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Variation in ubiquitin system genes 
creates substrate-specific effects on 
proteasomal protein degradation
Mahlon A Collins*, Gemechu Mekonnen†, Frank Wolfgang Albert*

Department of Genetics, Cell Biology, and Development, University of Minnesota, 
Minneapolis, United States

Abstract Precise control of protein degradation is critical for life, yet how natural genetic vari-
ation affects this essential process is largely unknown. Here, we developed a statistically powerful 
mapping approach to characterize how genetic variation affects protein degradation by the 
ubiquitin-proteasome system (UPS). Using the yeast Saccharomyces cerevisiae, we systematically 
mapped genetic influences on the N-end rule, a UPS pathway in which protein N-terminal amino 
acids function as degradation-promoting signals. Across all 20 possible N-terminal amino acids, we 
identified 149 genomic loci that influence UPS activity, many of which had pathway- or substrate-
specific effects. Fine-mapping of four loci identified multiple causal variants in each of four ubiquitin 
system genes whose products process (NTA1), recognize (UBR1 and DOA10), and ubiquitinate 
(UBC6) cellular proteins. A cis-acting promoter variant that modulates UPS activity by altering UBR1 
expression alters the abundance of 36 proteins without affecting levels of the corresponding mRNA 
transcripts. Our results reveal a complex genetic basis of variation in UPS activity.

Editor's evaluation
The authors use an elegant experimental design to study genetic variation in the ubiquitin-
proteasome degradation system in yeast. They identify a large number of QTLs for naturally occur-
ring variation, and they elucidate the causal variants and likely functional mechanisms of several 
of these. The paper illustrates an innovative new approach to high-throughput QTL mapping for 
specific molecular processes.

Introduction
Protein degradation is an essential biological process that occurs continuously throughout the life of 
a cell. Degradative protein turnover helps maintain protein homeostasis by regulating protein abun-
dance and eliminating misfolded and damaged proteins from cells (Varshavsky, 2011; Collins and 
Goldberg, 2017; Hanna and Finley, 2007). In eukaryotes, most protein degradation occurs through 
the concerted actions of the ubiquitin system and the proteasome, together known as the ubiquitin-
proteasome system (UPS) (Coux et al., 1996; Collins and Goldberg, 2017; Hershko and Ciechanover, 
1998; Bachmair et al., 1986; Ciechanover et al., 2000). Ubiquitin system enzymes bind degradation-
promoting signal sequences, termed degrons (Varshavsky, 1991), in cellular proteins and mark them 
for degradation by covalently attaching chains of the small protein ubiquitin (Bett, 2016; Hershko 
and Ciechanover, 1998; Finley et al., 2012). The proteasome binds poly-ubiquitinated proteins, then 
processively deubiquitinates, unfolds, and degrades them to small peptides (Kisselev et al., 1999). 
The UPS degrades a wide array of proteins spanning diverse biological functions and subcellular 
localizations (Schwanhäusser et al., 2011; Kong et al., 2021; Christiano et al., 2020). By controlling 
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the turnover of a large fraction of the cellular proteome, the UPS regulates numerous aspects of 
cellular physiology and function, including gene expression, protein homeostasis, cell growth and 
division, stress responses, and energy metabolism (Varshavsky, 2011; Hershko and Ciechanover, 
1998; Hanna and Finley, 2007; Pohl and Dikic, 2019).

Because of the central role of UPS protein degradation in regulating protein abundance, varia-
tion in UPS activity can influence a variety of cellular and organismal phenotypes (Varshavsky, 2011; 
Schwartz and Ciechanover, 1999; Hanna and Finley, 2007; Schmidt and Finley, 2014). Physio-
logical variation in UPS activity enables cells to respond to changes in their internal and external 
environments. For example, UPS activity increases when misfolded or oxidatively damaged proteins 
accumulate, preventing these molecules from damaging the cell (Sontag et al., 2014; Grimm et al., 
2012; Finley and Prado, 2020). Conversely, UPS activity decreases during nutrient deprivation, when 
the energetic demands of UPS protein degradation would be costly to the cell (Waite et al., 2016; 
Laporte et al., 2008; Bajorek et al., 2003). Variation in UPS activity may also create discrepancies 
between protein degradation and the proteolytic needs of the cell, leading to adverse phenotypic 
outcomes. For example, age-related declines in UPS activity exacerbate the accumulation of damaged 
and misfolded proteins that occurs during aging, compromising protein homeostasis and, in turn, 
cellular viability (Stolzing and Grune, 2001; Baraibar and Friguet, 2012; Shringarpure and Davies, 
2002). Understanding the sources of variation in UPS activity thus has considerable implications for 
our understanding of the many traits influenced by protein degradation.

A handful of examples have shown that variation in UPS activity can be caused by individual genetic 
differences. Rare mutations that ablate or diminish the function of ubiquitin system or proteasome 
genes impair UPS protein degradation and cause a variety of incurable syndromes. For example, 
nonsense and frameshift mutations in UBR1, an E3 ubiquitin ligase that targets proteins for protea-
somal degradation, cause the developmental disorder Johanson-Blizzard Syndrome (Zenker et al., 
2005). Several UBR1 missense mutations that moderately decrease Ubr1 activity cause less severe 
forms of Johanson-Blizzard Syndrome (Hwang et al., 2011), suggesting a continuum of variant effects 
on UPS activity, similar to other genetically complex traits. More recently, proteasome gene missense 
mutations that impair proteasome assembly and reduce proteasome activity were shown to cause 
the autoimmune disorder proteasome-associated autoinflammatory syndrome (Brehm et al., 2015; 
Arima et al., 2011; Liu et al., 2012), further establishing individual genetic differences as a poten-
tially important source of variation in UPS activity. Genome-wide association studies have also linked 
variation in ubiquitin system (Xia et al., 2014; Diskin et al., 2012) and proteasome genes (Cho et al., 
2011) to a variety of disorders, but have neither established the individual causal variants nor tested 
their effects on UPS activity.

Our understanding of how natural genetic variation affects the UPS comes largely from these limited 
examples, leaving critical knowledge gaps in several key areas. First, a focus on rare, large-effect 
mutations linked to Mendelian syndromes likely provides a narrow, incomplete view of the genetics 
of UPS activity. Most traits are genetically complex, shaped by many loci of small effect and few loci 
of large effect throughout the genome (Mackay et al., 2009; Ehrenreich et al., 2009), suggesting 
that variants that completely or largely ablate UPS gene functions represent only one extreme of a 
continuum of genetic effects on UPS activity. Second, we have virtually no knowledge of how natural 
variation in non-UPS genes affects UPS activity. Third, variation in UPS activity can differentially affect 
the degradation of distinct UPS substrates (Christiano et al., 2020; Kong et al., 2021). Whether 
genetic effects on UPS activity affect the turnover of distinct proteins consistently or in a substrate-
specific manner remains a fundamentally open question. Finally, we do not know how genetic effects 
on UPS activity influence other traits. For example, many genetic effects on gene expression influence 
protein levels without altering mRNA abundance for the same gene (Battle et al., 2015; Ghazalpour 
et al., 2011; Mirauta et al., 2020; Albert et al., 2014; Brion et al., 2020; Chick et al., 2016; Cenik 
et al., 2015; Abell et al., 2022; Foss et al., 2011). These protein-specific effects could arise through 
differences in UPS activity, but there have been no efforts to understand how natural variation that 
alters UPS activity influences global gene expression at the protein and RNA levels.

Technical challenges have precluded a comprehensive view of the genetics of UPS activity. 
Mapping genetic influences on a trait with high statistical power requires assaying large, genetically 
diverse populations of thousands of individuals (Bloom et al., 2013). At this scale, in vitro biochemical 
assays of UPS activity are impractical. Several synthetic reporter systems can measure UPS activity 
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with high-throughput in vivo (Geffen et al., 2016; Yu et al., 2016; Yen et al., 2008). However, these 
systems use genetically encoded fluorescent proteins coupled to degrons to measure UPS activity. 
When deployed in genetically diverse populations, their output is likely confounded from genetic 
effects on reporter expression levels.

Here, we leveraged advances in synthetic reporter design to obtain high-throughput, reporter 
expression level-independent measurements of UPS activity in millions of live, single cells. We use 
these measurements to map genetic influences on the N-end rule, a UPS pathway that recognizes 
degrons in protein N-termini (N-degrons) (Varshavsky, 1991) of thousands of endogenous cellular 
proteins (Kats et al., 2018; Bartel et al., 1990; Hwang et al., 2010; Varshavsky, 2011). Different 
N-degrons are processed by one of two distinct targeting systems (Figure 1A), which allowed us 
to test for potential pathway-specific effects of natural genetic variation on UPS activity. System-
atic, statistically powerful genetic mapping revealed the complex, polygenic genetic architecture of 
UPS activity. Across the set of 20 N-degrons, we identified 149 loci influencing UPS activity, many of 
which had pathway- or substrate-specific effects. Resolving causal nucleotides at four loci identified 
regulatory and missense variants in ubiquitin system genes whose products process, recognize, and 
ubiquitinate cellular proteins. By measuring the effect of a causal variant in the UBR1 promoter on the 
transcriptome and proteome, we implicate genetic influences on UPS activity as a potentially promi-
nent source of post-translational variation in gene expression.

Results
Single-cell measurements identify heritable variation in UPS activity
To understand how genetic variation influences UPS activity, we focused on the N-end rule, in which a 
protein’s N-terminal amino acid functions as an N-degron that results in a protein’s ubiquitination and 
proteasomal degradation (Figure 1A). The UPS N-end rule can be subdivided into the Arg/N-end and 
Ac/N-end pathways based on the molecular properties and recognition mechanisms of each path-
way’s constituent N-degrons (Figure 1A; Varshavsky, 2011). We reasoned that the breadth of degra-
dation signals and recognition mechanisms encompassed in the N-end rule would allow us to identify 
diverse genetic influences on UPS activity and that the well-characterized effectors of the N-end rule 
would aid in defining the molecular mechanisms of variant effects. We used a previously described 
approach (Varshavsky, 2005) to generate constructs containing each of the 20 possible N-degrons 
and appended these sequences to tandem fluorescent timers (TFTs; Figure 1A; Khmelinskii et al., 
2012). TFTs are fusions of a rapidly maturing green fluorescent protein (GFP) and a slower maturing 
red fluorescent protein (RFP) (Khmelinskii et  al., 2012; Khmelinskii and Knop, 2014). The TFT’s 
output, expressed as the -log2 RFP / GFP ratio, is directly proportional to its degradation rate and, 
when fused to N-degrons, measures UPS N-end rule activity (Kats et al., 2018; Kong et al., 2021; 
Khmelinskii et al., 2012). Because the TFT is expressed as a single protein construct, the output of 
the TFT is also independent of its expression level (Kats et al., 2018; Khmelinskii et al., 2014; Khme-
linskii et al., 2012; Kong et al., 2021), enabling its use in genetically diverse populations.

We characterized the performance of our TFTs by measuring their output in yeast strains with gene 
deletions that alter UPS activity towards N-end rule substrates. As expected, deleting the E3 ubiquitin 
ligases of the Arg/N-end (UBR1) and the Ac/N-end (DOA10) pathways specifically stabilized N-de-
gron TFTs from these pathways (corrected p < 0.05 vs. the BY strain, Figure 1B–D, Figure 1—figure 
supplement 1, Figure 1—source data 1). Deleting RPN4, which encodes a transcription factor for 
proteasome genes, reduces proteasome activity (Xie and Varshavsky, 2001) and stabilized reporters 
from both the Arg/N-end and Ac/N-end pathways (corrected p < 0.05 vs. the BY strain, Figure 1B–D, 
Figure 1—figure supplement 1, Figure 1—source data 1). These results show that our TFTs provide 
sensitive, quantitative, substrate-specific measures of UPS N-end rule activity.

To understand how natural genetic variation influences UPS activity, we compared two genet-
ically divergent S. cerevisiae strains, the "BY" laboratory strain and the "RM" vineyard strain 
(Ehrenreich et al., 2009). RM had higher UPS activity than BY for 9 of 12 Arg/N-degrons and 6 of 8 
Ac/N-degrons (corrected p < 0.05, Figure 1D, Figure 1—figure supplement 1, Figure 1—source 
data 1). BY had higher UPS activity than RM for the phenlyalanine, tryptophan, and tyrosine Arg/N--
degrons (corrected p < 0.05, Figure 1D, Figure 1—figure supplement 1, Figure 1—source data 
1). BY and RM had similar activity towards the methionine and proline Ac/N-degrons (corrected 
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Figure 1. UPS N-end rule activity reporters and genetic mapping method. (A) Schematic of the production and degradation of UPS activity reporters 
according to the UPS N-end rule. (B) Density plots of the log2 RFP / GFP ratio from 10,000 cells for each of 8 independent biological replicates per strain 
per reporter for representative Arg/N-end and Ac/N-end pathway reporters. "BY" and "RM" are genetically divergent yeast strains. "BY rpn4Δ", "BY 
ubr1Δ”, and "BY doa10Δ" carry the indicated gene deletions in the BY background and were used as reporter control strains. (C) The median from each 

Figure 1 continued on next page
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p > 0.05, Figure 1D, Figure 1—figure supplement 1, Figure 1—source data 1). Together, these 
results show that individual genetic differences create heritable, substrate-specific variation in UPS 
activity.

Genetic mapping reveals a complex, polygenic genetic architecture for 
UPS activity
We mapped quantitative trait loci (QTLs) for UPS activity using bulk segregant analysis (Figure 1E; 
Michelmore et al., 1991; Ehrenreich et al., 2010; Albert et al., 2014). In our implementation, this 
approach attains high statistical power by comparing whole-genome sequence data from pools of 
thousands of single cells with extreme UPS activity selected from a large population of haploid, 
recombinant progeny obtained by crossing BY and RM (Figure 1E–G; Ehrenreich et al., 2010; Albert 
et al., 2014). Using this method, we reproducibly identified 149 UPS activity QTLs across the set of 
20 N-degrons at a false discovery rate of 0.5% (Figure 2A/B, Figure 2—source data 1, Supplemen-
tary file 1, Appendix 1). The number of QTLs per reporter ranged from 1 (for the Ile N-degron) to 15 
(for the Ala N-degron) with a median of 7 (Figure 2B, Figure 2—source data 1). Using the absolute 
difference in allele frequency between the high and low UPS activity pools as a measure of effect size, 
we found that most QTLs had small effects, with only 5 loci (3%) causing an allele frequency difference 
greater than 0.5 (Figure 2C, Figure 2—source data 1). Thus, UPS activity is a complex, polygenic 
trait, shaped by variation throughout the genome.

Analysis of the set of UPS QTLs revealed several patterns. First, the RM allele was associated 
with higher UPS activity in a significant majority of UPS QTLs (89 out of 149, 60%, binominal test p 
= 0.021, Figure 2C), a result that is consistent with our observation that RM had higher UPS activity 
for 15 of 20 N-degrons (Figure 1D, Figure 1—source data 1). Second, the number and patterns 
of QTLs differed between the Ac/N-end and Arg/N-end pathways (Figure 2B, Figure 2—source 
data 1). The Ac/N-end pathway was affected by a significantly higher number of QTLs per reporter 
than the Arg/N-end pathway (9 vs 7, respectively, Wilcoxon test p = 0.021), while the QTLs with the 
largest effect sizes were found for the Arg/N-end pathway (Figure 2C / D, Figure 2—source data 
1).

Third, multiple QTLs for distinct N-degrons occurred in close proximity and had the same direction 
of effect (Figure 2B), suggesting these QTLs may result from the same causal genes or variants. To 
better understand potential pleiotropy among the set of UPS activity QTLs, we computed overlap 
among the set of 149 UPS activity QTLs. We considered QTLs for distinct N-degrons overlapping 
when their peak position occurred within 100 kb and they had the same direction of effect (the sign 
of the RM allele frequency between the high and low UPS activity pools). Applying these criteria 
revealed that the 149 UPS activity QTLs were located at 35 distinct QTL regions (Figure 2—source 
data 2). Of these 35 regions, 23 (66%) affected only reporters from either the Arg/N-end (12) or 
Ac/N-end (11) pathways of the N-end rule (Figure 2—source data 2). Five of the 23 pathway-specific 
QTL regions affected only individual N-degrons (Figure 2—source data 2). Use of more lenient LOD 
score thresholds for QTL detection did not alter these general conclusions (Figure 2—source data 2, 
Supplementary file 2). Thus, the majority of QTLs for the N-end rule are pathway-specific, revealing 
considerable complexity in the genetics of UPS protein degradation.

biological replicate in B. was scaled, normalized, and plotted as a stripchart such that y axis values are directly proportional to UPS activity. (D). Heatmap 
for all strains and N-degrons using data generated as in C. Symbols above the heatmap denote significant UPS activity differences between BY and RM. 
"*" indicates 0.05 > Tukey HSD p > 1e-6; “#” indicates Tukey HSD p < 1e-6. (E) Schematic of the bulk segregant analysis genetic mapping method used 
to identify UPS activity QTLs. (F) Density plot of the UPS activity distribution for a genetically diverse mapping population harboring the tryptophan (Trp) 
N-degron reporter. Dashed vertical lines show the thresholds used to collect cells with extreme UPS activity, which correspond to the high and low UPS 
activity pools denoted in E. (G) Backplot of the cells collected in F. onto a scatter plot of GFP and RFP.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Results of all between-strain comparisons for all N-degron TFTs.

Figure supplement 1. Comparison of UPS activity between strains across N-degron reporters.

Figure supplement 2. Overview of the constructs and strain construction steps used to generate yeast strains harboring TFT UPS activity reporters.

