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Abstract
Background: Musculoskeletal tissue degeneration impairs the life quality and function of many 
people. Meniscus degeneration is a major origin of knee osteoarthritis and a common threat to 
athletic ability, but its cellular mechanism remains elusive.
Methods: We built a cell atlas of 12 healthy or degenerated human meniscus samples from the inner 
and outer meniscal zones of 8 patients using scRNA-seq to investigate meniscal microenvironment 
homeostasis and its changes in the degeneration process and verified findings with immunofluores-
cent imaging.
Results: We identified and localized cell types in inner and outer meniscus and found new chondro-
cyte subtypes associated with degeneration. The observations suggested understandings on how 
cellular compositions, functions, and interactions participated in degeneration, and on the possible 
loop-like interactions among extracellular matrix disassembly, angiogenesis, and inflammation in 
driving the degeneration.
Conclusions: The study provided a rich resource reflecting variations in the meniscal microenviron-
ment during degeneration and suggested new cell subtypes as potential therapeutic targets. The 
hypothesized mechanism could also be a general model for other joint degenerations.
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Editor's evaluation
This paper will be of interest to researchers studying meniscus homeostasis and knee osteoar-
thritis. It uncovers distinct subtypes of cell populations in the inner and outer parts of the human 
meniscus using single-cell RNA sequencing. In particular, this work further identifies how alterations 
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in meniscal cell populations may contribute to inflammation and osteoarthritis and thus serves as a 
resource paper for the field.

Introduction
The knee is the largest and most complicated hinge joint in the human body. The meniscus is an 
important component of the knee joint with essential roles in the load-bearing, shock absorption, 
nutrition, and lubrication of the knee joint articular cartilage and is very susceptible to injury and has 
a limited reparative potential (Murphy et al., 2019; Newman et al., 1989; Rai and McNulty, 2017). 
The meniscus degeneration is a slow-developing disease of middle-aged or older people. Horizontal 
cleavage of the meniscus usually happens in the disease, and the lesion can be identified through 
knee MRI. Patients typically have no clear history of acute knee injury (Beaufils et al., 2017). Meniscal 
degeneration is one important risk factor for osteoarthritis (OA) and joint dysfunction, causing huge 
social and economic burdens (Englund et  al., 2012). It has been found through clinical observa-
tions that nearly half of patients with meniscal degeneration will eventually develop OA over time 
(Lohmander et al., 2007). Studies have shown that inflammatory responses and biomineralization 
affect the meniscus cellular microenvironment and contribute to disease occurrence (Sun et al., 2010; 
Goldring and Goldring, 2016). However, the changes in the cell microenvironment in degenerated 
meniscus remain largely unclear. An adequate understanding of the changes in the degenerative 
meniscus is critical for preventing meniscal injury in young and middle-aged patients and for relieving 
symptoms in elderly patients with knee OA.

The meniscus can be anatomically divided into the inner region (the white–white zone) and the 
outer region (the red–red zone). Some researchers also use the ‘red–white’ zone to denote the in-be-
tween transition region. The inner and outer menisci differ in neurovascular distribution, structural 
composition, and recovery ability from injury. There are blood vessels and nerves in the outer area, 
while few blood vessels and nerves are observed in the inner part. The meniscal extracellular matrix 
(ECM) is the physical foundation of menisci’s biological roles, and alterations in the ECM may lead 
to meniscus degeneration and dysfunction. Collagens and proteoglycan (PG) are ECM’s two most 
important components. The outer meniscus is dominated by type I collagen, while the inner meniscus 
is dominated by type II collagen. The inner part of the meniscus has a relatively higher percentage 
of PGs compared with the outer. Aging and mechanical injuries may lead to meniscus degeneration. 
Different anatomical regions have varied recovery capabilities: the degeneration in the outer meniscus 
is more likely to heal, while the degeneration in the inner part tends to be irreversible (Makris et al., 
2011; Danzig et al., 1983). The cellular and molecular basis behind anatomical regions remains to be 
explored. It is unclear what cell type contributes to the inner and outer variations and what cell types 
mediate the degeneration.

