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Abstract We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma 
(GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, 
we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total 
of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene 
in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in 
frequently altered genes in primary tumors were detectable in concurrent precancerous lesions 
(biliary intraepithelial neoplasia [BilIN]), but a substantial proportion was subclonal. Subclonal diver-
sity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly 
shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching 
evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) iden-
tified branching evolution in nine patients (81.8%). Of these, eight patients (88.9%) had a total of 
11 subclones expanded at least sevenfold during metastasis. These subclones harbored putative 
metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In muta-
tional signature analysis, six mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine 
similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 
22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in 
precancerous lesions and clonal selection was a common event during malignant transformation in 
GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity 
in metastatic tumors.
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Editor's evaluation
This is the first dedicated study of clonal evolution in gallbladder cancer that involves precancerous, 
transformed primary and metastatic lesions. The main insights include the finding of subclonal diver-
sity in precancerous lesions, a degree of bottlenecking during transformation but maintenance of 
some clonal complexity through metastases.

Introduction
Gallbladder adenocarcinoma (GBAC) is a malignant neoplasm that has a high incidence rate in Chile, 
India, Poland, Pakistan, Japan, and Korea (Roa et al., 2022; Valle et al., 2021; Bray et al., 2018; 
Bridgewater et  al., 2014). Surgery is currently the only curative treatment modality for GBAC. 
However, because most patients are diagnosed at an advanced stage and thus inoperable, they 
receive palliative chemotherapy only. Therefore, the prognosis is poor with a median overall survival 
of only 11–15 months (Roa et al., 2022; Valle et al., 2021; Valle et al., 2010).

The recent advancement of massively parallel sequencing technology has enabled us to deeply 
understand the genome of a variety of cancers. In GBAC, tumor suppressor genes such as TP53, 
ARID1A, and SMAD4 and oncogenes such as ERBB2 (HER2), ERBB3, and PIK3CA are significantly 
mutated (Roa et al., 2022; Nepal et al., 2021; Wardell et al., 2018; Li et al., 2019; Nakamura 
et al., 2015; Lin et al., 2021; Narayan et al., 2019; Li et al., 2014). Of note, ERBB2 amplification and 
overexpression occur in approximately 6.9–28.6% of GBAC (Roa et al., 2022; Narayan et al., 2019; 
Nakazawa et al., 2005; Nam et al., 2016) and may have therapeutic implications.

Cancer cells undergo clonal evolution by acquiring additional mutations and thus exhibit more 
aggressive phenotypes, including invasion and metastasis (Turajlic et al., 2019; Greaves and Maley, 
2012; Davis et al., 2017). Several large-scale studies have provided evidence of clonal evolution in 
some cancer types, including lung and kidney cancers (Jamal-Hanjani et al., 2017; Turajlic et al., 
2018). However, no study has analyzed the patterns of clonal evolution from the initiation of carcino-
genesis to distant metastasis in patients with GBAC.

This study aims to analyze the clonal evolutionary trajectories during carcinogenesis and metas-
tasis of GBAC using multi-regional and longitudinal specimens including precancerous lesions (biliary 
intraepithelial neoplasia [BilIN]), primary tumors, and metastatic tumors from patients who underwent 
biopsy, surgery, and rapid autopsy.

Table 1. Baseline characteristics of 11 patients with GBAC.

Patient ID* Sex Age at diagnosis ECOG PS at diagnosis Stage at diagnosis Differentiation

GB-A1 F 70 1 IV PD

GB-S1 F 66 1 IV MD

GB-S2 F 66 1 IV MD

GB-S3 F 75 1 III MD

GB-A2 M 61 1 IV MD

GB-S4 M 72 1 IV MD

GB-S5 F 70 1 IV PD

GB-S6 M 70 0 IV MD

GB-S7 F 74 1 IV PD

GB-S8 M 67 1 III WD

GB-S9 M 59 0 IV MD

*In patient ID, ‘A’ indicates autopsy cases whereas ‘S’ indicates surgery cases.
GBAC = gallbladder adenocarcinoma. ECOG PS = Eastern Cooperative Oncology Group performance status. M 
= male. F = female. PD = poorly differentiated. MD = moderately differentiated. WD = well-differentiated.

https://doi.org/10.7554/eLife.78636


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Kang, Na et al. eLife 2022;11:e78636. DOI: https://doi.org/10.7554/eLife.78636 � 3 of 17

