insufficient 
to understand generalization in the small sample size limit. The bulk of the kernel’s spectrum needs 
to match the spectral structure of the task to generalize efficiently in the low-sample size regime. 
However, for large sample sizes, the tail of the eigenvalue spectrum becomes important. We repeat 
the same exercise and draw the same conclusions for a non-differentiable kernel (Laplace) (Figure 6—
figure supplement 1) showing that these results are not an artifact of the infinite differentiability of 
von Mises kernels. We further provide examples where non-differentiable kernels generalizing better 
than differentiable kernels in Figure 6—figure supplement 2.

Time-dependent neural codes
Our framework can directly be extended to learning of arbitrary time-varying functions of time-varying 
inputs from an arbitrary spatiotemporal population code (Methods RNN experiment, Appendix 
Time dependent neural codes). In this setting, the population code ‍r({θ(t)}, t)‍ is a function of an 
input stimulus sequence ‍θ(t)‍ and possibly its entire history, and time ‍t‍. A downstream linear readout 

‍f({θ}, t) = w · r({θ}, t)‍ learns a target sequence ‍y({θ}, t)‍ from a total of ‍P ‍ examples that can come at 
any time during any sequence.

As a concrete example, we focus on readout from a temporal population code generated by a 
recurrent neural network in a task motivated by a delayed reach task (Ames et al., 2019; Figure 7A 
and B). In this task, the network is presented for a short time an input cue sequence coding an angular 
variable which is drawn randomly from a distribution (Figure 7C). The recurrent neural network must 
remember this angle and reproduce an output sequence which is a simple step function whose height 
depends on the angle which begins after a time delay from the cessation of input stimulus and lasts 
for a short time (Figure 7D).

stimulus variable ‍θ‍, the middle only depends on phase ‍ϕ‍, the hybrid task (right) depends on both. (D) (top) 
Generalization error and cumulative power distributions for the three tasks as a function of the simple-complex cell 
mixture parameter ‍s‍.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The fit of our simple cell model to the mouse V1 code.

Figure supplement 2. Nonlinear Rectification and proportion of simple and complex cells influences the inductive 
bias of the population code.

Figure supplement 3. The modified energy based model with partial selectivity to phase ‍ϕ‍ reproduces the 
inductive bias of partial invariance.

Figure 5 continued

https://doi.org/10.7554/eLife.78606
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Figure 6. The top eigensystem of a code determines its low-‍P‍ generalization error. (A) A periodic variable is coded by a population of neurons with 
tuning curves of different widths (top). Narrow, wide and optimal refers to the example in C. These codes are all smooth (infinitely differentiable) but 

have very different feature space representations of the stimulus variable ‍θ‍, as random projections reveal (below). (B) (left) The population codes in the 

above figure induce von Mises kernels ‍K(θ) ∝ ecos(θ)/σ2

‍ with different bandwidths ‍σ‍. (right) Eigenvalues of the three kernels. (C) (left) As an example 
learning task, we consider estimating a ‘bump’ target function. The optimal kernel (red, chosen as optimal bandwidth for ‍P = 10‍) achieves a better 
generalization error than either the wide (green) or narrow (blue) kernels. (middle) A contour plot shows generalization error for varying bandwidth ‍σ‍ 
and sample size ‍P‍. (right) The large ‍P‍ generalization error scales in a power law. Solid lines are theory, dots are simulations averaged over 15 repeats, 
dashed lines are asymptotic power law scalings described in main text. Same color code as B and C-left.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Bandwidth (spectral bulk) also governs generalization in non-smooth codes.

Figure supplement 2. Non-differentiable kernels can generalize better than infinitely differentiable kernels in a variety of contexts.

https://doi.org/10.7554/eLife.78606
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The kernel induced by the spatiotemporal code is shown in Figure  7E. The high dimensional 
nature of the activity in the recurrent network introduces complex and rich spatiotemporal similarity 
structure. Figure  7F shows the kernel’s eigensystem, which consists of stimulus dependent time-
series ‍ψk({θ}; t)‍ for each eigenvalue ‍λk‍. An interesting link can be made with this eigensystem and 

B C

E

GF

D

Sampled Cue Presented Delay for Time d Cursor to Cue Direction Cursor Moved Back A

Figure 7. The performance of time-dependent codes when learning dynamical systems can be understood through spectral bias. (A) We study the 
performance of time dependent codes on a delayed response task which requires memory retrieval. A cue (black dot) is presented at an angle ‍γ

µ
‍. 

After a delay time ‍d ‍, the cursor position (blue triangle) must be moved to the remembered cue position and then subsequently moved back to the 
origin after a short time. (B) The readout weights (blue) of a time dependent code can be learned through a modified delta rule. (C) Input is presented 
to the network as a time series which terminates at ‍t = 1‍. The sequences are generated by drawing an angle ‍γ

µ ∼ Uniform[0, 2π]‍ and using two step 
functions as input time-series that code for the cosine and the sine of the angle (Methods RNN experiment, Appendix Time dependent neural codes). 

We show an example of the one of the variables in a input sequence. (D) The target functions for the memory retrieval task are step functions delayed 

by a time ‍d ‍. (E) The kernel ‍K
µ,µ′

t,t′ ‍ compares the code for two sequences at two distinct time points. We show the time dependent kernel for identical 
sequences (left) and the stimulus dependent kernel for equal time points (middle left) as well as for non-equal stimuli (middle right) and non-equal time 
(right). (F) The kernel can be diagonalized, and the eigenvalues ‍λk‍ determine the spectral bias of the reservoir computer (left). We see that higher gain 

‍g‍ networks have higher dimensional representations. The ‘eigensystems’ ‍ψk(θµ, t)‍ are functions of time and cue angle. We plot only ‍µ = 0‍ components 
of top systems ‍k = 1, 2, 3, 4‍ (right). (G) The readout is trained to approximate a target function ‍yµ(t)‍, which requires memory of the presented cue 
angle. (left) The theoretical (solid) and experimental (vertical errorbar, 100 trials) generalization error ‍Eg‍ are plotted for the three delays ‍d ‍ against 
training sample size ‍P ‍. (right) The ordering of ‍Eg‍ matches the ordering of the ‍C(k)‍ curves as expected.

https://doi.org/10.7554/eLife.78606


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bordelon and Pehlevan. eLife 2022;11:e78606. DOI: https://doi.org/10.7554/eLife.78606 � 14 of 46

linear low-dimensional manifold dynamics observed in several cortical areas (Stopfer et al., 2003; 
Kato et  al., 2015; Gallego et  al., 2017; Cunningham and Yu, 2014; Sadtler et  al., 2014; Gao 
and Ganguli, 2015; Gallego et al., 2018; Chapin and Nicolelis, 1999; Bathellier et al., 2008). The 
kernel eigenfunctions also define the latent variables obtained through a singular value decomposi-
tion of the neural activity ‍r({θ}; t) =

∑
k
√
λkukψk({θ}; t)‍ (Gallego et al., 2017). With enough samples, 

the readout neuron can learn to output the desired angle with high fidelity (Figure 7G). Unsurpris-
ingly, tasks involving long time delays are more difficult and exhibit lower cumulative power curves. 
Consequently, the generalization error for small delay tasks drops much more quickly with increasing 
samples ‍P ‍.

Biological codes are metabolically more efficient and more selective 
than other codes with identical kernels
Although, the performance of linear readouts may be invariant to rotations that preserve kernels 
(Figure 2), metabolic efficiency may favor certain codes over others (Barlow, 1961; Atick and Redlich, 
1992; Attneave, 1954; Olshausen and Field, 1997; Simoncelli and Olshausen, 2001), reducing 
degeneracy in the space of codes with identical kernels. To formalize this idea, we define ‍δ‍ to be the 
vector of spontaneous firing rates of a population of neurons, and ‍sµ = r(θµ) + δ‍ be the spiking rate 
vector in response to a stimulus ‍θµ‍. The vector ‍δ‍ ensures that neural responses are non-negative. The 
modulation with respect to the spontaneous activity, ‍r(θµ)‍, gives the population code and defines the 
kernel, ‍K(θµ, θµ) = 1

N r(θµ) · r(θν )‍. To avoid confusion with ‍r(θµ)‍, we will refer to ‍sµ‍ as total spiking 
activity. We propose that population codes prefer smaller spiking activity subject to a fixed kernel. 
In other words, because the kernel is invariant to any change of the spontaneous firing rates and left 
rotations of ‍r(θ)‍, the orientation and shift of the population code ‍r(θ)‍ should be chosen such that the 
resulting total spike count ‍

∑N
i=1

∑P
µ=1 sµi ‍ is small.

We tested whether biological codes exhibit lower total spiking activity than others exhibiting 
the same kernel on mouse V1 recordings, using deconvolved calcium activity as a proxy for spiking 
events (Stringer et al., 2021; Pachitariu et al., 2019; Pachitariu et al., 2018) (Methods Data analysis; 
Figure 8). To compare the experimental total spiking activity to other codes with identical kernels, we 
computed random rotations of the neural responses around spontaneous activity, ‍̃r(θµ) = Qr(θµ)‍, and 
added the ‍δ‍ that minimizes total spiking activity and maintains its nonnegativity (Methods Generating 
RROS codes). We refer to such an operation as RROS (random rotation and optimal shift), and a code 
generated by an RROS operation as an RROS code. The matrix ‍Q‍ is a randomly sampled orthogonal 
matrix (Anderson et al., 1987). In other words, we compare the true code to the most metabolically 
efficient realizations of its random rotations. This procedure may result in an increased or decreased 
total spike count in the code, and is illustrated in a synthetic dataset in Figure 8A. We conducted 
this procedure on subsets of various sizes of mouse V1 neuron populations, as our proposal should 
hold for any subset of neurons (Methods Generating RROS codes), and found that the true V1 code 
is much more metabolically efficient than randomly rotated versions of the code (Figure 8B and C). 
This finding holds for both responses to static gratings and to natural images as we show in Figure 8B 
and C respectively.

To further explore metabolic efficiency, we posed an optimization problem which identifies the 
most efficient code with the same kernel as the biological V1 code. This problem searches over 
rotation matrices ‍Q‍ and finds the ‍Q‍ matrix and off-set vector ‍δ‍ which gives the lowest cost ‍

∑
iµ sµi ‍ 

(Methods Comparing sparsity of population codes) (Figure 8). Although the local optimum identified 
with the algorithm is lower in cost than the biological code, both the optimal and biological codes are 
significantly displaced from the distribution of random codes with same kernel. Our findings do not 
change when data is preprocessed with an alternative strategy, an upper bound on neural responses 
is imposed on rotated codes, or subsets of stimuli are considered (Figure 8—figure supplement 1). 
We further verified these results on electrophysiological recordings of mouse visual cortex from the 
Allen Institute Brain Observatory (de Vries et al., 2020), (Figure 8—figure supplement 2). Overall, 
the large disparity in total spiking activity between the true and randomly generated codes with iden-
tical kernels suggests that metabolic constraints may favor the biological code over others that realize 
the same kernel.

The disparity between the true biological code and the RROS code is not only manifested in terms 
of total activity level, but also in terms of single neuron and single stimulus sparseness measures, 

https://doi.org/10.7554/eLife.78606


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bordelon and Pehlevan. eLife 2022;11:e78606. DOI: https://doi.org/10.7554/eLife.78606 � 15 of 46

ShiftRotate

A

B

C

Synthetic Example

D

Figure 8. The biological code is more metabolically efficient than random codes with same inductive biases. (A) We illustrate our procedure in a 
synthetic example. A non-negative population code (left) can be randomly rotated about its spontaneous firing rate (middle), illustrated as a purple dot, 
and optimally shifted to a new non-negative population code (right). If the kernel is measured about the spontaneous firing rate, these transformations 
leave the inductive bias of the code invariant but can change the total spiking activity of the neural responses. We refer to such an operation as random 
rotation + optimal shift (RROS). We also perform gradient descent over rotations and shifts, generating an optimized code (opt). (B) Performing RROS 
on ‍N ‍ neuron subsamples of experimental Mouse V1 recordings (Stringer et al., 2021; Pachitariu et al., 2019), shows that the true code has much 
lower average cost ‍

1
NP

∑
iµ sµi ‍ compared to random rotations of the code. The set of possible RROS transformations (Methods Generating RROS 

codes, and Methods Comparing sparsity of population codes) generates a distribution over average cost, which has higher mean than the true code. 
We also optimize metabolic cost over the space of RROS transformations, which resulted in the red dashed lines. We plot the distance (in units of 
standard deviations) between the cost of the true and optimal codes and the cost of randomly rotated codes for different neuron subsample sizes ‍N ‍. 
(C) The same experiment performed on Mouse V1 responses to ImageNet images from 10 relevant classes (Stringer et al., 2018a; Stringer et al., 
2018b). (D) The lifetime (LS) and population sparseness (PS) levels (Methods Lifetime and population sparseness) are higher for the Mouse V1 code than 
for a RROS code. The distance between average LS and PS of true code and RROS codes increases with ‍N ‍.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure 8 continued on next page
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specifically lifetime and population sparseness distributions (Methods Lifetime and population sparse-
ness) (Willmore and Tolhurst, 2001; Lehky et  al., 2005; Treves and Rolls, 1991; Pehlevan and 
Sompolinsky, 2014). In Figure 8D, we compare the lifetime and population sparseness distributions 
of the true biological code with a RROS version of the same code, revealing biological neurons have 
significantly higher lifetime sparseness. In Appendix Necessary conditions for optimally sparse codes, 
we provide analytical arguments which suggest that tuning curves of optimally sparse non-negative 
codes with full-rank kernels will have selective tuning.

Discussion
Elucidating inductive biases of the brain is fundamentally important for understanding natural intel-
ligence (Tenenbaum et al., 2011; Lake et al., 2017; Sinz et al., 2019; Zador, 2019). These biases 
are coded into the brain by the dynamics of its neurons, the architecture of its networks, its represen-
tations and plasticity rules. Finding ways to extract the inductive biases from neuroscience datasets 
requires a deeper theoretical understanding of how all these factors shape the biases, and is an open 
problem. In this work, we attempted to take a step towards filling this gap by focusing on how the 
structure of static neural population codes shape inductive biases for learning of a linear readout 
neuron under a biologically plausible learning rule. If the readout neuron’s output is correlated with 
behavior, and that correlation is known, then our theory could possibly be modified to predict what 
behavioral tasks can be learned faster.

Under the delta rule, the generalization performance of the readout is entirely dependent on the 
code’s inner product kernel; the kernel is a determinant of inductive bias. In its finite dimensional 
form, the kernel is an example of a representational similarity matrix and is a commonly used tool to 
study neural representations (Edelman, 1998; Kriegeskorte et al., 2008; Laakso and Cottrell, 2000; 
Kornblith et al., 2019; Cadieu et al., 2014; Pehlevan et al., 2018). Our work elucidates a concrete 
link between this experimentally measurable mathematical object, and sample-efficient learning.