Figure 1 continued
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Figure 2. UPS activity QTL mapping results. (A) Results from the alanine (Ala) N-degron reporter illustrate the results and reproducibility of the method. 
Asterisks denote QTLs, colored by biological replicate. (B) QTL mapping results for the 20 N-degrons. Colored blocks of 100 kb denote QTLs detected 
in each of two independent biological replicates, colored according to the direction and magnitude of the effect size (RM allele frequency difference 
between high and low UPS activity pools). Experimentally validated (boxed) and candidate (unboxed) causal genes for select QTLs are annotated above 

Figure 2 continued on next page
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Multiple causal DNA variants in UBR1 create substrate-specific effects 
on UPS activity
We leveraged the high degree of pathway specificity in our N-end rule QTLs to aid in the identifica-
tion of causal genes in broad genomic QTL regions. A QTL on chromosome VII detected with 8 of 
12 Arg/N-degron reporters (Figure 2B) was centered on UBR1, the E3 ligase that recognizes Arg/N--
degrons and targets them for UPS protein degradation (Figure 3A). To determine whether UBR1 
contains causal DNA variants for UPS activity towards Arg/N-degrons, we used the CRISPR-swap 
allelic engineering method (Lutz et al., 2019) to create BY strains with RM UBR1 alleles (see ‘Mate-
rials and methods’). Arg/N-degrons are classified as Type 1 or 2 depending on their Ubr1 binding site 
(Varshavsky, 2011; Bartel et al., 1990). The RM allele at the chromosome VII QTL was associated 
with decreased UPS activity towards Type 1 Arg/N-degrons and increased UPS activity towards Type 
2 Arg/N-degrons (Figure 2B). We therefore tested the effects of the RM UBR1 alleles on two Type 1 
(asparagine [Asn] and aspartate [Asp]) and two Type 2 Arg/N-degrons (tryptophan [Trp] and phenyl-
alanine [Phe]).

Consistent with our QTL mapping results, The RM UBR1 allele significantly decreased the degra-
dation rate of Type 1 Arg/N-degrons and increased the degradation rate of Type 2 Arg/N-degrons 
(corrected p < 0.05, Figure 3B/C, Figure 3—figure supplement 1). Thus, UBR1 is a causal gene for 
the chromosome VII QTL, and BY / RM variants in UBR1 differentially affect the degradation of Type 1 
and 2 substrates of the Arg/N-end pathway.

QTL causal genes may contain multiple causal variants, making it necessary to test the effects 
of individual gene regions and variants in isolation (Lutz et  al., 2019; Abell et  al., 2022; Laurie-
Ahlberg and Stam, 1987). We used CRISPR-swap to test the effect of partial RM UBR1 alleles on UPS 
activity towards Type 1 Arg/N-degrons. The RM open-reading frame (ORF) significantly decreased 
the degradation of the Asn, but not the Asp TFT (Figure 3C, Figure 3—figure supplement 1). The 
RM UBR1 promoter and terminator did not affect UPS activity towards either reporter (corrected p > 
0.05, Figure 3C, Figure 3—figure supplement 1). Thus, variants in the RM UBR1 ORF are the main 
determinant of the gene’s effects on the Asn N-degron, while the effects of the RM UBR1 alleles on 
the Asp N-degron may be driven by epistatic interactions between variants in the promoter, ORF, and 
terminator.

The partial RM UBR1 alleles had drastically different effects on the degradation of Type 2 Arg/N--
degrons (Figure  3C). Both the RM UBR1 promoter and ORF significantly increased UPS activity 
towards the Type 2 Trp and Phe Arg/N-degrons (corrected p < 0.05, Figure 3B/C, Figure 3—figure 
supplement 1). The RM UBR1 terminator did not affect the degradation of either Type 2 Arg/N--
degron (corrected p > 0.05, Figure 3B / C, Figure 3—figure supplement 1). Thus, the RM UBR1 
promoter and ORF each contain at least one causal variant that increases UPS activity towards Type 
2 Arg/N-degron-containing substrates. Together with our Type 1 Arg/N-degron fine-mapping, these 
results establish that UPS activity QTLs can contain multiple causal DNA variants in a single gene that 
can differentially affect the turnover of distinct UPS substrates.

To identify individual causal variants, we tested the effect of the two BY / RM UBR1 promoter 
variants (Figure  3D) on UPS activity towards Type 2 Arg/N-degrons. The –469A>T variant signifi-
cantly increased the degradation rate of the Trp and Phe N-degrons (corrected p < 0.05, Figure 3E, 
Figure 3—figure supplement 2). By contrast, the –197T>G variant had no effect on either N-degron, 
establishing –469A>T as the causal nucleotide in the UBR1 promoter (corrected p > 0.05, Figure 3E, 
Figure 3—figure supplement 2). The magnitude of the effect caused by –469A>T suggests that this 
variant accounts for the majority of UBR1 effects on the degradation of Type 2 Arg/N-end substrates 
(Figure 3B/C/E, Figure 3—figure supplements 1 and 2).

the plot. (C) Cumulative distributions of the effect size and direction for Arg/N-end and Ac/N-end QTLs. (D) Cumulative distribution of LOD scores for 
Arg/N-end and Ac/N-end QTLs.

The online version of this article includes the following source data for figure 2:

Source data 1. All N-end rule QTLs.

Source data 2. All distinct N-end rule QTL regions.

Figure 2 continued
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Figure 3. Substrate-specific effects of UBR1 variants on the degradation of Arg/N-degrons. (A) Schematic illustrating Ubr1’s role in Arg/N-degron 
recognition. (B) Multiple causal DNA variants in UBR1 shape UPS activity towards the Trp N-degron. The BY strain was engineered to contain full 
or partial RM UBR1 alleles as indicated and UPS activity towards the Trp N-degron TFT was measured by flow cytometry. UPS activity was Z-score 
normalized and scaled relative to the median of a control BY strain engineered to contain the full BY UBR1 allele. Each point in the plot shows the 

Figure 3 continued on next page
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To gain further insight into the causal –469A>T variant, we examined its molecular properties, 
evolutionary history and population frequency using genome sequence data from a panel of 1,011 
S. cerevisiae strains (Peter et al., 2018). The BY allele of the causal –469A>T variant in the UBR1 
promoter disrupts a predicted binding site for the transcription activator Hap5 (Figure  3F) and 
decreased the output of a synthetic reporter in a massively parallel study of yeast promoter variants 
(Renganaath et al., 2020). BY carries the derived ‘A’ allele at –469A>T, which occurs in a poly(T) motif 
that is highly conserved across yeast species (Figure 3G). The population frequency of –469A>T is 1% 
and the variant is found in only in the Mosaic Region 1 clade that contains the BY strain (Figure 3—
figure supplement 3). These results suggest the BY allele decreases UPS activity by decreasing UBR1 
expression, which we subsequently validated at the RNA and protein levels (Figure 5). Moreover, the 
derived status and low population frequency of the BY allele at position –469 suggests that it may 
negatively impact organismal fitness, a notion consistent with the generally deleterious consequences 
of reduced UBR1 activity or expression (Zenker et al., 2006; Zenker et al., 2005; Chen et al., 2006).

Causal variants in functionally diverse ubiquitin system genes influence 
UPS activity
Some of the QTLs with the largest effects were specific to distinct N-end rule pathways or substrates 
and centered on known ubiquitin system genes (Figure  2B). We used allelic engineering to test 
whether these genes contained causal DNA variants for UPS activity.

A QTL on chromosome X was specific to the Type 1 asparagine (Asn) N-degron of the Arg/N-end 
pathway (Figure 2B). The QTL’s peak occurred within NTA1, which encodes an amidase that converts 
N-terminal asparagine and glutamine residues to aspartate and glutamate, respectively (Figure 4A). 
This processing is necessary to convert Asn and Gln N-ends into functional N-degrons (Baker and 
Varshavsky, 1995). NTA1 contains multiple BY / RM promoter variants and two missense variants that 
alter amino acids on the protein’s exterior surface (Figure 4B/D). Consistent with the chromosome 
X QTL effect, the full RM NTA1 allele significantly increased the degradation rate of the Asn TFT 
(corrected p < 0.05, Figure 4C, Figure 4—figure supplement 1). The RM NTA1 promoter did not 
alter the degradation rate of the Asn TFT (corrected p > 0.05, Figure 4C). Instead, the two BY / RM 
NTA1 missense variants, D111E and E129G, both influenced degradation of the Asn TFT, but in oppo-
site directions. D111E decreased the Asn TFT’s degradation, while, E129G increased it (corrected p 
< 0.05, Figure 4C, Figure 4—figure supplement 1). The effect of E129G was in the same direction 
as that of the chromosome X QTL and was approximately threefold greater than that of the effect of 
D111E (Figure 4C, Figure 4—figure supplement 1). Thus, at NTA1, one causal variant's large effect 
masks the opposing, smaller effect of a second causal variant.

A QTL on chromosome IX detected for 6 of 8 Ac/N-end degrons contained DOA10, the E3 ligase 
of the Ac/N-end rule pathway (Figure 4E). The effect size of this QTL varied between Ac/N-degrons. 
We therefore tested the glycine (Gly) and threonine (Thr) reporters to determine whether BY / RM 
DOA10 variants exert substrate-specific effects on UPS activity. The RM DOA10 allele contains three 
missense variants, Q410E, K1012N, and Y1186F, and does not contain promoter or terminator variants 
(Figure 4F/H). The full RM DOA10 allele significantly increased the degradation of both the Gly and 

median of 10,000 cells for each of 16 independent biological replicates per strain. p-values at the top of the plot display the Benjamini-Hochberg 
corrected p-value for the t-test of the indicated strain versus the strain with the BY UBR1 allele. Box plot center lines, box boundaries, and whiskers 
display the median, interquartile range, and 1.5 times the interquartile range, respectively. (C). Barchart summarizing the effects of RM UBR1 alleles 
on UPS activity towards the indicated Type 1 and 2 Arg/N-degrons using data generated as in B. p-values in the plot display the Benjamini-Hochberg 
corrected p-value for the t-test of the indicated strain versus the control strain engineered to contain the BY UBR1 allele. (D) Diagram of the individual 
BY / RM UBR1 promoter variants. (E) as in C., but for the RM UBR1 promoter and individual BY / RM UBR1 promoter variants. (F) Sequence logo of the 
Hap5 binding motif created by the causal –469A>T UBR1 promoter variant. (G) Multi-species alignment of the UBR1 promoter at the causal –469A>T 
variant. Abbreviations: ‘S. para.’, Saccharomyces paradoxus; ‘S. mik.’, Saccharomyces mikatae; ‘S. bay.’, Saccharomyces bayanus; ‘S. arb’, Saccharomyces 
arboricola; ‘S. pas.’, Saccharomyces pastorianus; ‘S. jur’, Saccharomyces jurei.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Raw UBR1 full gene fine-mapping data.

Figure supplement 2. Raw UBR1 promoter fine-mapping data.

Figure supplement 3. Population frequency and distribution of the causal UBR1 –469A>T variant.

Figure 3 continued
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Figure 4. Identification of causal DNA variants for UPS activity in functionally diverse ubiquitin system genes. (A, E, and I). Schematics showing the role 
of Nta1 (A), Doa10 (E), and Ubc6 (I) in UPS substrate processing, recognition, and ubiquitination, respectively. (B, F, and J). Location of regulatory and 
missense BY / RM variants, as well as active sites and functional domains in the proteins encoded by NTA1 (B), DOA10 (F), and UBC6 (J). C., G., and K. 
Fine-mapping results for NTA1 (C), DOA10 (G), and UBC6 (K). Benjamini-Hochberg corrected p-values are shown for the t-test of the indicated strain 
versus a control BY strain engineered to contain the BY allele of each gene. AlphaFold predicted protein structures for Nta1 (D), Doa10 (H), and Ubc6 
(L) are shown with causal DNA variants, functional domains, active sites, and transmembrane helices highlighted. The inset in L. shows a predicted 
hydrogen bonding network at residue 229 in the BY Ubc6 protein.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Raw NTA1 fine-mapping data.

Figure supplement 2. Raw DOA10 fine-mapping data.

Figure supplement 3. Raw UBC6 fine-mapping data.

Figure supplement 4. Population frequencies and distributions of causal variants.

https://doi.org/10.7554/eLife.79570
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Thr TFTs (corrected p < 0.05, Figure 4G, Figure 4—figure supplement 2). When tested in isolation, 
all three BY / RM DOA10 missense variants increased the degradation of the Gly TFT (corrected p 
< 0.05, Figure  4G, Figure  4—figure supplement 2). In contrast, only the Y1186F variant signifi-
cantly increased the degradation of the Thr TFT (Figure 4G, Figure 4—figure supplement 2). The 
multiple causal variants and substrate-specific effects of individual DOA10 variants further highlights 
the complex effects of variation in E3 ubiquitin ligases on UPS activity.

A QTL on chromosome V detected for 7 of 8 Ac/N-degrons contained UBC6, the E2 ubiquitin-
conjugating enzyme of the Ac/N-end pathway. Ubc6 pairs with Doa10 to ubiquitinate substrates of 
the Ac/N-end pathway (Figure 4I; Chen et al., 1993; Sommer and Jentsch, 1993; Swanson et al., 
2001). The RM UBC6 allele contains a 3 base pair deletion in the promoter, one missense variant, and 
one terminator variant (Figure 4F). Using the threonine (Thr) and alanine (Ala) TFTs, we established 
that UBC6 is a causal gene for this QTL (corrected p < 0.05, Figure 4K, Figure 4—figure supple-
ment 3). The D229G missense variant altered UPS activity towards the alanine (Ala) and threonine 
(Thr) Ac/N-degrons (corrected p < 0.05, Figure 4K, Figure 4—figure supplement 3). The UBC6 RM 
terminator also significantly increased the degradation rate of the Ala, but not Thr TFT, further estab-
lishing the substrate-specific effects of genetic variation on UPS activity (Figure 4K, Figure 4—figure 
supplement 3). Our results with UBC6 show that genetic variation influences UPS activity through 
effects on substrate ubiquitination by E2 ubiquitin conjugating enzymes, as well as substrate recogni-
tion by the E3 ligases Ubr1 and Doa10 described above.

Knowledge of the causal nucleotides in NTA1, DOA10, and UBC6 allowed us to examine their 
molecular properties, evolutionary histories, and population frequencies. A notable feature of causal 
missense variants was the distal location of their encoded amino acids relative to the active site of the 
corresponding protein (Figure 4D/H/L). The amino acids encoded by the NTA1 causal variants occur 
on the protein’s exterior surface (Figure 4D), while those for the DOA10 and UBC6 causal variants 
occur in or near transmembrane helices that anchor these proteins to the endoplasmic reticulum 
membrane (Figure 4H/L). Thus, in addition to effects on ubiquitin system gene expression, such as 
with UBR1 –469A>T, the molecular basis for the continuous distribution of variant effects on UPS 
activity may also involve subtle alterations to the stability, localization, or physical interactions of ubiq-
uitin system proteins (Oh et al., 2020).

The BY alleles of the causal DOA10 Y1186F and UBC6 D229G variants are each derived, at low 
population frequencies (5.1% and 2.2%, respectively), and occur in only 3 non-BY clades (Figure 4—
figure supplement 4), similar to the –469A>T UBR1 variant. Given the generally deleterious effects of 
reduced UPS activity (Pohl and Dikic, 2019; Schwartz and Ciechanover, 1999), these variants may be 
subject to purifying selection. In contrast, the RM allele of the causal NTA1 E129G variant is derived, 
common (51.5% population frequency), and found in most clades (Figure 4—figure supplement 4). 
The derived RM allele of the causal NTA1 E129G variant may have been able to rise to comparatively 
high population frequency because deleting NTA1 does not decrease competitive fitness (Baker and 
Varshavsky, 1995).

We examined additional QTLs to nominate candidate causal genes. The most frequently observed 
UPS QTL was detected for 8 of 8 Ac/N-end and 6 of 12 Arg/N-end TFTs and was located on chro-
mosome XII in the immediate vicinity of a Ty1 insertion in the HAP1 transcription factor in the BY 
strain (Figure 2B, Figure 2—source data 1; Gaisne et al., 1999). The Ty1 insertion in HAP1 exerts 
highly pleiotropic effects on gene expression, altering the expression of 3,755 genes (Albert et al., 
2018). Similarly, a QTL on chromosome XIV affected 10 of our 20 N-degron TFTs and contained the 
MKT1 gene (Figure 2B, Figure 2—source data 1). MKT1 encodes a multi-functional RNA binding 
protein involved in the post-transcriptional regulation of gene expression and is the causal gene for 
other QTLs previously mapped in the BY/RM cross (Jain et al., 2016; Wickner, 1987; Icho et al., 
1986). HAP1 and MKT1 are the likely causal genes for the chromosome XII and XIV QTLs, showing 
that genetic variation may also shape UPS activity through indirect effects on genes with no known 
connection to the UPS.

Taken together, our analysis of causal genes and nucleotides illustrates the breadth and diversity 
of genetic influences on UPS activity. Each fine-mapped causal gene harbored multiple causal variants 
that may differentially affect distinct UPS substrates. Regulatory and missense variants in ubiquitin 
system genes that shape the full sequence of molecular events in protein ubiquitination, including 
substrate processing, recognition, and ubiquitination, alter UPS activity.

https://doi.org/10.7554/eLife.79570
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Protein-specific effects of UBR1 -469A>T on gene expression
Previous efforts to understand how genetic variation influences gene expression have revealed 
considerable discrepancies between genetic effects on mRNA versus protein abundance. Many gene 
expression QTLs alter protein abundance without detectable effects on mRNA levels (Battle et al., 
2015; Ghazalpour et al., 2011; Mirauta et al., 2020; Albert et al., 2014; Brion et al., 2020; Chick 
et al., 2016; Cenik et al., 2015; Abell et al., 2022; Foss et al., 2011). We reasoned that protein-
specific gene expression QTLs could arise through effects on UPS protein degradation. To test this 
idea and explore how variant effects on UPS activity influence other aspects of cellular physiology, 
we measured global gene expression at the protein and RNA levels in the same cultures of the BY 
strain and a BY strain engineered to contain the causal –469A>T RM allele in the UBR1 promoter 
("BY UBR1 –469A>T"). As expected, the derived BY allele decreased UBR1 protein and RNA levels 
(Figure 5A/B).

