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Abstract Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuro-
science, but methodological barriers limit the generalizability of findings from the lab to the real 
world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data 
designed to facilitate the adoption of robust and generalizable research practices. Neuroscout 
leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of 
fMRI studies using naturalistic stimuli—such as movies and narratives—allowing researchers to easily 
test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout 
builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder 
and a fully automated execution engine that reduce the burden of reproducible research. Through 
a series of meta-analytic case studies, we validate the automatic feature extraction approach and 
demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high 
degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly 
arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing 
generalizable fMRI research.

Editor's evaluation
This is an important, methodologically compelling paper. It describes a powerful new online soft-
ware platform for analysing data from naturalistic fMRI studies. The paper describes both the philos-
ophy behind and intended usage of the software, and offers several examples of the types of results 
that can be computed using publicly available datasets. It will provide an important new tool for the 
open neuroscience community who are seeking to perform standardised and reproducible analyses 
of naturalistic fMRI datasets.

Introduction
Functional magnetic resonance imaging (fMRI) is a popular tool for investigating how the brain 
supports real-world cognition and behavior. Vast amounts of resources have been invested in fMRI 
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research, and thousands of fMRI studies mapping cognitive functions to brain anatomy are published 
every year. Yet, increasingly urgent methodological concerns threaten the reliability of fMRI results 
and their generalizability from laboratory conditions to the real world.

A key weakness of current fMRI research concerns its generalizability—that is, whether conclu-
sions drawn from individual studies apply beyond the participant sample and experimental condi-
tions of the original study (Turner et  al., 2018; Bossier et  al., 2020; Yarkoni, 2020; Szucs and 
Ioannidis, 2017). A major concern is the type of stimuli used in the majority of fMRI research. Many 
studies attempt to isolate cognitive constructs using highly controlled and limited sets of reductive 
stimuli, such as still images depicting specific classes of objects in isolation, or pure tones. However, 
such stimuli radically differ in complexity and cognitive demand from real-world contexts, calling into 
question whether resulting inferences generalize outside the laboratory to more ecological settings 
(Nastase et al., 2020). In addition, predominant statistical analysis approaches generally fail to model 
stimulus-related variability. As a result, many studies–and especially those relying on small stimulus 
sets–likely overestimate the strength of their statistical evidence and their generalizability to new but 
equivalent stimuli (Westfall et al., 2016). Finally, since fMRI studies are frequently underpowered due 
to the cost of data collection, results can fail to replicate on new participant samples (Button et al., 
2013; Cremers et al., 2017).

Naturalistic paradigms using life-like stimuli have been advocated as a way to increase the gener-
alizability of fMRI studies (DuPre et  al., 2020; Hamilton and Huth, 2020; Nastase et  al., 2020; 
Sonkusare et al., 2019). Stimuli such as movies and narratives feature rich, multidimensional variation, 
presenting an opportunity to test hypotheses from highly controlled experiments in more ecological 
settings. Yet, despite the proliferation of openly available naturalistic datasets, challenges in modeling 
these data limit their impact. Naturalistic features are difficult to characterize and co-occur with poten-
tial confounds in complex and unexpected ways (Nastase et al., 2020). This is exacerbated by the 
laborious task of annotating events at fine temporal resolution, which limits the number of variables 
that can realistically be defined and modelled. As a result, isolating relationships between specific 
features of the stimuli and brain activity in naturalistic data is especially challenging, which deters 
researchers from conducting naturalistic experiments and limiting re-use of existing public datasets.

A related and more fundamental concern limiting the impact of fMRI research is the low reproduc-
ibility of analysis workflows. Incomplete reporting practices in combination with flexible and variable 
analysis methods (Carp, 2012) are a major culprit. For instance, a recent large-scale effort to test iden-
tical hypotheses in the same dataset by 70 teams found a high degree of variability in the results, with 
different teams often reaching different conclusions (Botvinik-Nezer et al., 2020). Even re-executing 
the original analysis from an existing publication is rarely possible, due to insufficient provenance and 
a reliance on exclusively verbal descriptions of statistical models and analytical workflows (Ghosh 
et al., 2017; Mackenzie-Graham et al., 2008).

The recent proliferation of community-led tools and standards—most notably the Brain Imaging 
Data Structure (Gorgolewski et al., 2016) standard—has galvanized efforts to foster reproducible 
practices across the data analysis lifecycle. A growing number of data archives, such as OpenNeuro 
(Markiewicz et al., 2021c), now host hundreds of publicly available neuroimaging datasets, including 
dozens of naturalistic fMRI datasets. The development of standardized quality control and prepro-
cessing pipelines, such as MRIQC (Esteban et al., 2017), fmriprep (Esteban et al., 2019; Esteban 
et al., 2022), and C-PAC (Craddock et al., 2013), facilitate their analysis and can be launched on 
emerging cloud-based platforms, such as https://brainlife.io/about/ (Avesani et al., 2019). However, 
fMRI model specification and estimation remains challenging to standardize, and typically results in 
bespoke modeling pipelines that are not often shared, and can be difficult to re-use. Unfortunately, 
despite the availability of a rich ecosystem of tools, assembling them into a complete and reproduc-
ible workflow remains out of reach for many scientists due to substantial technical challenges.

In response to these challenges, we developed Neuroscout: a unified platform for generalizable 
and reproducible analysis of naturalistic fMRI data. Neuroscout improves current research practice 
in three key ways. First, Neuroscout provides an easy-to-use interface for reproducible analysis of 
BIDS datasets, seamlessly integrating a diverse ecosystem of community-developed resources into 
a unified workflow. Second, Neuroscout encourages re-analysis of public naturalistic datasets by 
providing access to hundreds of predictors extracted through an expandable set of state-of-the-art 
feature extraction algorithms spanning multiple stimulus modalities. Finally, by using standardized 

https://doi.org/10.7554/eLife.79277
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model specifications and automated workflows, Neuroscout enables researchers to easily operation-
alize hypotheses in a uniform way across multiple (and diverse) datasets, facilitating more generaliz-
able multi-dataset workflows such as meta-analysis.