Results
Baseline characteristics of patients with GBAC
A total of 11 patients, including 2 rapid autopsy cases (GB-A1 and GB-A2) and 9 surgery cases (GB-S1 
– 9), were enrolled in this study (Table 1 and Figure 1A). There were 5 male and 6 female patients 
with a median age was 70 years (range, 59–75 years). Two patients had stage III and nine patients had 
IV disease at diagnosis. A total of 58 samples were analyzed, including 11 pairs of matched primary 
tumors and normal tissues, 6 concurrent BilIN, and 30 metastatic tumors. Among them, 15 samples 
obtained by rapid autopsy were fresh-frozen, and 43 samples obtained by surgery or biopsy were 
formalin-fixed paraffin-embedded (FFPE) (Supplementary file 1A). The median number of filtered 
somatic single nucleotide variants (SNVs) and small indels was 61 (range, 12–241). The number of 
metastatic tumors in each patient ranged from 1 to 11.

Figure 1. Clinical history of patients, mutational landscape, and study workflow. (A) Clinical history of 11 patients is summarized in the swimmer plot. 
(B) The mutational landscape of 11 primary tumors (GB) is visualized and compared with the two previous studies on gallbladder adenocarcinoma 
(GBAC). (C) The process of constructing clonal evolution trajectories using multiple tumor samples is shown in the workflow. Ab, antibody; Abd, 
abdominal; Adj, adjuvant; BilIN, biliary intraepithelial neoplasia; CBD, common bile duct; CCRT, concurrent chemoradiotherapy; CNVs, copy number 
variations; COSMIC, Catalogue Of Somatic Mutations In Cancer; FL, 5-fluorouracil + leucovorin; FOLFIRI, 5-fluorouracil + leucovorin + irinotecan; GB, 
gallbladder; GP, gemcitabine + cisplatin; iFAM, infusional 5-fluorouracil + doxorubicin + mitomycin-C; LOH, loss of heterozygosity; mFOLFOX, modified 
5-fluorouracil + leucovorin + oxaliplatin; MSKCC, Memorial Sloan Kettering Cancer Center; NE, not evaluable; SNVs, single nucleotide variants; WGD, 
whole genome doubling; XP, capecitabine + cisplatin; 5-FU, 5-fluorouracil.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Inference of clonal structure by PyClone algorithm.

Figure supplement 2. BiIlN and primary gallbladder adenocarcinoma (GBAC) of the GB-S7 patient presumed to be derived from different origins.

https://doi.org/10.7554/eLife.78636
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Mutational landscape and ploidy of primary tumors
The mutational landscape of the 11 primary tumors (GB) was analyzed and compared with previous 
literature (Figure 1B; Narayan et al., 2019; Li et al., 2014). The most frequently altered gene in the 
primary tumor was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Of the six ERBB2 alter-
ations, three were amplification and the other three were missense mutations classified as ‘patho-
genic’ in the COSMIC (Catalogue Of Somatic Mutations In Cancer) v96 database. Among six TP53 
mutations found in six patients, five were accompanied by loss of heterozygosity (LOH).

Ploidy was analyzed in 15 tumors of six patients with purity >0.4 because ploidy estimation was 
inaccurate when tumor purity is ≤0.4 (Favero et al., 2015). In two patients (GB-S6 and GB-S9, 33.3%), 
whole genome doubling (WGD) was detected in both the primary and metastatic tumors (Figure 1B). 
In GB-S5 patient, WGD was found in distant metastasis, but not in primary GBAC.

Somatic mutations developed at the precancerous stage
Multi-regional distribution and longitudinal evolution of clones were analyzed using PyClone 
(Figure 1—figure supplement 1 and Supplementary file 2; Roth et al., 2014) and CITUP (Malikic 
et al., 2015) and then visualized using MapScape and TimeScape (Smith et al., 2017; Figure 1C). 
Among six  patients having concurrent BilIN tissues, two patients were excluded from the further 
analysis. One patient had low tumor purity of BilIN (0.03) and the other patient had different truncal 
mutations of BilIN and primary GBAC, suggesting different origins of the two tumors (Figure 1—
figure supplement 2).

Most mutations in frequently altered genes in GBAC existed at the BilIN stage (10 of 13, 76.9%), 
but some of them were subclonal. In GB-A1 (Figure 2A), TP53 C100Y with LOH, KMT2C R909K, 