Out of 3,046 proteins quantified by mass spectrometry, 39 proteins were differentially abundant at 
a 10% FDR (Figure 5A, Figure 5—source data 1). Consistent with the reduced UPS activity conferred 
by the BY UBR1 allele, a significant majority (28 of 39, 71%, binomial test p = 9.5e-3) of differentially 
abundant proteins were increased by the BY allele (Figure 5A, Figure 5—source data 1). The median 
log2 fold change across all proteins was –0.012, while for differentially abundant proteins, the median 
log2 fold change was 0.37 (Figure 5A, Figure 5—source data 1). No Gene Ontology or Reactome 
pathway terms were enriched in our set of differentially abundant proteins. This result is consistent 
with recent observations that sequence features, rather than biological function or subcellular localiza-
tion are the primary determinants of substrate targeting by E3 ligases. (Kong et al., 2021; Christiano 
et al., 2020).

To determine whether differences in protein abundance were reflected at the mRNA level, we 
used RNA-seq to quantify the levels of 5,675 transcripts. A total of 78 transcripts were differentially 
expressed between BY and BY UBR1 –469A>T at a 10% FDR (Figure 5B, Figure 5—source data 
2). Only three genes, UBR1, HSP26, and TMA10, showed significant and concordant changes at the 
RNA and protein levels (Figure 5C) and the overall correlation of log2 fold changes at the protein and 
mRNA levels was low, albeit significant (Pearson r = 0.064, p = 7.2e-4). In contrast to our proteomics 
results, the BY allele tended to decrease mRNA abundance, causing lower expression at a significant 
majority of differentially expressed genes (67 / 78, 86%, binomial test p = 2e-6, Figure 5B, Figure 5—
source data 2). The median log2 fold change across all transcripts was 0.0024, while at differentially 
expressed transcripts it was –0.20 (Figure 5B, Figure 5—source data 2). Multiple GO proteostasis-
related pathways were enriched among the differentially abundant transcripts (Figure  5—figure 
supplement 1), driven by the decreased transcript abundance for genes such as UBR1 and the chap-
erones HSP26, HSP30, HSP31, and HSP82 in BY. Our results add to the emerging view of complex, 
protein-specific influences of genetic variation on gene expression (Battle et al., 2015; Ghazalpour 
et al., 2011; Mirauta et al., 2020; Albert et al., 2014; Brion et al., 2020; Chick et al., 2016; Cenik 
et al., 2015; Abell et al., 2022; Foss et al., 2011). Specifically, a non-coding variant that decreases 
expression of a single E3 ubiquitin ligase increases the levels of dozens of proteins without detectable 
effects on transcript abundance, implicating genetic effects on UPS activity as a potentially prominent 
source of post-translational variation in gene expression.

Discussion
Protein degradation by the UPS is an essential biological process that influences virtually all aspects 
of eukaryotic cellular physiology (Hanna and Finley, 2007; Varshavsky, 2011; Schwartz and Ciecha-
nover, 1999; Finley and Prado, 2020). Understanding the sources of variation in UPS activity thus has 
considerable implications for our understanding of numerous cellular and organismal traits, including 
human health and disease (Schmidt and Finley, 2014; Petrucelli and Dawson, 2004; Gomes, 2013; 
Schwartz and Ciechanover, 1999). Our statistically powerful, systematic genetic mapping of the 
N-end rule has revealed that individual genetic differences create heritable variation in UPS protein 
degradation. Genetic effects on UPS activity are numerous and comprise a continuous distribution 
of many loci with small effects and few loci of large effect (Figure 2), similar to other complex traits 
(Mackay et al., 2009; Ehrenreich et al., 2009). Previous efforts to understand how individual genetic 
differences cause variation in UPS activity have focused on individual disease-causing mutations in 

https://doi.org/10.7554/eLife.79570
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Figure 5. Proteomic and RNA-seq analysis of the effect of the UBR1 –469A>T promoter variant on gene 
expression. (A) Protein fold-change versus statistical significance for BY versus BY UBR1 –469A>T for all detected 
proteins. Differentially abundant proteins are shown in blue. (B) RNA fold-change versus statistical significance for 
BY versus BY UBR1 –469A>T for all detected transcripts. Differentially expressed transcripts are shown in yellow. 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.79570
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UPS genes (Gomes, 2013; Agarwal et al., 2010; Zenker et al., 2006; Deng et al., 2011; Kröll-Hermi 
et al., 2020). Our results show that these large-effect mutations in UPS genes sit atop one extreme 
of a continuous distribution of variant effects that is dominated by many loci of small effect. Aberrant 
UPS activity is a hallmark of many common diseases with a poorly-understood, complex genetic basis 
(Schmidt and Finley, 2014; Petrucelli and Dawson, 2004; Zheng et al., 2014). Our results raise the 
possibility that the effects of many common, small-effect alleles may contribute to the risk of these 
diseases through their effects on UPS activity.

Using genome engineering, we experimentally identified causal regulatory and missense vari-
ants in four functionally distinct ubiquitin system genes. A major function of the ubiquitin system is 
conferring specificity to UPS protein degradation (Komander and Rape, 2012; Johnson et al., 1992; 
Bett, 2016). Non-ubiquitinated proteins are blocked by the proteasome’s 19S regulatory particle 
from degradation by the 20S catalytic core (Inobe and Matouschek, 2014). The selective binding of 
ubiquitinated substrates by the 19S regulatory particle ensures that only proteins targeted for degra-
dation enter the proteasome. The activity of the ubiquitin system towards distinct substrates is highly 
variable, even for proteins degraded by the same UPS pathway (Bachmair et al., 1986; Kats et al., 
2018; Christiano et al., 2020). Consistent with these observations, the effects of causal ubiquitin 
system gene variants were highly substrate-specific (Figures 3 and 4). Our results raise the question 
of whether UPS protein degradation is also shaped by variation in proteasome genes and whether 
any such effects would be less substrate-specific than those in the ubiquitin system. Given the multiple 
QTLs arising from ubiquitin system genes, detecting genetic influences on proteasome activity may 
benefit from assays that can measure proteasome activity independently of the ubiquitin system.

The remarkable complexity in causal variants we uncovered underscores the challenge of predicting 
variant effects on UPS protein degradation. Similar to recent results (Lutz et al., 2022; Abell et al., 
2022), each of the four QTL regions we fine-mapped contained multiple causal variants in a single 
gene (Figures  3 and 4). In the case of NTA1, we observed that the effect of the D111E variant 
was likely masked during QTL mapping by the larger effect of the E129G variant (Figure 4C), high-
lighting the need to test individual variants in isolation. Causal variants may also exert substrate-
specific effects on UPS protein degradation. We observed multiple instances where the magnitude of 
a causal variant’s effect varied between substrates. In the case of UBR1, the RM UBR1 ORF exerted 
significant, discrepant effects on the degradation of Arg/N-degrons (Figure 3C). Recent efforts have 
established that a protein’s sequence critically determines how its degradation is altered by changes 
in UPS activity (Christiano et al., 2020). Thus, a complete understanding of a given variant’s influence 
on UPS protein degradation will require testing its effect on the turnover of multiple substrates with 
diverse sequence compositions.

Our results suggest that genetic effects on UPS activity are an important source of post-translational 
variation in gene expression. A promoter variant that reduces UPS activity by decreasing UBR1 expres-
sion alters the abundance of dozens of proteins without detectable effects on levels of the corre-
sponding mRNA transcripts (Figure 5). Ubr1 and Doa10 target distinct sets of cellular proteins (Kats 
et al., 2018; Kong et al., 2021; Christiano et al., 2020). Their genes each contain multiple causal 
variants that differentially affected individual N-degrons and thus, potentially, endogenous cellular 
proteins. Similar effects arising from variation in the approximately 100 E3 ubiquitin ligases encoded 
in the S. cerevisiae genome (Finley et al., 2012) may help explain the numerous protein-specific gene 
expression QTLs (Battle et al., 2015; Brion et al., 2020; Albert et al., 2014; Mirauta et al., 2020). 
Such effects could be even more prevalent in the human genome, which encodes an estimated 600 
E3 ubiquitin ligases (Li et al., 2008).

(C) Scatterplot comparing changes in protein and RNA abundance caused by UBR1 –469A>T. "LFC" = log2 fold 
change.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Full proteomics results.

Source data 2. Full RNA-seq results.

Figure supplement 1. Over-represented GO biological processes and Reactome pathways in the set of 
differentially expressed transcripts.

Figure 5 continued
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We have developed a generalizable framework for mapping genetic influences on protein degra-
dation. Our results lay important groundwork for future efforts to understand how heritable differ-
ences in UPS activity contribute to variation in complex cellular and organismal traits, including the 
many diseases marked by aberrant UPS activity.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (Saccharomyces cerevisiae) UBR1
Saccharomyces Genome Database 
(SGD) YGR184C

edited to contain
alternative alleles / variants

Gene (S. cerevisiae) DOA10 SGD YIL030C
edited to contain
alternative alleles / variants

Gene (S. cerevisiae) UBC6 SGD YER100W
edited to contain
alternative alleles / variants

Gene (S. cerevisiae) NTA1 SGD YJR062C
edited to contain
alternative alleles / variants

Gene (S. cerevisiae) HIS3 SGD YOR202W
selectable marker for genome 
engineering

Gene (S. cerevisiae) LYP1 SGD YNL268W
selectable marker for genome 
engineering

Strain, strain
background (S. cerevisiae) BY4741 Leonid Kruglyak YFA0040 Supplementary file 5

Strain, strain
background (S. cerevisiae) RM11.1a Leonid Kruglyak YFA0039 Supplementary file 5

Strain, strain
background (S. cerevisiae) recombinant progeny of BY4741 x RM11.1a this study SFA- Supplementary file 5

Strain, strain
background (S. cerevisiae)

strains with tandem fluorescent timer 
reporters this study YFA- Supplementary file 5

Strain, strain
background (S. cerevisiae)

strains lacking individual ubiquitin-
proteasome system genes this study YFA- Supplementary file 5

Strain, strain
background (S. cerevisiae)

strains with alternative UPS gene alleles / 
variants this study YFA- Supplementary file 5

Strain, strain
background (Escherichia coli) DH5α New England Biolabs

for plasmid cloning and 
propagation

Recombinant DNA reagent 23 plasmids this study PFA- Supplementary file 4

Recombinant DNA reagent backbone plasmid Addgene 35121

Recombinant DNA reagent backbone plasmid Addgene 41030

Recombinant DNA reagent KanMX cassette
Wach et al., 1994;
10.1002/yea.320101310

selectable marker for genome 
engineering

Recombinant DNA reagent NatMX cassette
Wach et al., 1994;
10.1002/yea.320101310

selectable marker for genome 
engineering

Sequence-based reagent 102 oligonucleotides
Integrated DNA
Techologies OFA- Supplementary file 3

Commercial assay or kit
Nextera DNA
Library Prep Kit Illumina

FC-121–
1030

Commercial assay or kit

EB Ultra II
Directional RNA
library kit for Illumina New England Biolabs E7760

Commercial assay or kit
Monarch Gel
Extraction kit New England Biolabs T1010L

Commercial assay or kit
HiFi DNA Assembly
Cloning Kit New England Biolabs E5520S

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1002/yea.320101310
https://doi.org/10.1002/yea.320101310
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Commercial assay or kit
TMT10plex Isobaric
Label Reagent Set ThermoFisher Scientific 90110

Commercial assay or kit
ZR Fungal / Bacterial
RNA Miniprep kit Zymo Research R2014

Commercial assay or kit Quick-96 DNA Plus kit
Zymo Research
10.1093/bioinformatics/btp324 D4070

Software, algorithm MULTIPOOL
Edwards and Gifford, 2012;
10.1186/1471-2105-13-S6-S8

Software, algorithm trimmomatic
Bolger et al., 2014
10.1093/bioinformatics/btu170

Software, algorithm kallisto
Bray et al., 2016;
10.1038/nbt.3519

Software, algorithm PANTHER
Mi et al., 2021;
10.1093/nar/gkaa1106

Software, algorithm fastp
Chen et al., 2018;
10.1093/bioinformatics/bty560

Software, algorithm RSeQC
Wang et al., 2012;
10.1093/bioinformatics/bts356

Software, algorithm Scaffold https://www.proteomesoftware.com/

Software, algorithm Proteome Discoverer Thermo Scientific

Software, algorithm AlphaFold
Jumper et al., 2021;
10.1038/s41586-021-03819-2

Software, algorithm Inkscape https://inkscape.org

Other LSR II Flow Cytometer BD flow cytometry

Other FACSAria II Cell Sorter BD cell sorting

Other
Orbitrap Fusion Tribrid
MS-MS instrument Thermo Scientific mass spectrometry

Other Next-Seq 550 Illumina DNA / RNAsequencing

 Continued

Tandem fluorescent timer ubiquitin-proteasome system activity 
reporters
We used tandem fluorescent timers (TFTs) to measure ubiquitin-proteasome system (UPS) activity. 
TFTs are fusions of two fluorescent proteins (FPs) with distinct spectral profiles and maturation kinetics 
(Khmelinskii et al., 2012; Khmelinskii and Knop, 2014). In the most common implementation, a TFT 
consists of a faster maturing green fluorescent protein (GFP) and a slower maturing red fluorescent 
protein (RFP). Because the FPs in the TFT mature at different rates, the RFP / GFP ratio changes over 
time. If the degradation rate of a TFT exceeds the maturation rate of the RFP, the -log2 RFP / GFP 
ratio is directly proportional to the construct’s degradation rate (Khmelinskii and Knop, 2014; Khme-
linskii et al., 2012). When fused to N-degrons, the TFT’s RFP / GFP ratio measures UPS N-end rule 
activity (Khmelinskii et al., 2012; Khmelinskii et al., 2014). The RFP / GFP ratio is also independent 
of the TFT’s expression level, (Khmelinskii et al., 2012; Khmelinskii and Knop, 2014; Kong et al., 
2021) preventing confounding from genetic effects on reporter expression in genetically diverse cell 
populations.

We used fluorescent proteins from previously characterized TFTs in our experiments (Khmelinskii 
et  al., 2016; Khmelinskii and Knop, 2014; Khmelinskii et  al., 2012; Khmelinskii et  al., 2014). 
superfolder GFP (Pédelacq et al., 2006) (sfGFP) was used as the faster maturing FP in all TFTs. sfGFP 
matures in approximately 5 min and has excitation and emission maximums of 485 nm and 510 nm, 
respectively (Pédelacq et  al., 2006). The slower maturing FP in each TFT was either mCherry or 
mRuby. mCherry matures in approximately 40  min and has excitation and emission maximums of 
587 nm and 610 nm, respectively (Shaner et al., 2004). mRuby matures in approximately 170 min 
and has excitation and emission maximums of 558 nm and 605 nm, respectively (Kredel et al., 2009). 

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1186/1471-2105-13-S6-S8
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1093/nar/gkaa1106
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/bts356
https://www.proteomesoftware.com/
https://doi.org/10.1038/s41586-021-03819-2
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All TFT fluorescent proteins are monomeric. We separated green and red FPs in each TFT with an 
unstructured 35 amino acid linker sequence to minimize fluorescence resonance energy transfer 
(Khmelinskii et al., 2012).

Construction of Arg/N-end and Ac/N-end pathway TFTs
To generate TFT constructs with defined N-terminal amino acids, we used the ubiquitin-fusion tech-
nique (Bachmair et al., 1986; Varshavsky, 2005; Varshavsky, 2011), which involves placing a ubiq-
uitin moiety immediately upstream of a sequence encoding the desired N-degron. During translation, 
ubiquitin-hydrolases cleave the ubiquitin moiety, exposing the N-degron (Figure 1A). We synthesized 
DNA (Integrated DNA Technologies [IDT], Coralville, Iowa, USA) encoding the Saccharomyces cerevi-
siae ubiquitin sequence and a peptide linker sequence derived from Escherichia coli ß-galactosidase 
previously used to identify components of the Arg/N-end and Ac/N-end pathways (Bachmair et al., 
1986). The peptide linker sequence is unstructured and contains internal lysine residues required for 
ubiquitination and degradation by the UPS (Bachmair et al., 1986; Hwang et al., 2010). Peptide 
linkers encoding the 20 possible N-terminal amino acids were made by PCR amplifying the linker 
sequence using oligonucleotides encoding each unique N-terminal amino acid (Supplementary file 
3).

We then devised a general strategy to assemble TFT-containing plasmids with defined N-ter-
minal amino acids (Figure  1—figure supplement 2). We first obtained sequences encoding each 
reporter element by PCR or DNA synthesis. We codon-optimized the sfGFP, mCherry, mRuby, and 
the TFT linker sequences for expression in S. cerevisiae using the Java Codon Adaptation Tool (JCaT) 
(Grote et al., 2005) and synthesized DNA fragments encoding each sequence (IDT). We used the 
TDH3 promoter to drive expression of each TFT reporter. The TDH3 promoter was PCR-amplified 
from Addgene plasmid #67639 (a gift from John Wyrick). We used the ADH1 terminator in all TFT 
constructs, which we PCR amplified from Addgene plasmid #67639. We used the KanMX cassette 
(Wach et al., 1994), which confers resistance to G418, as the selection module for all TFT constructs 
and obtained this sequence by PCR amplification from Addgene plasmid #41030 (a gift from Michael 
Boddy). Thus, each construct has the general structure of TDH3 promoter, N-degron, linker sequence, 
TFT, ADH1 terminator, and the KanMX resistance cassette (Figure 1—figure supplement 2). Based 
on the half-lives of N-degrons (Bachmair et al., 1986; Hwang et al., 2010; Varshavsky, 2011), we 
used the mCherry-sfGFP TFT for all Arg/N-end constructs and the mRuby-sfGFP TFT for all Ac/N-end 
constructs.