We derived an analytical expression for the generalization error as a function of sample-size under 
very general conditions, for an arbitrary stimulus distribution, arbitrary population code and an arbi-
trary target stimulus-response map. We used our findings in both theoretical and experimental anal-
ysis of primary visual cortex, and temporal codes in a delayed reach task. This generality of our theory 
is a particular strength.

Our analysis elucidated two principles that define the inductive bias. The first one is spectral bias: 
kernel eigenfunctions with large eigenvalues can be estimated using a smaller number of samples. 
The second principle is the code-task alignment: target functions with most of their power in top 
kernel eigenfunctions can be estimated efficiently and are compatible with the code. The cumulative 
power distribution, ‍C(k)‍ (Canatar et al., 2021), provides a measure of this alignment. These findings 
define a notion of ‘simplicity’ bias in learning from examples, and provides a solution to the question 
of what stimulus-response maps are easier to learn. A similar simplicity bias has been also observed 
in training deep neural networks (Rahaman et al., 2019; Xu et al., 2019; Kalimeris et al., 2019). 
Due to a correspondence between gradient-descent trained neural networks in the infinite-width 
limit and kernel machines (Jacot et al., 2018), results on the spectral bias of kernel machines may 
shed light onto these findings (Bordelon et al., 2020; Canatar et al., 2021). Though our present 
analysis focused on learning a single layer weight vector with the biologically plausible delta-rule, 
future work could explore the learning curves of other learning rules for deep networks (Bordelon 
and Pehlevan, 2022a), such as feedback alignment (Lillicrap et al., 2016) or perturbation methods 
(Jabri and Flower, 1992). Such analysis could explore how inductive bias is also shaped by choice of 
learning rule, as well as the structure of the initial population code.

We applied our findings in both theoretical and experimental analysis of mouse primary visual 
cortex. We demonstrated a bias of neural populations towards low frequency orientation discrimina-
tion and low spatial frequency reconstruction tasks. The latter finding is consistent with the finding 

Figure supplement 1. Our metabolic efficiency finding is robust to different pre-processing techniques and upper bounds on neural firing.

Figure supplement 2. The observation that randomly oriented codes with the same kernel require higher spike counts than the original code is 
reproduced from electrophysiological recordings of Mouse visual cortex (VISp and VISal) from the AIBO.

Figure 8 continued
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that mouse visual cortex neurons are selective for low spatial frequency (Niell and Stryker, 2008; 
Vreysen et al., 2012). The toy model of the visual cortex as a mixture of simple and complex cells 
demonstrated how invariances, specifically the phase invariance of the complex cells, in the popu-
lation code can facilitate learning some tasks involving phase invariant responses at the expense of 
performance on others. The role of invariances in learning with kernel methods and deep networks 
have recently been investigated in machine learning literature, showing that invariant representations 
can improve capacity (Farrell et al., 2021) and sample efficiency for invariant learning problems (Mei 
et al., 2021; Li et al., 2019; Xiao and Pennington, 2022).

A recent proposal considered the possibility that the brain acts as an overparameterized interpo-
lator (Hasson et al., 2020). Suitable inductive biases are crucial to prevent overfitting and generalize 
well in such a regime (Belkin et al., 2019). Our theory can explain these inductive biases since, when 
the kernel is full-rank, which typically is the case when there are more neurons in the population than 
the number of learning examples, the delta rule without weight decay converges to an interpolator 
of the learning examples. Modern deep learning architectures also operate in an overparameterized 
regime, but generalize well (Zhang et al., 2016; Belkin et al., 2019), and an inductive bias towards 
simple functions has been proposed as an explanation (Bordelon et al., 2020; Canatar et al., 2021; 
Kalimeris et al., 2019; Valle-Perez et al., 2018). However, we also showed that interpolation can be 
harmful to prediction accuracy when the target function has some variance unexplained by the neural 
code or if the neural responses are significantly noisy, motivating use of explicit regularization.

Our work promotes sample efficiency as a general coding principle for neural populations, relating 
neural representations to the kinds of problems they are well suited to solve. These codes may be 
shaped through evolution or themselves be learned through prior experience (Zador, 2019). Prior 
related work in this area demonstrated the dependence of sample-efficient learning of a two-angle 
estimation task on the width of the individual neural tuning curves (Meier et al., 2020) and on additive 
function approximation properties of sparsely connected random networks (Harris, 2019).

A sample efficiency approach to population coding differs from the classical efficient coding theo-
ries (Attneave, 1954; Barlow, 1961; Atick and Redlich, 1992; Srinivasan et al., 1982; van Hateren, 
1992; Rao and Ballard, 1999; Olshausen and Field, 1997; Chalk et al., 2018), which postulate that 
populations of neurons optimize information content of their code subject to metabolic constraints 
or noise. While these theories emphasize different aspects of the code’s information content (such as 
reduced redundancy, predictive power, or sparsity), they do not address sample efficiency demands 
on learning. Further, recent studies demonstrated hallmarks of redundancy and correlation in popula-
tion responses (Chapin and Nicolelis, 1999; Bathellier et al., 2008; Pitkow and Meister, 2012; Gao 
and Ganguli, 2015; Abbasi-Asl et al., 2016; Gallego et al., 2018; Stringer et al., 2018b), violating 
a generic prediction of efficient coding theories that responses of different neurons should be uncor-
related across input stimuli in high signal-to-noise regimes to reduce redundancy in the code and 
maximize information content (Barlow, 1961; Atick and Redlich, 1992; Srinivasan et al., 1982; van 
Hateren, 1992; Haft and van Hemmen, 1998; Huang and Rao, 2011). In our theory, the structured 
correlations of neural responses correspond to the decay in the spectrum of the kernel, and play a key 
role in biasing learned readouts towards simple functions.

In recent related studies, the asymptotic decay rate of the kernel’s eigenspectrum was argued to 
be important for generalization (Stringer et al., 2018b) and robustness (Nassar et al., 2020). The 
spectral decay rate in the mouse V1 was found to be consistent with a high dimensional (power law) 
but smooth (differentiable) code, and smoothness was argued to be an enabler of generalization 
(Stringer et al., 2018b). While we also identify power law spectral decays, we show that sample-
efficient learning requires more than smoothness conditions in the form of asymptotic decay rates on 
the kernel’s spectrum. The interplay between the stimulus distribution, target response and the code 
gives rise to sample efficient learning. Because of spectral bias, the top eigenvalues govern the small 
sample size behavior. The tail of the spectrum becomes important at large sample sizes.

Though the kernel is degenerate with respect to rotations of the code in the neural activity space, 
we demonstrated that the true V1 code has much lower average activity than random codes with the 
same kernel, suggesting that evolution and learning may be selecting neural codes with low average 
spike rates which preserve sample-efficiency demands for downstream learning tasks. We predict 
that metabolic efficiency may be a determinant in the orientation and placement of the ubiquitously 
observed low-dimensional coding manifolds in neural activity space in other parts of the brain (Gallego 
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et al., 2018). The demand of metabolic efficiency is consistent with prior sparse coding theories (Niven 
and Laughlin, 2008; Olshausen and Field, 1997; Simoncelli and Olshausen, 2001; Hromádka et al., 
2008), however, our theory emphasizes sample-efficient learning as the primary normative objective 
for the code. As a note of caution, while our analysis holds under the assumption that the neural 
code is deterministic, real neurons exhibit variability in their responses to repeated stimuli. Such noisy 
population codes do not generally achieve identical generalization performance under RROS transfor-
mations. For example, if each neuron is constrained to produce i.i.d. Poisson noise, then simple shifts 
of the baseline firing rate reduce the information content of the code. However, if the neural noise is 
Gaussian (even with stimulus dependent noise covariance), then the generalization error is conserved 
under RROS operations (Appendix Effect of noise on RROS symmetry). Further studies could focus on 
revealing the space of codes with equivalent inductive biases under realistic noise models.

Our work constitutes a first step towards understanding inductive biases in neuronal circuits. To 
achieve this, we focused on a linear, delta-rule readout of a static population code. More work is 
need to study other factors that affect inductive bias. Importantly, sensory neuron tuning curves can 
adapt during perceptual learning tasks (Gilbert, 1994; Goltstein et al., 2021; Ghose et al., 2002; 
Schoups et al., 2001) with the strength of adaptation dependent on brain area (Yang and Maunsell, 
2004; Adab et al., 2014; Op de Beeck et al., 2007). In many experiments, these changes to tuning 
in sensory areas are small (Schoups et al., 2001; Ghose et al., 2002), satisfying the assumptions of 
our theory. For example monkeys trained on noisy visual motion detection exhibit changes in sensory-
motor (LIP) but not sensory areas (MT), consistent with a model of readout from a static sensory 
population code (Law and Gold, 2008; Shadlen and Newsome, 2001). However, other perceptual 
learning tasks and other brain areas can exhibit significant changes in neural tuning (Recanzone et al., 
1993; Pleger et al., 2003; Furmanski et al., 2004). This diversity of results motivates more general 
analysis of learning in multi-layer networks, where representations in each layer can adapt flexibly to 
task structure (Shan and Sompolinsky, 2021; Mastrogiuseppe et al., 2022; Bordelon and Pehlevan, 
2022b; Ahissar and Hochstein, 2004). Alternatively, our current analysis of inductive bias can still be 
consistent with multi-layer learning if the network is sufficiently overparameterized and tuning curves 
change very little (Jacot et al., 2018; Lee et al., 2018; Shan and Sompolinsky, 2021). In this case, 
network training is equivalent to kernel learning with a kernel that depends on the learning rule and 
architecture (Bordelon and Pehlevan, 2022a). However, in the regime of neural network training 
where tuning curves change significantly, more sophisticated analytical tools are needed to predict 
generalization (Flesch et al., 2021; Yang and Hu, 2021; Bordelon and Pehlevan, 2022b). Although 
our work focused on linear readouts, arbitrary nonlinear readouts which generate convex learning 
objectives have been recently studied in the high dimensional limit, giving qualitatively similar learning 
curves which depend on kernel eigenvalues and task model alignment (Loureiro et al., 2021b; Cui 
et al., 2022) (see Appendix Typical case analysis of nonlinear readouts).

Our work focused on how signal correlations influence inductive bias (Averbeck et  al., 2006; 
Cohen and Kohn, 2011). However, since real neurons do exhibit variability in their responses to 
identical stimuli, one should consider the effect of neural noise and noise correlations in learning. We 
provide a preliminary analysis of learning with neural noise in Appendix Impact of neural noise and 
unlearnable targets on learning, where we show that neural noise can lead to irreducible asymptotic 
error which depends on the geometry of the signal and noise correlations. Further, if the target func-
tion is not fully expressible as linear combinations of neural responses, overfitting peaks in the learning 
curves are possible, but can be mitigated with regularization implemented by a weight decay in the 
learning rule (see Appendix 1—figure 1). Future work could extend our analysis to study how signal 
and noise correlations interact to shape inductive bias and generalization performance in the case 
where the noise correlation matrices are non-isotropic, including the role of differential correlations 
(Moreno-Bote et al., 2014). Overall, future work could build on the present analysis to incorporate a 
greater degree of realism in a theory of inductive bias.

Finally, we discuss possible applications of our work to experimental neuroscience. Our theory has 
potential implications for experimental studies of task learning. First, in cases where the population 
selective to stimuli can be measured directly, an experimenter could design easy or difficult tasks for an 
animal to learn from few examples, under a hypothesis that the behavioral output is a linear function 
of the observed neurons. Second, in cases where it is unclear which neural population contributes to 
learning, one could utilize our theory to solve the inverse problem of inferring the relevant kernel from 
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observed learning curves on different tasks (Wilson et al., 2015). From these tasks, the experimenter 
could compare the inferred kernel to those of different recorded populations. For instance, one could 
compare the kernels from separate populations to the inferred kernel obtained from learning curves 
on certain visual learning tasks. This could provide new ways to test theories of perceptual learning 
(Gilbert, 1994). Lastly, extensions of our framework could quantify the role of neural variability on task 
learning and the limitation it imposes on accuracy and sample efficiency.

Methods
Generating example codes (Figure 1)
The two codes in Figure 1 were constructed to produce two different kernels for ‍θ ∈ S1‍:

	﻿‍ K1(θ, θ′) = exp(0.25 cos(θ − θ′)) , K2(θ, θ′) =
∑20

k=1 cos(k(θ − θ′)).‍� (4)

An infinite number of codes could generate either of these kernels. After diagonalizing the kernel 
into its eigenfunctions on a grid of 120 points, ‍K1 = Ψ1Λ1Ψ

⊤
1 , K2 = Ψ2Λ2Ψ

⊤
2 ‍, we used a random 

rotation matrix ‍Q ∈ RN×N
‍ (which satisfies ‍QQ⊤ = Q⊤Q = I‍) to generate a valid code

	﻿‍ R1 = QΛ1/2
1 Ψ⊤

1 , R2 = QΛ1/2
2 Ψ⊤

2 .‍� (5)

This construction guarantees that ‍R
⊤
1 R1 = K1‍ and ‍R

⊤
2 R2 = K2‍. We plot the tuning curves for the 

first three neurons. The target function in the first experiment is ‍y = cos(θ) − 0.6 cos(4θ)‍, while the 
second experiment used ‍y = cos(6θ) − cos(8θ)‍.

Theory of generalization
Recent work has established analytic results that predict the average case generalization error for 
kernel regression

	﻿‍
Eg =

⟨
Eg(D)

⟩
D =

⟨[
f(θ,D) − y(θ)

]2
⟩
θ,D‍�

(6)

where 
‍
Eg(D) =

⟨
[f(θ,D) − y(θ)]2

⟩
θ‍
 is the generalization error for a certain sample ‍D‍ of size ‍P‍ and 

‍f(θ,D) = w · r(θ)‍ is the kernel regression solution for ‍D‍ (Appendix Convergence of the delta-rule 
without weight decay) (Bordelon et al., 2020; Canatar et al., 2021). The typical or average case 
error ‍Eg‍ is obtained by averaging over all possible datasets of size ‍P‍. This average case generaliza-
tion error is determined solely by the decomposition of the target function ‍y(x)‍ along the eigenbasis 
of the kernel and the eigenspectrum of the kernel. This continuous diagonalization again takes the 
form (Appendix Singular value decomposition of continuous population responses) (Rasmussen and 
Williams, 2005)

	﻿‍

ˆ
p(θ)K(θ, θ′)ψk(θ)dθ = λkψk(θ′).