In the following, we provide a broad overview of the Neuroscout platform, and validate it by repli-
cating well-established cognitive neuroscience findings using a diverse set of public naturalistic data-
sets. In addition, we present two case studies—face sensitivity of the fusiform face area and selectivity 
to word frequency in visual word form area—to show how Neuroscout can be used to conduct original 
research on public naturalistic data. Through these examples, we demonstrate how Neuroscout’s flex-
ible interface and wide range of predictors make it possible to dynamically refine models and draw 
robust inference on naturalistic data, while simultaneously democratizing gold standard practices for 
reproducible research.

Results
Overview of the Neuroscout platform
At its core, Neuroscout is a platform for reproducible fMRI research, encompassing the complete 
lifecycle of fMRI analysis from model specification and estimation to the dissemination of results. 
We focus particular attention on encouraging the re-use of public datasets that use intrinsically high 
dimensional and generalizable naturalistic stimuli such as movies and audio narratives. The platform 
is composed of three primary components: a data ingestion and feature extraction server, interactive 
analysis creation tools, and an automated model fitting workflow. All elements of the platform are 
seamlessly integrated and can be accessed interactively online (https://neuroscout.org). Complete 

Figure 1. Example of automated feature extraction on stimuli from the “Merlin” dataset. Visual features were extracted from video stimuli at a 
frequency of 1 Hz. ‘Faces’: we applied a well-validated cascaded convolutional network trained to detect the presence of faces (Zhang et al., 2016). 
‘Building’: We used Clarifai’s General Image Recognition model to compute the probability of the presence of buildings in each frame. ‘Spoken word 
frequency’ codes for the lexical frequency of words in the transcript, as determined by the SubtlexUS database (Brysbaert and New, 2009). Language 
features are extracted using speech transcripts with precise word-by-word timing determined through forced alignment.

https://doi.org/10.7554/eLife.79277
https://neuroscout.org
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and up-to-date documentation of all of the platform’s components, including Getting Started guides 
to facilitate first time users, is available in the official Neuroscout Documentation (https://neuroscout.​
org/docs).

Preprocessed and harmonized naturalistic fMRI datasets
The Neuroscout server indexes a curated set of publicly available naturalistic fMRI datasets, and hosts 
automatically extracted annotations of visual, auditory, and linguistic events from the experimental 
stimuli. Datasets are harmonized, preprocessed, and ingested into a database using robust BIDS-
compliant pipelines, facilitating future expansion.

Automated annotation of stimuli
Annotations of stimuli are automatically extracted using pliers (McNamara et al., 2017), a compre-
hensive feature extraction framework supporting state-of-the-art algorithms and deep learning 
models (Figure 1). Currently available features include hundreds of predictors coding for both low-
level (e.g. brightness, loudness) and mid-level (e.g. object recognition indicators) properties of audio-
visual stimuli, as well as natural language properties from force aligned speech transcripts (e.g. lexical 
frequency annotations). The set of available predictors can be easily expanded through community-
driven implementation of new pliers extractors, as well as publicly shared repositories of deep learning 
models, such as HuggingFace (Wolf et al., 2020) and TensorFlowHub (Abadi et al., 2015). We expect 
that as machine learning models continue to evolve, it will be possible automatically extract higher 
level features from naturalistic stimuli. All extracted predictors are made publicly available through 
a well-documented application programming interface (https://neuroscout.org/api). An interactive 
web tool that makes it possible to further refine extracted features through expert human curation is 
currently under development.

Analysis creation and execution tools
Neuroscout’s interactive analysis creation tools—available as a web application (https://neuroscout.​
org/builder) and python library (pyNS)—enable easy creation of fully reproducible fMRI analyses 
(Figure 2a). To build an analysis, users choose a dataset and task to analyze, select among pre-extracted 

Figure 2. Overview schematic of analysis creation and model execution. (a) Interactive analysis creation is made possible through an easy-to-use web 
application, resulting in a fully specified reproducible analysis bundle. (b) Automated model execution is achieved with little-to-no configuration through 
a containerized model fitting workflow. Results are automatically made available in NeuroVault, a public repository for statistical maps.

https://doi.org/10.7554/eLife.79277
https://neuroscout.org/docs
https://neuroscout.org/docs
https://neuroscout.org/api
https://neuroscout.org/builder
https://neuroscout.org/builder
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predictors and nuisance confounds to include in the model, and specify statistical contrasts. Raw 
predictor values can be modified by applying model-specific variable transformations such as scaling, 
thresholding, orthogonalization, and hemodynamic convolution. Internally all elements of the multi-
level statistical model are formally represented using the BIDS Statistical Models specification (Mark-
iewicz et al., 2021a), ensuring transparency and reproducibility. At this point, users can inspect the 
model through quality-control reports and interactive visualizations of the design matrix and predictor 
covariance matrix, iteratively refining models if necessary. Finalized analyses are locked from further 
modification, assigned a unique identifier, and packaged into a self-contained bundle.

Analyses can be executed in a single command line using Neuroscout’s automated model execu-
tion workflow (Figure 2b). Neuroscout uses container technology (i.e. Docker and Singularity) to 
minimize software dependencies, facilitate installation, and ensure portability across a wide range 
of environments (including high performance computers (HPC) and the cloud). At run time, prepro-
cessed imaging data are automatically fetched using DataLad (Halchenko et  al., 2021), and the 
analysis is executed using FitLins (Markiewicz et al., 2021b), a standardized pipeline for estimating 
BIDS Stats Models. Once completed, thresholded statistical maps and provenance metadata are 
submitted to NeuroVault (Gorgolewski et al., 2015), a public repository for statistical maps, guar-
anteeing compliance to FAIR (findable, accessible, interoperable, and reusable) scientific princi-
ples (Wilkinson et al., 2016). Finally, Neuroscout facilitates sharing and appropriately crediting the 
dataset and tools used in the analysis by automatically generating a bibliography that can be used 
in original research reports.

Figure 3. Meta-analytic statistical maps for GLM models targeting a variety of effects with strong priors from fMRI research. Individual GLM models 
were fit for each effect of interest, and dataset level estimates were combined using image-based meta-analysis. Images were thresholded at Z=3.29 
(P<0.001) voxel-wise. Abbreviations: V1=primary visual cortex; FEF = frontal eye fields; AG = angular gyrus; PCUN = precuneus; A1=primary auditory 
cortex; PMC = premotor cortex; IFG = inferior frontal gyrus; STS = superior temporal sulcus; STG = superior temporal gyrus; PPA = parahippocampal 
place area; VWFA = visual word-form area; IPL = inferior parietal lobule; IPS = inferior parietal sulcus; LOTC = lateral occipito-temporal cortex.

https://doi.org/10.7554/eLife.79277
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Scalable workflows for generalizable inference
Neuroscout makes it trivial to specify and analyze fMRI data in a way that meets gold standard repro-
ducibility principles. This is per se a crucial contribution to fMRI research, which often fails basic 
reproducibility standards. However, Neuroscout’s transformative potential is fully realized through 
the scalability of its workflows. Automated feature extraction and standardized model specification 
make it easy to operationalize and test equivalent hypotheses across many datasets, spanning larger 
participant samples and a more diverse range of stimuli.