We used Addgene plasmid #35121 (a gift from John McCusker) to construct all TFT plasmids. 
Digesting this plasmid with BamHI and EcoRV restriction enzymes produces a 2,451 bp fragment that 
we used as a vector backbone for TFT plasmid assembly. We obtained a DNA fragment containing 
734 bp of sequence upstream of the LYP1 start codon, a SwaI restriction site, and 380 bp of sequence 
downstream of the LYP1 stop codon by DNA synthesis (IDT). We performed isothermal assembly 
cloning using the New England Biolabs (NEB; Ipswich, MA, USA) HiFi Assembly Cloning Kit (NEB) 
to insert the LYP1 homology sequence into the BamHI/EcoRV digest of Addgene plasmid #35121 to 
create the final backbone plasmid BFA0190 (Supplementary file 4). We then combined SwaI digested 
BFA0190 and the components of each TFT reporter and used the NEB HiFi Assembly Kit (NEB) to 
produce each TFT plasmid. The 5’ and 3’ LYP1 sequences in each TFT contain naturally-occurring 
SacI and BglII restriction sites, respectively. We digested each TFT plasmid with SacI and BglII (NEB) 
to obtain a linear DNA transformation fragment (Figure 1—figure supplement 2). The flanking LYP1 
homology and KanMX module in each TFT construct allows selection for reporter integration at the 
LYP1 locus using G418 (Goldstein and McCusker, 1999) and the toxic amino acid analogue thial-
ysine (S-(2-aminoethyl)-L-cysteine hydrochloride) (Zwolshen and Bhattacharjee, 1981; Baryshnikova 
et al., 2010; Kuzmin et al., 2016). The sequence identity of all assembled plasmids was verified by 
Sanger sequencing. The full list of plasmids used in this study is found in Supplementary file 4.

Yeast strain handling
We used two strains of the yeast Saccharomyces cerevisiae to characterize our TFT reporters and 
perform genetic mapping of UPS activity. The haploid BY strain (genotype: MATa his3Δ hoΔ) is closely 
related to the S. cerevisiae S288C laboratory strain. The second mapping strain, RM, was origi-
nally isolated from a California vineyard and is haploid with genotype MATa can1Δ::STE2pr-SpHIS5 
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his3Δ::NatMX AMN1-BY hoΔ::HphMX URA3-FY. BY and RM differ at 1 nucleotide per 200 base pairs 
on average, such that approximately 45,000 single nucleotide variants (SNVs) between the strains can 
serve as markers in a genetic mapping experiment (Albert et al., 2014; Brion et al., 2020; Ehren-
reich et al., 2009; Ehrenreich et al., 2010).

We built additional strains for characterizing our UPS activity reporters by deleting individual UPS 
genes from the BY strain. Each deletion strain was constructed by replacing the targeted gene with 
the NatMX cassette (Goldstein and McCusker, 1999), which confers resistance to the antibiotic 
nourseothricin. We PCR amplified the NatMX cassette from Addgene plasmid #35121 using primers 
with homology to the 5’ upstream and 3’ downstream sequences of the targeted gene. The oligo-
nucleotides for each gene deletion cassette amplification are listed in Supplementary file 3. We 
created a BY strain lacking the UBR1 gene, which encodes the Arg/N-end pathway E3 ligase Ubr1. 
We refer to this strain hereafter as ‘BY ubr1Δ’. We created a BY strain (‘BY doa10Δ’) lacking the 
DOA10 gene that encodes the Ac/N-end pathway E3 ligase Doa10. Finally, we created a BY strain 
(‘BY rpn4Δ’) lacking the RPN4 that encodes the proteasome transcription factor Rpn4. Table 1 lists 
these strains and their full genotypes. Supplementary file 5 contains the complete list of strains used 
in this study.

Table  2 describes the media formulations used for all experiments. Synthetic complete amino 
acid powders (SC -lys and SC -his -lys -ura) were obtained from Sunrise Science (Knoxville, TN, USA). 
Where indicated, we added the following reagents at the indicated concentrations to yeast media: 
G418, 200  mg/mL (Fisher Scientific, Pittsburgh, PA, USA); clonNAT (nourseothricin sulfate, Fisher 
Scientific), 50 mg/L; thialysine (S-(2-aminoethyl)-L-cysteine hydrochloride; MilliporeSigma, St. Louis, 
MO, USA), 50 mg/L; canavanine (L-canavanine sulfate, MilliporeSigma), 50 mg/L.

Table 1. Strain genotypes.

Short Name Genotype Antibiotic Resistance Auxotrophies

BY MATa his3Δ hoΔ histidine

RM MATα can1Δ::STE2pr-SpHIS5 clonNAT, hygromycin histidine

his3Δ::NatMX hoΔ::HphMX

BY rpn4Δ MATa his3Δ hoΔ rpn4Δ::NatMX clonNAT histidine

BY ubr1Δ MATa his3Δ hoΔ ubr1Δ::NatMX clonNAT histidine

BY doa10Δ MATa his3Δ hoΔ doa10Δ::NatMX clonNAT histidine

Table 2. Media formulations.

Media Name Abbreviation Formulation

Yeast-Peptone-Dextrose YPD 10 g/L yeast extract

20 g/L peptone

20 g/L dextrose

Synthetic Complete SC 6.7 g/L yeast nitrogen base

1.96 g/L amino acid mix -lys

20 g/L dextrose

Haploid Selection SGA 6.7 g/L yeast nitrogen base

1.74 g/L amino acid mix -his -lys -ura

20 g/L dextrose

Sporulation SPO 1 g/L yeast extract

10 g/L potassium acetate

0.5 g/L dextrose

https://doi.org/10.7554/eLife.79570
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Yeast transformation
We used a standard yeast transformation protocol to construct reporter control strains and build 
strains with UPS activity reporters (Gietz and Schiestl, 2007). In brief, we inoculated yeast strains 
growing on solid YPD medium into 5 mL of YPD liquid medium for overnight growth at 30°C. The 
following morning, we diluted 1 mL of saturated culture into 50 mL of fresh YPD and grew the cells for 
4 hr. The cells were then successively washed in sterile ultrapure water and transformation solution 1 
(10 mM Tris HCl [pH 8.0], 1 mM EDTA [pH 8.0], and 0.1 M lithium acetate). At each step, we pelleted 
the cells by centrifugation at 3000 rpm for 2 min in a benchtop centrifuge and discarded the super-
natant. The cells were suspended in 100 μL of transformation solution 1 along with 50 μg of salmon 
sperm carrier DNA and 300 ng of transforming DNA. The cells were incubated at 30 for 30 min and 
700 μL of transformation solution 2 (10 mM Tris HCl [pH 8.0], 1 mM EDTA [pH 8.0], and 0.1 M lithium 
acetate in 40% polyethylene glycol [PEG]) was added to each tube, followed by a 30-min heat shock at 
42°C. We then washed the transformed cells in sterile, ultrapure water. We added 1 mL of liquid YPD 
medium to each tube and incubated the tubes for 90 min with rolling at 30°C to allow for expression 
of the antibiotic resistance cassettes. After washing with sterile, ultrapure water, we plated 200 μL 
of cells on solid SC -lys medium with G418 and thialysine, and, for strains with the NatMX cassette, 
clonNAT. For each strain, we streaked multiple independent colonies (biological replicates) from the 
transformation plate for further analysis as indicated in the text. We verified reporter integration at 
the targeted genomic locus by colony PCR (Ward, 1992). The primers used for these experiments are 
listed in Supplementary file 3.

Yeast mating and segregant populations
We created populations of genetically variable, recombinant cells ("segregants") for genetic mapping 
using a modified synthetic genetic array (SGA) approach (Baryshnikova et al., 2010; Kuzmin et al., 
2016). We first mated BY strains with a given UPS activity reporter to RM by mixing freshly streaked 
cells of each strain on solid YPD medium. For each UPS activity reporter, we mated two independently-
derived clones (biological replicates) to the RM strain. Cells were grown overnight at 30°C and we 
selected for diploid cells (successful BY-RM matings) by streaking mated cells onto solid YPD medium 
with G418 (which selects for the KanMX cassette in the TFT in the BY strain) and clonNAT (which selects 
for the NatMX cassette in the RM strain). We inoculated 5 mL of YPD with freshly streaked diploid 
cells for overnight growth at 30°C. The next day, we pelleted the cultures, washed them with sterile, 
ultrapure water, and resuspended the cells in 5 mL of SPO liquid medium (Table 2). We sporulated the 
cells by incubating them at room temperature with rolling for 9 days. After confirming sporulation by 
brightfield microscopy, we pelleted 2 mL of culture, washed cells with 1 mL of sterile, ultrapure water, 
and resuspended cells in 300 μL of 1 M sorbitol containing 3 U of Zymolyase lytic enzyme (United 
States Biological, Salem, MA, USA) to degrade ascal walls. Digestions were carried out at 30°C with 
rolling for 2 hr. We then washed the spores with 1 mL of 1 M sorbitol, vortexed for 1 min at the highest 
intensity setting, resuspended the cells in sterile ultrapure water, and confirmed the release of cells 
from ascii by brightfield microscopy. We plated 300 μl of cells onto solid SGA medium containing 
G418 and canavanine. This media formulation selects for haploid cells with (1) a UPS activity reporter 
via G418, (2) the MATa mating type via the Schizosaccharomyces pombe HIS5 gene under the control 
of the STE2 promoter (which is only active in MATa cells), and (3) replacement of the CAN1 gene with 
S. pombe HIS5 via the toxic arginine analog canavanine (Baryshnikova et al., 2010; Kuzmin et al., 
2016). Haploid segregant populations were grown for 2 days at 30°C and harvested by adding 10 mL 
of sterile, ultrapure water and scraping the cells from each plate. We pelleted each cell suspension by 
centrifugation at 3000 rpm for 10 min and resuspended the cells in 1 mL of SGA medium. We added 
450 μL of 40% (v/v) sterile glycerol solution to 750 μL of segregant culture and stored samples in screw 
cap cryovials at -80°C. We stored two independent sporulations of each reporter (derived from our 
initial matings) as independent biological replicates.

Flow cytometry
We measured UPS activity by flow cytometry as follows. Yeast strains were manually inoculated into 
400 μL of liquid SC -lys medium with G418 and grown overnight in 2 mL 96-well plates at 30°C with 
1000 rpm mixing using a MixMate (Eppendorf, Hamburg, Germany). The following morning, we inoc-
ulated a fresh 400 μL of G418-containing SC -lys media with 4 μL of each saturated culture. Cells were 
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grown for an additional 3 hr prior to analysis by flow cytometry. All flow cytometry experiments were 
performed on an LSR II flow cytometer (BD, Franklin Lakes, NJ, USA) equipped with a 20 mW 488 nm 
laser with 488/10 and 525/50 filters for measuring forward/side scatter and sfGFP, respectively, as 
well as a 40 mW 561 nm laser and a 610/20 filter for measuring mCherry and mRuby. Table 3 lists the 
parameters and settings that were used for all flow cytometry and fluorescence-activated cell sorting 
(FACS) experiments. We recorded 10,000  cells each from 8 independent biological replicates per 
strain for our analyses of BY, RM, and reporter control strains.

We analyzed flow cytometry data using R (R Foundation for Statistical Computing, Vienna Austria) 
and the flowCore R package (Hahne et al., 2009). We first filtered each flow cytometry dataset to 
include only those cells within 10% ± the forward scatter (a proxy for cell size) median. We empirically 
determined that this gating approach captured the central peak of cells in the FSC histogram. It also 
removed cellular debris, aggregates of multiple cells, and restricted our analyses to cells of the same 
approximate size. We observed that the TFT’s output changed with the passage of time during flow 
cytometry experiments. We used the residuals of a loess regression of the TFT’s output on time to 
correct for this effect, similar to a previously-described approach (Brion et al., 2020).

To characterize our TFT reporters, we used the following analysis steps. We extracted the median 
-log2 RFP / GFP ratio from each of 10,000 cells per strain per reporter. These values were Z-score 
normalized relative to the sample lowest degradation rate (typically the E3 ligase deletion strain). 
Following this transformation, the strain with lowest degradation rate has a degradation rate of 
approximately 0 and the now-scaled RFP / GFP ratio is directly proportional to the construct’s degra-
dation rate. To compare degradation rates between strains and individual UPS activity reporters, we 
then converted scaled RFP/GFP ratios to Z scores, which we report as "Normalized UPS Activity". 
Statistical significance was assessed using a one-way ANOVA with Tukey’s HSD post-hoc test.

For fine-mapping causal genes and variants for UPS activity QTLs, we used the following approach. 
We extracted the median -log2 RFP / GFP ratio from each of 10,000 cells per strain per reporter. These 
values were Z-score normalized relative to the median of the control strain (a BY strain engineered to 
contain the BY allele of a candidate causal gene). Statistical significance was assessed using a t-test 
of each experimental strain versus the control strain with Benjamini-Hochberg correction for multiple 
testing (Benjamini and Hochberg, 1995).

Fluorescence-activated cell sorting
We selected populations of segregants for QTL mapping using a previously described approach for 
isolating phenotypically extreme cell populations by FACS (Albert et al., 2014; Brion et al., 2020). 
Segregant populations were thawed approximately 16 hr prior to cell sorting and grown overnight 
in 5 mL of SGA medium containing G418 and canavanine. The following morning, 1 mL of cells from 
each segregant population was diluted into a fresh 4 mL of SGA medium containing G418 and canav-
anine. Segregant cultures were then grown for an additional 4 hours prior to sorting. All FACS experi-
ments were carried out using a FACSAria II cell sorter (BD). We used plots of side scatter (SSC) height 
by SSC width and forward scatter (FSC) height by FSC width to remove doublets from each sample. 
We then filtered cells on the basis of FSC area, restricting our sorts to ±7.5% of the central FSC peak, 
which we empirically determined excluded cellular debris and aggregates while encompassing the 
primary haploid cell population. Finally, we defined a fluorescence-positive population by comparing 
each segregant population to negative control BY and RM strains without TFTs. We collected pools of 
20,000 cells each from three gates drawn on each segregant population:

Table 3. Flow cytometry and FACS settings.

Parameter Laser Line (nm) Laser Setting (V) Filter

forward scatter (FSC) 488 500 488/10

side scatter (SSC) 488 275 488/10

sfGFP 488 500 525/50

mCherry 561 615 610/20

mRuby 561 615 610/20

https://doi.org/10.7554/eLife.79570
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1.	 The 2% lower tail of the UPS activity distribution
2.	 The 2% upper tail of the UPS activity distribution
3.	 Fluorescence-positive cells without selection on UPS activity (“null pools”), which were used to 

determine the false positive rate of the QTL mapping method (see below)

We collected cell pools from two independent biological replicates (spore preparations) for each 
reporter. Each pool of 20,000 cells was collected into sterile 1.5 mL polypropylene tubes containing 
1 mL of SGA medium and grown overnight at 30°C with rolling. The next day, we mixed 750 μL of cells 
with 450 μL of 40% (v/v) glycerol and stored this mixture in 2 mL 96-well plates at −80°C.

Genomic DNA isolation and library preparation
We extracted genomic DNA from sorted segregant pools for whole-genome sequencing. Deep-well 
plates containing glycerol stocks of sorted segregant pools were thawed and 800 μL of each sample 
was pelleted by centrifugation at 3,700  rpm for 10 min. We discarded the supernatant and resus-
pended cell pellets in 800 μL of a 1 M sorbitol solution containing 0.1 M EDTA, 14.3 mM β-mercap-
toethanol, and 500 U of Zymolyase lytic enzyme to digest cell walls prior to DNA extraction. The 
digestion reaction was carried out by resuspending cell pellets with mixing at 1,000 rpm for 2 min 
followed by incubation for 2  hr at 37°C. When the digestion reaction finished, we discarded the 
supernatant, resuspended cells in 50 μL of phosphate buffered saline, and used the Quick-DNA 96 
Plus kit (Zymo Research, Irvine, CA, USA) to extract genomic DNA. We followed the manufacturer’s 
protocol to extract genomic DNA with the following modifications. We incubated cells in a 20 mg/
mL proteinase K solution overnight with incubation at 55°C. After completing the DNA extraction 
protocol, we eluted DNA using 40 μL of DNA elution buffer (10 mM Tris-HCl [pH 8.5], 0.1 mM EDTA). 
The DNA concentration for each sample was determined using the Qubit dsDNA BR assay kit (Thermo 
Fisher Scientific, Waltham, MA, USA) in a 96 well format using a Synergy H1 plate reader (BioTek 
Instruments, Winooski, VT, USA).

We used a previously-described approach to prepare libraries for short-read whole-genome 
sequencing on the Illumina Next-Seq platform (Albert et al., 2014; Brion et al., 2020). We used the 
Nextera DNA library kit (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions 
with the following modifications. For the tagmentation reaction, 5 ng of genomic DNA from each 
sample was diluted in a master mix containing 4 μL of Tagment DNA buffer, 1 μL of sterile molec-
ular biology grade water, and 5 μL of Tagment DNA enzyme diluted 1:20 in Tagment DNA buffer. 
The tagmentation reaction was run on a SimpliAmp thermal cycler (Thermo Fisher Scientific) using 
the following parameters: 55°C temperature, 20 μL reaction volume, 10 min incubation. To prepare 
libraries for sequencing, we added 10 μL of the tagmentation reaction to a master mix containing 1 
μL of an Illumina i5 and i7 index primer pair mixture, 0.375 μL of ExTaq polymerase (Takara Bio, Moun-
tain View, CA, USA), 5 μL of ExTaq buffer, 4 μL of a dNTP mixture, and 29.625 μL of sterile molecular 
biology grade water. We generated all 96 possible index oligo combinations using 8 i5 and 12 i7 index 
primers. The library amplification reaction was run on a SimpliAmp thermal cycler with the following 
parameters: initial denaturation at 95°C for 30 s, then 17 cycles of 95°C for 10 s (denaturation), 62°C 
for 30 s (annealing), and 72°C for 3 min (extension). We quantified the DNA concentration of each 
reaction using the Qubit dsDNA BR assay kit (Thermo Fisher Scientific) and pooled 10 μL of each 
reaction. This pooled mixture was run on a 2% agarose gel and we extracted and purified DNA in the 
400 bp to 600 bp region using the Monarch Gel Extraction Kit (NEB) according to the manufacturer’s 
instructions.