‍�
(7)

Our theory is also applicable to discrete stimuli if ‍p(θ)‍ is a Dirac measure as we describe in 
(Appendix Discrete stimulus spaces: finding eigenfunctions with matrix eigendecomposition). Since 
the eigenfunctions form a complete set of square integrable functions (Rasmussen and Williams, 
2005), we expand both the target function ‍y(θ)‍ and the learned function ‍f(θ,D)‍ in this basis 

‍y(θ) =
∑

k vkψk(θ) , f(θ,D) =
∑

k v̂kψk(θ)‍, where ‍̂vk‍ are understood to be functions of the dataset ‍D‍. 
The eigenfunctions are orthonormal ‍

´
dθp(θ)ψk(θ)ψℓ(θ) = δk,ℓ‍, which implies that the generalization 

error for any set of coefficients ‍̂v‍ is

	﻿‍
Eg(D) =

⟨
(y(θ) − f(θ,D))2

⟩
θ

=
∑

k,ℓ(v̂k − vk)(v̂ℓ − vℓ)
⟨
ψk(θ)ψℓ(θ)

⟩
θ

= ||v̂ − v||2
‍� (8)

We now introduce the equivalent training error, or empirical loss, written directly in terms of eigen-
function coefficients ‍̂v‍, which depends on the random dataset ‍D = {(θµ, yµ)}P

µ=1‍

	﻿‍ H(v̂,D) =
∑

µ[(v̂ − v) · ψ(θµ)]2 + λ
∑

k
v̂2

k
λk ‍� (9)
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This loss function is minimized by delta rule updates with weight decay constant ‍λ‍. It is straight-
forward to verify that the ‍H ‍-minimizing coefficients are ‍̂v∗ = (ΨΨ⊤ + λΛ−1)−1ΨΨ⊤v‍, giving the 
learned function ‍f(θ,D) = v̂∗ · ψ(θ) = k(θ)⊤(K + λI)−1y‍ where the vectors ‍k‍ and ‍y‍ have entries 

‍[k(θ)]µ = K(θ, θµ)‍ and ‍[y]µ = y(θµ)‍ for each training stimulus ‍θµ ∈ D‍. The ‍P × P‍ kernel gram matrix ‍K‍ 
has entries ‍[K]µν = K(θµ, θν )‍. The ‍λ → 0‍ limit of the minimizer of ‍H ‍ coincides with kernel interpola-
tion. This allows us to characterize generalization without reference to learned readout weights ‍w‍. The 
generalization error for this optimal function is

	﻿‍

Eg(D) = ||v̂∗ − v||2 = v⊤Λ−1G(D)2Λ−1v

G(D) =
(

1
λΨΨ⊤ + Λ−1

)−1
.

‍�
(10)

We note that the dependence on the randomly sampled dataset ‍D‍ only appears through the 
matrix ‍G(D)‍. Thus to compute the typical generalization error we need to average this matrix over 
realizations of datasets, i.e.‍

⟨
G(D)

⟩
D‍. There are multiple strategies to perform such an average and 

we will study one here based on a partial differential equation which was introduced in Sollich, 1998; 
Sollich, 2002 and studied further in Bordelon et al., 2020. We describe in detail one method for 
performing such an average in Appendix Computation of learning curves. After this computation, we 
find that the generalization error can be approximated at large ‍P‍ as

	﻿‍ Eg = κ2

1−γ

∑
k

v2
k

(λkP+κ)2 , κ = λ + κ
∑

k
λk

λkP+κ ,‍� (11)

where ‍γ = P
∑

k
λ2

k
(λkp+κ)2 ‍, giving the desired result. We note that (11) defines the function ‍κ‍ implic-

itly in terms of the sample size ‍P‍. Taking ‍λ → 0‍ gives the generalization error of the minimum norm 
interpolant, which desribes the generalization error of the solution. This result was recently repro-
duced using the replica method from statistical mechanics in an asymptotic limit where the number 
of neurons and samples are large (Bordelon et al., 2020; Canatar et al., 2021). Other recent works 
have verified our theoretical expressions on a variety of kernels and datasets (Loureiro et al., 2021b; 
Simon et al., 2021).

Additional intuition for the spectral bias phenomenon can be gained from the expected learned 
function ‍

⟨
f(θ,D)

⟩
D =

∑
k

λkP
λkP+κ vkψk(θ)‍, which is the average readout prediction over possible data-

sets ‍D‍. The function ‍κ(P)‍ is defined implicitly as ‍κ = λ + κ
∑

k
λk

λkP+κ‍ and decreases with ‍P‍ from 

‍κ(0) = λ +
∑

k λk‍ to its asymptotic value ‍limP→∞ κ(P) = λ‍. The coefficient for the ‍k‍-th eigenfunction 

‍
λkP

λkP+κ vk‍ approaches the true coefficient vk as ‍P → ∞‍. The ‍k‍-th eigenfunction ‍ψk‍ is effectively learned 
when ‍P ≫ κ

λk ‍. For large eigenvalues ‍λk‍, fewer samples ‍P‍ are needed to satisfy this condition, while 
small eigenvalue modes will require more samples.

RNN experiment
For the simulations in Figure 7, we integrated a rate-based recurrent network model with ‍N = 6000‍ 
neurons, time constant ‍τ = 0.05‍ and gain ‍g = 1.5‍. Each of the ‍P = 80‍ randomly chosen angles ‍γ

µ
‍ 

generates a trajectory over ‍T = 100‍ equally spaced points in ‍t ∈ [0, 3]‍. The two dimensional input 
sequence is simply ‍θ(t) = H(t)H(1 − t)

[
cos(γµ), sin(γµ)

]⊤ ∈ R2
‍. Target function for a delay ‍d‍ is 

‍y(θµ, t) = H(1.5 + d − t)H(t − d − 1)[cos(γµ), sin(γµ)]⊤‍ which is nonzero for times ‍t ∈ [1 + d, 1.5 + d]‍. In 
each simulation, the activity in the network is initialized to ‍u(0) = 0‍. The kernel gram matrix ‍K ∈ RPT×PT ‍ 
is computed by taking inner products of the time varying code at for different inputs ‍γ

µ
‍ and at 

different times. Learning curves represent the generalization error obtained by randomly sampling ‍P ‍ 
time points from the ‍PT ‍ total time points generated in the simulation process and training readout 
weights ‍w‍ to convergence with gradient descent.

Data analysis
Data source and processing
Mouse V1 neuron responses to orientation gratings were obtained from a publicly available dataset 
(Stringer et al., 2021; Pachitariu et al., 2019). Two-photon calcium microscopy fluorescence traces 
were deconvolved into spike trains and spikes were counted for each stimulus, as described in Stringer 
et  al., 2021. The presented grating angles were distributed uniformly over ‍[0, 2π]‍ radians. Data 
pre-processing, which included z-scoring against the mean and standard deviation of null stimulus 
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responses, utilized the provided code for this experiment, which also publicly available at https://​
github.com/MouseLand/stringer-et-al-2019 (Stringer, 2019). This preprocessing technique was used 
in all Figures in the paper. To reduce corruption of the estimated kernel from neural noise (trial-
to-trial variability), we first trial average responses, binning the grating stimuli oriented at different 
angles ‍θ‍ into a collection of 100 bins over the interval from ‍[0, 2π]‍ and averaging over all of the 
available responses from each bin. Since grating angles were sampled uniformly, there is a roughly 
even distribution of about 45 responses in each bin. After trial averaging, SVD was performed on the 
response matrix ‍R‍, generating the eigenspectrum and kernel eigenfunctions as illustrated in Figure 3. 
Figures 2, 3 and 8, all used this data anytime responses to grating stimuli were mentioned.

In Figures 3D, 4 and 8C, the responses of mouse V1 neurons to ImageNet images (Deng et al., 
2009) were obtained from a different publicly available dataset (Stringer et al., 2018a). The images 
were taken from 15 different classes from the Imagenet dataset with ethological relevance to mice 
(birds, cats, flowers, hamsters, holes, insects, mice, mushrooms, nests, pellets, snakes, wildcats, other 
animals, other natural, other man made). In the experiment in Figure 3D we use all images from the 
mice and birds category for which responses were recorded. The preprocessing code and image 
category information were obtained from the publicly available code base at https://github.com/​
MouseLand/stringer-pachitariu-et-al-2018b (Stringer, 2018c). Again, spike counts were obtained 
from deconvolved and z-scored calcium fluorescence traces. In the reconstruction experiment shown 
in Figure 4 we use the entire set of images for which neural responses were recorded.

Generating RROS codes
In Figure 8, the randomly rotated codes are generated by sampling a matrix ‍Q‍ from the Haar measure 
on the set of ‍N ‍-by-‍N ‍ orthogonal matrices (Anderson et al., 1987), and chosing a ‍δ‍ by solving the 
following optimization problem:

	﻿‍ minδ∈RN
∑N

i=1
∑P

µ=1 sµi , s.t. sµ = Qr(θµ) + δ , sµi ≥ 0 , i ∈ [N] , µ ∈ [P],‍� (12)

which minimizes the total spike count subject to the kernel and nonnegativity of firing rates. The 
solution to this problem is given by ‍δ

∗
i = −minµ=1,...,P[Qr(θµ)]i‍.

Comparing sparsity of population codes
To explore the metabolic cost among the set of codes with the same inductive biases, we estimate 
the distribution of average spike counts of codes with the same inner product kernel as the biological 
code. These codes are generated in the form ‍sµ = Qrµ + δ‍ where ‍δ‍ solves the optimization problem

	﻿‍ minδ∈RN
∑

i,µ sµi , s.t. sµ = Qrµ + δ , sµi ≥ 0‍� (13)

To quantify the distribution of such codes, we randomly sample ‍Q‍ from the invariant (Haar) measure 
for ‍N × N ‍ orthogonal matrices and compute the optimal ‍δ‍ as described above. This generates the 
aqua colored distribution in Figure 8B and C.

We also attempt to characterize the most efficient code with the same inner product kernel

	﻿‍ minQ,δ
∑

i,µ sµi , s.t. sµ = Qrµ + δ , sµi ≥ 0.‍� (14)

Since this optimization problem is non-convex in ‍Q‍, there is no theoretical guarantee that minima 
are unique. Nonetheless, we attempt to optimize the code by starting ‍Q‍ at the identity matrix and 
conduct gradient descent over orthogonal matrices (Plumbley, 2004). Such updates take the form

	﻿‍ Qt+1 = exp(−η∇L)Qt , ∇L = ∂L
∂Q Q⊤ − Q∂L

∂Q
⊤

‍� (15)

where ‍exp(·)‍ is the matrix exponential. To make the loss function differentiable, we incorporate the 
non-negativity constraint with a soft-minimum:

	﻿‍

L =
∑

iµ

(
q⊤

i rµ − softminν (q⊤
i rν ,β)

)

softmin(a1, a2, ..., aP;β) = 1
Z
∑P

µ=1 aµ exp(−βaµ),‍�
(16)
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where ‍Z =
∑

ν exp(−βaν )‍ is a normalizing constant and ‍Q = [q1, ...qN]‍. In the ‍β → ∞‍ limit, this 
cost function converges to the exact optimization problem with non-negativity constraint. Finite ‍β‍, 
however, allows learning with gradient descent. Gradients are computed with automatic differentia-
tion in JAX (Bradbury et al., 2018). This optimization routine is run until convergence and the optimal 
value is plotted as dashed red lines labeled ‘opt’. in Figure 8.

We show that our result is robust to different pre-processing techniques and to imposing bounds 
on neural firing rates in the Figure 8—figure supplement 1. To demonstrate that our result is not an 
artifact of z-scoring the deconvolved signals against the spontaneous baseline activity level, we also 
conduct the random rotation experiment on the raw deconvolved signals. In addition, we show that 
imposing realistic constraints on the upper bound of the each neuron’s responses does not change 
our findings. We used a subset of ‍N = 100‍ neurons and computed random rotations. However, we only 
accepted a code as valid if it’s maximum value was less than some upper bound ub. Subsets of ‍N = 100‍ 
neurons in the biological code achieve maxima in the range between 3.2 and 4.7. We performed this 
experiment for ‍ub ∈ {3, 4, 5}‍ so that the artificial codes would have maxima that lie in the same range 
as the biological code.

Lifetime and population sparseness
We compute two more refined measures of sparseness in a population code. For each neuron ‍i‍ we 
compute the lifetime sparseness ‍LSi‍ (also known as selectivity) and for each stimulus ‍θ‍ we compute 
the population sparseness ‍PSθ‍ which are defined as the following two ratios (Willmore and Tolhurst, 
2001; Lehky et al., 2005; Treves and Rolls, 1991; Pehlevan and Sompolinsky, 2014)

	﻿‍
LSi = 1

1− 1
P

Varθ ri(θ)⟨
ri(θ)2

⟩
θ

, PSθ = 1
1− 1

N

Vari ri(θ)⟨
ri(θ)2

⟩
i ‍� (17)

The normalization factors ensure that these quantities lie in the interval between ‍(0, 1)‍. Intuitively, 
lifetime sparseness quantifies the variability of each neuron’s responses over the full set of stimuli, 
whereas population sparseness quantifies the variability of responses in the code for a given stimulus 
‍θ‍.

Fitting a Gabor model to mouse V1 kernel
Under the assumption of translation symmetry in the kernel ‍K(θ, θ′)‍, we averaged the elements of the 
over rows of the empirical mouse V1 kernel (Pachitariu et al., 2019)

	﻿‍ K(∆) = 1
P
∑P

µ=1 K(θµ, θµ + ∆)‍� (18)

where angular addition is taken mod ‍π‍. This generates the black dots in Figure 5B. We aimed to 
fit a threshold-power law nonlinearity of the form ‍gq,a(z) = max{0, z − a}q

‍ to the kernel. Based on the 
Gabor model discussed above, we parameterized tuning curves as

	﻿‍
rσ2,q,a(θ, θi) = gq,a

(
cosh(σ−2 cos(θ−θi))

cosh(σ−2)

)
,
‍� (19)

where ‍θi‍ is the preferred angle of the ‍i‍-th neuron’s tuning curve. Rather than attempting to perform 
a fit of ‍σ

2, a, q, {θi}N
i=1‍ of this form to the responses of each of the ‍∼ 20‍-k neurons, we instead simply 

attempt to fit to the population kernel by optimizing over ‍(σ2, a, q)‍ under the assumption of uniform 
tiling of ‍θi‍. However, we noticed that two of these variables ‍σ2, a‍ are constrained by the sparsity level 
of the code. If each neuron, on average, fires for only a fraction ‍f ‍ of the uniformly sampled angles ‍θ‍, 
then the following relationship holds between ‍σ2‍ and

	﻿‍ a = cosh
(
σ−2 cos

(
π
2 f
))

cosh(σ−2) .‍� (20)

Calculation of the coding level ‍f ‍ for the recorded responses allowed us to infer ‍a‍ from ‍σ2‍ during 
optimization. This reduced the free parameter set to ‍(σ2, q)‍. We then solve the following optimization 
problem

	﻿‍
minσ2,q

⟨(
K̂σ2,q(θ) − K(θ)

)2
⟩

θ

K̂σ2,q(θ) =
⟨
rσ2,q(θ, θ′)rσ2,q(0, θ′)

⟩
θ′ ,

‍�
(21)
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where integration over ‍θi‍ is performed numerically. Using the Scipy Trust-Region constrained opti-
mizer, we found ‍(q,σ−2, a) = (1.7, 5.0, 0.2)‍ which we use as the fit parameters in Figure 5.
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Data and code availability
Mouse V1 neuron responses to orientation gratings and preprocessing code were obtained from a 
publicly available dataset: https://github.com/MouseLand/stringer-et-al-2019, (Stringer et al., 2021; 
Pachitariu et al., 2019).