The following analyses demonstrate the potential of multi-dataset approaches and their impor-
tance for generalizable inference by investigating a set of well-established fMRI findings across 
all of Neuroscout’s datasets. We focused these analyses on three feature modalities (visual, audi-
tory, and language), ranging from low-level features of the signal (loudness, brightness, presence 
of speech, and shot change), to mid-level characteristics with well established focal correlates 
(visual presence of buildings, faces, tools, landscape and text). For each feature and stimulus, we 
fit a whole-brain univariate GLM with the target feature as the sole predictor, in addition to stan-
dard nuisance covariates (see Methods for details). Finally, we combined estimates across twenty 
studies using random-effects image-based meta-analysis (IBMA), resulting in a consensus statistical 
map for each feature.

Even using a simple one-predictor approach, we observed robust meta-analytic activation patterns 
largely consistent with expectations from the existing literature (Figure 3), a strong sign of the reli-
ability of automatically extracted predictors. We observed activation in the primary visual cortex for 
brightness (Peters et al., 2010), parahippocampal place area (PPA) activation in response to build-
ings and landscapes (Park and Chun, 2009; Häusler et al., 2022), visual word form area (VWFA) 
activation in response to text (Chen et al., 2019), and lateral occipito-temporal cortex (LOTC) and 
parietal activation in regions associated with action perception and action knowledge (Schone et al., 
2021; Valyear et al., 2007) in response to the presence of tools on screen. For auditory features, 
we observed primary auditory cortex activation in response to loudness (Langers et al., 2007), and 
superior temporal sulcus and gyrus activity in response to speech (Sekiyama et al., 2003). We also 
observed plausible results for visual shot changes, a feature with fewer direct analogs from the liter-
ature, which yielded activations in the frontal eye fields, the precuneus, and parietal regions areas 
traditionally implicated in attentional orienting and reference frame shifts (Corbetta et al., 1998; Fox 
et al., 2006; Kravitz et al., 2011; Rocca et al., 2020). The only notable exception was a failure to 
detect fusiform face area (FFA) activity in response to faces (Figure 5), an interesting result that we 
dissect in the following section.

Crucially, although study-level results largely exhibited plausible activation patterns, a wide range of 
idiosyncratic variation was evident across datasets (Figure 4). For instance, for ‘building’ we observed 
PPA activity in almost every study. However, we observed a divergent pattern of activity in the ante-
rior temporal lobe (ATL), with some studies indicating a deactivation, others activation, and others no 
relationship. This dissonance was resolved in the meta-analysis, which indicated no relationship with 
‘building’ and the ATL, but confirmed a strong association with the PPA. Similar study-specific varia-
tion can be observed with other features. These results highlight the limits of inferences made from 
single datasets, which could lead to drawing overly general conclusions. In contrast, multi-dataset 
meta-analytic approaches are intrinsically more robust to stimulus-specific variation, licensing broader 
generalization.

Flexible covariate addition for robust naturalistic analysis
A notable exception to the successful replications presented in the previous section is the absence 
of fusiform face area (FFA) activation for faces in naturalistic stimuli (Figure 5). Given long-standing 
prior evidence implicating the FFA in face processing (Kanwisher et al., 1997), it is highly unlikely 
that these results are indicative of flaws in the extant literature. A more plausible explanation is that 
our ‘naive’ single predictor models failed to account for complex scene dynamics present in natural-
istic stimuli. Unlike controlled experimental designs, naturalistic stimuli are characterized by system-
atic co-occurrences between cognitively relevant events. For example, in narrative-driven movies (the 
most commonly used audio-visual naturalistic stimuli) the presentation of faces often co-occurs with 
speech—a strong driver of brain activity. Failing to account for this shared variance can confound 
model estimates and mask true effects attributable to predictors of interest.

https://doi.org/10.7554/eLife.79277
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Neuroscout addresses these challenges by pairing access to a wide range of pre-extracted features 
with a flexible and scalable model specification framework. Researchers can use Neuroscout’s model 
builder to iteratively build models that control and assess the impact of a wide range of poten-
tial confounds without the need for additional data collection or manual feature annotation. Anal-
ysis reports provide visualizations of the correlation structure of design matrices, which can inform 
covariate selection and facilitate interpretation. These affordances for iterative covariate control allow 
us to readily account for the potential confounding effect of speech, a predictor that co-varies with 
faces in some datasets but not others (Pearson’s R range: –0.55, 0.57; mean: 0.18). After controlling 
for speech, we observed an association between face presentation and right FFA activity across 17 
datasets (Figure 5; peak z=5.70). Yet, the strength of this relationship remained weaker than one 
might expect from traditional face localizer tasks.

In movies, face perception involves repeated and protracted presentation of a relatively narrow 
set of individual faces. Given evidence of rapid adaptation of category-selective fMRI response to 

Figure 4. Comparison of a sample of four single study results with meta-analysis (N=20) for three features: ‘building’ and ‘text’ extracted through 
Clarifai visual scene detection models, and sound ‘loudness’ (root mean squared of the auditory signal). Images were thresholded at Z=3.29 (p<0.001) 
voxel-wise. Regions with a priori association with each predictor are highlighted: PPA, parahippocampal place area; VWFA, visual word form area; STS, 
superior temporal sulcus. Datasets: Budapest, Learning Temporal Structure (LTS), 500daysofsummer task from Naturalistic Neuroimaging Database, and 
Sherlock.

https://doi.org/10.7554/eLife.79277
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individual stimuli (Grill-Spector et al., 1999), FFA activation in naturalistic stimuli may be attenuated 
by a failure to distinguish transient processes (e.g. initial encoding) from indiscriminate face exposure. 
To test the hypothesis that adaptation to specific faces suppresses FFA activity, we further refined our 
models by controlling for the cumulative time of exposure to face identities (in addition to controlling 
for speech). Using embeddings from FaceNet, a face recognition convolutional neural network, we 
clustered individual face presentations into groups representing distinct characters in each movie. 
We then computed the cumulative presentation of each face identity and included this regressor as 
a covariate.