Whole-genome sequencing
We submitted pooled, purified DNA libraries to the University of Minnesota Genomics Center (UMGC) 
for Illumina sequencing. Prior to sequencing, UMGC staff performed three quality control (QC) assays. 
Library concentration was determined using the PicoGreen dsDNA quantification reagent (Thermo 
Fisher Scientific) with libraries at a concentration of 1 ng/μL passing QC. Library size was deter-
mined using the Tapestation electrophoresis system (Agilent Technologies, Santa Clara, CA, USA) 
with libraries in the range of 200–700  bp passing QC. Library functionality was determined using 
the KAPA DNA Library Quantification kit (Roche, Penzberg, Germany), with libraries with a concen-
tration greater than 2 nM passing. All submitted libraries passed each QC assay. We submitted 7 
libraries for sequencing at different times. Libraries were sequenced on a NextSeq 550 instrument 
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(Illumina). Depending on the number of samples, we used the following output settings. For libraries 
with 70 or more samples (2 libraries), 75 bp paired end sequencing was performed in high-output 
mode to generate approximately 360 × 106 reads. For libraries with 50 or fewer samples (5 libraries), 
75 bp paired end sequencing was performed in mid-output mode to generate approximately 120 
× 106 reads. Average read coverage of the genome ranged from 9 to 35 with a median coverage 
of 28 across all libraries. Sequence data de-multiplexing was performed by UMGC. Whole-genome 
sequencing data have been deposited into the NIH Sequence Read Archive under Bioproject acces-
sion PRJNA881749.

Raw whole-genome sequencing data processing
We calculated allele frequencies from our whole-genome sequencing data using the following pipe-
line. We initially filtered reads to include only those reads with mapping quality scores greater than 
30. We aligned the filtered reads to the S. cerevisiae reference genome (version sacCer3) using BWA 
(Li and Durbin, 2009a) (command: ‘mem -t 24’). We then used samtools (Li et al., 2009b) to remove 
unaligned reads, non-uniquely aligned reads, and PCR duplicates (command: ‘samtools rmdup -S’). 
Finally, we produced vcf files containing coverage and allelic read counts at each of 18,871 high-
confidence, reliable SNPs (Bloom et al., 2013; Ehrenreich et al., 2010) (command: ‘samtools mpileup 
-vu -t INFO/AD -l’). Because the BY strain is closely related to the S288C genome reference S. cerevi-
siae strain, we considered BY alleles reference and RM alleles alternative alleles.

QTL mapping
We identified QTLs from sequence data following established procedures for bulk segregant analysis 
(Ehrenreich et al., 2010; Albert et al., 2014; Brion et al., 2020). Allele counts in the vcf files gener-
ated above were provided to the MULTIPOOL algorithm (Edwards and Gifford, 2012). MULTIPOOL 
computes logarithm of the odds (LOD) scores by comparing two models: (1) a model in which the 
high and low UPS activity pools come from one from common population and thus share the same 
frequency of the BY and RM allele, and (2) a model in which these pools come from two populations 
with two different allele frequencies, indicating the presence of a QTL. We identified QTLs as genomic 
regions exceeding an empirically-derived significance threshold (see below). We used MULTIPOOL 
with the following settings: bp per centiMorgan = 2,200, bin size = 100 bp, effective pool size = 1,000. 
As in previous QTL mapping in the BY/RM cross by bulk segregant analysis (Albert et al., 2014; Brion 
et al., 2020), we excluded variants with allele frequencies higher than 0.9 or lower than 0.1 (Albert 
et al., 2014; Brion et al., 2020). We also used MULTIPOOL to estimate confidence intervals for each 
significant QTL, which we defined as a 2-LOD drop from the QTL peak position. To visualize QTLs and 
gauge their effects, we also computed the RM allele frequency differences (ΔAF) at each site between 
our high and low UPS activity pools. Because allele frequencies are affected by random counting 
noise, we used loess regression to smooth the allele frequency for each sample before computing 
ΔAF. We used the smoothed values to plot the ΔAF distribution along the genome and as a measure 
of QTL effect size.

Null sorts and empirical false discovery rate estimation
We used "null" segregant pools (fluorescence-positive cells with no selection on UPS activity) to 
empirically estimate the false discovery rate (FDR) of our QTL mapping method. Because these cells 
are obtained as two pools from the same null population in the same sample, any ΔAF differences 
between them are the result of technical noise or random variation. We permuted these null compar-
isons across segregant pools with the same UPS activity reporter for a total of 112 null comparisons. 
We define the "null QTL rate" at a given LOD threshold as the number of QTLs that exceeded the 
threshold in these comparisons divided by the number of null comparisons. To determine the FDR 
for a given LOD score, we then determined the number of QTLs for our experimental comparisons 
(high UPS activity versus low UPS activity). We define the "experimental QTL rate" as the number of 
experimental QTLs divided by the number of experimental comparisons. The FDR is thus computed 
as follows:

	﻿‍
null QTL rate = n. null QTLs

n. null comparisons‍�
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	﻿‍
experimental QTL rate = n. experimental QTLs

n. experimental comparisons‍�

	﻿‍
FDR = null QTL rate

experimental QTL rate‍�

We evaluated the FDR over a LOD range of 2.5–10 in 0.5 LOD increments. We found that a LOD 
value of 4.5 led to a null QTL rate of 0.0625 and an FDR of 0.507%. We used this value as our signif-
icance threshold for QTL mapping and further filtered our QTL list by excluding QTLs that were not 
detected in each of two independent biological replicates. Replicating QTLs were defined as those 
whose peaks were within 100 kb of each other on the same chromosome with the same direction 
(positive or negative) of RM allele frequency difference between high and low UPS activity pools.

QTL fine-mapping by allelic engineering
We used ‘CRISPR-Swap’ (Lutz et al., 2019), a two-step method for scarless allelic editing, to fine-map 
QTLs to the level of their causal genes and nucleotides. In the first step of CRISPR-Swap, a gene of 
interest (GOI) is deleted and replaced with a selectable marker. In the second step, cells are co-trans-
formed with (1) a plasmid that expresses CRISPR-cas9 and a guide RNA targeting the selectable 
marker and (2) a repair template encoding the desired allele of the GOI.

We used CRISPR-Swap to generate BY strains harboring either RM alleles or chimeric BY/RM alleles 
of several genes, as described below. To do so, we first replaced the gene of interest in BY with the 
NatMX selectable marker by transforming a PCR product encoding the NatMX cassette with 40 bp 
overhangs at the 5’ and 3’ ends of the targeted gene. To generate GOIΔ::NatMX transformation 
fragments, we PCR amplified NatMX from Addgene plasmid #35121 with the primers listed in Supple-
mentary file 3 using Phusion Hot Start Flex DNA polymerase (NEB). The NatMX cassette was trans-
formed into the BY strain using the methods described above and transformants were plated onto 
YPD medium containing clonNAT. We verified the deletion of each gene of interest from single-colony 
purified transformants by colony PCR (primer sequences listed in Supplementary file 3).

We then modified the original CRISPR-Swap plasmid (PFA0055, Addgene plasmid #131774) to 
replace its LEU2 selectable marker with the HIS3 selectable marker, creating plasmid PFA0227 (Supple-
mentary file 4). To build PFA0277, we first digested PFA0055 with restriction enzymes BsmBI-v2 and 
HpaI to remove the LEU2 selectable marker. We synthesized the S. cerevisiae HIS3 selectable marker 
from plasmid pRS313 (Sikorski and Hieter, 1989) with 20 base pairs of overlap to BsmBI-v2/HpaI-
digested PFA0055 on both ends. We used this synthetic HIS3 fragment and BsmBI-v2/HpaI-digested 
PFA0055 to create plasmid PFA0227 by isothermal assembly cloning using the HiFi Assembly Cloning 
Kit (NEB) according to the manufacturer’s instructions. In addition to the HIS3 selectable marker, 
PFA0227 contains the cas9 gene driven by the constitutively active TDH3 promoter and a guide RNA, 
gCASS5a, that directs cleavage of a site immediately upstream of the TEF promoter used to drive 
expression of the MX series of selectable markers (Goldstein and McCusker, 1999; Lutz et al., 2019). 
We verified the sequence of PFA0227 by Sanger sequencing.

We used genomic DNA from BY and RM strains as a template to PCR amplify repair templates for 
CRISPR-Swap. Genomic DNA was extracted from BY and RM strains using the ‘10-min prep’ protocol 
(Hoffman and Winston, 1987). We amplified full-length repair templates from RM and BY containing 
each GOI’s promoter, open-reading frame (ORF), and terminator using Phusion Hot Start Flex DNA 
polymerase (NEB). We also created chimeric repair templates containing combinations of BY and RM 
alleles using PCR splicing by overlap extension (Horton et al., 1989). Table 4 lists the repair templates 
used for CRISPR swap. The sequence of all repair templates was verified by Sanger sequencing.

To create allele swap strains, we co-transformed BY strains with 200 ng of plasmid PFA0227 and 
1.5 μg of GOI repair template. Transformants were selected and single colony purified on synthetic 
complete medium lacking histidine and then patched onto solid YPD medium. We tested each strain 
for the desired exchange of the NatMX selectable marker with a UBR1 allele by patching strains onto 
solid YPD medium containing clonNAT. We then verified allelic exchange in strains lacking clonNAT 
resistance by colony PCR (primers listed in Supplementary file 3). We kept 16 independently-derived 
biological replicates of each allele swap strain. To test the effects of each allele swap, we transformed 
UPS activity reporters into our allele swap strains and characterized reporter activity by flow cytometry 
using the methods described above.
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We tested whether a QTL on chromosome V results from variation in UBC6 using CRISPR-Swap. 
Deleting UBC6 caused a large growth defect relative to the wild-type BY strain. Providing cells with 
multiple UBC6 alleles, including the BY allele, did not correct the growth rate defect. We did not 
observe growth defects in any other fine-mapping strains.

RNA isolation
We isolated total RNA from 5 independent biological replicates each of the wild-type BY strain and a 
BY strain edited to contain the –469A>T RM variant in the UBR1 promoter (hereafter "UBR1 –469A>T 
BY"). All 10 samples were grown and harvested at the same time. BY and UBR1 –469A>T BY strains 
were grown overnight at 30°C in 5 mL of SC medium. The following day, the cultures were diluted 
to an OD of 0.05 in 100 mL of fresh SC medium and grown for approximately 7 hours. When the 
optical density (OD) of each culture was approximately 0.40, the cells were pelleted by centrifugation 
at 3,000 rpm for 10 min. Pellets were then washed by resuspending them in 1 mL of sterile ultrapure 
water, followed by centrifugation at 3,000 rpm for 3 min to again pellet the cells. Following this step, 
cell pellets were resuspended in 1 mL of ultrapure water and split into 4 aliquots, each containing 250 
μL. After re-centrifuging and discarding the supernatant, the pellets were snap frozen by immersion in 
liquid nitrogen, followed by storage at −80°C. Pellets were subsequently used for RNA isolation and 
mass spectrometric proteomic analysis, as described below.

Total RNA was extracted from frozen cell pellets using the ZR Fungal/Bacterial miniprep kit (Zymo), 
according to the manufacturer’s instructions. Briefly, total RNA was isolated from cell pellets in two 
batches, each containing equal numbers of BY and UBR1 –469A>T BY samples. After thawing, pellets 
were resuspended in lysis buffer and transferred to screwcap lysis tubes containing glass beads. Tubes 

Table 4. CRISPR-swap repair templates.

Gene Allele Name Promoter ORF Terminator

UBR1 UBR1 BY BY BY BY

UBR1 UBR1 RM RM RM RM

UBR1 UBR1 RM promoter RM BY BY

UBR1 UBR1 RM ORF BY RM BY

UBR1 UBR1 RM terminator BY BY RM

UBR1 UBR1 -469A>T –469, RM; all other, BY BY BY

UBR1 UBR1 -197T>G –197, RM; all other, BY BY BY

DOA10 DOA10 BY BY BY BY

DOA10 DOA10 RM RM RM RM

DOA10 DOA10 Q410E BY 1228, RM; all other, BY BY

DOA10 DOA10 K1012N BY 3036, RM; all other, BY BY

DOA10 DOA10 Y1186F BY 3557, RM; all other, BY BY

NTA1 NTA1 BY BY BY BY

NTA1 NTA1 RM RM RM RM

NTA1 NTA1 RM promoter RM BY BY

NTA1 NTA1 D111E RM 331, RM; all other, BY BY

NTA1 NTA1 E129G RM 386, RM; all other, BY BY

UBC6 UBC6 BY BY BY BY

UBC6 UBC6 RM RM RM RM

UBC6 UBC6 RM promoter RM BY BY

UBC6 UBC6 D229G BY 1686, RM; all other, BY BY

UBC6 UBC6 RM terminator BY BY RM

https://doi.org/10.7554/eLife.79570
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were secured in a Mini-BeadBeater (BioSpec Products, Bartlesville, OK, USA) and cells were processed 
in 5 cycles of 2 min of agitation followed by 2 min at −80°C. The cell lysate/bead mixture was centri-
fuged for 1 min at 16,000 x g and 400 μL of 95% ethanol was added to the cleared supernatant 
followed by mixing. Samples were then spun through a binding column and on-column DNA digest 
was performed with DNase I (Zymo) according to the manufacturer’s instructions. Total RNA was 
eluted from columns using 50 μL of RNase-free ultrapure water. The concentration of each sample was 
quantified using RiboGreen; all samples had a concentration greater than 300 ng/μL. The integrity of 
each sample was assessed at UMGC using the Tapestation (Agilent) and an RNA ScreenTape. RNA 
integrity numbers ranged from 9.7 to 10.0 (where 10.0 is the maximum possible score), with a median 
value of 9.9. All RNA samples were stored at −80°C.

RNA-seq
We isolated mRNA from each total RNA sample using the 550 ng of total RNA input and the NEBNext 
Poly(A) mRNA Magnetic Isolation Module (NEB). All samples were processed in a single batch and the 
isolated mRNA from each sample was used to prepare RNA sequencing libraries using the NEBNext 
Ultra II Directional RNA Library Prep kit (NEB) according to the manufacturer’s instructions. Libraries 
were amplified using NEBNext Ultra II Q5 polymerase and unique combinations of primers from 
the NEBNext Multiplex Oligos for Illumina (NEB). The following amplification protocol was used: 
initial denaturation at 98°C for 30 s, followed by 10 cycles of 98°C (10 s; denaturation), 65°C (75 s; 
annealing and extension), and a 65°C final extension for 5 min. PCR reactions were pooled using equal 
amounts of DNA and submitted to UMGC for three quality control assays, which measured the library 
concentration by PicoGreen, library functionality by KAPA qPCR, and library size using the Tapesta-
tion electrophoresis system (Agilent). The resulting library contained a small amount of adapter dimer 
(approximately 9%), which was subsequently removed via a bead-based cleanup. The final, cleaned 
library passed all three QC assays and was sequenced on a Next-Seq 2000 instrument (Illumina) in 
paired-end mode with 150 bp reads. The sequencing run generated 1,367,252,076 reads with an 
average of 136,725,207 (range: 112,285,619–152,571,763) reads per sample.

RNA-seq data processing and analysis
We performed quality control and preprocessing of RNA-seq data using fastp (Chen et al., 2018). 
Our initial processing removed reads with a length less than 36 bp and any reads where the mean 
quality dropped below a mean quality score of 15 in a 4 bp window. We also used fastp to trim 
adapter sequences from the ends of all reads. We then used Kallisto (Bray et al., 2016) to pseudo-
align processed reads to the S. cerevisiae transcriptome, which was obtained from Ensembl (version 
96) (Howe et al., 2021).

To identify differentially expressed transcripts, we used the estimated counts obtained from Kallisto 
as a measure of gene expression and filtered the estimated counts using the following procedures. 
First, we computed a transcript Transcript Integrity Number (TIN) for each gene using the RSeqQC 
(Wang et al., 2012) and removed any genes with a TIN less than 1 for any sample. We also removed 
any genes that Kallisto estimated to have an effective length less of less than 1 and those genes 
whose estimated counts were less than 10 in any sample. The resulting dataset comprised 5,676 
expressed genes. Raw RNA-seq reads and processed counts were deposited in the NIH Gene Expres-
sion Omnibus database under accession number GSE213689. We used DESeq2 (Love et al., 2014) to 
perform statistical analysis of the resulting dataset. We used the RNA harvest batch and OD at time 
of sample harvest as covariates in our analysis. To further control for confounding sample-to-sample 
variation, we used surrogate variable analysis (Leek et  al., 2012; Leek and Storey, 2007), which 
identified two significant surrogate variables that were subsequently added to our statistical model. 
We corrected for multiple testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 
1995) and considered significant differences as those with a corrected p-value less than 0.1.

To link differences in transcript abundance to biological pathways, we performed gene ontology 
enrichment analysis using PANTHER (Mi et al., 2021). The ‘statistical overrepresentation test’ was used 
to search for gene ontology (GO) biological processes and Reactome pathways enriched in our set of 
78 transcripts differentially expressed between BY and UBR1 –469A>T BY. We used the 5,676 genes 
quantified in our RNA-seq statistical analysis as the reference set and used the Benjamini-Hochberg 

https://doi.org/10.7554/eLife.79570


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 26 of 34

method (Benjamini and Hochberg, 1995) to correct for multiple testing. GO terms and Reactome 
pathways with a corrected p-value less than 0.05 were considered significant in our analysis.

Protein isolation and proteomic analysis by mass spectrometry
To quantify gene expression at the protein level, we submitted five cell pellets each from the same 
BY and UBR1 –469A>T BY cultures used for RNA-seq analysis to the University of Minnesota Center 
for Mass Spectrometry and Proteomics (CMSP) for proteomic analysis by mass spectrometry. Cell 
pellets were resuspended for protein extraction in a protein extraction buffer containing 7 M urea, 
2  M thiourea, 0.4  M triethylammonium bicarbonate pH 8.5, 20% acetonitrile, and 4  mM tris(2-
carboxyethyl)phosphine. Cell lysis and protein extraction was then performed using the Barocycler 
NEP2320 (Pressure Biosciences, Medford, MA, USA).