Responses to ImageNet images and preprocessing code were obtained from another publicly avail-
able dataset, https://github.com/MouseLand/stringer-pachitariu-et-al-2018b (Stringer et al., 2018a).

The code generated by the authors for this paper is also available https://github.com/Pehlevan-​
Group/sample_efficient_pop_codes (Pehlevan-Group, 2022).
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ImageNet images and preprocessing code were obtained from another publicly available dataset, 
https://github.com/MouseLand/stringer-pachitariu-et-al-2018b. The code generated by the authors 
for this paper is also available https://github.com/Pehlevan-Group/sample_efficient_pop_codes, 
(copy archived at swh:1:rev:6cd4f0fe7043ae214dd682a9dc035a497ffa2d61).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Carsen S, Marius P, 
Nicholas S, Matteo C, 
Kenneth DH

2018 Recordings of ten thousand 
neurons in visual cortex in 
response to 2,800 natural 
images

https://​doi.​org/​
10.​25378/​janelia.​
6845348.​v4

Figshare, 10.25378/
janelia.6845348.v4

Marius P, Michalis M, 
Carsen S

2019 Recordings of ~20,000 
neurons from V1 in 
response to oriented 
stimuli

http://​doi.​org/​
10.​25378/​janelia.​
8279387.​v3

Figshare, 10.25378/
janelia.8279387.v3
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Appendix 1
Singular value decomposition of continuous population responses
SVD of population responses is usually evaluated with respect to a discrete and finite set of stimuli. 
In the main paper, we implicitly assumed that a generalization of SVD to a continuum of stimuli. 
In this section we provide an explicit construction of this generalized SVD using techniques from 
functional analysis. Our construction is an example of the quasimatrix SVD defined in Townsend and 
Trefethen, 2015 and justifies our use of SVD in the main text.

For our construction, we note that Mercer’s theorem guarantees the existence of an 
eigendecomposition of any inner product kernel ‍K(θ, θ′)‍ in terms of a complete orthonormal set 
of functions ‍{ψk}∞k=1‍ (Rasmussen and Williams, 2005). In particular, there exist a non-negative (but 
possibly zero) summable eigenvalues ‍{λk}∞k=1‍ and a corresponding set of orthonormal eigenfunctions 
such that

	﻿‍ K(θ, θ′) =
∑∞

k=1 λkψk(θ)ψk(θ′).‍� (22)

For a stimulus distribution ‍p(θ)‍, the set of functions ‍{ψk}∞k=1‍ are orthonormal and form a complete 
basis for square integrable functions L2 which means

	﻿‍

⟨
ψk(θ)ψℓ(θ)

⟩
θ

=
´

p(θ)ψk(θ)ψℓ(θ)dθ = δkℓ,

f(θ) =
∑

k
⟨
f(θ′)ψk(θ′)

⟩
θ′ ψk(θ) , ∀f ∈ L2.‍�

(23)

Next, we use this basis to construct the SVD. Each of the tuning curves ‍ri ∈ L2‍ (assumed to be 
square integrable) can be expressed in this basis with the top ‍N ‍ of the functions in the set

	﻿‍ ri(θ) =
∑N

k=1 Aikψk(θ),‍ � (24)

where we introduced a matrix ‍A ∈ RN×N ‍ of expansion coefficients. Note that ‍rank(A) ≤ N ‍. We 
compute the singular value decomposition of the finite matrix ‍A‍

	﻿‍ A =
√

N
∑rank(A)

k=1
√
λkukv⊤k .‍� (25)

We note that the signal correlation matrix for this population code can be computed in closed 
form

	﻿‍
Σs = 1

N A
⟨
ψ(θ)ψ(θ)⊤

⟩
θ

A⊤ = 1
N AA⊤ =

∑rank(A)
k=1 λkuku⊤

k ,
‍� (26)

due to the orthonormality of ‍{ψk}‍. Thus the principal axes ‍uk‍ of the neural correlations are the left 
singular vectors of ‍A‍. We may similarly express the inner product kernel in terms of the eigenfunctions

	﻿‍ K(θ, θ′) = 1
N r(θ) · r(θ′) = 1

Nψ(θ)⊤A⊤Aψ(θ′).‍� (27)

The kernel eigenvalue problem demands (Rasmussen and Williams, 2005)

	﻿‍

´
p(θ)K(θ, θ′)ψ(θ)dθ = 1

N A⊤Aψ(θ′) = Λψ(θ′) =⇒ 1
N A⊤A = Λ

=⇒
∑rank(A)

k=1 λkvkv⊤k =
∑rank(A)

k=1 λkeke⊤k . ‍�
(28)

The ‍vk‍ vectors must be identical to ‍±ek‍, the Cartesian unit vectors, if the eigenvalues are non-
degenerate. From this exercise, we find that the SVD for ‍A‍ has the form ‍A =

√
N
∑rank(A)

k=1
√
λkuke⊤k ‍. 

With this choice, the population code admits a singular value decomposition

	﻿‍ r(θ) = Aψ(θ) =
√

N
∑rank(A)

k=1
√
λkukψk(θ).‍� (29)

This singular value decomposition demonstrates the connection between neural manifold 
structure (principal axes ‍uk‍) and function approximation (kernel eigenfunctions ‍ψk‍). This singular 
value decomposition can be verified by computing the inner product kernel and the correlation 
matrix, utilizing the orthonormality of ‍{uk}‍ and ‍{ψk}‍. This exercise has important consequences for 
the space of learnable functions, which is at most ‍rank(A)‍ dimensional since linear readouts lie in 

‍span{ri(θ)}N
i=1‍.
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Discrete stimulus spaces: finding eigenfunctions with matrix 
eigendecomposition
In our discussion so far, our notation suggested that ‍θ‍ take a continuum of values. Here we want 
to point that our theory still applies if ‍θ‍ take a discrete set of values. In this case, we can think of a 

Dirac measure ‍p(θ) =
∑P̃

i=1 piδ(θ − θi)‍, where ‍i‍ indexes all the ‍̃P‍ values ‍θ‍ can take. With this choice

	﻿‍

ˆ
p(θ)K(θ, θ′)ψk(θ)dθ =

P̃∑
i=1

piK(θi, θ′)ψk(θi) = λkψk(θ′).
‍�

(30)

Demanding this equality for ‍θ′ = θi, i = 1, ..., P̃‍ generates a matrix eigenvalue problem

	﻿‍ KBΨ = ΨΛ,‍� (31)

where ‍Bij = δijpi‍. The eigenfunctions over the stimuli are identified as the columns of ‍Ψ‍ while the 
eigenvalues are the diagonal elements of ‍Λkℓ = λkδkℓ‍.

Experimental considerations
In an experimental setting, a finite number of stimuli are presented and the SVD is calculated over 
this finite set regardless of the support of ‍p(θ)‍. This raises the question of the interpretation of this 
SVD and its relation to the inductive bias theory we presented. Here we provide two interpretations.

In the first interpretation, we think of the empirical SVD as providing an estimate of the SVD over 
the full distribution ‍p(θ)‍. To formalize this notion, we can introduce a Monte-Carlo estimate of the 
integral eigenvalue problem

	﻿‍

ˆ
p(θ)K(θ, θ′)ψk(θ)dθ ≈ 1

P̃

P̃∑
µ=1

K(θµ, θ′)ψk(θµ) = λkψk(θ′).
‍�

(32)

For this interpretation to work, the experimenter must sample the stimuli from ‍p(θ)‍, which could 
be the natural stimulus distribution. Measuring responses to a larger number of stimuli gives a more 
accurate approximation of the integral above, which will provide a better estimate of generalization 
performance on the true distribution ‍p(θ)‍.

In the second interpretation, we construct an empirical measure on ‍̃P‍ experimental stimulus 

values ‍p̂(θ) = 1
P̃
∑P̃

µ=1 δ(θ − θµ)‍, and consider learning and generalization over this distribution. 
This allows the application of our theory to an experimental setting where ‍̂p(θ)‍ is designed by 
an experimenter. For example, the experimenter could procure a complicated set of ‍̃P‍ videos, to 
which an associated function ‍y(θ)‍ must be learned. After showing these videos to the animal and 
measuring neural responses, the experimenter could compute, with our theory, generalization error 
for a uniform distribution over this full set of ‍̃P‍ videos. Our theory would predict generalization over 
this distribution after providing supervisory feedback for only a strict subset of ‍P < P̃‍ videos. Under 
this interpretation, the relationship between the integral eigenvalue problem and matrix eigenvalue 
problem is exact rather than approximate

	﻿‍

ˆ
p̂(θ)K(θ, θ′)ψk(θ)dθ = 1

P̃

P̃∑
µ=1

K(θµ, θ′)ψk(θµ) = λkψk(θ′).
‍�

(33)

Demanding either of (32) or (33) equalities for ‍θ′ = θν , ν = 1, ..., P‍ generates a matrix eigenvalue 
problem

	﻿‍ KΨ = PΨΛ.‍� (34)

The eigenfunctions restricted to ‍{θµ}‍ are identified as the columns of ‍Ψ‍ while the eigenvalues are 
the diagonal elements of ‍Λkℓ = λkδkℓ‍. For the case where ‍N ‍ and ‍P‍ are finite, the spectrum obtained 
through eigendecomposition of the kernel ‍K‍ is the same as would be obtained through the finite 
‍N ‍ signal correlation matrix ‍Σs‍, since they are inner and outer products of trial averaged population 
response matrices ‍R‍.
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Translation invariant kernels
For the special case where the data distribution ‍p(θ) = 1

V ‍ is uniform over volume ‍V ‍ and the kernel is 
translation invariant ‍K(θ, θ′) = κ(θ − θ′)‍, the kernel can be diagonalized in the basis of plane waves

	﻿‍

ˆ
p(θ)K(θ, θ′)ψk(θ)dθ = 1

V

ˆ
κ(θ − θ′)eik·θdθ = 1

V
κ̂(k)eik·θ′

‍�
(35)

The eigenvalues are the Fourier components of the Kernel ‍λk = 1
V κ̂(k) = 1

V
´

dθeik·θκ(θ)‍ while the 
eigenfunctions are plane waves ‍ψk(θ) = eik·θ

‍. The set of admissible momenta ‍Sk = {k0,±k1,±k2, ...}‍ 
are determined by the boundary conditions. The diagonalized representation of the kernel is 
therefore

	﻿‍ K(θ, θ′) =
∑

k∈Sk
λkeik·(θ−θ′)

‍� (36)

For example, if the space is the torus ‍Tn = S1 × S1 × ... × S1‍, then the space of admissable 
momenta are the points on the integer lattice ‍Sk = Zn = {k ∈ Rn|ki ∈ Z ∀i = 1, ..., n}‍. Reality and 
symmetry of the kernel demand that ‍Im(λk) = 0‍ and ‍λ−k = λk ≥ 0‍. Most of the models in this paper 

consider 
‍
θ ∼ Unif

(
S1
)
‍
, where the kernel has the following Fourier/Mercer decomposition

	﻿‍

K(θ − θ′) =
∑∞

k=−∞ λkeik(θ−θ′) = 2
∑∞

k=0 λk cos(k(θ − θ′))

=
∑∞

k=0 λk

[√
2 cos(kθ)

√
2 cos(kθ′) +

√
2 sin(kθ)

√
2 sin(kθ′)

]
‍�

(37)

where we invoked the simple trigonometric identity ‍cos(a − b) = cos(a) cos(b) + sin(a) sin(b)‍. 
By recognizing that ‍{

√
2 cos(kθ),

√
2 sin(kθ)}∞k=0‍ form a complete orthonormal set of functions with 

respect to 
‍
Unif

(
S1
)
‍
, we have identified this as the collection of kernel eigenfunctions.

Invariant kernels possess invariant eigenfunctions
Suppose the kernel ‍K(θ, θ′)‍ is invariant to some set of transformations ‍t ∈ T ‍, by which we mean that

	﻿‍ K(tθ, θ′) = K(θ, tθ′) = K(θ, θ′) , ∀t ∈ T ‍� (38)

We will now show that any eigenfunction of such a kernel with nonzero eigenvalue must be an 
invariant function. Let ‍ψk(θ)‍ be an eigenfunction with eigenvalue ‍λk > 0‍, then

	﻿‍ ψk(tθ) = 1
λk

´
p(θ′)K(θ′, tθ)dθ′ = 1

λk

´
p(θ′)K(θ′, θ)dθ′ = ψk(θ)‍� (39)

This establishes that all functions which depend on ‍T ‍ transformations must necessarily lie in the 
null-space of ‍K ‍.

Theory of generalization
Convergence of the delta-rule without weight decay
In this section, we discuss the delta-rule convergence when weight decay parameter is set to 
‍λ = 0‍. The next section considers the simpler case where ‍λ > 0‍. Gradient descent training of readout 
weights ‍w‍ on a finite sample of size ‍P‍ converges to the kernel regression solution (Bartlett et al., 
2020; Hastie et al., 2020). Let ‍D = {θµ, yµ}P

µ=1‍ be the dataset with samples ‍θµ‍ and target values 
‍yµ‍. We introduce a shorthand ‍rµ = r(θµ)‍ for convenience. The empirical loss we aim to minimize is a 
sum of the squared losses of each data point in the training set

	﻿‍ L(w) = 1
2
∑P

µ=1(rµ · w − yµ)2.‍� (40)

Performing gradient descent updates

	﻿‍ wt+1 = wt − η ∂L
∂wt

= wt − η
∑P

µ=1 rµ(rµ · wt − yµ),‍� (41)

recovers the delta rule that we discussed in the main text (Widrow and Hoff, 1960; Hertz et al., 

1991). Letting the empirical response matrix ‍R = [r1, ..., rP] ∈ RN×P‍ have a SVD ‍R =
∑

k

√
λ̂kûkψ̂

⊤
k ‍, 
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and expanding the weights ‍wt =
∑

k wt,kûk‍ and labels ‍y =
∑

k v̂kψ̂k‍ in their respective SVD bases, we 
find

	﻿‍ wt+1,k = wt,k − ηλ̂kwt,k + η

√
λ̂kv̂k‍� (42)

For all directions with ‍̂λk > 0‍, the dynamics converge to the unique fixed point 
‍
w∗

k = v̂k√
λ̂k ‍

, while 

for all modes with ‍̂λk = 0‍, the weights remain at ‍w
∗
k = 0‍. Thus

	﻿‍
w∗ =

[∑
k:λ̂k>0

ûkψ̂
⊤
k√
λ̂k

]
y = R

[∑
k:λ̂k>0

ψ̂kψ̂
⊤
k

λ̂k

]
y = RK+y

‍�
(43)

where K+ is the Moore-Penrose inverse of the kernel matrix ‍Kµ,ν = K(θµ, θν )‍. The predictions of 
the learned function are given by ‍f = w∗ · r(θ)‍ which can be expressed as

	﻿‍ f(θ) = k(θ)⊤K+y‍� (44)

The fact that the solution can be written in terms of a linear combination of ‍{K(θ, θµ)}P
µ=1‍ is known 

as the representer theorem (Schölkopf et  al., 2001; Rasmussen and Williams, 2005). A similar 
analysis for nonlinear readouts where ‍f(θ) = g

(
w · r(θ)

)
‍ is provided in Appendix Convergence of 

delta-rule for nonlinear readouts.