After controlling for face adaptation, we observed stronger effects in the right FFA (Figure 5; peak 
z=7.35), highlighting its sensitivity to dynamic characteristics of face presentation which cannot always 
be captured by traditional designs. Notably, unlike in traditional localizer tasks, we still observe signif-
icant activation outside of the FFA, areas whose relation to face perception can be further explored in 
future analyses using Neuroscout’s rich feature set.

Large samples meet diverse stimuli: a linguistic case study
Our final example illustrates the importance of workflow scalability in the domain of language 
processing, where the use of naturalistic input has been explicitly identified as not only beneficial 
but necessary for real-world generalizability (Hamilton and Huth, 2020). Owing to their ability to 
provide more robust insights into real-life language processing, studies using naturalistic input (e.g. 
long written texts or narratives) are becoming increasingly common in language neuroscience (Andric 
and Small, 2015; Brennan, 2016; Nastase et al., 2021). Yet, even when naturalistic stimuli are used, 
individual studies are rarely representative of the many contexts in which language production and 
comprehension take place in daily life (e.g. dialogues, narratives, written exchanges, etc), which raises 
concerns on the generalizability of their findings. Additionally, modeling covariates is particularly chal-
lenging for linguistic stimuli, due to their complex hierarchical structure. As a consequence, single 
studies are often at risk of lacking the power required to disentangle the independent contributions 
of multiple variables.

A concrete example of this scenario comes from one of the authors’ (TY) previous work (Yarkoni 
et al., 2008). In a naturalistic rapid serial visual presentation (RSVP) reading experiment, Yarkoni et al., 
2008 reported an interesting incidental result: activity in the visual word form area (VWFA)—an area 
primarily associated with visual feature detection and orthography-phonology mapping (Dietz et al., 
2005)—was significantly modulated by lexical frequency. Interestingly, these effects were robust to 
phonological and orthographic covariates, suggesting that VWFA activity may not only be involved in 

Figure 5. Meta-analysis of face perception with iterative addition of covariates. Left; Only including binary 
predictors coding for the presence of faces on screen did not reveal activity in the right fusiform face area (rFFA). 
Middle; Controlling for speech removed spurious activations and revealed rFFA association with face presentation. 
Right; Controlling for temporal adaptation to face identity in addition to speech further strengthened the 
association between rFFA and face presentation. N=17 datasets; images were thresholded at Z=3.29 (p<0.001) 
voxel-wise.

https://doi.org/10.7554/eLife.79277


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

de la Vega, Rocca et al. eLife 2022;11:e79277. DOI: https://​doi.​org/​10.​7554/​eLife.​79277 � 9 of 22

orthographic and phonological reading subprocesses, but also modulated by modality-independent 
lexical-semantic properties of linguistic input. Yet, as the experiment only involved visual presentation 
of linguistic stimuli, this hypothesis could not be corroborated empirically. In addition, the authors 
observed that frequency effects disappeared when controlling for lexical concreteness. As the two 
variables were highly correlated, the authors speculated that the study may have lacked the power to 
disentangle their contributions and declared the results inconclusive.

Neuroscout makes it possible to re-evaluate linguistic hypotheses in ecological stimuli using a wide 
range of linguistic annotations spanning both phonological/orthographic word properties (e.g. dura-
tion and phonological distinctiveness), semantic descriptors (e.g. valence, concreteness, sensorimotor 
attributes), and higher-level information-theoretic properties of language sequences (e.g. entropy in 
next-word prediction and word-by-word surprisal). We reimplemented analytic models from Yarkoni 
et al., 2008 across all Neuroscout datasets, including regressors for word frequency, concreteness, 
speech, and control orthographic measures (number of syllables, number of phones, and duration), 
alongside a standard set of nuisance parameters. As before, we used IBMA to compute meta-analytic 
estimates for each variable. The resulting maps displayed significant VWFA effects for both frequency 
and concreteness (Figure 6), corroborating the hypothesis of its involvement in lexical processing 
independent of presentation modality, and arguably in the context of language-to-imagery mapping.

Note that had we only had access to results from the original study, our conclusions might have 
been substantially different. Using a relatively liberal threshold of p<0.01, only 12 out of 33 tasks 
showed significant ROI-level association between VWFA and frequency, and only 5 tasks showed an 
association between VWFA and concreteness. In addition, in only one task was VWFA significantly 
associated with both frequency and concreteness. These ROI-level results highlight the power of scal-
ability in the context of naturalistic fMRI analysis. By drawing on larger participant samples and more 
diverse stimuli, meta-analysis overcomes power and stimulus variability limitations that can cause 
instability in dataset-level results.

Figure 6. Meta-analytic statistical maps for concreteness and frequency controlling for speech, text length, number of syllables and phonemes, and 
phone-level Levenshtein distance. N=33 tasks; images were thresholded at Z=3.29 (p<0.001) voxel-wise. Visual word form area, VWFA.

https://doi.org/10.7554/eLife.79277
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Discussion
Neuroscout seeks to promote the widespread adoption of reproducible and generalizable fMRI 
research practices, allowing users to easily test a wide range of hypotheses in dozens of open natural-
istic datasets using automatically extracted neural predictors. The platform is designed with a strong 
focus on reproducibility, providing a unified framework for fMRI analysis that reduces the burden of 
reproducible fMRI analysis and facilitates transparent dissemination of models and statistical results. 
Owing to its high degree of automation, Neuroscout also facilitates the use of meta-analytic work-
flows, enabling researchers to test the robustness and generalizability of their models across multiple 
datasets.

We have demonstrated how Neuroscout can incentivize more ecologically generalizable fMRI 
research by addressing common modeling challenges that have traditionally deterred naturalistic 
research. In particular, as we show in our meta-analyses, automatically extracted predictors can be 
used to test a wide range of hypotheses on naturalistic datasets without the need for costly manual 
annotation. Although we primarily focused on replicating established effects for validation, a range of 
predictors operationalizing less explored cognitive variables are already available in the platform, and, 
as machine learning algorithms continue to advance, we expect possibilities for interesting additions 
to Neuroscout’s feature set to keep growing at a fast pace. As a result, we have designed Neuroscout 
and its underlying feature extraction framework pliers to facilitate community-led expansion to novel 
extractors— made possible by the rapid increase in public repositories of pre-trained deep learning 
models such as HuggingFace (Abadi et al., 2015) and TensorFlow Hub (Abadi et al., 2015).

