High order unimodal olfactory sensory preconditioning in Drosophila

  1. Juan Martinez-Cervantes
  2. Prachi Shah
  3. Anna Phan
  4. Isaac Cervantes-Sandoval  Is a corresponding author
  1. Georgetown University, United States
  2. University of Alberta, Canada

Abstract

Learning and memory storage is a complex process that has proven challenging to tackle. It is likely that, in nature, the instructive value of reinforcing experiences is acquired rather than innate. The association between seemingly neutral stimuli increases the gamut of possibilities to create meaningful associations and the predictive power of moment-by-moment experiences. Here we report physiological and behavioral evidence of olfactory unimodal sensory preconditioning in fruit flies. We show that the presentation of a pair of odors (S1 and S2) before one of them (S1) is associated with electric shocks elicits a conditional response not only to the trained odor (S1) but to the odor previously paired with it (S2). This occurs even if the S2 odor was never presented in contiguity with the aversive stimulus. In addition, we show that inhibition of the small G protein Rac1, a known forgetting regulator, facilitates the association between S1/S2 odors. These results indicate that flies can infer value to olfactory stimuli based on the previous associative structure between odors, and that inhibition of Rac1 lengthens the time window of the olfactory 'sensory buffer', allowing the establishment of associations between odors presented in sequence.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Juan Martinez-Cervantes

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Prachi Shah

    Department of Biology, Georgetown University, Washington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Phan

    Department of Biological Sciences, University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Isaac Cervantes-Sandoval

    Department of Biology, Georgetown University, Washington, United States
    For correspondence
    ic400@georgetown.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6372-7288

Funding

National Institute of Mental Health (R21MH117485-01A1)

  • Isaac Cervantes-Sandoval

Brain and Behavior Research Foundation (30442)

  • Isaac Cervantes-Sandoval

National Institute on Aging (T32AG071745)

  • Prachi Shah

Georgetown University (ID162838)

  • Isaac Cervantes-Sandoval

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sonia Sen, Tata Institute for Genetics and Society, India

Version history

  1. Preprint posted: November 30, 2021 (view preprint)
  2. Received: March 31, 2022
  3. Accepted: September 18, 2022
  4. Accepted Manuscript published: September 21, 2022 (version 1)
  5. Version of Record published: October 13, 2022 (version 2)

Copyright

© 2022, Martinez-Cervantes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,238
    views
  • 375
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Martinez-Cervantes
  2. Prachi Shah
  3. Anna Phan
  4. Isaac Cervantes-Sandoval
(2022)
High order unimodal olfactory sensory preconditioning in Drosophila
eLife 11:e79107.
https://doi.org/10.7554/eLife.79107

Share this article

https://doi.org/10.7554/eLife.79107

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.