Samples were prepared and analyzed by mass spectrometry as follows. CMSP first labeled indi-
vidual samples using the tandem mass tag (TMT) 10plex labeling kit (Thermo). After tagging, samples 
were pooled for analysis by mass spectrometry on an Orbitrap Tribrid Eclipse instrument (Thermo). 
Database searching was performed using the Proteome Discoverer software and the statistical anal-
ysis of protein abundance was performed in Scaffold (Proteome Software, Portland, OR, USA). We 
considered proteins to be differentially abundant between strains if they had a and a Benjamini-
Hochberg corrected p-value less than 0.1. We performed ontological enrichment analysis of differen-
tially abundant proteins using PANTHER as described above, except that the set of 3,046 detected 
proteins was used as the reference set.

Evolutionary analysis of variants
We inferred the allelic status of individual variants by comparing them to two outgroups: a likely-
ancestral Taiwanese S. cerevisiae isolate and the sister species Saccharomyces paradoxus. We classi-
fied variants as ancestral if they were found in at least one outgroup. All alleles analyzed in this study 
could be unambiguously classified using this approach. We extracted the population frequency of 
all analyzed variants using genome sequence data from a panel of 1,011 S. cerevisiae isolates (Peter 
et al., 2018).

Data and statistical analysis
All data were analyzed using R (version 3.6.1; R Project for Statistical Computing). For all boxplots, the 
center line shows the median, the box excludes the upper and lower quartiles, the whiskers extend 
to 1.5 times the interquartile range. Protein structure predictions were obtained from the AlphaFold 
Protein Structure Database (Jumper et al., 2021) and visualized using ChimeraX (Pettersen et al., 
2021). DNA binding motifs were determined using the Yeast Transcription Factor Specificity Compen-
dium database (de Boer and Hughes, 2012). Final figures and illustrations were made using Inkscape 
(version 0.92; Inkscape Project).

Computational scripts used to process data, for statistical analysis, and to generate figures 
are available at: https://www.github.com/mac230/N-end_Rule_QTL_paper; copy archived at 
swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497 (Collins, 2022).

Acknowledgements
We thank Leonid Kruglyak for the BY and RM yeast strains and Michael Knop for technical assistance 
in implementing the TFT reporter system. We thank the University of Minnesota’s Flow Cytometry 
Resource, Genomics Center, and Center for Mass Spectrometry and Proteomics for their contributions 
to the project. We thank Margaret Kliebhan for the BY / RM variant file used for QTL mapping. We 
thank the members of the Albert laboratory and the BioKansas Scientific Writing Program for critical 
feedback on the manuscript. This work was supported by NIH grants F32-GM128302 to MAC and 
R35-GM124676 to FWA, as well as a Pew Scholarship in the Biomedical Sciences from the Pew Char-
itable Trusts to FWA.

https://doi.org/10.7554/eLife.79570
https://www.github.com/mac230/N-end_Rule_QTL_paper
https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 27 of 34

Additional information

Funding

Funder Grant reference number Author

National Institutes of 
Health

F32-GM128302 Mahlon A Collins

National Institutes of 
Health

R35-GM124676 Frank Wolfgang Albert

Pew Charitable Trusts Scholarship in the 
Biomedical Sciences

Frank Wolfgang Albert

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Mahlon A Collins, Conceptualization, Software, Formal analysis, Supervision, Funding acquisition, 
Validation, Investigation, Visualization, Methodology, Writing - original draft, Project administration, 
Writing – review and editing; Gemechu Mekonnen, Formal analysis, Validation, Investigation; Frank 
Wolfgang Albert, Conceptualization, Resources, Supervision, Funding acquisition, Methodology, 
Writing – review and editing

Author ORCIDs
Mahlon A Collins ‍ ‍ http://orcid.org/0000-0001-6799-5645
Frank Wolfgang Albert ‍ ‍ http://orcid.org/0000-0002-1380-8063

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79570.sa1
Author response https://doi.org/10.7554/eLife.79570.sa2

Additional files
Supplementary files
•  Supplementary file 1. Allele frequency difference and LOD score traces from QTL mapping 
experiments. The plots show the loess-smoothed RM allele frequency difference (high UPS activity 
pool minus low UPS activity pool) and LOD score traces for the 20 N-degrons. QTLs are marked with 
asterisks, which are colored by biological replicate.

•  Supplementary file 2. Influence of LOD score significance threshold on QTL pathway specificity. 
The LOD score and RM allele frequency difference (QTL effect direction) traces for two independent 
biological replicates of each N-degron are shown for each of 23 pathway-specific QTL regions. 
Dashed lines at distinct LOD scores illustrate how changing the significance threshold changes the 
pathway-specificity of a given QTL region.

•  Supplementary file 3. Oligonucleotides. Table listing oligonucleotides used in this study.

•  Supplementary file 4. Plasmids. Table of plasmids used in this study.

•  Supplementary file 5. Yeast strains. Table listing all yeast strains used in the study.

•  MDAR checklist 

Data availability
Raw sequencing reads from QTL mapping experiments are available from the NIH Sequence Read 
Archive under the Bioproject Accession PRJNA881749. Raw and processed RNA-seq data is available 
from the NIH Gene Expression Omnibus under the accession GSE213689. These datasets are fully 
available without restriction. Computational scripts used to process data, for statistical analysis, and 
to generate figures are available at: https://www.github.com/mac230/N-end_Rule_QTL_paper, (copy 
archived at swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497).

https://doi.org/10.7554/eLife.79570
http://orcid.org/0000-0001-6799-5645
http://orcid.org/0000-0002-1380-8063
https://doi.org/10.7554/eLife.79570.sa1
https://doi.org/10.7554/eLife.79570.sa2
https://www.github.com/mac230/N-end_Rule_QTL_paper
https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 28 of 34

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Collins MA 2022 Variation in ubiquitin 
system genes creates 
substrate-specific effects 
on proteasomal protein 
degradation

http://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE213689

NCBI Gene Expression 
Omnibus, GSE213689

Collins MA 2022 Variation in ubiquitin 
system genes creates 
substrate-specific effects 
on proteasomal protein 
degradation

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject?​
term=​PRJNA881749

NCBI BioProject, 
PRJNA881749

References
Abell NS, DeGorter MK, Gloudemans MJ, Greenwald E, Smith KS, He Z, Montgomery SB. 2022. Multiple causal 

variants underlie genetic associations in humans. Science 375:1247–1254. DOI: https://doi.org/10.1126/​
science.abj5117, PMID: 35298243

Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, Martínez de Villarreal L, 
dos Santos HG, Garg A. 2010. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, 
muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. American Journal of 
Human Genetics 87:866–872. DOI: https://doi.org/10.1016/j.ajhg.2010.10.031, PMID: 21129723

Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. 2014. Genetics of single-cell protein abundance 
variation in large yeast populations. Nature 506:494–497. DOI: https://doi.org/10.1038/nature12904, PMID: 
24402228

Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. 2018. Genetics of trans-regulatory variation in gene 
expression. eLife 7:e35471. DOI: https://doi.org/10.7554/eLife.35471, PMID: 30014850

Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, 
Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, 
Tanaka M, et al. 2011. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) 
mutation causes the autoinflammatory disorder, nakajo-nishimura syndrome. PNAS 108:14914–14919. DOI: 
https://doi.org/10.1073/pnas.1106015108, PMID: 21852578

Bachmair A, Finley D, Varshavsky A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. 
Science 234:179–186. DOI: https://doi.org/10.1126/science.3018930, PMID: 3018930

Bajorek M, Finley D, Glickman MH. 2003. Proteasome disassembly and downregulation is correlated with 
viability during stationary phase. Current Biology 13:1140–1144. DOI: https://doi.org/10.1016/s0960-9822(03)​
00417-2, PMID: 12842014

Baker RT, Varshavsky A. 1995. Yeast N-terminal amidase A new enzyme and component of the N-end rule 
pathway. The Journal of Biological Chemistry 270:12065–12074. DOI: https://doi.org/10.1074/jbc.270.20.​
12065, PMID: 7744855

Baraibar MA, Friguet B. 2012. Changes of the proteasomal system during the aging process. Progress in 
Molecular Biology and Translational Science 109:249–275. DOI: https://doi.org/10.1016/B978-0-12-397863-9.​
00007-9, PMID: 22727424

Bartel B, Wünning I, Varshavsky A. 1990. The recognition component of the N-end rule pathway. The EMBO 
Journal 9:3179–3189. DOI: https://doi.org/10.1002/j.1460-2075.1990.tb07516.x, PMID: 2209542

Baryshnikova A, Costanzo M, Dixon S, Vizeacoumar FJ, Myers CL, Andrews B, Boone C. 2010. Synthetic genetic 
array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods in Enzymology 
470:145–179. DOI: https://doi.org/10.1016/S0076-6879(10)70007-0, PMID: 20946810

Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. 2015. Genomic variation. Impact of 
regulatory variation from RNA to protein. Science 347:664–667. DOI: https://doi.org/10.1126/science.​
1260793, PMID: 25657249

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society 57:289–300. DOI: https://doi.org/10.1111/j.2517-6161.​
1995.tb02031.x

Bett JS. 2016. Proteostasis regulation by the ubiquitin system. Essays in Biochemistry 60:143–151. DOI: https://​
doi.org/10.1042/EBC20160001, PMID: 27744330

Bloom JS, Ehrenreich IM, Loo WT, Lite T-LV, Kruglyak L. 2013. Finding the sources of missing heritability in a 
yeast cross. Nature 494:234–237. DOI: https://doi.org/10.1038/nature11867, PMID: 23376951

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 
30:2114–2120. DOI: https://doi.org/10.1093/bioinformatics/btu170, PMID: 24695404

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nature 
Biotechnology 34:525–527. DOI: https://doi.org/10.1038/nbt.3519, PMID: 27043002

Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt A, 
Almeida de Jesus A, Pelletier M, Tsai WL, Remmers EF, Kardava L, Hill S, Kim H, Lachmann HJ, Megarbane A, 

https://doi.org/10.7554/eLife.79570
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213689
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213689
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213689
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213689
https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA881749
https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA881749
https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA881749
https://doi.org/10.1126/science.abj5117
https://doi.org/10.1126/science.abj5117
http://www.ncbi.nlm.nih.gov/pubmed/35298243
https://doi.org/10.1016/j.ajhg.2010.10.031
http://www.ncbi.nlm.nih.gov/pubmed/21129723
https://doi.org/10.1038/nature12904
http://www.ncbi.nlm.nih.gov/pubmed/24402228
https://doi.org/10.7554/eLife.35471
http://www.ncbi.nlm.nih.gov/pubmed/30014850
https://doi.org/10.1073/pnas.1106015108
http://www.ncbi.nlm.nih.gov/pubmed/21852578
https://doi.org/10.1126/science.3018930
http://www.ncbi.nlm.nih.gov/pubmed/3018930
https://doi.org/10.1016/s0960-9822(03)00417-2
https://doi.org/10.1016/s0960-9822(03)00417-2
http://www.ncbi.nlm.nih.gov/pubmed/12842014
https://doi.org/10.1074/jbc.270.20.12065
https://doi.org/10.1074/jbc.270.20.12065
http://www.ncbi.nlm.nih.gov/pubmed/7744855
https://doi.org/10.1016/B978-0-12-397863-9.00007-9
https://doi.org/10.1016/B978-0-12-397863-9.00007-9
http://www.ncbi.nlm.nih.gov/pubmed/22727424
https://doi.org/10.1002/j.1460-2075.1990.tb07516.x
http://www.ncbi.nlm.nih.gov/pubmed/2209542
https://doi.org/10.1016/S0076-6879(10)70007-0
http://www.ncbi.nlm.nih.gov/pubmed/20946810
https://doi.org/10.1126/science.1260793
https://doi.org/10.1126/science.1260793
http://www.ncbi.nlm.nih.gov/pubmed/25657249
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1042/EBC20160001
https://doi.org/10.1042/EBC20160001
http://www.ncbi.nlm.nih.gov/pubmed/27744330
https://doi.org/10.1038/nature11867
http://www.ncbi.nlm.nih.gov/pubmed/23376951
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1038/nbt.3519
http://www.ncbi.nlm.nih.gov/pubmed/27043002


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 29 of 34

Chae JJ, Brady J, et al. 2015. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS 
patients promote type I IFN production. The Journal of Clinical Investigation 125:4196–4211. DOI: https://doi.​
org/10.1172/JCI81260, PMID: 26524591

Brion C, Lutz SM, Albert FW. 2020. Simultaneous quantification of mRNA and protein in single cells reveals 
post-transcriptional effects of genetic variation. eLife 9:e60645. DOI: https://doi.org/10.7554/eLife.60645, 
PMID: 33191917

Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, Alsallakh B, Tilgner H, Araya CL, Tang H, Ricci E, 
Snyder MP. 2015. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation 
across humans. Genome Research 25:1610–1621. DOI: https://doi.org/10.1101/gr.193342.115, PMID: 
26297486

Chen P, Johnson P, Sommer T, Jentsch S, Hochstrasser M. 1993. Multiple ubiquitin-conjugating enzymes 
participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell 74:357–369. DOI: https://doi.​
org/10.1016/0092-8674(93)90426-q, PMID: 8393731

Chen E, Kwon YT, Lim MS, Dubé ID, Hough MR. 2006. Loss of UBR1 promotes aneuploidy and accelerates B-cell 
lymphomagenesis in TLX1/HOX11-transgenic mice. Oncogene 25:5752–5763. DOI: https://doi.org/10.1038/sj.​
onc.1209573, PMID: 16862188

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–
i890. DOI: https://doi.org/10.1093/bioinformatics/bty560, PMID: 30423086

Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, Raghupathy N, Svenson KL, Churchill GA, 
Gygi SP. 2016. Defining the consequences of genetic variation on a proteome-wide scale. Nature 534:500–505. 
DOI: https://doi.org/10.1038/nature18270, PMID: 27309819

Cho YS, Chen C-H, Hu C, Long J, Ong RTH, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, Chang Y-C, Kwak SH, 
Ma RCW, Yamamoto K, Adair LS, Aung T, Cai Q, Chang L-C, Chen Y-T, Gao Y, et al. 2011. Meta-analysis of 
genome-wide association studies identifies eight new loci for type 2 diabetes in east asians. Nature Genetics 
44:67–72. DOI: https://doi.org/10.1038/ng.1019, PMID: 22158537

Christiano R, Arlt H, Kabatnik S, Mejhert N, Lai ZW, Farese RV, Walther TC. 2020. A systematic protein turnover 
map for decoding protein degradation. Cell Reports 33:108378. DOI: https://doi.org/10.1016/j.celrep.2020.​
108378, PMID: 33176155

Ciechanover A, Orian A, Schwartz AL. 2000. Ubiquitin-Mediated proteolysis: biological regulation via 
destruction. BioEssays 22:442–451. DOI: https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-
BIES6>3.0.CO;2-Q, PMID: 10797484

Collins GA, Goldberg AL. 2017. The logic of the 26S proteasome. Cell 169:792–806. DOI: https://doi.org/10.​
1016/j.cell.2017.04.023, PMID: 28525752

Collins M. 2022. N-end_rule_qtl_paper. swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497. Software 
Heritage. https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;​
origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce​
533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497

Coux O, Tanaka K, Goldberg AL. 1996. Structure and functions of the 20S and 26S proteasomes. Annual 
Review of Biochemistry 65:801–847. DOI: https://doi.org/10.1146/annurev.bi.65.070196.004101, PMID: 
8811196

de Boer CG, Hughes TR. 2012. YeTFaSCo: a database of evaluated yeast transcription factor sequence 
specificities. Nucleic Acids Research 40:D169–D179. DOI: https://doi.org/10.1093/nar/gkr993, PMID: 
22102575

Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, Yang Y, Fecto F, Shi Y, Zhai H, Jiang H, 
Hirano M, Rampersaud E, Jansen GH, Donkervoort S, Bigio EH, Brooks BR, Ajroud K, Sufit RL, Haines JL, et al. 
2011. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 
477:211–215. DOI: https://doi.org/10.1038/nature10353, PMID: 21857683

Diskin SJ, Capasso M, Schnepp RW, Cole KA, Attiyeh EF, Hou C, Diamond M, Carpenter EL, Winter C, Lee H, 
Jagannathan J, Latorre V, Iolascon A, Hakonarson H, Devoto M, Maris JM. 2012. Common variation at 6q16 
within Hace1 and Lin28b influences susceptibility to neuroblastoma. Nature Genetics 44:1126–1130. DOI: 
https://doi.org/10.1038/ng.2387, PMID: 22941191

Edwards MD, Gifford DK. 2012. High-resolution genetic mapping with pooled sequencing. BMC Bioinformatics 
13 Suppl 6:S8. DOI: https://doi.org/10.1186/1471-2105-13-S6-S8, PMID: 22537047

Ehrenreich IM, Gerke JP, Kruglyak L. 2009. Genetic dissection of complex traits in yeast: insights from studies of 
gene expression and other phenotypes in the byxrm cross. Cold Spring Harbor Symposia on Quantitative 
Biology. 145–153. DOI: https://doi.org/10.1101/sqb.2009.74.013

Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L. 2010. Dissection 
of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042. DOI: 
https://doi.org/10.1038/nature08923, PMID: 20393561

Finley D, Ulrich HD, Sommer T, Kaiser P. 2012. The ubiquitin-proteasome system of Saccharomyces cerevisiae. 
Genetics 192:319–360. DOI: https://doi.org/10.1534/genetics.112.140467, PMID: 23028185

Finley D, Prado MA. 2020. The proteasome and its network: engineering for adaptability. Cold Spring Harbor 
Perspectives in Biology 12:a033985. DOI: https://doi.org/10.1101/cshperspect.a033985, PMID: 30833452

Foss EJ, Radulovic D, Shaffer SA, Goodlett DR, Kruglyak L, Bedalov A. 2011. Genetic variation shapes protein 
networks mainly through non-transcriptional mechanisms. PLOS Biology 9:e1001144. DOI: https://doi.org/10.​
1371/journal.pbio.1001144, PMID: 21909241