We have also shown how Neuroscout’s scalability facilitates the use of meta-analytic workflows, 
which enable more robust and generalizable inference. As we have pointed out in some of our 
examples, small participant samples and stimulus-specific effects can at times lead to misleading 
dataset-level results. Automatically extracted predictors are particularly powerful when paired with 
Neuroscout’s flexible model specification and execution workflow, as their combination makes it easy 
to operationalize hypotheses in identical ways across multiple diverse dataset and gather more gener-
alizable consensus estimates. While large-N studies are becoming increasingly common in cognitive 
neuroscience, the importance of relying on large and diverse stimulus sets has been thus far under-
estimated (Westfall et al., 2016), placing Neuroscout in a unique position in the current research 
landscape. Importantly, although we have primarily focused on demonstrating the advantages of 
large-scale workflows in the context of meta-analysis, scalability can also be leveraged for other 
secondary workflows (e.g. machine learning pipelines, multi-verse analyses, or mega-analyses) and 
along dimensions other than datasets (e.g. model parameters such as transformations and covariates).

A fundamental goal of Neuroscout is to provide researchers with tools that automatically ensure 
the adoption of gold-standard research practices throughout the analysis lifecycle. We have paid 
close attention to ensuring transparency and reproducibility of statistical modeling by adopting a 
community-developed specification of statistical models, and developing accessible tools to specify, 
visualize and execute analyses. Neuroscout’s model builder can be readily accessed online, and the 
execution engine is designed to be portable, ensuring seamless deployment across computational 
environments. This is a key contribution to cognitive neuroscience, which too often falls short of 
meeting these basic criteria of sound scientific research.

Challenges and future directions
A major challenge in the analysis of naturalistic stimuli is the high degree of collinearity between 
features, as the interpretation of individual features is dependent on co-occurring features. In many 
cases, controlling for confounding variables is critical for the interpretation of the primary feature— as 
is evident in our investigation of the relationship between FFA and face perception. However, it can 
also be argued that in dynamic narrative driven media (i.e. films and movies), the so-called confounds 
themselves encode information of interest that cannot or should not be cleanly regressed out (Grall 
and Finn, 2020).

Absent a consensus on how to model naturalistic data, we designed Neuroscout to be agnostic to 
the goals of the user and empower them to construct sensibly designed models through comprehen-
sive model reports. An ongoing goal of the platform—especially as the number of features continues 
to increase—will be to expand the visualizations and quality control reports to enable users to better 
understand the predictors and their relationship. For instance, we are developing an interactive 

https://doi.org/10.7554/eLife.79277
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visualization of the covariance between all features in Neuroscout that may help users discover rela-
tionships between a predictor of interest and potential confounds.

However, as the number of features continues to grow, a critical future direction for Neuroscout 
will be to implement statistical models which are optimized to estimate a large number of covarying 
targets. Of note are regularized encoding models, such as the banded-ridge regression as imple-
mented by the Himalaya package (Latour et al., 2022). These models have the additional advantage 
of implementing feature-space selection and variance partitioning methods, which can deal with the 
difficult problem of model selection in highly complex feature spaces such as naturalistic stimuli. Such 
models are particularly useful for modeling high-dimensional embeddings, such as those produced 
by deep learning models. Many such extractors are already implemented in pliers and we have begun 
to extract and analyze these data in a prototype workflow that will soon be made widely available.

Although we have primarily focused on naturalistic datasets—as they intrinsically feature a high 
degree of reusability and ecological validity—Neuroscout workflows are applicable to any BIDS-
compliant dataset due to the flexibility of the BIDS Stats Model specification. Indexing non-naturalistic 
fMRI datasets will be an important next step, an effort that will be supported by the proliferation 
of data sharing portals and require the widespread sharing of harmonized preprocessed derivatives 
that can be automatically ingested. Other important expansions include facilitating analysis execution 
by directly integrating with cloud-based neuroscience analysis platforms, such as https://brainlife.io/​
about/ (Avesani et al., 2019), and facilitating the collection of higher-level stimulus features by inte-
grating with crowdsourcing platforms such as MechanicalTurk or Prolific.

In addition, as Neuroscout grows to facilitate the re-analysis of a broader set of public datasets, it 
will be important to reckon with the threat of ‘dataset decay’ which can occur from repeated sequen-
tial re-analysis (Thompson et al., 2020). By encouraging the central registration of all analysis attempts 
and the associated results, Neuroscout is designed to minimize undocumented researcher degrees 
of freedom and link the final published results with all previous attempts. By encouraging the public 
sharing of all results, we hope to encourage meta-scientists to empirically investigate statistical solu-
tions to the problem of dataset decay, and develop methods to minimize the effect of false positives.

Long-term sustainability
An on-going challenge for scientific software tools—especially those that rely on centralized services—
is long-term maintenance, development, and user support. On-going upkeep of core tools and devel-
opment of new features require a non-trivial amount of developer time. This problem is exacerbated 
for projects primarily supported by government funding, which generally prefers novel research to the 
on-going maintenance of existing tools. This is particularly challenging for centralized services, such 
as the Neuroscout server and web application, which require greater maintenance and coordination 
for upkeep.

With this in mind, we have designed many of the core components of Neuroscout with modu-
larity as a guiding principle in order to maximize the longevity and impact of the platform. Although 
components of the platform are tightly integrated, they are also designed to be independently useful, 
increasing their general utility, and encouraging broader adoption by the community. For example, 
our feature extraction library (pliers) is designed for general purpose use on multimodal stimuli, and 
can be easily expanded to adopt novel extractors. On the analysis execution side, rather than imple-
menting a bespoke analysis workflow, we worked to develop a general specification for statistical 
models under the BIDS standard (https://bids-standard.github.io/stats-models/) and a compatible 
execution workflow (FitLins; https://github.com/poldracklab/fitlins; Markiewicz, 2022). By distrib-
uting the technical debt of Neuroscout across various independently used and supported projects, 
we hope to maximize the robustness and impact of the platform. To ensure the community’s needs are 
met, users are encouraged to vote on the prioritization of features by voting on issues on Neuroscout’s 
GitHub repository, and code from new contributors is actively encouraged.

