Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates

  1. Adele Francis Xu
  2. Rut Molinuevo
  3. Elisa Fazzari
  4. Harrison Tom
  5. Zijian Zhang
  6. Julien Menendez
  7. Kerriann M Casey
  8. Davide Ruggero
  9. Lindsay Hinck
  10. Jonathan K Pritchard
  11. Maria Barna  Is a corresponding author
  1. Stanford University, United States
  2. University of California, Santa Cruz, United States
  3. University of California, Los Angeles, United States
  4. University of California, San Francisco, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/78695/elife-78695-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adele Francis Xu
  2. Rut Molinuevo
  3. Elisa Fazzari
  4. Harrison Tom
  5. Zijian Zhang
  6. Julien Menendez
  7. Kerriann M Casey
  8. Davide Ruggero
  9. Lindsay Hinck
  10. Jonathan K Pritchard
  11. Maria Barna
(2023)
Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates
eLife 12:e78695.
https://doi.org/10.7554/eLife.78695