Building a detailed meniscal cell landscape is essential to understanding meniscus characteristics. 
Early profiling of meniscal cell heterogeneities dates back to the work of Ghadially et al., 1983. They 
studied injured and uninjured human menisci with the electron microscope and stated that chondro-
cytes, a few fibroblasts, myofibroblasts, and intermediate state cells between chondrocytes and fibro-
blast existed in menisci. Scotti et al. also discussed that the cells in the superficial zone were fusiform, 
while cells laid deeper were polygonal (Scotti et al., 2013). These classifications were mainly based 
on the shape and the surrounding matrix content. The recent development of single-cell omics has 
facilitated researchers’ understanding of various cell types across multiple cartilage tissues, including 
knee joint cartilage (Ji et al., 2019), intervertebral disc (Gan et al., 2021), meniscus (Sun et al., 2020), 
etc. These researches initiated a rudiment of the chondrocyte cell types and states, covering parts of 
the heterogeneous cell subpopulations in the meniscus. Sun et al., 2020 sketched the outline of the 
meniscal cell populations following the cell type definition convention of a knee articular cartilage 
study (Ji et al., 2019). They reported cartilage progenitor cells (CPC), regulatory chondrocytes (RegC), 
prehypertrophic chondrocytes (PreHTC), hypertrophic chondrocytes (HTC), fibrochondrocytes (FC), 
fibrochondrocytes progenitors (FCP), proliferating fibrochondrocytes (ProFC), degenerated progen-
itor (DegP), endothelial cells, and other immune cells in the meniscus, and showed links between 
meniscus progenitors and the progression of meniscal degeneration (Sun et al., 2020).

We aimed to build a refined atlas complementary to the existing data by systematically revealing 
cell heterogeneities in inner and outer meniscal zones under different health states. We created a 
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single-cell transcriptomic atlas of 45,744 cells from 12 healthy/degenerated meniscus samples of 8 
patients and provided an online cell browser at http://meni.singlecell.info:3000/ to support flexible 
explorations of the data. We performed multiple rounds of cell-level quality control steps to remove 
and adjust noisy data such as empty droplets, doublets, dissociation-affected cells, and ambient 
RNA-polluted cells. Among the current single-cell sequencing studies involving articular cartilage and 
meniscus, we have a larger number of sequencing samples and cells. Our dataset is the first single-cell 
sequencing study data characterizing menisci’s inner/outer zonation differences. We built a hierar-
chical cell type classification framework and identified five chondrocyte subtypes and two pericyte-like 
cell subtypes. Functional enrichment analyses suggested these subtypes may have specialized ECM 
construction and remodeling duties. We profiled various immune cell types and observed damage-
induced inflammatory responses in degenerated samples. Taken together, we inferred a hypothetical 
model of ECM disassembly, inflammation, and angiogenesis in the meniscal tissues. The model may 
also fit degenerative situations in other cartilage tissues, such as articular cartilage and intervertebral 
disc, because they contain similar cell types and ECM contents (Chen et al., 2017b). Our discoveries 
may suggest new clues for treating various types of joint degeneration in the human body.

Methods
Human meniscus cell sample preparation
Four degenerative meniscus specimens were obtained from patients with severe OA who underwent 
total knee arthroplasty, and four normal meniscus specimens were obtained from patients with bone 
tumors or severe trauma who underwent amputation. The meniscus tissues were removed from the 
patient’s knee joints and divided into the inner (white–white zone) and outer (red–red zone) areas. 
The degeneration group is comprised of patients A, B, C, and D; and the normal group is comprised 
of patients E, F, G, and H. Patients A, B, E, and F contributed paired inner–outer samples. Patients C 
and H contributed unpaired inner samples, and patients D and G contributed unpaired outer samples 
because the other pairs had obtained in the surgery had poor sample states. Detailed designs of 
experiments can be found in Supplementary file 1.

After carefully dividing the meniscus tissue into the inner and outer parts, the menisci were cut into 
small pieces. We used 0.25% Trypsin (Gibco 25200072) to digest the pieces for 0.5 hr under 37℃. Next, 
we used 2 mg/ml collagenase IV to dissociate the pieces for 4–6 hr under 37℃ and finally obtained 
dissociated cells. The dissociated cells were resuspended at a concentration of 250–1200 cells/μl and 
with viability between 67–87% for microfluidics (Chromium Single-Cell Controller, 10× Genomics). 
According to the manufacturer’s instructions, cells were loaded into the chip and run using the Chro-
mium Single Cell 3′ Reagent Kit v2 (10× Genomics). In brief, Gel beads with GemCode barcodes and 
primers and individual cells were encapsulated in oil droplets. Next, within each oil droplet, mRNA 
were released from lysed cells, barcoded, reverse transcribed to cDNA, and sequenced. Sequencing-
ready single-cell transcriptome libraries were mapped to the human reference genome GRCh38-3.0.0 
and quantified by CellRanger 3.1.0.