Figure 2. Spatial and temporal clonal evolution of four patients with gallbladder adenocarcinoma (GBAC) whose precancerous BilIN tissues were 
analyzed. (A–D) The most probable phylogenetic trees and MapScape and TimeScape results are visualized for GB-A1 (A), GB-S1 (B), GB-S2 (C), 
and GB-S3 (D). In MapScape visualization (table), the numbers in the row indicate the time taken from diagnosis to tissue acquisition in months, and 
the columns indicate whether the tissue is a precancerous lesion, primary tumor, or metastatic lesion. Colors represent distinct clones and clonal 
prevalences per site were proportional to the corresponding-colored area of the cellular aggregate representation. In TimeScape visualization (schema), 
clonal prevalences (vertical axis) were plotted across time points (horizontal axis) for each clone (colors). Asterisks (*) in the clonal phylogenetic tree 
denote subclones that constituted <5% in the primary tumor and expanded more than sevenfold in the metastatic tumor. Diamond symbol (◇) is used 
if the mutation in the figure is classified as 'pathogenic' in Catalogue Of Somatic Mutations In Cancer (COSMIC) v96. Notable events were marked 
with arrows. The time from diagnosis of GBAC to tissue acquisition was indicated under the sample name. Chemotherapy history was indicated in gray 
color, where '#' represents the number of chemotherapy cycles. BilIN, biliary intraepithelial neoplasia; CBD, common bile duct; CN, copy number; GB, 
gallbladder; GP, gemcitabine + cisplatin; LN, lymph node; LOH, loss of heterozygosity.

https://doi.org/10.7554/eLife.78636


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Genetics and Genomics

Kang, Na et al. eLife 2022;11:e78636. DOI: https://doi.org/10.7554/eLife.78636 � 5 of 17

ERBB3 G284R, ARID2 F575fs with LOH, and CTNNB1 S37F with LOH were observed clonally in BilIN. 
In GB-S1 (Figure 2B), SAMD9 E612K was clonal whereas FBXW7 S18C, ARID1A S382N, and NF1 
R440X were subclonal. In GB-S2 (Figure 2C), considering the cellular prevalence of mutations, it is 
speculated that the mutations developed in the order of CDKN2A R58fs with LOH, TP53 H82R with 
LOH, ERBB2 V777L, and GNAS G306R during carcinogenesis. In GB-S3 (Figure 2D), ERBB3 E332K 
was dominant in BilIN, while SMAD4 539_540del was not detected.

Subclonal diversity and ‘selective sweep' phenomenon during the early 
stage of carcinogenesis
Branching evolution and subclonal diversity were commonly observed in the BilIN of the four patients 
(Figure 2). When compared with the concurrent primary tumors, one subclone commonly shrank in 
the primary tumors, while the other subclones that acquired additional mutations relatively expanded 
in the primary tumors, suggesting a selective sweep phenomenon (Merlo et  al., 2006). Selected 
subclones underwent linear and branching evolution, and thus subclonal diversity was maintained 
after the BilIN stage. In GB-A1 (Figure 2A), clone A underwent branching evolution into B and G, and 
clone B linearly evolved into C and then D. Clone D, which acquired additional mutations, increased 
from 42.7% to 68.1% while clone G decreased from 55.7% to 2.8%. In GB-S1 (Figure 2B), clone D 
that acquired KMT2D E338K increased from 0.1% to 28.1%, while clone G decreased from 51.4% to 
0%. In GB-S2 (Figure 2C), clone D acquired ERBB2 V777L, clone E acquired GNAS G306R, and clone 
G increased from 9.0%, 3.5%, and 0% to 45.5%, 22.3%, and 11.4%, respectively. In contrast, clone 
F decreased from 55.8% to 0.6%. In GB-S3 (Figure 2D), clone B that acquired SMAD4 539_540del 
increased from 0.1% to 65.6%, while clone D containing ERBB3 E332K decreased from 81.1% to 0.6%.

Table 2. List of subclones expanding during metastasis.

Patient ID Subclone
No. of 
mutations

Putative driver 
mutations

Clonal 
prevalence in 
primary tumor

Clonal 
prevalence in 
metastasis

Metastatic 
organ

GB-A1 E 121 JARID2 p.K603Q 
(LOH)

0.2% 20.5% CBD

F 54 SMAD4 p.L414fs 
(LOH)

0.4% 49.8% Omentum 1

27.0% Omentum 2

GB-S1 E 6 ROBO1 p.P1360Q 0.0% 59.2% Distant LN

GB-S2 H 6 – 1.2% 28.1% Regional LN

GB-A2 F 14 PRKCD p.I153L 0.3% 73.1% Liver

68.3% Mesentery

G 3 DICER1 p.T519A 2.8% 39.9% Lung

61.5% Chest wall

GB-S4 F 32 FBXW2 p.W450C 0.0% 34.1% Colon wall

H 36 – 0.0% 34.9% Distant LN

GB-S5 B 28 KIAA0100 p.F5S 1.2% 54.4% Liver

CSMD2 p.E411K

GB-S6 B 7 OSCP1 p.R351X 1.1% 60.2% Lung

GB-S7 C 5 – 3.3% 24.7% Regional LN

Putative driver mutations are indicated, and a full list of mutated genes is specified in Supplementary file 2.
GB = gallbladder. LN = lymph node. CBD = common bile duct.