User support and feedback
A comprehensive overview of the platform and guides for getting started can be found in the inte-
grated Neuroscout documentation (https://neuroscout.org/docs), as well as in each tool’s version-
specific automatically generated documentation (hosted by ReadTheDocs, a community-supported 
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documentation platform). We plan to grow the collection of complete tutorials replicating exemplary 
analyses and host them in the centralized Neuroscout documentation.

Users can ask questions to developers and the community using the topic ‘neuroscout’ Neurostars.​
org— a public forum for neuroscience researchers and neuroinformatics infrastructure maintainers 
supported by the International Neuroinformatics Coordinating Facility (INCF). In addition, users can 
provide direct feedback through a form found on all pages in the Neuroscout website, which directly 
alerts developers to user concerns. A quarterly mailing list is also available to stay up to date with the 
latest feature developments in the platform. Finally, the Neuroscout developer team frequently partic-
ipates at major neuroinformatics hackathons (such as Brainhack events and at major neuroimaging 
conferences), and plans on hosting ongoing Neuroscout-specific hackathons.

Materials and methods
Code availability
All code from our processing pipeline and core Neuroscout infrastructure is available online 
(https://www.github.com/neuroscout/neuroscout; Alejandro de la, 2022a), including the Python 
client library pyNS (https://www.github.com/neuroscout/pyNS; Alejandro de la, 2022b). The 
Neuroscout-CLI analysis engine is available as a Docker and Singularity container, and the source 
code is also made available (https://github.com/neuroscout/neuroscout-cli/; Alejandro de la, 
2022c). Finally, an online supplement following the analyses showcased in this paper is available as 
interactive Jupyter Book (https://neuroscout.github.io/neuroscout-paper/). All are available under 
a permissive BSD license.

Table 1. Neuroscout datasets included in the validation analyses.
Subj is the number of unique subjects. Scan Time is the mean scan time per subject (in minutes). AV = Audio-Visual; AN = Audio 
Narrative.

Name Subj DOI/URI
Scan 
time Modality Description

Study Forrest (Hanke et al., 2014) 13
10.18112/openneuro.
ds000113.v1.3.0 120 AV

Slightly abridged German version of the movie: 
‘Forrest Gump’

Life (Nastase et al., 2018) 19
datasets.datalad.
org/?dir=/labs/haxby/life 62.8 AV Four segments of the Life nature documentary

Raiders (Haxby et al., 2011) 11

datasets.datalad.
org/?dir=/labs/haxby/
raiders 113.3 AV Full movie: ‘Raiders of the Lost Ark’

Learning Temporal Structure (LTS) 
(Aly et al., 2018) 30

10.18112/openneuro.
ds001545.v1.1.1 20.1 AV

Three clips from the movie ‘Grand Budapest 
Hotel’, presented six times each. Some clips were 
scrambled.

Sherlock (Chen et al., 2017) 16
10.18112/openneuro.
ds001132.v1.0.0 23.7 AV

The first half of the first episode from ‘Sherlock’ TV 
series.

SherlockMerlin (Zadbood et al., 
2017) 18 Temporarily unavailable 25.1 AV

Full episode from ‘Merlin’ TV series. Only used Merlin 
task to avoid analyzing the Sherlock task twice.

Schematic Narrative (Baldassano 
et al., 2018) 31

10.18112/openneuro.
ds001510.v2.0.2 50.4 AV/AN

16 three-minute clips, including audiovisual clips and 
narration.

ParanoiaStory (Finn et al., 2018) 22
10.18112/openneuro.
ds001338.v1.0.0 21.8 AN

Audio narrative designed to elicit individual variation 
in suspicion/paranoia.

Budapest (Visconti et al., 2020) 25
10.18112/openneuro.
ds003017.v1.0.3 50.9 AV

The majority of the movie ‘Grand Budapest Hotel’, 
presented in intact order

Naturalistic Neuroimaging Database 
(NNDb) (Aliko et al., 2020) 86

10.18112/openneuro.
ds002837.v2.0.0 112.03 AV Movie watching of 10 full-length movies

Narratives (Nastase et al., 2021) 328
10.18112/openneuro.
ds002345.v1.1.4 32.5 AN

Passive listening of 16 audio narratives (two tasks 
were not analyzed due to preprocessing error)
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Datasets
The analyses presented in this paper are based on 13 naturalistic fMRI datasets sourced from various 
open data repositories (see Table 1). We focused on BIDS-compliant datasets which included the 
exact stimuli presented with precise timing information. Datasets were queried and parsed using 
pybids (https://github.com/bids-standard/pybids; Yarkoni et al., 2019b; Yarkoni et al., 2019a) and 
ingested into a SQL database for further subsequent analysis. Several datasets spanned various orig-
inal studies or distinct simuli (e.g. Narratives, NNDb), resulting in 35 unique ‘tasks’ or ‘studies’ avail-
able for analysis. The full list of datasets and their available predictors are available on Neuroscout 
(https://neuroscout.org/datasets).

fMRI Preprocessing
Neuroscout datasets are uniformly preprocessed using FMRIPREP (version 1.2.2) (Esteban et al., 2020; 
Esteban et al., 2019; Esteban et al., 2022), a robust NiPype-based MRI preprocessing pipeline. The 
resulting preprocessed data are publicly available for download (https://github.com/neuroscout-data-
sets). The following methods description was semi-automatically generated by FMRIPREP.

Each T1-weighted (T1w) volume is corrected for intensity non-uniformity using N4BiasFieldCor-
rection v2.1.0 (Tustison et al., 2010) and skull-stripped using ​antsBrainExtraction.​sh v2.1.0 (using the 
OASIS template). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 
2009c (Fonov et  al., 2009) is performed through nonlinear registration with the antsRegistration 
tool of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of both T1w volume and 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and gray matter 
(GM) were performed on the brain-extracted T1w using fast (Zhang et al., 2001) (FSL v5.0.9).