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1172/JCI81260
https://doi.org/10.1172/JCI81260
http://www.ncbi.nlm.nih.gov/pubmed/26524591
https://doi.org/10.7554/eLife.60645
http://www.ncbi.nlm.nih.gov/pubmed/33191917
https://doi.org/10.1101/gr.193342.115
http://www.ncbi.nlm.nih.gov/pubmed/26297486
https://doi.org/10.1016/0092-8674(93)90426-q
https://doi.org/10.1016/0092-8674(93)90426-q
http://www.ncbi.nlm.nih.gov/pubmed/8393731
https://doi.org/10.1038/sj.onc.1209573
https://doi.org/10.1038/sj.onc.1209573
http://www.ncbi.nlm.nih.gov/pubmed/16862188
https://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1038/nature18270
http://www.ncbi.nlm.nih.gov/pubmed/27309819
https://doi.org/10.1038/ng.1019
http://www.ncbi.nlm.nih.gov/pubmed/22158537
https://doi.org/10.1016/j.celrep.2020.108378
https://doi.org/10.1016/j.celrep.2020.108378
http://www.ncbi.nlm.nih.gov/pubmed/33176155
https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q
http://www.ncbi.nlm.nih.gov/pubmed/10797484
https://doi.org/10.1016/j.cell.2017.04.023
https://doi.org/10.1016/j.cell.2017.04.023
http://www.ncbi.nlm.nih.gov/pubmed/28525752
https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497
https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497
https://archive.softwareheritage.org/swh:1:dir:9e4de720d8485ef11cd52171952e8a87baee3e09;origin=https://www.github.com/mac230/N-end_Rule_QTL_paper;visit=swh:1:snp:8fba304ebe4d095e13449fce533c22fe254f2f71;anchor=swh:1:rev:24baa12af4e9c45691be2590ab30b2c1faf0c497
https://doi.org/10.1146/annurev.bi.65.070196.004101
http://www.ncbi.nlm.nih.gov/pubmed/8811196
https://doi.org/10.1093/nar/gkr993
http://www.ncbi.nlm.nih.gov/pubmed/22102575
https://doi.org/10.1038/nature10353
http://www.ncbi.nlm.nih.gov/pubmed/21857683
https://doi.org/10.1038/ng.2387
http://www.ncbi.nlm.nih.gov/pubmed/22941191
https://doi.org/10.1186/1471-2105-13-S6-S8
http://www.ncbi.nlm.nih.gov/pubmed/22537047
https://doi.org/10.1101/sqb.2009.74.013
https://doi.org/10.1038/nature08923
http://www.ncbi.nlm.nih.gov/pubmed/20393561
https://doi.org/10.1534/genetics.112.140467
http://www.ncbi.nlm.nih.gov/pubmed/23028185
https://doi.org/10.1101/cshperspect.a033985
http://www.ncbi.nlm.nih.gov/pubmed/30833452
https://doi.org/10.1371/journal.pbio.1001144
https://doi.org/10.1371/journal.pbio.1001144
http://www.ncbi.nlm.nih.gov/pubmed/21909241


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 30 of 34

Gaisne M, Bécam AM, Verdière J, Herbert CJ. 1999. A “ natural ” mutation in Saccharomyces cerevisiae strains 
derived from S288C affects the complex regulatory gene Hap1 (CYP1). Current Genetics 36:195–200. DOI: 
https://doi.org/10.1007/s002940050490, PMID: 10541856

Geffen Y, Appleboim A, Gardner RG, Friedman N, Sadeh R, Ravid T. 2016. Mapping the landscape of a 
eukaryotic degronome. Molecular Cell 63:1055–1065. DOI: https://doi.org/10.1016/j.molcel.2016.08.005, 
PMID: 27618491

Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, 
Furlotte N, Park CC, Wen PZ, Brewer H, Weitz K, Camp DG, Pan C, Yordanova R, Neuhaus I, Tilford C, 
Siemers N, et al. 2011. Comparative analysis of proteome and transcriptome variation in mouse. PLOS 
Genetics 7:e1001393. DOI: https://doi.org/10.1371/journal.pgen.1001393, PMID: 21695224

Gietz RD, Schiestl RH. 2007. High-Efficiency yeast transformation using the liac/SS carrier DNA/PEG method. 
Nature Protocols 2:31–34. DOI: https://doi.org/10.1038/nprot.2007.13, PMID: 17401334

Gilchrist CA, Gray DA, Baker RT. 1997. A ubiquitin-specific protease that efficiently cleaves the ubiquitin-proline 
bond. The Journal of Biological Chemistry 272:32280–32285. DOI: https://doi.org/10.1074/jbc.272.51.32280, 
PMID: 9405433

Goldstein AL, McCusker JH. 1999. Three new dominant drug resistance cassettes for gene disruption in 
Saccharomyces cerevisiae. Yeast 15:1541–1553. DOI: https://doi.org/10.1002/(SICI)1097-0061(199910)15:​
14<1541::AID-YEA476>3.0.CO;2-K, PMID: 10514571

Gomes AV. 2013. Genetics of proteasome diseases. Scientifica 2013:637629. DOI: https://doi.org/10.1155/​
2013/637629, PMID: 24490108

Grimm S, Höhn A, Grune T. 2012. Oxidative protein damage and the proteasome. Amino Acids 42:23–38. DOI: 
https://doi.org/10.1007/s00726-010-0646-8, PMID: 20556625

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D. 2005. JCat: a novel tool to adapt 
codon usage of a target gene to its potential expression host. Nucleic Acids Research 33:W526–W531. DOI: 
https://doi.org/10.1093/nar/gki376, PMID: 15980527

Hahne F, LeMeur N, Brinkman RR, Ellis B, Haaland P, Sarkar D, Spidlen J, Strain E, Gentleman R. 2009. FlowCore: 
a Bioconductor package for high throughput flow cytometry. BMC Bioinformatics 10:106. DOI: https://doi.org/​
10.1186/1471-2105-10-106, PMID: 19358741

Hanna J, Finley D. 2007. A proteasome for all occasions. FEBS Letters 581:2854–2861. DOI: https://doi.org/10.​
1016/j.febslet.2007.03.053, PMID: 17418826

Hershko A, Ciechanover A. 1998. The ubiquitin system. Annual Review of Biochemistry 67:425–479. DOI: 
https://doi.org/10.1146/annurev.biochem.67.1.425, PMID: 9759494

Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous 
plasmids for transformation of Escherichia coli. Gene 57:267–272. DOI: https://doi.org/10.1016/0378-1119(87)​
90131-4, PMID: 3319781

Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. 1989. Engineering hybrid genes without the use of restriction 
enzymes: gene splicing by overlap extension. Gene 77:61–68. DOI: https://doi.org/10.1016/0378-1119(89)​
90359-4, PMID: 2744488

Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, 
Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, 
Gall A, et al. 2021. Ensembl 2021. Nucleic Acids Research 49:D884–D891. DOI: https://doi.org/10.1093/nar/​
gkaa942, PMID: 33137190

Hwang CS, Shemorry A, Varshavsky A. 2010. N-Terminal acetylation of cellular proteins creates specific 
degradation signals. Science 327:973–977. DOI: https://doi.org/10.1126/science.1183147, PMID: 20110468

Hwang C-S, Sukalo M, Batygin O, Addor M-C, Brunner H, Aytes AP, Mayerle J, Song HK, Varshavsky A, 
Zenker M, Nordheim A. 2011. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 
that cause the johanson-blizzard syndrome. PLOS ONE 6:e24925. DOI: https://doi.org/10.1371/journal.pone.​
0024925

Icho T, Lee HS, Sommer SS, Wickner RB. 1986. Molecular characterization of chromosomal genes affecting 
double-stranded RNA replication in Saccharomyces cerevisiae. Basic Life Sciences 40:165–171. DOI: https://​
doi.org/10.1007/978-1-4684-5251-8_13, PMID: 3551912

Inobe T, Matouschek A. 2014. Paradigms of protein degradation by the proteasome. Current Opinion in 
Structural Biology 24:156–164. DOI: https://doi.org/10.1016/j.sbi.2014.02.002, PMID: 24632559

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 2016. ATPase-modulated stress granules contain 
a diverse proteome and substructure. Cell 164:487–498. DOI: https://doi.org/10.1016/j.cell.2015.12.038, 
PMID: 26777405

Johnson ES, Bartel B, Seufert W, Varshavsky A. 1992. Ubiquitin as a degradation signal. The EMBO Journal 
11:497–505. DOI: https://doi.org/10.1002/j.1460-2075.1992.tb05080.x, PMID: 1311250

Johnson ES, Ma PCM, Ota IM, Varshavsky A. 1995. A proteolytic pathway that recognizes ubiquitin as A 
degradation signal. The Journal of Biological Chemistry 270:17442–17456. DOI: https://doi.org/10.1074/jbc.​
270.29.17442, PMID: 7615550

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, 
Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, 
Adler J, Back T, et al. 2021. Highly accurate protein structure prediction with alphafold. Nature 596:583–589. 
DOI: https://doi.org/10.1038/s41586-021-03819-2, PMID: 34265844

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1007/s002940050490
http://www.ncbi.nlm.nih.gov/pubmed/10541856
https://doi.org/10.1016/j.molcel.2016.08.005
http://www.ncbi.nlm.nih.gov/pubmed/27618491
https://doi.org/10.1371/journal.pgen.1001393
http://www.ncbi.nlm.nih.gov/pubmed/21695224
https://doi.org/10.1038/nprot.2007.13
http://www.ncbi.nlm.nih.gov/pubmed/17401334
https://doi.org/10.1074/jbc.272.51.32280
http://www.ncbi.nlm.nih.gov/pubmed/9405433
https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K
http://www.ncbi.nlm.nih.gov/pubmed/10514571
https://doi.org/10.1155/2013/637629
https://doi.org/10.1155/2013/637629
http://www.ncbi.nlm.nih.gov/pubmed/24490108
https://doi.org/10.1007/s00726-010-0646-8
http://www.ncbi.nlm.nih.gov/pubmed/20556625
https://doi.org/10.1093/nar/gki376
http://www.ncbi.nlm.nih.gov/pubmed/15980527
https://doi.org/10.1186/1471-2105-10-106
https://doi.org/10.1186/1471-2105-10-106
http://www.ncbi.nlm.nih.gov/pubmed/19358741
https://doi.org/10.1016/j.febslet.2007.03.053
https://doi.org/10.1016/j.febslet.2007.03.053
http://www.ncbi.nlm.nih.gov/pubmed/17418826
https://doi.org/10.1146/annurev.biochem.67.1.425
http://www.ncbi.nlm.nih.gov/pubmed/9759494
https://doi.org/10.1016/0378-1119(87)90131-4
https://doi.org/10.1016/0378-1119(87)90131-4
http://www.ncbi.nlm.nih.gov/pubmed/3319781
https://doi.org/10.1016/0378-1119(89)90359-4
https://doi.org/10.1016/0378-1119(89)90359-4
http://www.ncbi.nlm.nih.gov/pubmed/2744488
https://doi.org/10.1093/nar/gkaa942
https://doi.org/10.1093/nar/gkaa942
http://www.ncbi.nlm.nih.gov/pubmed/33137190
https://doi.org/10.1126/science.1183147
http://www.ncbi.nlm.nih.gov/pubmed/20110468
https://doi.org/10.1371/journal.pone.0024925
https://doi.org/10.1371/journal.pone.0024925
https://doi.org/10.1007/978-1-4684-5251-8_13
https://doi.org/10.1007/978-1-4684-5251-8_13
http://www.ncbi.nlm.nih.gov/pubmed/3551912
https://doi.org/10.1016/j.sbi.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24632559
https://doi.org/10.1016/j.cell.2015.12.038
http://www.ncbi.nlm.nih.gov/pubmed/26777405
https://doi.org/10.1002/j.1460-2075.1992.tb05080.x
http://www.ncbi.nlm.nih.gov/pubmed/1311250
https://doi.org/10.1074/jbc.270.29.17442
https://doi.org/10.1074/jbc.270.29.17442
http://www.ncbi.nlm.nih.gov/pubmed/7615550
https://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 31 of 34

Kats I, Khmelinskii A, Kschonsak M, Huber F, Knieß RA, Bartosik A, Knop M. 2018. Mapping degradation signals 
and pathways in a eukaryotic N-terminome. Molecular Cell 70:488–501. DOI: https://doi.org/10.1016/j.molcel.​
2018.03.033, PMID: 29727619

Khmelinskii A., Keller PJ, Bartosik A, Meurer M, Barry JD, Mardin BR, Kaufmann A, Trautmann S, Wachsmuth M, 
Pereira G, Huber W, Schiebel E, Knop M. 2012. Tandem fluorescent protein timers for in vivo analysis of protein 
dynamics. Nature Biotechnology 30:708–714. DOI: https://doi.org/10.1038/nbt.2281, PMID: 22729030

Khmelinskii A., Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ, Le Dez G, Brossard A, Gunnarsson A, 
Barry JD, Meurer M, Kirrmaier D, Boone C, Huber W, Rabut G, Ljungdahl PO, Knop M. 2014. Protein quality 
control at the inner nuclear membrane. Nature 516:410–413. DOI: https://doi.org/10.1038/nature14096, PMID: 
25519137

Khmelinskii A, Knop M. 2014. Analysis of protein dynamics with tandem fluorescent protein timers. Methods in 
Molecular Biology 1174:195–210. DOI: https://doi.org/10.1007/978-1-4939-0944-5_13, PMID: 24947383

Khmelinskii A, Meurer M, Ho CT, Besenbeck B, Füller J, Lemberg MK, Bukau B, Mogk A, Knop M. 2016. 
Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent 
protein timers. Molecular Biology of the Cell 27:360–370. DOI: https://doi.org/10.1091/mbc.E15-07-0525, 
PMID: 26609072

Kisselev AF, Akopian TN, Woo KM, Goldberg AL. 1999. The sizes of peptides generated from protein by 
mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen 
presentation. The Journal of Biological Chemistry 274:3363–3371. DOI: https://doi.org/10.1074/jbc.274.6.​
3363, PMID: 9920878

Komander D, Rape M. 2012. The ubiquitin code. Annual Review of Biochemistry 81:203–229. DOI: https://doi.​
org/10.1146/annurev-biochem-060310-170328, PMID: 22524316

Kong K-YE, Fischer B, Meurer M, Kats I, Li Z, Rühle F, Barry JD, Kirrmaier D, Chevyreva V, San Luis B-J, 
Costanzo M, Huber W, Andrews BJ, Boone C, Knop M, Khmelinskii A. 2021. Timer-based proteomic profiling of 
the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Molecular Cell 
81:2460–2476.. DOI: https://doi.org/10.1016/j.molcel.2021.04.018, PMID: 33974913

Kredel S, Oswald F, Nienhaus K, Deuschle K, Röcker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J, 
Gladfelter AS. 2009. MRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. 
PLOS ONE 4:e4391. DOI: https://doi.org/10.1371/journal.pone.0004391, PMID: 19194514

Kröll-Hermi A, Ebstein F, Stoetzel C, Geoffroy V, Schaefer E, Scheidecker S, Bär S, Takamiya M, Kawakami K, 
Zieba BA, Studer F, Pelletier V, Eyermann C, Speeg-Schatz C, Laugel V, Lipsker D, Sandron F, McGinn S, 
Boland A, Deleuze JF, et al. 2020. Proteasome subunit PSMC3 variants cause neurosensory syndrome 
combining deafness and cataract due to proteotoxic stress. EMBO Molecular Medicine 12:e11861. DOI: 
https://doi.org/10.15252/emmm.201911861, PMID: 32500975

Kuzmin E, Costanzo M, Andrews B, Boone C. 2016. Synthetic genetic array analysis. Cold Spring Harbor 
Protocols 2016:pdb.prot088807. DOI: https://doi.org/10.1101/pdb.prot088807, PMID: 27037072

Laporte D, Salin B, Daignan-Fornier B, Sagot I. 2008. Reversible cytoplasmic localization of the proteasome in 
quiescent yeast cells. The Journal of Cell Biology 181:737–745. DOI: https://doi.org/10.1083/jcb.200711154, 
PMID: 18504300

Laurie-Ahlberg CC, Stam LF. 1987. Use of P-element-mediated transformation to identify the molecular basis of 
naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics 115:129–140. DOI: 
https://doi.org/10.1093/genetics/115.1.129, PMID: 2881843

Leek JT, Storey JD. 2007. Capturing heterogeneity in gene expression studies by surrogate variable analysis. 
PLOS Genetics 3:e30161. DOI: https://doi.org/10.1371/journal.pgen.0030161, PMID: 17907809

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The SVA package for removing batch effects and 
other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. DOI: https://doi.org/10.​
1093/bioinformatics/bts034, PMID: 22257669

Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CAP. 2008. 
Genome-Wide and functional annotation of human E3 ubiquitin ligases identifies Mulan, a mitochondrial E3 
that regulates the organelle’s dynamics and signaling. PLOS ONE 3:e1487. DOI: https://doi.org/10.1371/​
journal.pone.0001487, PMID: 18213395

Li H, Durbin R. 2009a. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 
25:1754–1760. DOI: https://doi.org/10.1093/bioinformatics/btp324, PMID: 19451168

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome 
Project Data Processing Subgroup. 2009b. The sequence alignment/map format and samtools. Bioinformatics 
25:2078–2079. DOI: https://doi.org/10.1093/bioinformatics/btp352, PMID: 19505943

Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, Kim PW, Sheikh A, Lee C-CR, Chen Y, Vera A, Zhang X, 
Goldbach-Mansky R, Zlotogorski A. 2012. Mutations in proteasome subunit β type 8 cause chronic atypical 
neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic 
heterogeneity. Arthritis and Rheumatism 64:895–907. DOI: https://doi.org/10.1002/art.33368, PMID: 21953331

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with 
deseq2. Genome Biology 15:12. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Lutz S, Brion C, Kliebhan M, Albert FW. 2019. Dna variants affecting the expression of numerous genes in trans 
have diverse mechanisms of action and evolutionary histories. PLOS Genetics 15:11. DOI: https://doi.org/10.​
1371/journal.pgen.1008375, PMID: 31738765

Lutz S, Van Dyke K, Feraru MA, Albert FW. 2022. Multiple epistatic DNA variants in a single gene affect gene 
expression in trans. Genetics 220:iyab208. DOI: https://doi.org/10.1093/genetics/iyab208, PMID: 34791209