https://doi.org/10.7554/eLife.78636
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Evolutionary trajectories and expansion of subclones during regional 
and distant metastasis
Combined analysis of regional and distant metastatic tumors revealed branching and linear evolution 
in nine patients (81.8%) and linear evolution only in two patients (18.2%). Of the nine patients with 
branching and linear evolution, eight (88.9%) had a total of 11 subclones expanded at least sevenfold 
in the regional or distant metastasis stage (Table 2). In GB-A1 (Figure 2A), clone E, which acquired 
JARID2 (Celik et al., 2018) K603Q with LOH, increased from 0.2% to 20.5% during common bile duct 
metastasis. In addition, clone F, which acquired SMAD4 (Narayan et al., 2019; Jamal-Hanjani et al., 
2017; Yoon et al., 2021; Zhao et al., 2018) L414fs with LOH, expanded from 0.4% to 49.8% during 
omentum 1 metastasis and to 27.0% during omentum 2 metastasis. In GB-S1 (Figure 2B), clone B 
harboring SLIT3 F843I mutation evolved into E by additionally acquiring ROBO1 P1360Q mutation 
(Gara et al., 2015). In GB-A2 (Figure 3A), clone F, which acquired PRKCD (Griner and Kazanietz, 
2007; Yoshida, 2007) I153L, expanded from 0.3% to 73.1% and 68.3% during metastasis to liver 
and mesentery, respectively. In addition, clone G acquired DICER1 (Foulkes et al., 2014) T519A and 

Figure 3. Spatial and temporal clonal evolution of additional seven patients with gallbladder adenocarcinoma (GBAC). (A–G) The most probable 
phylogenetic trees and MapScape and TimeScape results are visualized for GB-A2 (A), GB-S4 (B), GB-S5 (C), GB-S6 (D), GB-S7 (E), GB-S8 (F), and GB-S9 
(G). In MapScape visualization (table), the numbers in the row indicate the time taken from diagnosis to tissue acquisition in months, and the columns 
indicate whether the tissue is a precancerous lesion, primary tumor, or metastatic lesion. Colors represent distinct clones and clonal prevalences per site 
were proportional to the corresponding-colored area of the cellular aggregate representation. In TimeScape visualization (schema), clonal prevalences 
(vertical axis) were plotted across time points (horizontal axis) for each clone (colors). Asterisks (*) in the clonal phylogenetic tree denote subclones that 
constituted <5% in the primary tumor and expanded more than sevenfold in the metastatic tumor. Diamond symbol (◇) is used if the mutation in the 
figure is classified as 'pathogenic' in Catalogue Of Somatic Mutations In Cancer (COSMIC) v96. Notable events were marked with arrows. The time from 
diagnosis of GBAC to tissue acquisition was indicated under the sample name. Chemotherapy history was indicated in gray color, where '#' represents 
the number of chemotherapy cycles. Adj, adjuvant; BilIN, biliary intraepithelial neoplasia; CN, copy number; FL, 5-fluorouracil + leucovorin; GB, 
gallbladder; GP, gemcitabine + cisplatin; LN, lymph node; LOH, loss of heterozygosity; WGD, whole genome doubling.

https://doi.org/10.7554/eLife.78636
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expanded from 2.8% to 39.9% and 61.5% during metastasis to the lung and chest wall, respectively. 
In the other five patients (Figures 2C and 3B–E), mutations in FBXW2 (Xu et al., 2017), KIAA0100 
(Gara et al., 2018), CSMD2 (Gara et al., 2018), and OSCP1 (Yi et al., 2017) genes were observed.

In GB-S8 and GB-S9, only linear evolution was identified (Figure 3F and G). In GB-S9, amplification 
of cell cycle-related oncogenes CDKN1B and CCNE1 was uniformly observed from primary GBAC to 
regional and distant metastatic tumors.

Polyclonal metastasis and intermetastatic heterogeneity
The metastatic lesions were uniformly polyclonal. In GB-A1, GB-A2, and GB-S4, which contained two 
or more distant metastatic lesions, the clonal composition of tissues obtained from the same or adja-
cent organs showed a similar tendency, while the clonal composition of anatomically distant organs 
was distinct from each other. In GB-A1 (Figure 2A), abdominal wall 1–4 did not contain clone C, and 
liver 1–3 did not contain clone F. In addition, omentum 1–2 had a high prevalence of clone F of over 
27.0%. In GB-A2 (Figure 3A), as opposed to clone G, which was more prevalent in lung and chest 
wall lesions, clone F was more prevalent in liver and mesentery lesions. In clinical information of the 
GB-A2 patient, chest wall and mesentery metastases developed later than lung and liver metastases. 
In GB-S4 (Figure 3B), proportions of clones G and H were specifically high in distant LN and colon 
wall metastasis, respectively.