Weight decay and ridge regression
We can introduce a regularization term in our learning problem which penalizes the size of the 
readout weights. This leads to a modified learning objective of the form

	﻿‍ L(w) =
∑

µ(rµ · w − yµ)2 + λ||w||2.‍� (45)

Inclusion of this regularization alters the learning rule through weight 
decay‍wt+1 = (1 − ηλ)wt − η

∑
µ rµ(rµ · wt − yµ)‍, which multiplies the existing weight value by a 

factor of ‍1 − ηλ‍ before adding the data dependent update. The fixed point of these dynamics is 

‍w = (RR⊤ + λI)−1Ry‍. This learning problem and gradient descent dynamics have a closed form 
solution

	﻿‍ f(θ) = r(θ) · w∗ =
∑P

µ=1 α
µK(θ, θµ) , α = (K + λI)−1y.‍� (46)

The generalization benefits of explicit regularization through weight decay is known to be 
related to the noise statistics in the learning problem (Canatar et al., 2021). This is visible in the 
Appendix 1—figure 1 , where unlearnable target functions demand nonzero optimal regularization. 
We simulate weight decay only in Figure 6C, where we use ‍λ = 0.01

∑
k λk‍ to improve numerical 

stability at large ‍P‍.

Computation of learning curves
Recent work has established analytic results that predict the average case generalization error for 
kernel regression

	﻿‍
Eg =

⟨
Eg(D)

⟩
D =

⟨
(f(θ,D) − y(θ))2

⟩
θ,D‍�

(47)

where 
‍
Eg(D) =

⟨
(f(θ,D) − y(θ))2

⟩
θ‍
 is the generalization error for a certain sample ‍D‍ of size ‍P‍ and 

‍f(θ,D)‍ is the kernel regression solution for ‍D‍ (Bordelon et al., 2020; Canatar et al., 2021). The 
typical or average case error ‍Eg‍ is obtained by averaging over all possible datasets of size ‍P‍. This 
average case generalization error is determined solely by the decomposition of the target function 

‍y(x)‍ along the eigenbasis of the kernel and the eigenspectrum of the kernel. This diagonalization 
takes the form

	﻿‍

ˆ
p(θ)K(θ, θ′)ψk(θ)dθ = λkψk(θ′)

‍� (48)
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Since the eigenfunctions form a complete set of square integrable functions, we expand both the 
target function ‍y(θ)‍ and the learned function ‍f(θ)‍ in this basis

	﻿‍ y(θ) =
∑

k vkψk(θ) , f(θ) =
∑

k v̂kψk(θ)‍� (49)

Due to the orthonormality of the kernel eigenfunctions ‍{ψk}‍, the generalization error for any set 
of coefficients ‍̂v‍ is

	﻿‍
Eg(w) =

⟨
(y(θ) − f(θ))2

⟩
θ

=
∑

k(v̂k − vk)2 = ||v̂ − v||2
‍� (50)

We now introduce training error, or empirical loss, which depends on the disorder in the dataset 

‍D = {(θµ, yµ)}P
µ=1‍

	﻿‍ H(v̂,D) =
∑

µ(v̂ · ψ(θµ) − v · ψ(θµ))2 + λ
∑

k
v̂2

k
λk ‍� (51)

It is straightforward to verify that the optimal ‍̂v∗‍ which minimizes ‍H(v̂,D)‍ is the kernel regression 
solution for kernel with eigenvalues ‍{λk}‍ when ‍λ → 0‍. The optimal weights ‍̂v‍ can be identified 
through the first order condition ‍∇H(v̂,D) = 0‍ which gives

	﻿‍ v̂∗ = (ΨΨ⊤ + λΛ−1)−1ΨΨ⊤v = v − λ(ΨΨ⊤ + λΛ−1)−1Λ−1v‍� (52)

where ‍Ψk,µ = ψk(θµ)‍ are the eigenfunctions evaluated on the training data and ‍Λk,ℓ = δk,ℓλk‍ is a a 
diagonal matrix containing the kernel eigenvalues. The generalization error for this optimal solution 
is

	﻿‍
Eg(D) = ||v̂∗ − v||2 = v⊤Λ−1G(D)2Λ−1v , G(D) =

(
1
λΨΨ⊤ + Λ−1

)−1

‍�
(53)

We note that the dependence on the randomly sampled dataset ‍D‍ only appears through the 
matrix ‍G(D)‍. Thus to compute the typical generalization error we need to average over this matrix 

‍
⟨
G(D)

⟩
D‍. There are multiple strategies to perform such an average and we will study one here 

based on a partial differential equation which was introduced in Sollich, 1998; Sollich, 2002 and 
studied further in Bordelon et al., 2020; Canatar et al., 2021. In this setting, we denote the average 
matrix ‍G(P) =

⟨
G(D)

⟩
|D|=P‍ for a dataset of size ‍P‍. We first will derive a recursion relationship using 

the Sherman Morrison formula for a rank-1 update to an inverse matrix. We imagine adding a new 
sampled feature vector ‍ϕ‍ to a dataset ‍ψ‍ with size ‍P‍. The average matrix ‍G(P + 1)‍ at ‍P + 1‍ samples 
can be related to ‍G(P)‍ through the Sherman Morrison rule

	﻿‍

G(P + 1) =
⟨(

1
λΨΨ⊤ + 1

λψψ
⊤ + Λ−1

)−1
⟩

ψ,D
= G(P) −

⟨
G(D)ψψ⊤G(D)
λ+ψ⊤G(D)ψ

⟩
ψ,D

≈ G(P) −

⟨
G(D)

⟨
ψψ⊤

⟩
ψ

G(D)
⟩

D
λ+

⟨
ψ⊤G(D)ψ

⟩
ψ,D ‍�

(54)

where in the last step we approximated the average of the ratio with the ratio of averages. This 
operation, is of course, unjustified theoretically, but has been shown to produce accurate learning 
curves (Sollich, 2002; Bordelon et al., 2020). Since the chosen basis of kernel eigenfunctions are 

orthonormal, the average over the new sample is trivial 
‍

⟨
ψψ⊤

⟩
ψ

= I
‍
. We thus arrive at the following 

recursion relationship for ‍G‍

	﻿‍ G(P + 1) = G(P) −
⟨

G(D)2⟩
D

λ+Tr G(P) ‍� (55)

By introducing an additional source ‍J ‍ so that ‍G(D, J)−1 = 1
λΨΨ⊤ + Λ−1 + JI‍, we can relate 

‍G(D, J)‍’s first and second moments through differentiation

	﻿‍
∂
∂J G(P, J) = ∂

∂J

⟨(
1
λΨΨ⊤ + JI + Λ−1

)−1
⟩

D
= −

⟨
G(D, J)2

⟩
D

.
‍� (56)
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Thus the recursion relation simplifies to

	﻿‍ G(P + 1, J) − G(P, J) ≈ ∂
∂P G(P, J) = 1

λ+TrG(P,J)
∂
∂J G(P, J),‍� (57)

where we approximated the finite difference in ‍P‍ as a derivative, treating ‍P‍ as a continuous 
variable. Taking the trace of both sides and defining ‍κ(P, J) = λ + TrG(P, J)‍ we arrive at the following 
quasilinear PDE

	﻿‍
∂
∂Pκ(P, J) = 1

κ(P,J)
∂
∂Jκ(P, J)‍� (58)

with the initial condition ‍κ(0, J) = λ + Tr(Λ−1 + JI)−1
‍. Using the method of characteristics, we 

arrive at the solution 
‍
κ(P, J) = λ + Tr

(
Λ−1 + (v + P

κ(P,J) )I
)−1

‍
. Using this solution to ‍κ‍, we can identify 

the solution to ‍G‍

	﻿‍
G(P, J)k,ℓ =

(
P
κ + J + λ−1

k

)−1
δk,ℓ = κλk

λkP+κ+Jκλk
δk,ℓ.

‍�
(59)

The generalization error, therefore can be written as

	﻿‍
Eg = v⊤Λ−1

⟨
G(D)2

⟩
D
Λ−1v = − ∂

∂J v⊤Λ−1G(P, J)Λ−1v
‍� (60)

	﻿‍
= −

∑
k

v2
k

λ2
k

∂
∂J

(
P
κ + J + λ−1

k

)−1
= κ2

1−γ

∑
k

v2
k

(λkP+κ)2 ,
‍�

(61)

where ‍γ = P
∑

k
λ2

k
(λkP+κ)2 ‍, giving the desired result. Note that ‍κ‍ depends on ‍J ‍ implicitly, which is 

the source of the ‍
1

1−γ ‍ factor. This result was recently reproduced using techniques from statistical 
mechanics (Bordelon et al., 2020; Canatar et al., 2021).

Spectral bias and code-task alignment
Through implicit differentiation it is straightforward to verify that the ordering of the mode errors 

‍Ek = κ2

1−γ

(
λkP + κ

)−2
‍ matches the ordering of the eigenvalues (Canatar et al., 2021). Let ‍λk > λℓ‍, 

then we have

	﻿‍
d

dP log
(

Ek
Eℓ

)
= 2

[
λℓ

λℓP+κ − λk
λkP+κ

]
+ 2κ′(P)

[
1

λℓP+κ − 1
λkP+κ

]
.
‍� (62)

Since ‍λℓ < λk‍, the first bracket must be negative and the second bracket must be positive. Further, 

it is straightforward to compute that ‍κ
′(P) = − κγ

P(1+γ) < 0‍. Therefore ‍λk > λℓ‍ implies 
‍
d

dP log
(

Ek
Eℓ

)
< 0

‍
 

for all ‍P‍. Since 
‍
log

(
Ek
Eℓ

)
= 0

‍
 at ‍P = 0‍ we therefore have that ‍log(Ek/Eℓ) < 0‍ for all ‍P‍ and consequently 

‍Ek < Eℓ‍. Modes with larger eigenvalues ‍λk‍ have lower normalized mode errors ‍Ek‍. This observation 
can be used to prove that target functions acting on the same data distribution with higher cumulative 
power distributions ‍C(k)‍ for all ‍k‍ will have lower generalization error normalized by total target 
power, ‍Eg(P)/Eg(0)‍, for all ‍P‍. Proof can be found in Canatar et al., 2021.

Asymptotic power law scaling of learning curves
Exponential spectral decays:
First, we will study the setting relevant to the von-Mises kernel where ‍λk ∼ βk

‍ and ‍v
2
k ∼ αk

‍ where 

‍α,β < 1‍. This exponential behavior accounts for differences in bandwidth between kernels which 
modulates the base ‍β‍ of the exponential scaling of ‍λk‍ with ‍k‍. We will approximate the sum over all 
mode errors with an integral

	﻿‍
Eg = κ2

1 − γ

∞∑
k=0

v2
k

(λkP + κ)2 ∼ κ2
ˆ ∞

0

αk

(βkP + κ)2 dk.
‍� (63)

If we include a regularization parameter ‍λ‍, then ‍κ ∼ λ‍ as ‍P → ∞‍. Making the change of variables 

‍u = Pβk/λ‍, we transform the above integral into
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	﻿‍
Eg ∼ 1

ln(1/β)

(
λ

P

)ln(1/α)/ ln(1/β) ˆ P/λ

0

u
ln(1/α)
ln(1/β) −1

(1 + u)2 du
‍�

The remaining integral over ‍u‍ is either dominated near ‍u ≈ 0‍ if ‍
ln(1/α)
ln(1/β) < 2‍ and behaves as a 

‍P‍-independent constant or else is dominated near ‍u ≈ P/λ‍, in which case the integral scales as 

‍∼ P
ln(1/α)
ln(1/β) −2‍. Multiplying these resulting functions with the prefactor, we find the following scaling 

laws for generalization.

	﻿‍

Eg ∼





P− ln(1/α)
ln(1/β) ln(1/α)

ln(1/β) < 2

P−2 ln(1/α)
ln(1/β) > 2

‍

 

�

(64)

Thus, we obtain a power law scaling of the learning curve ‍Eg‍ which is dominated at large ‍P‍ by 

‍Eg ∼ P− min
(

2, ln(1/α)
ln(1/β)

)
‍. For the von-Mises kernel we can approximate the spectra with ‍λk ∼ σ−2k

‍ and 

‍v
2
k ∼ σ−2k

T ‍ giving rise to a generalization scaling scaling ‍Eg ∼ P− min
(

2, ln σT
ln σ

)
‍.

Power law spectral decays
The same arguments can be applied for power law kernels ‍λk ∼ k−b

‍ and power law targets ‍v
2
k ∼ k−a

‍, 
which is of interest due to its connection to nonlinear rectified neural populations. In this setting, the 
generalization error is

	﻿‍

Eg ≈
´∞

1
k−a

(k−bP+κ)2 dk ≈ κ2

P2

´ P1/b

1 k−a+2bdk +
´∞

P1/b k−adk

= 1
P2(1−a+2b)

[
P(1−a)/b+2 − 1

]
+ 1

a−1 P(1−a)/b.
‍�

(65)

We see that there are two possible power law scalings for ‍Eg‍ with the exponents ‍(a − 1)/b‍ and 2. At 
large ‍P‍ this formula will be dominated by the term with minimum exponent so ‍Eg ∼ P− min(a−1,2b)/b

‍.

Laplace kernel generalization
We calculate similar learning curves as we did for the von-Mises kernel but with Laplace kernels 
to show that our results is not an artifact of the infinite differentiability of the Von Mises kernel. 
Each of these Laplace kernels has the same asymptotic power law spectrum ‍λk ∼ o(k−2)‍, exhibiting 
a discontinuous first derivative (Figure  6A). Despite having the same spectral scaling at large 
‍k‍, these kernels can give dramatically different performance in learning tasks, again indicating the 
influence of the top eigenvalues on generalization at small ‍P‍ (Figure 6). Again, the trend for which 
kernels perform best at low ‍P‍ can be reversed at large ‍P‍. In this case, all generalization errors scale 
with ‍Eg ∼ P−2

‍ (Figure 6B). More generally, our theory shows that if the task power spectrum and 
kernel eigenspectrum are both falling as power laws with exponents ‍a‍ and ‍b‍ respectively, then the 
generalization error asymptotically falls with a power law, ‍Eg ∼ P− min(a−1,2b)/b

‍ (Methods) (Bordelon 
et  al., 2020). This decay is fastest when ‍b ≥ a−1

2 ‍ for which ‍Eg ∼ P−2
‍. Therefore, the tail of the 

kernel’s eigenvalue spectrum determines the large sample size behavior of the generalization error 
for power law kernels. Small sample size limit is still governed by the bulk of the spectrum.