Functional data are motion-corrected using mcflirt (FSL v5.0.9, Jenkinson et al., 2002). The images 
are subsequently co-registered to the T1w volume using boundary-based registration (Greve and 
Fischl, 2009) with 9 degrees of freedom, using flirt (FSL). Motion correcting transformations, BOLD-
to-T1w transformation, and T1w-to-template warp were concatenated and applied in a single step 
using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

Anatomically based physiological noise regressors were created using CompCor (Behzadi et al., 
2007). A mask to exclude signals with cortical origin is obtained by eroding the brain mask, ensuring 
it only contains subcortical structures. Six principal components are calculated within the intersection 
of the subcortical mask and the union of CSF and WM masks calculated in T1w space, after their 

Table 2. Extractor name, feature name, and description for all Neuroscout features used in the 
validation analyses.

Extractor Feature Description

Brightness brightness Average luminosity across all pixels in each video frame.

Clarifai
building, landscape, text, 
tool

Indicators of the probability that an object belonging to each of these 
categories is present in the video frame.

FaceNet
any_faces, log_mean_
time_cum

For each video frame, any_faces indicates the probability that the image 
displays at least one face. log_mean_time_cum indicates the cumulative 
time (in seconds) a given face has been on screen up since the 
beginning of the movie. If multiple faces are present, their cumulative 
time on screen is averaged.

Google 
Video 
Intelligence shot_change Binary indicator coding for shot changes.

FAVE/Rev speech

Binary indicator coding for the presence of speech in the audio signal, 
inferred from word onsets/offsets information from force-aligned speech 
transcripts.

RMS rms Root mean square (RMS) energy of the audio signal.

Lexical 
norms

Log10WF, concreteness, 
phonlev, numsylls, 
numphones, duration, 
text_length

Logarithm of SubtlexUS lexical frequency, concreteness rating, 
phonological Levenshtein distance, number of syllables, number of 
phones, average auditory duration and number of characters for each 
word in the speech transcript. These metrics are extracted from lexical 
databases available through pliers.
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projection to the native space of each functional run. Many internal operations of FMRIPREP use 
Nilearn (Abraham et al., 2014), principally within the BOLD-processing workflow.

Automatically extracted features
Overview
Neuroscout leverages state-of-the-art machine learning algorithms to automatically extract hundreds 
of novel neural predictors from the original experimental stimuli. Automated feature extraction relies 
on pliers, a python library for multimodal feature extraction which provides a standardized interface 
to a diverse set of machine learning algorithms and APIs (McNamara et al., 2017). Feature values are 
ingested directly with no in place modifications, with the exception of down sampling of highly dense 
variables to 3 hz to facilitate storage on the server. For all analyses reported in this paper the same 
set of feature extractors are applied across all datasets (see Table 2), except where not possible due 
to modality mismatch (e.g. visual features in audio narratives), or features intrinsically absent from the 
stimuli (e.g. faces in the Life nature documentary). A description of all features included in this paper 
is provided below. A complete list of available predictors and features is actualized online at: https://​
neuroscout.org/predictors.

Visual features
Brightness
We computed brightness (average luminosity) for frame samples of videos by computing the average 
luminosity for pixels across the entire image. We took the maximum value at each pixel from the RGB 
channels, computed the mean, and divided by 255.0 (the maximum value in RGB space), resulting in a 
scalar ranging from 0 to 1. This extractor is available through pliers as BrightnessExtractor.

Clarifai object detection
Clarifai is a computer vision company that specializes in using deep learning networks to annotate 
images through their API as a service. We used Clarifai’s ‘General’ model, a pre-trained deep convolu-
tional neural network (CNN) for multi-class classification of over 11,000 categories of visual concepts, 
including objects and themes.

To reduce the space of possible concepts, we pre-selected four concepts that could plausibly 
capture psychologically relevant categories (see Table 2). Feature extraction was performed using 
pliers’ ClarifaiAPIImageExtractor, which wraps Clarifai’s Python API client. We submitted the sampled 
visual frames from video stimuli to the Clarifai API, and received values representing the model’s 
predicted probability of each concept for that frame.

Face detection, alignment, and recognition
Face detection, alignment, and recognition were performed using the FaceNet package (https://​
github.com/davidsandberg/facenet; Sandberg, 2018), which is an open TensorFlow implementa-
tion of state-of-the-art face recognition CNNs. As this feature was not natively available in pliers, we 
computed it offline and uploaded it to Neuroscout using the feature upload portal.

First, face detection, alignment, and cropping are performed through Multi-task Cascaded Convo-
lutional Networks (MTCNN; Zhang et  al., 2016). This framework uses unified cascaded CNNs to 
detect, landmark, and crop the position of a face in an image. We input sampled frames from video 
stimuli, and the network identified, separated, and cropped individual faces for further processing. At 
this step, we were able to identify if a given frame in a video contained one or more faces (‘any_faces’).

Next, cropped faces were input to the FaceNet network for facial recognition. FaceNet is a face 
recognition deep CNN based on the Inception ResNet v1 architecture that achieved state-of-the-art 
performance when released (Schroff et al., 2015). The particular recognition model we used was 
pre-trained on the VGGFace2 dataset (Cao et al., 2018), which is composed of over three million 
faces ‘in the wild’, encompassing a wide range of poses, emotions, lighting, and occlusion conditions. 
FaceNet creates a 512-dimensional embedding vector from cropped faces that represents extracted 
face features; thus more similar faces are closer in the euclidean embedding space.

For each dataset separately, we clustered all detected faces’ embedding vectors to group together 
faces corresponding to distinct characters in the audio-visual videos. We used the Chinese Whispers 
clustering algorithm, as this algorithm subjectively grouped faces into coherent clusters better than 
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other commonly used algorithms (e.g. k-means clustering). Depending on the dataset, this resulted in 
50–200 clusters that subjectively corresponded to readily identifiable characters across the video stim-
ulus. For each dataset, we removed the worst-performing cluster (as for all datasets there was always 
one with a highly noisy profile) and grouped demonstrably different faces into one cluster. Using the 
generated face clusters for each dataset, we computed the cumulative time each character had been 
seen across the stimulus (i.e. entire movie) and log transformed the variable in order to represent the 
adaptation to specific faces over time. As more than one face could be shown simultaneously, we took 
the mean for all faces on screen in a given frame.

Google Video Intelligence
We used the Google Video Intelligence API to identify shot changes in video stimuli. Using the Goog-
leVideoAPIShotDetectionExtractor extractor in pliers, we queried the API with complete video clips 
(typically one video per run). The algorithm separates distinct video segments, by detecting abstract 
shot changes in the video (i.e. the frames before and after that frame are visually different). The time 
at which there was a transition between two segments was given a value of 1, while all other time 
points received a value of 0.

