High order unimodal olfactory sensory preconditioning in Drosophila

  1. Juan Martinez-Cervantes
  2. Prachi Shah
  3. Anna Phan
  4. Isaac Cervantes-Sandoval  Is a corresponding author
  1. Georgetown University, United States
  2. University of Alberta, Canada

Abstract

Learning and memory storage is a complex process that has proven challenging to tackle. It is likely that, in nature, the instructive value of reinforcing experiences is acquired rather than innate. The association between seemingly neutral stimuli increases the gamut of possibilities to create meaningful associations and the predictive power of moment-by-moment experiences. Here we report physiological and behavioral evidence of olfactory unimodal sensory preconditioning in fruit flies. We show that the presentation of a pair of odors (S1 and S2) before one of them (S1) is associated with electric shocks elicits a conditional response not only to the trained odor (S1) but to the odor previously paired with it (S2). This occurs even if the S2 odor was never presented in contiguity with the aversive stimulus. In addition, we show that inhibition of the small G protein Rac1, a known forgetting regulator, facilitates the association between S1/S2 odors. These results indicate that flies can infer value to olfactory stimuli based on the previous associative structure between odors, and that inhibition of Rac1 lengthens the time window of the olfactory 'sensory buffer', allowing the establishment of associations between odors presented in sequence.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Juan Martinez-Cervantes

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Prachi Shah

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Phan

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Isaac Cervantes-Sandoval

    Department of Biology, Georgetown University, Washington, United States
    For correspondence
    ic400@georgetown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6372-7288

Funding

National Institute of Mental Health (R21MH117485-01A1)

  • Isaac Cervantes-Sandoval

Brain and Behavior Research Foundation (30442)

  • Isaac Cervantes-Sandoval

National Institute on Aging (T32AG071745)

  • Prachi Shah

Georgetown University (ID162838)

  • Isaac Cervantes-Sandoval

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Martinez-Cervantes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,366
    views
  • 391
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Martinez-Cervantes
  2. Prachi Shah
  3. Anna Phan
  4. Isaac Cervantes-Sandoval
(2022)
High order unimodal olfactory sensory preconditioning in Drosophila
eLife 11:e79107.
https://doi.org/10.7554/eLife.79107

Share this article

https://doi.org/10.7554/eLife.79107

Further reading

    1. Neuroscience
    Alessandro Piccin, Anne-Emilie Allain ... Angelo Contarino
    Research Article

    Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.