Multiplex immunofluorescence (OPAL) staining
Human meniscus normal and degenerated samples were fixed in 4% paraformaldehyde and embedded 
in paraffin. We sliced the embedded paraffin samples in series, and each slice was 4 µm thick. Firstly, 
water-bath heating was used for antigen retrieval. Then various cell marker primary antibodies were 
incubated with the paraffin slide of meniscus tissue to conduct the continuous staining with the Opal 
Polaris Multiple-Color Manual IHC Kit (NEL861001KT). We used different primary antibodies to simul-
taneously label Ch.1 (SERPINA1), Ch.2 (MMP14), Ch.4 (CYP1B1), and PCL (ACTA2) on the same tissue 
slide. The automated staining system (BOND-RX, Leica Microsystems, Vista, CA) was used to perform 
the chromogen-based multiplex immunohistochemistry labeling. SERPINA1 (ab207303), MMP14 
(ab51074), CYP1B1 (ab33586), and ACTA2 (ab5694) were all purchased from Abcam and diluted at 
a concentration of 1:100. The Opal Polaris dyes were used to pair with these antibodies containing 
fluorophores for tyramide signal amplification to enhance sensitivity. The sequence of labeling for 
detecting each marker was optimized: CYP1B1 (Opal 570), MMP14 (Opal 620), SERPINA1 (Opal 690), 
ACTA2 (Opal 780), and DAPI (4',6-diamidino-2-phenylindole). Including an autofluorescence section, 
the staining process is the same as above, but no primary antibody is added. Multiplex analysis was 
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operated to analyze the results of simultaneously stained tissue slides. In addition, common immuno-
fluorescence staining was performed using CDON (ab227056), CD31 (ab9498), and CD45 (ab40763) 
labeled Ch.3, endothelial cells, and immune cells. All experiments have three biological replicates.

Single-cell data quality control steps
We adjusted the ambient RNA expression with SoupX (Young and Behjati, 2020) v1.2.1 and gener-
ated read counts free of background noises for all downstream analyses. We used scanpy (Wolf et al., 
2018) and Seurat (Stuart et al., 2019; Butler et al., 2018) to conduct the basic filtering out outliers 
cells with high n_genes metrics (the number of observed genes per cell), high n_counts metrics (the 
number of UMI per cell), and high percent_mito metrics (the mitochondrial gene fraction). Next, we 
assigned draft cell type identities to the cells using SingleR (Aran et al., 2019). Note that the SingleR-
generated cell type labels were only used to perform quality control analysis to avoid removing 
biologically meaningful cells with poor data qualities. We calculated doublet scores using Doublet-
Finder (McGinnis et al., 2019) removed the cells with high doublet scores and outlier clusters with 
high doublet scores. We observed that DoubletFinder tends to identify small clusters as doublets 
incorrectly, so we assert these small populations as singlets if they had well-defined identities given 
by SingleR or appear clear biological functions such as cell cycles. To remove the confounding factor 
introduced by the dissociation-induced gene expression (van den Brink et  al., 2017; Denisenko 
et al., 2020), we decided to remove the heavily affected cells by the dissociation steps. We calculated 
dissociation scores using methods described in van den Brink et al., 2017.

Raw single-cell RNA-seq datasets contain numerous low-quality droplets. Hence, we should ensure 
the majority of the data items we analyzed correspond to viable cells. It is known that one simple 
quality control filtering on the aforementioned metrics (n_genes, n_counts, percent_mt) can't remove 
all of them. We then conducted comprehensive quality control steps that can be summarized as (1) 
top-down refinements and (2) divide and conquer. First, we divide cells into several rough populations 
with distinct biological identities, for example, chondrocytes, immune cells, endothelial cells, etc. We 
zoomed into these populations one by one and performed subclustering within them. The within-
population subclustering often works like a centrifuge – the low-quality cells mixed in the large rough 
population usually form tiny outlier groups when subclustering is performed on a single population. 
When a tiny group is mainly comprised of cells with high doublet scores, cells with high mitochondrial 
gene fractions, cells with high dissociation scores, we consider removing it. After manually inspecting 
and dropping these tiny outlier groups, we finally get much cleaner datasets.

Single-cell data clustering steps
To eliminate the genetic background variations and technical noises of the single-cell RNA-seq data, 
we used Harmony (Korsunsky et al., 2019) to perform integrative clustering across different samples. 
Major clusters corresponded to chondral cells, ACTA2+ cells, endothelial cells, and immune cells were 
identified across samples and validated with cluster correlation analysis (Figure 1—figure supple-
ment 1C and Figure 2—figure supplement 1A).