Auditory features
RMS
We used librosa (McFee et al., 2015), a python package for music and audio analysis, to compute 
root-mean-squared (RMS) as a measure of the instantaneous audio power over time, or ‘loudness’.

Speech forced alignment
For most datasets, transcripts of the speech with low-resolution or no timing information were avail-
able either from the original researcher or via closed captions in the case of commercially produced 
media. We force aligned the transcripts to extract word-level speech timing, using the Forced Align-
ment and Vowel Extraction toolkit (FAVE; Rosenfelder et al., 2014). FAVE employs Gaussian mixture 
model based monophone Hidden Markov Models (HMMs) from the Penn Phonetics Lab Forced 
Aligner for English (p2fa; Yuan and Liberman, 2008), which is based on the Hidden Markov Toolkit 
(Young, 1994). The transcripts are mapped to phone sequences with pre-trained HMM acoustic 
models. Frames of the audio recording are then mapped onto the acoustic models, to determine 
the most likely sequence. The alignment is constrained by the partial timing information available in 
closed captions, and the sequence present in the original transcripts. Iterative alignment continues 
until models converge. Linguistic features are available for all datasets except studyforrest, as the 
movie was presented in German. Transcription and annotation of stimuli in languages other than 
English are pending.

​Rev.​com
For datasets that had no available transcript (LearningTemporalStructure, SchematicNarrative), we 
used a professional speech-to-text service (Rev.com) to obtain precise transcripts with word-level 
timing information. Rev.com provides human-created transcripts which are then force-aligned using 
proprietary methods to produce a high-quality, aligned transcript, similar to that generated by the 
FAVE algorithm.

Speech indicator
In both cases, we binarized the resulting aligned transcripts based on word onset/offset information 
to produce a fine-grained speech presence feature (‘speech’). These aligned transcripts served as the 
input to all subsequent speech-based analyses.

Language features
Word frequency
Neuroscout includes a variety of frequency norms extracted from different lexical databases. For all 
the analyses reported here, we used frequency norms from SUBTLEX-US (Brysbaert and New, 2009), 
a 51 million words corpus of American English subtitles. The variable used in the analyses (Log10WF, 
see Brysbaert and New, 2009) is the base 10 logarithm of the number of occurrences of the word 
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in the corpus. In all analyses, this variable was demeaned and rescaled prior to HRF convolution. For 
a small percentage of words not found in the dictionary, a value of zero was applied after rescaling, 
effectively imputing the value as the mean word frequency. This feature was extracted using the 
subtlexusfrequency dictionary and the PredefinedDictionaryExtractor available in pliers.

Concreteness
Concreteness norms were extracted from the (Brysbaert et al., 2014) concreteness database, which 
contains norms for over 40,000 English words, obtained from participants’ ratings on a five-point 
scale. In all analyses, this variable was demeaned and rescaled before HRF convolution. This feature 
was extracted using the concreteness dictionary and the PredefinedDictionaryExtractor available in 
pliers.

Massive auditory lexical decision norms
The Massive Auditory Lexical Decision (MALD) database (Tucker et al., 2019) is a large-scale auditory 
and production dataset that includes a variety of lexical, orthographic, and phonological descriptors 
for over 35,000 English words and pseudowords. MALD norms are available in Neuroscout for all 
words in stimulus transcripts. The analyses reported in this paper make use of the following variables:

•	 Duration: duration of spoken word in milliseconds;
•	 NumPhones: number of phones, that is of distinct speech sounds;
•	 NumSylls: number of syllables;
•	 PhonLev: mean phone-level Levenshtein distance of the spoken word from all items in the refer-

ence pronunciation dictionary, i.e. the CMU pronouncing dictionary with a few additions. This 
variable quantifies average phonetic similarity with the rest of the lexicon so as to account for 
neighborhood density and lexical competition effects (Yarkoni et al., 2008).

In all analyses, these variables were demeaned and rescaled before HRF convolution. MALD 
metrics was extracted using the massiveauditorylexicaldecision dictionary and the PredefinedDictio-
naryExtractor available in pliers.

Text length
This variable corresponds to the number of characters in a word’s transcription. A TextLengthExtractor 
is available in pliers.

GLM models
Neuroscout uses FitLins, a newly developed workflow for executing multi-level fMRI general linear 
model (GLM) analyses defined by the BIDS StatsModels specification. FitLins uses pybids to generate 
run-level design matrices, and NiPype to encapsulate a multi-level GLM workflow. Model estimation 
at the first level was performed using AFNI—in part due to its memory efficiency—and subject and 
group level summary statistics were fit using the ​nilearn.​glm module.

For all models, we included a standard set of confounds from fmriprep, in addition to the listed 
features of interest. This set includes 6 rigid-body motion-correction parameters, 6 noise components 
calculated using CompCor, a cosine drift model, and non-steady state volume detection, if present 
for that run. Using pybids, we convolved the regressors with an implementation of the SPM dispersion 
derivative haemodynamic response model, and computed first-level design matrices downsampled 
to the TR. We fit the design matrices to the unsmoothed registered images using a standard AR(1) + 
noise model.

Smoothing was applied to the resulting parameter estimate images using a 4 mm FWHM isotropic 
kernel. For the datasets that had more than one run per subject, we then fit a subject-level fixed-
effects model with the smoothed run-level parameter estimates as inputs, resulting in subject-level 
parameter estimates for each regressor. Finally, we fit a group-level fixed-effects model using the 
previous level’s parameter estimates and performed a one-sample t-test contrast for each regressor 
in the model.

Meta-analysis
NiMARE (version 0.0.11rc1; available at: https://github.com/neurostuff/NiMARE; RRID:SCR_017398) 
was used to perform meta-analyses across the neuroscout datasets. Typical study harmonization steps 
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(smoothing, design matrix scaling, spatial normalization) were forgone because all group level beta 
and variance maps were generated using the same GLM pipeline. All group level beta and variance 
maps were resampled to a 2x2 × 2 mm ICBM 152 Nonlinear Symmetrical gray matter template (down-
loaded using nilearn, version 0.8.0) with linear interpolation. Resampled values were clipped to the 
minimum and maximum statistical values observed in the original maps. We used the DerSimonian 
& Laird random effects meta-regression algorithm (DerSimonian and Laird, 1986; Kosmidis et al., 
2017).
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