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1016/j.molcel.2018.03.033
https://doi.org/10.1016/j.molcel.2018.03.033
http://www.ncbi.nlm.nih.gov/pubmed/29727619
https://doi.org/10.1038/nbt.2281
http://www.ncbi.nlm.nih.gov/pubmed/22729030
https://doi.org/10.1038/nature14096
http://www.ncbi.nlm.nih.gov/pubmed/25519137
https://doi.org/10.1007/978-1-4939-0944-5_13
http://www.ncbi.nlm.nih.gov/pubmed/24947383
https://doi.org/10.1091/mbc.E15-07-0525
http://www.ncbi.nlm.nih.gov/pubmed/26609072
https://doi.org/10.1074/jbc.274.6.3363
https://doi.org/10.1074/jbc.274.6.3363
http://www.ncbi.nlm.nih.gov/pubmed/9920878
https://doi.org/10.1146/annurev-biochem-060310-170328
https://doi.org/10.1146/annurev-biochem-060310-170328
http://www.ncbi.nlm.nih.gov/pubmed/22524316
https://doi.org/10.1016/j.molcel.2021.04.018
http://www.ncbi.nlm.nih.gov/pubmed/33974913
https://doi.org/10.1371/journal.pone.0004391
http://www.ncbi.nlm.nih.gov/pubmed/19194514
https://doi.org/10.15252/emmm.201911861
http://www.ncbi.nlm.nih.gov/pubmed/32500975
https://doi.org/10.1101/pdb.prot088807
http://www.ncbi.nlm.nih.gov/pubmed/27037072
https://doi.org/10.1083/jcb.200711154
http://www.ncbi.nlm.nih.gov/pubmed/18504300
https://doi.org/10.1093/genetics/115.1.129
http://www.ncbi.nlm.nih.gov/pubmed/2881843
https://doi.org/10.1371/journal.pgen.0030161
http://www.ncbi.nlm.nih.gov/pubmed/17907809
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
http://www.ncbi.nlm.nih.gov/pubmed/22257669
https://doi.org/10.1371/journal.pone.0001487
https://doi.org/10.1371/journal.pone.0001487
http://www.ncbi.nlm.nih.gov/pubmed/18213395
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1002/art.33368
http://www.ncbi.nlm.nih.gov/pubmed/21953331
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1371/journal.pgen.1008375
https://doi.org/10.1371/journal.pgen.1008375
http://www.ncbi.nlm.nih.gov/pubmed/31738765
https://doi.org/10.1093/genetics/iyab208
http://www.ncbi.nlm.nih.gov/pubmed/34791209


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 32 of 34

Mackay TFC, Stone EA, Ayroles JF. 2009. The genetics of quantitative traits: challenges and prospects. Nature 
Reviews. Genetics 10:565–577. DOI: https://doi.org/10.1038/nrg2612, PMID: 19584810

Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, Thomas PD. 2021. Panther version 16: a 
revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids 
Research 49:D394–D403. DOI: https://doi.org/10.1093/nar/gkaa1106, PMID: 33290554

Michelmore RW, Paran I, Kesseli RV. 1991. Identification of markers linked to disease-resistance genes by bulked 
segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating 
populations. PNAS 88:9828–9832. DOI: https://doi.org/10.1073/pnas.88.21.9828, PMID: 1682921

Mirauta BA, Seaton DD, Bensaddek D, Brenes A, Bonder MJ, Kilpinen H, Stegle O, Lamond AI, HipSci 
Consortium. 2020. Population-scale proteome variation in human induced pluripotent stem cells. eLife 
9:e57390. DOI: https://doi.org/10.7554/eLife.57390, PMID: 32773033

Oh JH, Hyun JY, Chen SJ, Varshavsky A. 2020. Five enzymes of the arg/N-degron pathway form a targeting 
complex: the concept of superchanneling. PNAS 117:10778–10788. DOI: https://doi.org/10.1073/pnas.​
2003043117, PMID: 32366662

Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a 
superfolder green fluorescent protein. Nature Biotechnology 24:79–88. DOI: https://doi.org/10.1038/nbt1172, 
PMID: 16369541

Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, 
Cruaud C, Labadie K, Aury J-M, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, 
et al. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339–344. DOI: 
https://doi.org/10.1038/s41586-018-0030-5, PMID: 29643504

Petrucelli L, Dawson TM. 2004. Mechanism of neurodegenerative disease: role of the ubiquitin proteasome 
system. Annals of Medicine 36:315–320. DOI: https://doi.org/10.1080/07853890410031948, PMID: 15224658

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF 
chimerax: structure visualization for researchers, educators, and developers. Protein Science 30:70–82. DOI: 
https://doi.org/10.1002/pro.3943, PMID: 32881101

Pohl C, Dikic I. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 
366:818–822. DOI: https://doi.org/10.1126/science.aax3769, PMID: 31727826

Renganaath K, Cheung R, Day L, Kosuri S, Kruglyak L, Albert FW. 2020. Systematic identification of cis-
regulatory variants that cause gene expression differences in a yeast cross. eLife 9:e62669. DOI: https://doi.​
org/10.7554/eLife.62669, PMID: 33179598

Schmidt M, Finley D. 2014. Regulation of proteasome activity in health and disease. Biochimica et Biophysica 
Acta - Molecular Cell Research 1843:13–25. DOI: https://doi.org/10.1016/j.bbamcr.2013.08.012, PMID: 
23994620

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. 2011. Global 
quantification of mammalian gene expression control. Nature 473:337–342. DOI: https://doi.org/10.1038/​
nature10098, PMID: 21593866

Schwartz AL, Ciechanover A. 1999. The ubiquitin-proteasome pathway and pathogenesis of human diseases. 
Annual Review of Medicine 50:57–74. DOI: https://doi.org/10.1146/annurev.med.50.1.57, PMID: 10073263

Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. 2004. Improved monomeric red, 
orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature 
Biotechnology 22:1567–1572. DOI: https://doi.org/10.1038/nbt1037, PMID: 15558047

Shringarpure R, Davies KJA. 2002. Protein turnover by the proteasome in aging and disease. Free Radical 
Biology & Medicine 32:1084–1089. DOI: https://doi.org/10.1016/s0891-5849(02)00824-9, PMID: 12031893

Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation 
of DNA in Saccharomyces cerevisiae. Genetics 122:19–27. DOI: https://doi.org/10.1093/genetics/122.1.19, 
PMID: 2659436

Sommer T, Jentsch S. 1993. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic 
reticulum. Nature 365:176–179. DOI: https://doi.org/10.1038/365176a0, PMID: 8396728

Sontag EM, Vonk WIM, Frydman J. 2014. Sorting out the trash: the spatial nature of eukaryotic protein quality 
control. Current Opinion in Cell Biology 26:139–146. DOI: https://doi.org/10.1016/j.ceb.2013.12.006, PMID: 
24463332

Stolzing A, Grune T. 2001. The proteasome and its function in the ageing process. Clinical and Experimental 
Dermatology 26:566–572. DOI: https://doi.org/10.1046/j.1365-2230.2001.00867.x, PMID: 11696059

Swanson R, Locher M, Hochstrasser M. 2001. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic 
reticulum that functions in both ER-associated and MATalpha2 repressor degradation. Genes & Development 
15:2660–2674. DOI: https://doi.org/10.1101/gad.933301, PMID: 11641273

Varshavsky A. 1991. Naming a targeting signal. Cell 64:13–15. DOI: https://doi.org/10.1016/0092-8674(91)​
90202-a, PMID: 1986863

Varshavsky A. 2005. Ubiquitin fusion technique and related methods. Methods in Enzymology 399:777–799. 
DOI: https://doi.org/10.1016/S0076-6879(05)99051-4, PMID: 16338395

Varshavsky A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Science 20:1298–1345. DOI: 
https://doi.org/10.1002/pro.666, PMID: 21633985

Wach A, Brachat A, Pöhlmann R, Philippsen P. 1994. New heterologous modules for classical or PCR-based gene 
disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808. DOI: https://doi.org/10.1002/yea.320101310, 
PMID: 7747518

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1038/nrg2612
http://www.ncbi.nlm.nih.gov/pubmed/19584810
https://doi.org/10.1093/nar/gkaa1106
http://www.ncbi.nlm.nih.gov/pubmed/33290554
https://doi.org/10.1073/pnas.88.21.9828
http://www.ncbi.nlm.nih.gov/pubmed/1682921
https://doi.org/10.7554/eLife.57390
http://www.ncbi.nlm.nih.gov/pubmed/32773033
https://doi.org/10.1073/pnas.2003043117
https://doi.org/10.1073/pnas.2003043117
http://www.ncbi.nlm.nih.gov/pubmed/32366662
https://doi.org/10.1038/nbt1172
http://www.ncbi.nlm.nih.gov/pubmed/16369541
https://doi.org/10.1038/s41586-018-0030-5
http://www.ncbi.nlm.nih.gov/pubmed/29643504
https://doi.org/10.1080/07853890410031948
http://www.ncbi.nlm.nih.gov/pubmed/15224658
https://doi.org/10.1002/pro.3943
http://www.ncbi.nlm.nih.gov/pubmed/32881101
https://doi.org/10.1126/science.aax3769
http://www.ncbi.nlm.nih.gov/pubmed/31727826
https://doi.org/10.7554/eLife.62669
https://doi.org/10.7554/eLife.62669
http://www.ncbi.nlm.nih.gov/pubmed/33179598
https://doi.org/10.1016/j.bbamcr.2013.08.012
http://www.ncbi.nlm.nih.gov/pubmed/23994620
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/nature10098
http://www.ncbi.nlm.nih.gov/pubmed/21593866
https://doi.org/10.1146/annurev.med.50.1.57
http://www.ncbi.nlm.nih.gov/pubmed/10073263
https://doi.org/10.1038/nbt1037
http://www.ncbi.nlm.nih.gov/pubmed/15558047
https://doi.org/10.1016/s0891-5849(02)00824-9
http://www.ncbi.nlm.nih.gov/pubmed/12031893
https://doi.org/10.1093/genetics/122.1.19
http://www.ncbi.nlm.nih.gov/pubmed/2659436
https://doi.org/10.1038/365176a0
http://www.ncbi.nlm.nih.gov/pubmed/8396728
https://doi.org/10.1016/j.ceb.2013.12.006
http://www.ncbi.nlm.nih.gov/pubmed/24463332
https://doi.org/10.1046/j.1365-2230.2001.00867.x
http://www.ncbi.nlm.nih.gov/pubmed/11696059
https://doi.org/10.1101/gad.933301
http://www.ncbi.nlm.nih.gov/pubmed/11641273
https://doi.org/10.1016/0092-8674(91)90202-a
https://doi.org/10.1016/0092-8674(91)90202-a
http://www.ncbi.nlm.nih.gov/pubmed/1986863
https://doi.org/10.1016/S0076-6879(05)99051-4
http://www.ncbi.nlm.nih.gov/pubmed/16338395
https://doi.org/10.1002/pro.666
http://www.ncbi.nlm.nih.gov/pubmed/21633985
https://doi.org/10.1002/yea.320101310
http://www.ncbi.nlm.nih.gov/pubmed/7747518


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 33 of 34

Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J. 2016. Starvation induces proteasome autophagy with 
different pathways for core and regulatory particles. The Journal of Biological Chemistry 291:3239–3253. DOI: 
https://doi.org/10.1074/jbc.M115.699124, PMID: 26670610

Wang L, Wang S, Li W. 2012. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185. 
DOI: https://doi.org/10.1093/bioinformatics/bts356, PMID: 22743226

Ward AC. 1992. Rapid analysis of yeast transformants using colony-PCR. BioTechniques 13:350 PMID: 1389166. 
Wickner RB. 1987. MKT1, a nonessential Saccharomyces cerevisiae gene with a temperature-dependent effect 

on replication of M2 double-stranded RNA. Journal of Bacteriology 169:4941–4945. DOI: https://doi.org/10.​
1128/jb.169.11.4941-4945.1987, PMID: 2822656

Xia K, Guo H, Hu Z, Xun G, Zuo L, Peng Y, Wang K, He Y, Xiong Z, Sun L, Pan Q, Long Z, Zou X, Li X, Li W, Xu X, 
Lu L, Liu Y, Hu Y, Tian D, et al. 2014. Common genetic variants on 1p13.2 associate with risk of autism. 
Molecular Psychiatry 19:1212–1219. DOI: https://doi.org/10.1038/mp.2013.146, PMID: 24189344

Xie Y, Varshavsky A. 2001. Rpn4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a 
negative feedback circuit. PNAS 98:3056–3061. DOI: https://doi.org/10.1073/pnas.071022298, PMID: 
11248031

Yen H-CS, Xu Q, Chou DM, Zhao Z, Elledge SJ. 2008. Global protein stability profiling in mammalian cells. 
Science 322:918–923. DOI: https://doi.org/10.1126/science.1160489, PMID: 18988847

Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, 
Finkelstein IJ, Babu MM, Matouschek A. 2016. Conserved sequence preferences contribute to substrate 
recognition by the proteasome. The Journal of Biological Chemistry 291:14526–14539. DOI: https://doi.org/​
10.1074/jbc.M116.727578, PMID: 27226608

Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, Durie PR, Beier M, Hülskamp G, Guzman C, Rehder H, 
Beemer FA, Hamel B, Vanlieferinghen P, Gershoni-Baruch R, Vieira MW, Dumic M, Auslender R, 
Gil-da-Silva-Lopes VL, Steinlicht S, Rauh M, et al. 2005. Deficiency of UBR1, a ubiquitin ligase of the N-end rule 
pathway, causes pancreatic dysfunction, malformations and mental retardation (johanson-blizzard syndrome). 
Nature Genetics 37:1345–1350. DOI: https://doi.org/10.1038/ng1681, PMID: 16311597

Zenker M, Mayerle J, Reis A, Lerch MM. 2006. Genetic basis and pancreatic biology of johanson-blizzard 
syndrome. Endocrinology and Metabolism Clinics of North America 35:243–253. DOI: https://doi.org/10.1016/​
j.ecl.2006.02.013, PMID: 16632090

Zheng C, Geetha T, Babu JR. 2014. Failure of ubiquitin proteasome system: risk for neurodegenerative diseases. 
Neuro-Degenerative Diseases 14:161–175. DOI: https://doi.org/10.1159/000367694, PMID: 25413678

Zwolshen JH, Bhattacharjee JK. 1981. Genetic and biochemical properties of thialysine-resistant mutants of 
Saccharomyces cerevisiae. Journal of General Microbiology 122:281–287. DOI: https://doi.org/10.1099/​
00221287-122-2-281, PMID: 6798161

https://doi.org/10.7554/eLife.79570
https://doi.org/10.1074/jbc.M115.699124
http://www.ncbi.nlm.nih.gov/pubmed/26670610
https://doi.org/10.1093/bioinformatics/bts356
http://www.ncbi.nlm.nih.gov/pubmed/22743226
http://www.ncbi.nlm.nih.gov/pubmed/1389166
https://doi.org/10.1128/jb.169.11.4941-4945.1987
https://doi.org/10.1128/jb.169.11.4941-4945.1987
http://www.ncbi.nlm.nih.gov/pubmed/2822656
https://doi.org/10.1038/mp.2013.146
http://www.ncbi.nlm.nih.gov/pubmed/24189344
https://doi.org/10.1073/pnas.071022298
http://www.ncbi.nlm.nih.gov/pubmed/11248031
https://doi.org/10.1126/science.1160489
http://www.ncbi.nlm.nih.gov/pubmed/18988847
https://doi.org/10.1074/jbc.M116.727578
https://doi.org/10.1074/jbc.M116.727578
http://www.ncbi.nlm.nih.gov/pubmed/27226608
https://doi.org/10.1038/ng1681
http://www.ncbi.nlm.nih.gov/pubmed/16311597
https://doi.org/10.1016/j.ecl.2006.02.013
https://doi.org/10.1016/j.ecl.2006.02.013
http://www.ncbi.nlm.nih.gov/pubmed/16632090
https://doi.org/10.1159/000367694
http://www.ncbi.nlm.nih.gov/pubmed/25413678
https://doi.org/10.1099/00221287-122-2-281
https://doi.org/10.1099/00221287-122-2-281
http://www.ncbi.nlm.nih.gov/pubmed/6798161


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Collins et al. eLife 2022;11:e79570. DOI: https://doi.org/10.7554/eLife.79570 � 34 of 34

Appendix 1
Genetic Influences on the Proline N-degron
We observed that, consistent with previous results (Hwang et al., 2010; Gilchrist et  al., 1997), 
the proline N-degron TFT was only partially stabilized in BY DOA10Δ (Figure 1D, Figure 1—figure 
supplement 1, Figure 1—source data 1). Ubiquitin is inefficiently cleaved in the ubiquitin-fusion 
technique when followed by a proline N-degron (Varshavsky, 2011; Varshavsky, 2005), leading to 
the production of two species, proline N-degron constructs and constructs with uncleaved N-terminal 
ubiquitin moieties. N-terminal ubiquitin functions as a degron and is recognized and degraded by 
the ubiquitin-fusion degradation (UFD) UPS pathway (Johnson et al., 1995). The proline N-end TFT 
thus measures the activities of the Ac/N-end pathway towards the proline N-degron and the UFD 
pathway towards the N-terminal ubiquitin fusion degron.

Despite this partial limitation, we were able to map genetic influences on the proline N-degron. 
We detected 5 Ac/N-end pathway-specific QTLs using our proline reporter, including those resulting 
from variation in DOA10 and UBC6. There were no additional QTLs affecting the majority of Ac/N-
end reporters that were not detected with the proline reporter (Figure 2B, Figure 2—source data 
2). We therefore conclude that the QTLs identified with the proline reporter correspond primarily to 
true genetic influences on the proline N-degron.

Three QTLs, on one chromosome XII and two on chromosome XVI were detected only with the 
proline reporter (Figure 2B, Figure 2—source data 2). The intervals for these QTLs did not contain 
genes previously linked to either the proline N-degron, the Ac/N-end pathway, or the UFD pathway.
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