Mutational signatures during clonal evolution
We identified six mutational signatures (cosine similarity >0.9): signatures 1 (age), 3 (DNA double-
strand break-repair), 7 (ultraviolet), 13 (APOBEC), 22 (aristolochic acid), and 24 (aflatoxin). Then, our 
results were compared with those of the Memorial Sloan Kettering Cancer Center (MSKCC) and 
Shanghai datasets (Narayan et  al., 2019; Li et  al., 2014). While MSKCC and Shanghai datasets 
consist merely of primary tumors, our dataset includes precancerous and metastatic lesions. Signa-
tures 1, 3, and 13 were commonly dominant in all three datasets, while signatures 22 and 24 were 
exclusive in our dataset (Figure 4A). In our dataset, the limited number of SNVs and small indels per 
sample (median 61, range 12–241) made it difficult to compare among individual tumors (Figure 4—
figure supplement 1). Therefore, we classified the mutations according to the timing of development 
during clonal evolution (Figure 4B): (1) early carcinogenesis (i.e., clone A in Figures 2 and 3), (2) late 
carcinogenesis (i.e., subclones which were not categorized in early carcinogenesis or metastasis), and 
(3) metastasis (i.e., subclones expanding during metastasis [Table 2]). At the metastasis phase, signa-
tures 1 and 13 decreased while signatures 22 and 24 increased compared with early and late carcino-
genesis. Then, the same analysis was performed according to the type of sample (Figure 4—figure 
supplement 2): (1) BilIN, (2) GB, (3) regional LN metastasis, and (4) distant metastasis. This mutational 
signature analysis was conducted using the published tool Mutalisk (Lee et al., 2018) and then vali-
dated with two additional tools, Signal (Degasperi et al., 2020) and MuSiCa (Díaz-Gay et al., 2018; 
Supplementary file 1B and Figure 4—figure supplement 3).

ERBB2 amplification during clonal evolution
In GB-A1, ERBB2 copy number gain might have initiated from the precancerous stage and further 
progressed during the malignant transformation of BilIN. ERBB2 copy number (Figure 5A and B) was 
3 and 9 in concurrent BillN and primary tumors, respectively. The increased copy number of ERBB2 
was maintained after distant metastasis (Figure 2A). HER2 (=ERBB2) silver in situ hybridization (SISH) 
(Figure 5C and D) was conducted and ERBB2 copy number per cell ranged from 1 to 5 in BilIN, and 
from 2 to 14 in primary GBAC. ERBB2/CEP17 ratio was 2.48 and 6.00 in BilIN and primary GBAC, 
respectively (Figure 5E). In addition, HER2 immunohistochemistry (IHC) (Figure 5F and G) was carried 
out to evaluate whether the ERBB2 amplification was correlated to HER2 protein expression levels on 
the membrane of tumor cells. The HER2 IHC results were 2+/3 in the BillN and 3+/3 in primary GBAC. 
In GB-S6 and GB-S7 (Figure 3D and E), ERBB2 amplification was uniformly identified from primary 
tumors to metastatic tumors.

https://doi.org/10.7554/eLife.78636
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Discussion
To the best of our knowledge, this is the first study to investigate clonal evolution from precancerous 
lesions to metastatic tumors in patients with GBAC. In this study, evolutionary trajectories of GBAC 
were inferred using multi-regional and longitudinal whole-exome sequencing (WES) data from precan-
cerous lesions to primary and metastatic tumors. Based on these results, we derived comprehensive 
models of carcinogenesis and metastasis in GBAC.

In our analysis of carcinogenesis, we discovered three common themes. First, most mutations 
in frequently altered genes in primary GBAC are detected in concurrent BilIN (10 of 13, 76.9%), 
but a substantial proportion was subclonal. Second, branching evolution and subclonal diversity are 
commonly observed at the BilIN stage. Third, one subclone in BilIN commonly shrinks in the primary 
tumors, while the other subclones undergo linear and branching evolution, maintaining subclonal 

Figure 4. Mutational signature analysis. (A–B) The 100% stacked bar plots compare the proportions of known COSMIC Mutational Signatures v2 within 
our dataset and two public (MSKCC and Shanhai) datasets (A), and each category split according to the timing of development during clonal evolution 
(B). The total number of mutations (N) and cosine similarity (CS) values of each category were noted. BilIN, biliary intraepithelial neoplasia; COSMIC, 
Catalogue Of Somatic Mutations In Cancer; GB, gallbladder; LN, lymph node; MSKCC, Memorial Sloan Kettering Cancer Center.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Mutational signatures within each sample from 11 gallbladder adenocarcinoma (GBAC) patients.