Learning with multiple output channels
Our theory is not limited to scalar target functions but rather can be easily extended to multiple 
output functions ‍y1, ..., yC‍ from the same data, if for example the task requires computing class 
membership for ‍C‍ categories. In this setting, each data point has the form ‍(θµ, yµ)‍ with ‍yµ ∈ RC

‍. For 
these ‍C‍ classes, the generalization error takes the form

	﻿‍
Eg =

⟨
||f(θ) − y(θ)||2

⟩
=
∑C

c=1

⟨(
fc(θ) − yc(θ)

)2
⟩

=
∑

k

[∑
c
⟨
yc(θ)ϕk(θ)

⟩2
]

Ek .
‍� (66)

We therefore find that the generalization error in the multi-class setting is the same as the ‍Eg‍ 
obtained for a single scalar target function with power spectrum ‍v

2
k =

∑
c
⟨
yc(θ)ϕk(θ)

⟩2
‍(Bordelon 

et al., 2020; Canatar et al., 2021). The relevant cumulative power distribution measures the fraction 
of total output variance captured by the first ‍k‍ eigenfunctions of the population code

https://doi.org/10.7554/eLife.78606
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	﻿‍
C(k) =

∑
c
∑k

ℓ=1
⟨

yc(θ)ϕk(θ)
⟩2

∑
c
∑∞

ℓ=1
⟨

yc(θ)ϕk(θ)
⟩2 .

‍�
(67)

Convergence of Delta-rule for nonlinear readouts
In this section, we consider gradient descent dynamics of an arbitrary convex loss function. For 
instance, we can consider a binary classification problem where ‍y ∈ {±1}‍ by outputting a prediction of 
‍̂y = sign(w · r)‍. We could, for example, train a model using the hinge loss ‍ℓ(w · r, y) = max(0, 1 − w · ry)‍ 
so that the classifier will converge to a kernel support vector machine (SVM) (Schölkopf et al., 2002). 
The generalization of the classifier would be the error rate of ‍̂y(θ) = sign(w · r(θ))‍ compared to the 
ground truth ‍y(θ)‍.

Let ‍D = {θµ, yµ}P
µ=1‍ be the dataset with samples ‍θµ‍ and target values ‍yµ‍. We introduce a 

shorthand ‍rµ = r(θµ)‍ for convenience. The loss we aim to minimize is the sum of the losses of each 
data point in the training set with an additional weight decay parameter

	﻿‍ H(w,D) =
∑P

µ=1 ℓ(w · rµ, yµ) + λ|w|2.‍� (68)

For convex ‍ℓ‍ and nonzero ‍λ‍, the above objective is strongly convex, indicating the existence of 
a unique minimizer which can be found from simple first order learning rules. For ‍λ > 0‍ the initial 
condition for ‍w‍ does not influence the final result.

We will now show that the dynamics will converge to a function which only depends on the 
code ‍r(θ)‍ through the kernel ‍K(θ, θ′)‍. To simplify the argument, we consider starting from an initial 
condition of ‍wt=0 = 0‍ and performing gradient descent updates. Under such an assumption, the 
weights ‍wt‍ will always be in the span of the population vectors on the training set ‍{rµ}P

µ=1‍ since

	﻿‍ wt+1 = wt − η ∂H
∂w |wt = (1 − ηλ)wt − η

∑P
µ=1 rµ ℓ′(w · rµ, yµ).‍� (69)

The derivative in the final term is taken with respect to the first argument 

‍ℓ
′(f, y) = −∂ℓ(f,y)

∂f ‍. This update is still local and recovers the delta rule that we discussed in the main 

text for ‍ℓ(w · r, y) = 1
2 (w · r − y)2

‍(Widrow and Hoff, 1960; Hertz et al., 1991). We can express ‍wt‍ in 
terms of the population vectors ‍wt =

∑P
µ=1 α

µ
t rµ = Rαt‍ so that ‍αt ∈ RP‍ defines the linear weighting 

of each sample. The dynamics of these coefficients are

	﻿‍ Rαt+1 = (1 − ηλ)Rαt − ηRℓ′(Kα, y),‍� (70)

where ‍K = R⊤R ∈ RP×P‍ is the kernel Gram matrix evaluated on the training points. We multiply 
both sides of this equation by ‍R⊤‍, and define ‍βt = Kαt‍, which satisfy the following simplified 
dynamics

	﻿‍ βt+1 = (1 − ηλ)βt − ηKℓ′(βt, y) , wt = RK+βt.‍� (71)

where K+ is the pseudo-inverse of ‍K‍. The nonlinear fixed point condition is ‍β = − 1
λKℓ′(β, y)‍, 

which transparently only depends on the kernel ‍K‍ rather than the full code ‍R‍. The above equation 
recovers the correct linear equation ‍β = K

(
K + λI

)−1 y‍ for square loss. For an arbitrary test point ‍θ‍, 
the model makes prediction using ‍f(θ) = r(θ) · w = r(θ) · [RK+β] = k(θ) · α‍, which also only depends 
on the kernel ‍[k(θ)]µ = K(θ, θµ)‍ on test point ‍θ‍ and train points ‍θµ‍, as well as the kernel gram matrix 

‍[K]µν = K(θµ, θν )‍.
To illustrate a specific case with a square error and nonlinear readout, consider output 

neurons which produce activity ‍g(w · r(θ))‍ for invertible nonlinear function ‍g‍ with non-
vanishing gradient, and gradient based learning on ‍L =

∑
µ(g(w · rµ) − y(θµ))2

‍. This gives 

‍∆w ∝
∑

µ rµg′(w · rµ)(yµ − g(w · rµ)) ∈ span{rµ}P
µ=1‍, which is still a local learning rule. Thus the 

weights at convergence can be written as ‍w =
∑

µ αµrµ‍ and the learned function can be written as 

‍
f(θ) = g

(∑
µ αµK(θ, θµ)

)
‍
 is given by ‍α = K+g−1(y)‍. To see this, first note that ‍wt ∈ span{rµ}P

µ=1‍ for 

all ‍t‍ so that ‍w∗ = Rα∗‍. The interpolation condition can be expressed as 
‍
g
(

R⊤w∗
)

= g
(
Kα

)
= y

‍
, 

giving the desired result ‍α
∗ = K+g−1(y)‍. The predictions of the model on a test stimulus ‍θ‍ are given 

by 
‍
f(θ) = g

(∑P
µ=1 α

∗µK(θ, θµ)
)
‍
. We see that this solution only depends on the kernel (directly and 

indirectly through ‍α∗‍), rather than the full code.

https://doi.org/10.7554/eLife.78606
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Typical case analysis of nonlinear readouts
The analysis of typical case generalization can be extended to nonlinear predictors and loss 
functions described by (68) which depend on the scalar prediction variable ‍w · r(θ)‍ (Loureiro et al., 
2021a). Thanks Further, if ‍r(θ)‍ is well approximated as a Gaussian process, then the generalization 
performance can still be characterized using statistical mechanics methods (Loureiro et al., 2021a). 
Many qualitative features of our results continue to hold, including that the kernel’s diagonalization 
governs training and generalization and that improvements in code task alignment lead to 
improvements in generalization.

In a later work by Cui et al., 2022, SVM and ridge classifiers trained on codes and tasks with 
power law spectra were analyzed asymptotically, showing power law generalization error decay rates 

‍Eg ∼ P−β
‍. These classification learning curves for power law spectra were shown to follow power 

laws with exponents ‍β‍ which are qualitatively similar to the exponents obtained with the square loss 
which we describe in our section titled Small and Large Sample Size Behaviors of Generalization. 
Just as in our theory, decay rate exponents ‍β‍ are larger for codes which are well aligned to the task 
and are smaller for codes which are non-aligned.

Visual scene reconstruction task
Reconstruction of natural scenes from neural responses
Using the mouse V1 responses to natural scenes, we attempt to reconstruct original images from 
the neural codes using different numbers of images. The presented natural scenes are taken from 
ten classes of imagenet which can be downloaded from https://github.com/MouseLand/stringer-​
pachitariu-et-al-2018b. Let ‍θµ ∈ RD‍ be a ‍D‍-dimensional flattened vector containing the pixel values 
of the μ-th image and let ‍rµ ∈ RN ‍ represent the neural response to the μ-th image. The goal in the 
problem is to learn a collection of weights ‍W ∈ RD×N ‍ which map neural responses ‍rµ‍ to images ‍θµ‍

	﻿‍ θµ ≈ Wrµ.‍� (72)

The generalization error ‍Eg‍ again measures the average error on all points, averaged over all 
possible datasets ‍D = {(θµ, rµ)}P

µ=1‍ of size ‍P‍. If the optimal weights for dataset ‍D‍ is ‍W(D)‍ then the 
generalization error is

	﻿‍
Eg =

⟨
||W(D)r(θ) − θ||2

⟩
θ,D

.
‍�

(73)

After identifying eigenfunctions ‍ϕk(θ)‍, we expand the images in this basis ‍θ =
∑

k vkψk(θ)‍ where 

‍vk ∈ RD
‍. The generalization error is therefore ‍Eg =

∑
k |vk|2Ek(P)‍ and the cumulative power is 

‍
C(k) =

∑
ℓ<k |vℓ |2∑∞
ℓ=1 |vℓ |2 ‍

. We perform this reconstruction task on many filtered versions of the natural scenes. 

To construct a filter, we first compute the Fourier transform of the image. Let ‍M(θ) ∈ R
√

D×
√

D
‍ 

represent the non-flattened image and let ‍M̂(θ) ∈ R
√

D×
√

D
‍ represent the Fourier transform of the 

image, computed explicitly as

	﻿‍ M̂k,k′ (θ) = D−1/4 ∑
n,m Mn,m(θ) exp(2πi(nk + mk′)/

√
D)‍� (74)

To develop the band-pass filter, we calculate ‍|k| =
√

k2 +
(
k′
)2

‍ for each of the indices in the matrix. 
For a band-pass filter with parameters ‍smax, r‍ we simply zero out the entries in ‍̂M ‍ which correspond 
to states with frequencies outside the appropriate band: for any ‍k, k′‍ with ‍|k| ̸∈ [

√
s2

max − r2, s2
max]‍ then 

‍M̂k,k′ → 0‍. We then perform the inverse Fourier transform on ‍̂M ‍ to obtain a filtered version of the 
original image.

A simple feedforward model of V1
Linear neurons
We consider a simplified but instructive model of the V1 population code as a linear-nonlinear map 
from photoreceptor responses through Gabor filters and then nonlinearity (Adelson and Bergen, 
1985; Olshausen and Field, 1997; Rumyantsev et  al., 2020). Let ‍x ∈ R2‍ represent the two-
dimensional retinotopic position of photoreceptors. The firing rates of the photoreceptor at position 
‍x‍ to a static grating stimulus oriented at angle ‍θ‍ is

https://doi.org/10.7554/eLife.78606
https://github.com/MouseLand/stringer-pachitariu-et-al-2018b
https://github.com/MouseLand/stringer-pachitariu-et-al-2018b


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bordelon and Pehlevan. eLife 2022;11:e78606. DOI: https://doi.org/10.7554/eLife.78606 � 39 of 46

	﻿‍

h(x, θ) = cos(k(θ) · x) , k =


cos(θ)

sin(θ)


 ∈ R2 , θ ∈ [0, 2π].

‍�
(75)

We model each V1 neuron’s receptive field as a Gabor filter of the receptor responses ‍h(x, θ)‍. 
The ‍i‍-th V1 neuron has preferred wavevector ‍ki‍, generating the following set of weights between 
photoreceptors and the ‍i‍-th V1 neuron

	﻿‍ F (x, θi) = σ2

2π e−
σ2
2 |x|2 cos(k(θi) · x).‍� (76)

The V1 population code is obtained by filtering the photoreceptor responses. By approximating 
the resulting sum over all retinal photoreceptors with an integral, we find the response of neuron ‍i‍ 
to grating stimulus with wavenumber ‍k‍ is

	﻿‍
h(θ) · F (θi) =

ˆ
F(x, θi)h(x, θ)dx = 1

2
e−

1
2σ2 |k+ki |2 + 1

2
e−

1
2σ2 |k−ki |2 .

‍�
(77)

The response of neuron ‍i‍ is computed through nonlinear rectification of this input current 

‍ri(θ) = g(w(θi) · h(θ))‍. For a linear neuron ‍g(z) = z‍, the kernel has the following form

	﻿‍ K(θ, θ′) = cosh(cos(θ−θ′)/σ2)
cosh(σ−2) ,‍� (78)

where the kernel is normalized to have maximum value of 1. Note that this normalization of the 
kernel is completely legitimate since it merely rescales each eigenvalue by a constant and does not 
change the learning curves.

Since the kernel only depends on the difference between angles ‍θ − θ′‍, it is said to posess 
translation invariance. Such translation invariant kernels admit a Mercer decomposition in terms 
of Fourier modes ‍K(θ) =

∑
n λn cos(nθ)‍ since the Fourier modes diagonalize shift invariant integral 

operators on ‍S1‍. For the linear neuron, the kernel eigenvalues scale like ‍λn ∼ βn

2nn!‍, indicating infinite 
differentiability of the tuning curves. Since ‍λn‍ decays rapidly with ‍n‍, we find that this Gabor code has 
an inductive bias that favors low frequency functions of orientation ‍θ‍.

Nonlinear simple cells
Introducing nonlinear functions ‍g(z)‍ that map input currents ‍z‍ into the V1 population into firing rates, 
we can obtain a non-linear kernel ‍Kg(θ)‍ which has the following definition

	﻿‍ Kg(k, k′) =
´

p(ki)g(F (ki) · h(k))g(F (ki) · h(k′))dki.‍� (79)

In this setting, it is convenient to restrict ‍ki, k, k′ ∈ S1
‍ and assume that the preferred wavevectors 

‍ki‍ are uniformly distributed over the circle. In this case, it suffices to identify a decomposition 
of the composed function ‍g(wi · h(θ))‍ in the basis of Chebyshev polynomials ‍Tn(z)‍ which satisfy 

‍Tn(cos(θ)) = cos(nθ)‍

	﻿‍

an = 1
2π
´ 2π

0 g
(

e−
1
σ2 cosh

(
1
σ2 cos(θ)

))
cos(nθ)dθ

= 1
2π
´ 1
−1

1√
1−z2 g

(
e−σ−2

cosh
(

zσ−2
))

Tn(z)dz,
‍�

(80)

which can be computed efficiently with an appropriate quadrature scheme. Once the coefficients 
an are determined, we can compute the kernel by first letting ‍θi‍ to be the angle between ‍k‍ and ‍ki‍ 
and letting ‍θ‍ be the angle between ‍k‍ and ‍k′‍

	﻿‍ Kg(θ) =
´ 2π

0
dθi
2π

∑
n,n′ anan′Tn(cos(θi))Tn′ (cos(θi + θ))dθi = 1

2
∑

n a2
n cos(nθ).‍� (81)

Thus the kernel eigenvalues are ‍λn = 1
2 a2

n(ψ)‍.

Asymptotic scaling of spectra
Activation functions that encourage sparsity have slower eigenvalue decays. If the nonlinear activation 
function has the form ‍gq,a(z) = max{0, z − a}q

‍, then the spectrum decays like ‍λn ∼ n−2q−2‍. A simple 

https://doi.org/10.7554/eLife.78606
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argument justifies this scaling: if the function ‍g(e−σ−2
cosh(σ−2z))‍ is only ‍q − 1‍ times differentiable 

then ‍annq ∼ n−1‍ since ‍
∑

n annq
‍ must diverge. Therefore ‍λn = a2

n ∼ n−2q−2
‍. Note that this scaling 

is independent of the threshold. Examples of these scalings can be found in Figure  5—figure 
supplements 1 and 2.