Figure supplement 2. Mutational signatures within each category split according to the type of sample.

Figure supplement 3. Mutational signature analysis validated by two additional tools, Signal and MuSiCa.

https://doi.org/10.7554/eLife.78636
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diversity after the BilIN stage. A previous study in colorectal cancer by Vogelstein and colleagues 
demonstrated a stepwise carcinogenesis model from the precancerous lesion, adenoma, to invasive 
carcinoma by the accumulation of mutations, called the adenoma-carcinoma sequence (Vogelstein 
et al., 1988). In addition, recent studies on esophageal squamous cell carcinoma have reported that 
not only dysplasia but also histologically normal epithelia frequently harbor cancer-driving mutations 
(Chen et al., 2017; Yokoyama et al., 2019).

A recent study on GBAC (Lin et al., 2021) reported that CTNNB1 mutation was frequently observed 
(5 out of 11) when BilIN and primary GBAC coexist. In addition, ERBB2 alteration was found in 36.4%. 
In our study, CTNNB1 S37F with LOH was observed in one (GB-A1) of four patients and 54.5% of 
patients had an ERBB2 alteration. On the other hand, two previous studies on GBAC (Narayan et al., 
2019; Li et al., 2014) reported the prevalence of ERBB2 alteration as low as 7.9% and 9.4%, respec-
tively. Race or lifestyle differences might have contributed to the difference.

In the analysis of metastasis, the following three phenomena are observed. First, subclonal 
expansion is frequent (8 of 11 patients, 72.7%) and some subclones expand substantially in meta-
static tumors, leading to increased subclonal diversity. Previous studies suggest that subclonal 
diversity increases through branching evolution during progression and metastasis (Turajlic and 
Swanton, 2016; Hong et al., 2015; Yachida et al., 2010; Minussi et al., 2021). Second, metas-
tases are polyclonal but metastatic lesions in one organ or adjacent organs show similar clonal 
compositions. Previously, it was thought that metastasis is initiated by the migration of a single cell 

Figure 5. ERBB2 copy number variation during neoplastic transformation of BilIN in GB-A1. (A–G) ERBB2 gene amplification (A and B), HER2 SISH (C 
and D), and HER2 IHC (F and G) were compared between BilIN (A, C) and (F) and primary GBAC (B), (D), and (G) samples and the mean ERBB2/CEP17 
ratio of BilIN and GB-A1 samples were compared by using the Wilcoxon rank-sum test (E). BilIN, biliary intraepithelial neoplasia; GBAC, gallbladder 
adenocarcinoma; IHC, immunohistochemistry; SISH, silver in situ hybridization.

https://doi.org/10.7554/eLife.78636
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to another organ (Nowell, 1976). However, recent data suggest that polyclonal seeding occurs 
due to the migration of a cluster of cancer cells (Turajlic et al., 2019; Cheung and Ewald, 2016; 
Ullah et al., 2018; Wei et al., 2017). Third, we found the possibility of metastasis to metastasis 
spread. In recent studies on prostate and breast cancers, metastasis-to-metastasis spread was 
frequent (Ullah et al., 2018; Gundem et al., 2015). Our study found the possibility of metastasis-
to-metastasis spread in GB-A2 (Figure  3A). Although intratumoral heterogeneity of primary 
GBAC may make it difficult to draw a strong conclusion, our data may support the possibility of 
metastasis-to-metastasis spread.

Of the 11 expanded subclones at the metastasis stage, we described putative driver mutations in 
eight subclones based on the previous literature (Table 2). For example, SMAD4 mutations expanded 
during metastasis in GB-A1 and GB-S3 (Figure 2A and D) and have been associated with distant 
metastasis and poor prognosis in various cancers, including GBAC (Narayan et  al., 2019; Jamal-
Hanjani et al., 2017; Yoon et al., 2021; Zhao et al., 2018). In GB-S1 (Figure 2B), clone B containing 
SLIT3 F843I evolves into E during metastasis by acquiring ROBO1 P1360Q. The SLIT/ROBO pathway 
suppresses tumor progression by regulating invasion, migration, and apoptosis (Gara et al., 2015). 
In GB-A2 (Figure 3A), DICER1 T519A is found in lung and chest wall metastases. The DICER1 gene is 
associated with pleuropulmonary blastoma in children (Foulkes et al., 2014). In GB-S5 (Figure 3C), 
KIAA0100 F5S and CSMD2 E411K are found during metastasis. KIAA0100 and CSMD2 are frequently 
mutated during metastasis in adrenocortical carcinoma (Gara et al., 2018).

In mutational signature analysis, considering the evolutionary trajectories in cancers, we suggest 
that the timing of development during clonal evolution (Figure 4B) is better classification criterion 
than the type of sample (Figure 4—figure supplement 2). Our data indicate that the importance of 
signatures 1 and 13 decreased during metastasis while the roles of signatures 22 and 24 were rela-
tively highlighted. Aristolochic acid is an ingredient of oriental herbal medicine (Debelle et al., 2008; 
Hoang et al., 2013). In addition, aflatoxin is known to be contained in soybean paste and soy sauce 
(Ok et al., 2007). Taken together, the two carcinogens might have little impact on the early stage of 
cancer development, but their impacts might be highlighted in overt cancer cells.

In this cancer precision medicine era, targeted sequencing data of a single specimen are not 
enough to determine whether the detected mutations are clonal or subclonal. This proof-of-concept 
study may enable us to deeply understand the clonal evolution in GBAC. Moreover, we found that 
some of the mutations were clonal while a substantial proportion was subclonal, which is usually not 
an effective druggable target. For example, if a drug targeting ERBB2 p.V777L, a pathogenic muta-
tion, is administered to GB-S2 patient (Figure 2C), the therapeutic effect will be limited in subclones 
without the ERBB2 p.V777L mutation, especially from regional metastasis. Therefore, we believe that 
our study highlights the importance of precise genomic analysis of multi-regional and longitudinal 
samples in individual cancer patients. However, one caveat is that we cannot easily apply this to real-
world patients because multi-regional and longitudinal tumor biopsies may not be feasible in most 
patients unless they underwent surgery and repeated biopsies. Recent studies using circulating tumor 
DNA have shown the possibility of easily detecting mutations involved in cancer development and 
progression (Ignatiadis et al., 2021). By detecting clonal mutations from the carcinogenesis stage 
in healthy individuals, we can diagnose GBAC at an early stage. In addition, by detecting subclonal 
mutations in patients with GBAC, we can monitor the expanding subclones during follow-up, which 
enables us to detect cancer progression earlier.

This study has several limitations. First, it is not possible to obtain samples through frequent biop-
sies whenever desired. Thus, tumor samples were not acquired according to their developmental 
sequence. Second, due to intratumoral heterogeneity, the clonal composition of a small piece of 
the tumor may not reflect that of the entire lesion (Marusyk et  al., 2012). Third, as the number 
of analyzed samples was different among patients, an accessibility bias was inevitable – the more 
samples the patient has, the more clones we can identify.

In conclusion, subclonal diversity developed early in precancerous lesions and clonal selection was 
a common event during malignant transformation in GBAC. However, cancer clones continued to 
evolve in metastatic tumors and thus maintained subclonal diversity. Our novel approach may help 
us to understand the GBAC of individual patients and to move forward to precision medicine that 
enables early detection of carcinogenesis and metastasis, and effective targeted therapy in these 
patients.

https://doi.org/10.7554/eLife.78636
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Methods
Patients and tumor samples
Patients were eligible for this study if they were diagnosed with GBAC and received surgery between 
2013 and 2018 at Seoul National University Bundang Hospital (SNUBH), Seongnam, Korea. Of the 
272 patients who underwent surgery, 9 patients who were able to obtain ≥3 types of tissue from 
among BilIN, GBAC, regional LN metastasis, and distant metastasis and died at the time of analysis 
were enrolled in the study. In addition, two  patients who donated their bodies for rapid autopsy 
were included in the study. Our board-certified pathologists (Prof. Soomin Ahn and Hee Young Na) 
identified and dissected BilIN and GBAC lesions from tissue slides. Patients’ clinical information was 
obtained through retrospective medical record reviews. This study was approved by the Institutional 
Review Board (IRB) of SNUBH (IRB No. B-1902/522-303). Informed consent was waived because of the 
retrospective and anonymous nature of the study.

WES of GBAC
DNA was extracted from fresh-frozen or FFPE tissues. Library preparation and exome capture was 
carried out using Agilent SureSelectXT Human All Exon V6 (Santa Clara, CA, USA). WES was conducted 
with a paired-end, 100 bp using Illumina NovaSeq 6000 (San Diego, CA, USA). The depth of coverage 
of tumors and normal control samples were at least 300× and 200×, respectively.