Phase variation, complex cells and invariance
We can consider a slightly more complicated model where Gabors and stimuli have phase shifts

	﻿‍ h(x, θ,ϕ) = cos(k(θ) · x − ϕ) , F (x, θi,ϕi) = σ2

2π e−
σ2
2 |x|2 cos(ki · x − ϕi).‍� (82)

The simple cells are generated by nonlinearity

	﻿‍ ri(θ,ϕ) = g(F (θi,ϕi) · h(θ,ϕ)).‍� (83)

The input currents into the simple V1 cells can be computed exactly

	﻿‍

h(θ,ϕ) · F (θi,ϕi) =
⟨
cos(ki · x − ϕi) cos(k · x − ϕ)

⟩
x∼N (0,σ2I) .

= 1
2 cos(ϕ + ϕi)e

− 1
2σ2 |k+ki |2 + 1

2 cos(ϕ− ϕi)e
− 1

2σ2 |k−ki |2 .‍�
(84)

When ‍|k| = |ki| = 1‍, the simple cell tuning curves ‍ri = g(wi · h)‍ only depend on ‍cos(θ − θi)‍ and ‍ϕ‍, 
allowing a Fourier decomposition

	﻿‍ ri(θ,ϕ) =
∑

n an(ϕ,ϕi) cos(n(θ − θi)).‍� (85)

The simple cell kernel ‍Ks‍, therefore decomposes into Fourier modes over ‍θ‍

	﻿‍ Ks(θ, θ′,ϕ,ϕ′) =
∑

n bn(ϕ,ϕ′) cos(n(θ − θ′)),‍� (86)

where ‍bn(ϕ,ϕ′) =
⟨
an(ϕ,ϕi)an(ϕ′,ϕi)

⟩
ϕi‍. It therefore suffices to solve the infinite sequence of 

integral eigenvalue problems over ‍ϕ‍

	﻿‍

1
2π
´ 2π

0 bn(ϕ,ϕ′)vn,k(ϕ)dϕ = λn,kvn,k(ϕ′)

=⇒ Ks(θ, θ′,ϕ,ϕ′) =
∑

n,k λn,k cos(n(θ − θ′))vn,k(ϕ)vn,k(ϕ′).‍�
(87)

With this choice it is straightforward to verify that the kernel eigenfunctions are ‍vn,k(θ,ϕ) = einθvn,k(ϕ)‍ 
with corresponding eigenvalue ‍λn,k‍. Since bn is not translation invariant in ‍ϕ− ϕ′

‍, the eigenfunctions 

‍vn,k‍ are not necessarily Fourier modes. These eigenvalue problems for bn must be solved numerically 
when using arbitrary nonlinearity ‍g‍. The top eigenfunctions of the simple cell kernel depend heavily 
on the phase of the two grating stimuli ‍ϕ‍. Thus, a pure orientation discrimination task which is 
independent of phase requires a large number of samples to learn with the simple cell population.

Complex cell populations are phase invariant
V1 also contains complex cells which possess invariance to the phase ‍ϕ‍ of the stimulus.

	﻿‍ F (x, θi,ϕi) = σ2

2π e−
σ2
2 |x|2 cos(k(θi) · x − ϕi),‍� (88)

Again using Gabor filters we model the complex cell responses with a quadratic nonlinearity and 
sum over two squared filters which are phase shifted by ‍π/2‍

	﻿‍

ri(θ,ϕ) = (F (θi,ϕi) · h(θ,ϕ))2 + (F (θi,ϕi − π/2) · h(θ,ϕ))2

= 1
4 e−

1
σ2 |k+ki |2 + 1

4 e−
1
σ2 |k−ki |2 + 1

2 e−σ−2
cos(2ϕi), ‍�

(89)

which we see is independent of the phase ‍ϕ‍ of the grating stimulus. Integrating over the set of 
possible Gabor filters ‍(ki,ϕi)‍ with ‍|k| = 1‍ again gives the following kernel for the complex cells

	﻿‍ Kc(θ) = 1
cosh(2β) cosh(2β cos(θ)).‍� (90)

https://doi.org/10.7554/eLife.78606
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Remarkably, this kernel is independent of the phase ‍ϕ‍ of the grating stimulus. Thus, complex cell 
populations possess good inductive bias for vision tasks where the target function only depends on 
the orientation of the stimulus rather than it’s phase. In reality, V1 is a mixture of simple and complex 
cells. Let ‍s ∈ [0, 1]‍ represent the relative proportion of neurons which are simple cells and ‍(1 − s)‍ the 
relative proportion of complex cells. The kernel for the mixed V1 population is given by a simple 
convex combination of the simple and complex cell kernels

	﻿‍

KV1(θ, θ′,ϕ,ϕ′) = 1
N
∑N

i=1 ri(θ,ϕ)ri(θ′,ϕ′) →
⟨
r(θ,ϕ, c)r(θ′,ϕ′, n)

⟩
n∼pV1(n)

= s
⟨
r(θ,ϕ, n)r(θ′,ϕ′, n)

⟩
n∼ps(n) + (1 − s)

⟨
r(θ,ϕ, n)r(θ′,ϕ′, n)

⟩
n∼pc(n)

= sKs(θ, θ′,ϕ,ϕ′) + (1 − s)Kc(θ, θ′), ‍�

(91)

where ‍n‍ denotes neuron type (simple vs complex, tuning etc) and ‍pV1(n), ps(n), pc(n)‍ are probability 
distributions over the V1 neuron identities, the simple cell identities and the complex cell identities 
respectively. Increasing ‍s‍ increases the phase dependence of the code by giving greater weight to 
the simple cell population. Decreasing ‍s‍ gives weight to the complex cell population, encouraging 
phase invariance of readouts.

Visualization of feedforward Gabor V1 model and induced kernels
Examples of the induced kernels for the Gabor-bank V1 model are provided in Figure 5. We show 
how choice of rectifying nonlinearity ‍g(z)‍ and sparsifying threshold ‍a‍ influence the kernel and their 
spectra. Learning curves for simple orientation tasks are provided.

Gabor model spectral bias and fit to V1 data
Motivated by findings in the primary visual cortex (Hansel and van Vreeswijk, 2002; Miller and 
Troyer, 2002; Priebe et al., 2004; Priebe and Ferster, 2008), we studied the spectral bias induced 
by rectified power-law nonlinearities of the form ‍g(z) = max{0, z − a}q

‍. From theory, such a power-law 
activation function arises in a spiking neuron when firing is driven by input fluctuations (Hansel and 
van Vreeswijk, 2002; Miller and Troyer, 2002). Further, this activation is observed in intracellular 
recordings over the dynamic range of neurons in primary visual cortex (Priebe and Ferster, 2008). 
For example, in cats, the power, ‍q‍, ranges from 2.7 to 3.9 (Priebe et al., 2004). We fit parameters 
of our model to the Mouse V1 kernel and compared to other parameter sets in Figure 5—figure 
supplement 1. Our best fit value of ‍q = 1.7‍ is lower but on par with the estimates from the cat 
and reproduces the observed kernel. Computation of the kernel and its eigenvalues (Appendix 
Nonlinear simple cells) indicates a low frequency bias: the eigenvalues for low frequency modes are 
higher than those for high frequency modes, indicating a strong inductive bias to learn functions of 
low frequency in the orientation. Decreasing sparsity (lower ‍a‍) leads to a faster decay in the spectrum 
(but similar asymptotic scaling at the tail, see Figure 5—figure supplements 1 and 2) and a stronger 
bias towards lower frequency functions (Figure 5). The effect of the power of nonlinearity ‍q‍ is more 
nuanced: increasing power may increase spectra at lower frequencies, but may also lead to a faster 
decay at the tail (Figure 5—figure supplements 1 and 2 ). In general, an exponent ‍q‍ implies a 
power-law asymptotic spectral decay ‍λk ∼ k−2q−2

‍ as ‍k → ∞‍ (Appendix Nonlinear simple cells). The 
behavior at low frequencies may have significant impact for learning with few samples. Overall, our 
findings show that the spectral bias of a population code can be determined in non-trivial ways by 
its biophysical parameters, including neural thresholds and nonlinearities.

Energy model with partially phase-selective cells
The model of the V1 population as a mixture of purely simple and purely complex cells is an idealization 
which fails to capture the variability in phase selectivity of cells observed in experiment. In this 
section, we describe a simple model which can interpolate between an invariant code and a code 
which has high alignment with phase-dependent eigenfunctions. Further, a single scalar parameter ‍α‍ 
will control how strongly the population is biased towards invariance. We define ‍ri(θ,ϕ) = g

(
zi(θ,ϕ)

)
‍ 

for nonlinear function ‍g‍ and scalar ‍z‍ which is constructed as follows

	﻿‍

zi(θ,ϕ) = β1[F (θi,ϕi) · h(θ,ϕ)]2
+ + β2[F(θi,ϕi + π/2) · h(θ,ϕ)]2

+

+β3[F (θi,ϕi + π) · h(θ,ϕ)]2
+ + β4[F (θi,ϕi + 3π/2) · h(θ,ϕ)]2

+.‍
 
�

(92)
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This linear combination is inspired by the construction of simple cells in Dayan & Abbot Chapter 
2 (Dayan and Abbott, 2001). If all ‍β‍ are equal, then this tuning curve is invariant to phase ‍ϕ‍. To 
generate variability in selectivity to phase ‍ϕ‍, we will draw ‍β‍ from a Dirichlet distrbution on the 
simplex with concentration parameter ‍α1‍ so that ‍p(β) ∝

∏4
j=1 β

α−1
j ‍ with ‍

∑4
j=1 βj = 1‍. In the ‍α → ∞‍ 

limit, the probability density concentrates on ‍
1
4 1‍, leading to a code comprised entirely of complex 

cells which are invariant to phase ‍ϕ‍. In the ‍α → 0‍ limit, the density is concentrated around the 
“edges” of the simplex such as ‍(1, 0, 0, 0), (0, 1, 0, 0)‍, where only one preferred phase is present per 
neuron. For intermediate values, neurons are partially selective to phase. As before, the selectivity or 
invariance to phase is manifested in the kernel decomposition and leads to similar learning curves for 
the three tasks of the main paper (Orientation, Phase, Hybrid). We provide an illustration of tuning 
curves, F1/F0 distributions, eigenfunctions, and learning curves in Figure 5—figure supplement 3.

Time dependent neural codes
RNN model and decomposition
In this setting, the population code ‍r({θ(t)}, t)‍ is a function of an input stimulus sequence ‍θ(t)‍ and 
time ‍t‍. In general the neural code ‍r‍ at time ‍t‍ can depend on the entire history of the stimulus input 
‍θ(t′)‍ for ‍t′ ≤ t‍, as is the case for recurrent neural networks. We denote dependence of a function ‍f ‍ 
on ‍θ(t)‍ in this causal manner with the notation ‍f({θ}, t)‍. In a learning task, a set of readout weights 
‍w‍ are chosen so that a downstream linear readout ‍f({θ}, t) = w · r({θ}, t)‍ approximates a target 
sequence ‍y({θ}, t)‍ which maps input stimulus sequences to output scalar sequences. The quantity 
of interest is the generalization ‍Eg‍, which in this case is an average over both input sequences and 

time, 
‍
Eg =

⟨
(y({θ}, t) − f({θ}, t))2

⟩
θ(t),t‍

. The average is computed over a distribution of input stimulus 

sequences ‍p(θ(t))‍. To train the readout, ‍w‍, the network is given a sample of ‍P‍ stimulus sequences 

‍θ
µ(t),µ = 1, ..., P‍. For the μ-th training input sequence, the target system ‍y‍ is evaluated at a set of 

discrete time points ‍Tµ = {t1, t2, ..., t|Tµ |}‍ giving a collection of target values ‍{yµt }t∈Tµ‍ and a total 

dataset of size ‍P =
∑P

µ=1 |Tµ|‍. The average case generalization computes a further average of the 
generalization error ‍Eg‍ over randomly sampled datasets of size ‍P ‍.

Learning is again achieved through iterated weight updates with delta-rule form, but now 
have contributions from both sequence index and time ‍∆w = η

∑
µ

∑
t∈Tµ

rµt (yµt − fµt )‍. As before, 
optimization of the readout weights is equivalent to kernel regression with a kernel that computes 
inner products of neural population vectors at different times ‍t, t′‍ for different input sequences 

‍{θ}, {θ′}‍ . This kernel depends on details of the time varying population code including its recurrent 
intrinsic dynamics as well as its encoding of the time-varying input stimuli. The optimization problem 
and delta rule described above converge to the kernel regression solution for kernel gram matrix 

‍K
µ,µ′

t,t′ = 1
N rµt · rµ

′

t′ ‍(Dong et al., 2020; Yang, 2019; Yang, 2020). The learned function has the form 

‍f({θ}, t) =
∑

µ,t′∈Tµ
αµ

t K({θ}, {θ}µ, t, t′)‍, where ‍α = K+y‍ for kernel gram matrix ‍K ∈ RP×P‍ which is 
computed for the entire set of training sequences, and the vector ‍y ∈ RP

‍ is the vector containing 
the desired target outputs for each sequence. Assuming a probability distribution over sequences 

‍θ(t)‍, the kernel can be diagonalized with orthonormal eigenfunctions ‍ψk({θ}, t)‍. Our theory carries 
over from the static case: kernels whose top eigenfunctions have high alignment with the target 
dynamical system ‍y({θ}, t)‍ will achieve the best average case generalization performance.

Alternative neural codes with same kernel
Orthogonal transformations are sufficient for linear kernel-preserving 
transformations
We will now show that for any linear transformation ‍̃r = Ar‍ which preserves the inner product kernel 
‍K(θ, θ′)‍, there exists an orthogonal matrix ‍Q‍ such that ‍̃r = Qr‍.