Analysis of WES data
WES data of GBAC and matched normal samples were analyzed using the Genomon2 pipeline (Insti-
tute of Medical Science, University of Tokyo, Tokyo, Japan; https://genomon.readthedocs.io/ja/​
latest/, accessed on February 1, 2022). In brief, sequencing reads from ​adapter-​trimmed.​fastq files 
were aligned to the human reference genome GRCh37 (hg19) without the ‘chr’ prefix using Burrows-
Wheeler Aligner version 0.7.12, with default settings. SNVs and small indels were called by eliminating 
polymorphisms and sequencing errors and filtered by pre-specified criteria used in previous literature 
analyzed with the Genomon2 pipeline (Yokoyama et al., 2019; Kakiuchi et al., 2020; Ochi et al., 
2021): (a) only exonic or splicing sites were included; (b) synonymous SNVs, unknown variants, or 
those without proper annotation were excluded; (c) polymorphisms in dbSNP 131 were excluded; (d) 
p-values <0.01 from Fisher’s exact test were included; (e) simple repeat sequences were excluded; (f) 
strand ratio between positive-strand and negative-strand should not be 0 or 1 in tumor samples; (g) 
the number of variant reads should exceed 4 in tumor samples. For each patient, filtered variant lists 
of tumor samples were merged. Then, the merged list of target variants was manually called in ​each.​
bam file using bam-readcount version 0.8.0 (https://github.com/genome/bam-readcount; Khanna 
et al., 2022a; Khanna et al., 2022b, accessed on February 1, 2022) with Phred score and mapping 
quality of more than 30 and 60, respectively.

For samples with tumor purity >0.4, the ploidy of tumor cells was estimated using Sequenza version 
3.0.0 to identify WGD (Favero et al., 2015). Copy number variations were analyzed using the Control-
FREEC version 11.5 (Boeva et al., 2012). Gene amplification was defined as a copy number ≥6 (Wolff 
et  al., 2018). In brief, the ​aligned.​bam files were converted ​to.​pileup.​gz format using SAMtools 
version 1.9 (Li, 2011). The .​pileup.​gz files of data from GBAC and matched normal samples were 
analyzed using Control-FREEC with default settings. These datasets were then used to statistically 
infer clonal population structure using PyClone version 0.13.0 with the ‘pyclone_beta_binomial’ model 
(Roth et al., 2014). Clonal phylogeny was inferred by CITUP version 0.1.0 (Malikic et al., 2015) using 
cellular prevalence values of each cluster which were generated by PyClone. CITUP uses information 
from multiple samples and can infer clonal populations and their frequencies while satisfying phylo-
genetic constraints. To ensure accurate tree construction, clusters containing only one mutation were 
excluded from the input to CITUP if the mutation’s role is unclear from previous literature. This filter 
removed 42 mutations from a total of 1577 mutations, representing less than 2.7% of all clustered 
mutations. In addition, in GB-A2, clusters which limited to only one organ were excluded from the 
analysis because the calculation for the phylogenetic tree using CITUP took more than 1 month when 
the number of clusters was ≥14. Analyzed results were visualized using MapScape for multi-regional 
specimens and TimeScape for longitudinal or putative longitudinal datasets, as appropriate (Smith 
et al., 2017). In all analysis steps, the data were adjusted for the tumor purity values of each tumor.

https://doi.org/10.7554/eLife.78636
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Mutational signature analysis was conducted using Mutalisk (Lee et al., 2018) and validated with 
Signal (Degasperi et al., 2020) and MuSiCa (Díaz-Gay et al., 2018). The COSMIC Mutational Signa-
tures v2 (Alexandrov et al., 2013) was used as a reference. To compare with the other GBAC cohorts, 
we additionally analyzed two public datasets of GBAC from the MSKCC and the Shanghai group 
(Narayan et al., 2019; Li et al., 2014), which could be downloaded from the cBioPortal (https://www.​
cbioportal.org/, accessed on February 1, 2022; Cerami et al., 2012).

HER2 IHC and SISH
The histologic sections from individual FFPE tissues were deparaffinized and dehydrated. IHC and 
SISH analysis of HER2-positive cells was conducted by the board-certified pathologist using PATHWAY 
anti-HER2/neu antibody (4B5; rabbit monoclonal; Ventana Medical Systems, Tucson, AZ, USA) and a 
staining device (BenchMark XT, Ventana Medical Systems, Tuscon, AZ, USA), respectively, as previ-
ously described (Koh et al., 2019). Signals from 20 tumor cells were counted and a HER2/CEP17 
ratio ≥2.0 was defined as HER2 amplification (Wolff et al., 2018). Wilcoxon rank-sum test is used to 
compare the mean HER2/CEP17 ratio of BilIN versus primary tumor.
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