Proof.
Let ‍̃r(θ) = Ar(θ)‍ for all stimuli ‍θ‍. To preserve the kernel, we must have

	﻿‍ K(θ, θ′) = r̃(θ) · r̃(θ′) = r(θ) · r(θ′) =⇒ r(θ)A⊤Ar(θ′) = r(θ) · r(θ′).‍� (93)

Taking projections against each of the orthonormal eigenfunctions ‍ψℓ(θ)‍ (see Appendix 
Singular value decomposition of continuous population responses), we define vectors ‍uk‍ as 

‍
√
λkuk =

⟨
r(θ)ψk(θ)

⟩
θ‍, allowing us to express the SVD of the population code ‍r(θ) =

∑
k
√
λkukψk(θ)‍. 
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These vectors ‍{uk}‍ are orthonormal ‍uk · uℓ = δkℓ‍ since, by the definition of the kernel eigenfunctions 

‍ψk‍,

	﻿‍

√
λkλℓuk · uℓ =

⟨
r(θ) · r(θ′)ψk(θ)ψℓ(θ′)

⟩
θ,θ′ =

⟨
ψk(θ)

⟨
K(θ, θ′)ψℓ(θ′)

⟩
θ′
⟩
θ

= λℓ
⟨
ψk(θ)ψℓ(θ)

⟩
θ

= λkδk,ℓ. ‍�
(94)

Since ‍r(θ)‍ and ‍̃r(θ)‍ have the same inner product kernel, they must posess the same kernel 
eigenfunctions ‍ψk‍ and kernel eigenvalues ‍λk‍, which are identified through the eigenvalue problem

	﻿‍
´

p(θ)K(θ, θ′)ψk(θ)dθ = λkψk(θ).‍� (95)

We therefore have the following two singular value decompositions for ‍r‍ and ‍̃r‍

	﻿‍ r(θ) =
∑N

k=1
√
λkukψk(θ) , r̃(θ) =

∑N
k=1

√
λkũkψk(θ).‍� (96)

where ‍{uk}N
k=1‍ and ‍{ũk}N

k=1‍ are both complete sets of orthonormal vectors (the sums above run 
over possible zero eigenvalues). Taking the equation ‍̃r(θ) = Ar(θ)‍, we multiply both sides of the 
equation by ‍ψk(θ)‍ and average over ‍θ‍ giving

	﻿‍
⟨
r̃(θ)ψk(θ)

⟩
=
√
λkũk = A

⟨
r(θ)ψk(θ)

⟩
θ

=
√
λkAuk‍� (97)

For an eigenmode ‍k‍ with positive eigenvalue ‍λk > 0‍, this implies ‍̃uk = Auk‍, while there is no 
corresponding constraint for the null modes with ‍λk = 0‍. However, the action of ‍A‍ on the nullspace 
of the code has no influence on ‍̃r‍ so there is no loss in generality to restrict consideration to 
transformations ‍A‍ which satisfy ‍̃uk = Auk‍ for all ‍k ∈ [N]‍ (rather than just the ‍λk > 0‍ modes). This 
choice gives ‍A =

∑N
k=1 ũku⊤

k ‍. Thus, the space of codes ‍̃r(θ)‍ with equivalent kernels to ‍r(θ) · r(θ′)‍ 
generated through linear transformations is equivalent to all possible orthogonal transformations of 
the original code ‍{Qr(θ) : QQ⊤ = Q⊤Q = I}‍. ∎

Effect of noise on RROS symmetry
The random rotation and optimal shift (RROS) operations introduced in the main text preserve 
generalization performance under the assumption of a deterministic neural code. However, for noisy 
codes, the presence of RROS symmetry is dependent on the noise distribution. Below we discuss 
two commonly analyzed distributions: the Gaussian distribution and the Poisson distribution. For 
Gaussian noise, the RROS operations preserve the generalization performance and the local Fisher 
information. However, if noise is constrained to be Poisson then RROS operations do not preserve 
generalization or Fisher information.

First, we will analyze stimulus dependent Gaussian noise, where generalization performance is 
preserved under rotations and baseline shifts. Note that if the code at ‍θ‍ obeyed ‍r(θ) ∼ N (r̄(θ),Σn(θ))‍, 
then the rotated and shifted code follows ‍Qr(θ) + δ ∼ N (Qr̄(θ) + δ, QΣn(θ)Q⊤)‍. This rotated and 
shifted code ‍Qr(θ) + δ‍, when centered, will exhibit identical generalization performance as the 
original code. This is true both for learning from a trial averaged or non-trial averaged code. In 
the case of Gaussian noise on a centered code, the dataset transforms under a rotation as 

‍D = {rµ, yµ} → D′ = {Qrµ, yµ}‍. The optimal weights for a linear model similarly transform as 

‍w(D) → Qw(D)‍. Under these transformations the predictor on test point ‍θ‍ is unchanged since

	﻿‍ f(θ) = w · r(θ) → w⊤Q⊤Qr(θ) = w · r(θ)‍� (98)

Further, the local Fisher information matrix is 

‍I(θ) = ∂r̄(θ)⊤
∂θ Σ−1

n (θ)∂r̄(θ)
∂θ⊤ + 1

2 TrΣ−1
n (θ)∂Σn(θ)

∂θ Σ−1
n (θ)∂Σn(θ)

∂θ⊤ ‍ is unchanged under the transformation 

‍r → Qr + δ‍. Under this transformation, the covariance simply transforms linearly ‍Σn → QΣn(θ)Q⊤
‍ 

and the ‍Q‍ matrices will annihilate under the trace. This shows that, for some noise models, our 
assumption that rotations and baseline shifts preserve generalization performance will be valid.

However, for Poisson noise, where the variance is tied to the mean firing rate, the RROS operations 
will not preserve noise structure or information content. The Fisher information at scalar stimulus ‍θ‍ 

for a Poisson neuron is ‍I(θ) = r̄′(θ)2

r̄(θ) ‍. A baseline shift ‍r → r + δ‍ to the tuning curve will not change 

https://doi.org/10.7554/eLife.78606
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the numerator since the derivative of the tuning curve is invariant to this transformation, but it will 
increase the denominator.

Necessary conditions for optimally sparse codes
Next we argue why optimally sparse codes should be lifetime and population selective. We consider 
the following optimization problem: find a non-negative neural responses ‍S ∈ RN×P‍ and baseline 
vector ‍δ ∈ RN ‍ so that baseline subtracted responses ‍R = S − δ1⊤‍ realize a desired inner product 
kernel ‍K ∈ RP×P‍ and have minimal total firing. This is equivalent to finding the most metabolically 
efficient code among the space of codes with equivalent inductive bias. Mathematically, we formulate 
this problem as

	﻿‍
minS∈RN×P, δ∈RN

∑
iµ Siµ, s.t.

(
S − δ1⊤

)⊤ (
S − δ1⊤

)
= K, Siµ ≥ 0 ∀i ∈ [N],µ ∈ [P].

‍�
(99)

To enforce the constraints for the definition of the kernel and the non-negativity of the responses, 
we introduce the following Lagrangian

	﻿‍
L(S, δ, A, V) = 1⊤S1 − Tr

([
(S − δ1⊤)⊤(S − δ1⊤) − K

]
A
)
− TrV⊤S

‍� (100)

where 1 is the vector containing all ones, the Lagrange multiplier matrix ‍A‍ enforces the definition 
of the kernel and the KKT multiplier matrix ‍V‍ enforces the non-negativity constraints for each 
element of ‍S‍. The KKT conditions require that any local optimum of the objective would have to 
satisfy the following equations (Kuhn and Tucker, 2014)

	﻿‍

∂L
∂S = 11⊤ − (S − δ1⊤)A − V = 0
∂L
∂δ = −(S − δ1⊤)A1 = 0
∂L
∂A = (S − δ1⊤)⊤(S − δ1⊤) − K = 0

V ⊙ S = 0, ‍�

(101)

where ‍⊙‍ denotes the element-wise Hadamard product. Using the complementary slackness 
condition ‍S ⊙ V = 0‍, and the first optimality condition ‍

∂L
∂S = 0‍, we have

	﻿‍ S = S ⊙ (S − δ1⊤)A‍� (102)

Therefore, for any neuron-stimulus pair ‍(i,µ)‍, either ‍Siµ = 0‍ or ‍
∑

ν∈[P](Siν − δi)Aνµ = 1‍. Further, 
under the condition that K is full rank, we conclude that for any stimulus μ, ‍

∑
ν∈[P] Aµν = 0‍ from the 

equation ‍
∂L
∂δ = 0‍. Let ‍Ii = {µ ∈ [P] : Siµ > 0}‍ represent the set of stimuli for which neuron ‍i‍ fires. We 

will call this the receptive field set for neuron ‍i‍. Let ‍B(i) ∈ RP×P
‍ have entries

	﻿‍

[B(i)]µν =




[A+
(i)]µν µ, ν ∈ Ii

0 µ /∈ Ii or ν /∈ Ii‍�
(103)

where the matrix ‍A(i)‍ is the ‍|Ii| × |Ii|‍ minor of ‍A‍ obtained by taking all rows and columns with 
indices ‍µ, ν ∈ Ii‍, and ‍A+‍ denotes pseudo-inverse of ‍A‍. Then the ‍i‍-th neuron’s tuning curve is a 
function of the index set ‍Ii‍ the baseline ‍δi‍ and the neuron-independent ‍P × P‍ matrix ‍A‍. The non-
negativity constraint for neuron ‍i‍’s tuning curve implies that ‍Siµ =

∑
ν∈Ii

B(i),µν [δi
∑

γ∈[P] Aνγ + 1] > 0‍ 
for all ‍µ ∈ Ii‍. To satisfy the definition of the kernel, we have the following constraint on the matrix 
‍A‍, the index sets ‍Ii‍ and baselines ‍δi‍

	﻿‍ K =
∑N

i=1(s(Ii, δi, A) − δi1)(s(Ii, δi, A) − δi1)⊤‍� (104)

This equation implictly defines the index sets ‍Ii‍ the baselines ‍δi‍ and the KKT matrix ‍A‍. We see 
that, in order to fit an arbitrary kernel, the receptive field sets ‍{Ii}‍ and baselines ‍δi‍ for each neuron 
must be sufficiently diverse since otherwise only a low rank kernel matrix can be achieved from the 
optimally sparse code. As a concrete example, suppose that ‍Ii = I ‍ so that ‍B(i) = B‍ and ‍δi = δ‍ for 
all ‍i‍. For example, this could occur if each neuron fired for every possible stimulus. In this case, the 
kernel would be rank one: ‍K = N(s(I, δ, A) − δ1)(s(I, δ, A) − δ1)⊤‍. In order to achieve a higher rank 
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code there must be sufficient diversity of the receptive fields ‍Ii‍. Thus the only way for optimally 
sparse codes to realize high rank kernels ‍K‍ is to have neurons to have different receptive field sets 

‍Ii‍. The necessary optimality conditions thus reveal a preference for sparse neural tuning curves to 
have high lifetime sparseness; to achieve diverse index sets ‍Ii‍, any given neuron will fire only for a 
unique subset of the possible stimuli.

Impact of neural noise and unlearnable targets on learning
While our analysis so far has focused on deterministic population codes, our theory can be extended 
to neural populations which exhibit variability in responses to identical stimuli. For each stimulus ‍θ‍, 
we let the population response ‍r(θ)‍ be a random vector with mean ‍̄r(θ) =

⟨
r(θ)

⟩
r|θ‍ and covariance 

‍
Σn(θ) =

⟨
(r(θ) − r̄(θ))(r(θ) − r̄(θ))⊤

⟩
r|θ‍

.

The (deterministic) target function can be decomposed in terms of the mean response as 

‍y(θ) = w∗ · r̄(θ)‍ (the usual decomposition ‍y = w∗ · r(θ)‍ gives an unphysical target function which 
fluctuates with the variability in neural responses). For a given configuration of weights ‍w‍, the 
generalization error (which is an average over the joint distribution of ‍r, θ‍) is determined only by the 

signal 
‍
Σs =

⟨
r̄(θ)r̄(θ)⊤

⟩
θ‍
 and noise ‍Σn =

⟨
Σn(θ)

⟩
θ‍ correlation matrices:

	﻿‍

Eg(w) =
⟨(

r(θ) · w − r̄(θ) · w∗)2
⟩

r,θ
=
⟨[

(w − w∗) · r̄(θ) + w · (r(θ) − r̄(θ))
]2
⟩

= (w − w∗)⊤
⟨

r̄(θ)r̄(θ)⊤
⟩

(w − w∗) + w⊤
⟨

(r(θ) − r̄(θ))(r(θ) − r̄(θ))⊤
⟩

w

= (w − w∗)⊤Σs(w − w∗) + w⊤Σnw ‍�

(105)

where we utilized the fact that ‍
⟨
r(θ) − r̄(θ)

⟩
r|θ = 0‍ to eliminate the cross-term. The two terms in 

the final expression can be thought of as a bias-variance decomposition over the noise in neural 
responses. The minimum achievable loss can be obtained by differentiation of the generalization 
error expression with respect to ‍w‍, giving ‍E

∗
g = w∗Σn(Σs + Σn)−1Σsw∗

‍. We note that any noise 
correlation matrix with noise orthogonal to coding direction ‍Σnw∗ = 0‍ will give the minimal (zero) 
asymptotic error. Alignment of the noise ‍Σn‍ with ‍w∗‍ gives higher asymptotic error.

In addition to the irreducible error, the presence of neural noise can alter the learning curve at 
finite ‍P‍. An analytical study of this is difficult, which we leave for future work. We numerically study 
the effect of neural variability on generalization performance in the orientation discrimination tasks 
for non-trial-averaged Mouse V1 code in Appendix 1—figure 1 . We note that the generalization 
error is worse at each finite value of ‍P‍ when compared to trial averaged (noise free) learning curves. 
We varied the regularization parameter and did not find an obvious non-zero optimal weight decay 
‍λ‍, consistent with small noise levels.

Neural noise is not the only phenomenon that can degrade task learning. Codes which are 
incapable of expressing the target function through linear readouts are also susceptible to 
overfitting. As explained in Canatar et al., 2021, the components of the target function that are 
inexpressible act as a source of noise on the learning process which can overfit this noise. Such a 
scenario can occur, for example, when the readout neuron only gets input from a sparse subset of 
the coding neural population (Seeman et al., 2018). We show in Appendix 1—figure 1C-D that 
using subsampled populations of size ‍N ‍ can indeed lead to a regime where more data can hurt 
performance leading to an overfitting error peak, a subsequent non-vanishing asymptotic error, and 
an optimal weight decay parameter ‍λ‍. This phenomenon is known as double descent in machine 
learning literature (Belkin et al., 2019; Mei and Montanari, 2020; Canatar et al., 2021). At small 
‍N ‍, these codes are not sufficiently expressive to learn the target function through linear readout. 
The overfitting peak occurs near the interpolation threshold, the largest value of ‍P‍ where all training 
sets could be perfectly fit in the ‍λ → 0‍ limit (Canatar et al., 2021). At infinite ‍P‍, generalization error 
asymptotes to the amount of unexplained variance in the target function.

https://doi.org/10.7554/eLife.78606
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A B C D

Appendix 1—figure 1. Neural noise and subsampled neural codes can lead to overfitting. 
 (A) The learning curves without trial averaging (solid) and with trial averaging (dashed) for the high and low 
frequency orientation discrimination task. In principle, neural noise could limit asymptotic performance and lead to 
the existence of an optimal weight decay parameter ‍λ‍. (B) Performance at ‍P = 500‍ vs ridge ‍λ‍ shows that there is 
not an optimal weight decay parameter. (C) Generalization of readouts trained on subsets of ‍N ‍ V1 neurons exhibit 
non-monotonic learning curves with an overfitting peak around ‍P ≈ N ‍. (D) The performance of subsamples of 
‍N ‍ neurons as a function of the weight decay parameter ‍λ‍ at ‍P = 500‍ samples show that, for sufficiently small ‍N ‍, 
there is a non-zero optimal ‍λ‍.

https://doi.org/10.7554/eLife.78606
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