To understand large cell populations with higher resolutions, we subset the chondral and ACTA2+ 
majors clusters, performed reclustering on harmony-derived embeddings, and obtained multiple fine 
clusters. To alleviate the scRNA-seq data noise and promote data consistency across samples (Hua 
and Zhang, 2019), we partitioned original cell data points into homogenous meta-cells with MetaCell 
(Baran et al., 2019). We then used HGC (Zou et al., 2021) to build hierarchical relationships based 
on the meta-cells.

Differentially expressed genes analysis
Differentially expressed genes (DEGs) were identified by the ‘FindMarkers’ function and the ‘Find-
AllMarkers’ function provided by the Seurat package. The DEGs of each chondrocyte cluster were 
identified by comparing the cluster with all the other clusters. A full list of DEGs in shown in Figure 2 is 
given in Supplementary file 2. The health group (degeneration/normal) markers were calculated in an 
overall comparison way and a per-cluster comparison way. We first extracted the total chondrocytes 
(from Ch.1 to Ch.5) and compared them between the degenerated and normal groups. We made the 
same comparison to the total PCL populations. The health group markers are reported in Figure 3—
figure supplement 5A.

https://doi.org/10.7554/eLife.79585
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Gene set enrichment analysis and gene set variation analysis
Enrichment analyses were performed with top fold-change DEGs and a BH-adjusted p-value threshold 
of 0.05, using R package clusterProfiler (Wu et al., 2021). Cluster-wise enriched terms (Ch.1–5 and 
PCL.1/2, Figure 2—figure supplement 2) were obtained using cluster marker DEGs (one cluster vs. 
the others). Health state-specific terms were obtained using status DEGs (all chondrocytes in normal 
samples vs. all those in the degenerated) and displayed in Figure 3—figure supplement 5B, C.

We assigned gene set activity scores to individual cells using gene set variation analysis (GSVA) 
(Hänzelmann et al., 2013), with gene sets obtained from MSigDB (Subramanian et al., 2005; Liberzon 
et al., 2015). The GSVA-derived gene set scores were visualized in Figures 2G and 3C–F. The GSVA 
analyses used the following MSigDB-curated gene ontology terms: GO0050900 (leukocyte migra-
tion), GO1905563 (negative regulation of vascular endothelial cell proliferation), GO1904018 (positive 
regulation of vasculature development), GO0071772 (response to BMP), GO0030199 (collagen fibril 
organization), GO0070555 (response to interleukin 1), GO0071559 (response to transforming growth 
factor beta), GO:0034612 (response to tumor necrosis factor), and GO0030239 (myofibril assembly).

Gene regulation network inference
We used the python package pySCENIC (Van de Sande et al., 2020; Aibar et al., 2017) to infer 
gene regulatory networks (GRN) from single-cell expressional profiles. The workflow includes three 
substeps: identifying coexpression modules, trimming modules with prior knowledge, and calculating 
activating scores.

The workflow builds coexpression modules by choosing TFs that predict target gene expression 
well. First, the algorithm builds gradient boosting machine models predicting each target gene’s 
expression from TF expressions and keeps the models’ feature weights as a measure of TF–target 
regulatory scores. Second, the algorithm creates modules by adding/filtering weighted links between 
TFs and their targets. To reduce the stochasticity of the results, the algorithm independently uses 
six weight filtering rules to build modules. The six rules are: (1) keep TF–target pairs with weights 
> the 75% percentile of the weights; (2) keep TF–target pairs with weights > the 90% percentile of 
the weights; (3) for each TF, keep the top 50 TF–target pairs with the highest weights; (4) for each 
target, keep top 5 TF–target pairs with highest weights; (5) for each target, keep top 10 TF–target 
pairs with highest weights; (6) for each target, keep top 50 TF–target pairs with highest weights. After 
this step, many TF–target modules are created. The algorithm only keeps TF–target links that have 
positive regulation relationships (the Pearson correlation of TF and target expressions >0.03) and 
drops modules with <20 genes inside (TF itself included). Finally, we get a list of primary coexpression 
modules, each containing a TF and its positively regulated targets.

The module trimming process combines the regulatory motif information with the coexpression 
analyses. Given the coexpression-derived modules, we then keep target genes that are overlapped 
with TF’s regulatory motif region. We adopt the 10 kb up-/downstream regions of a target gene’s TSS 
as the gene’s distal enhancer occurrence region and the 500 bp upstream/100 bp downstream region 
as the gene’s proximal promoter occurrence region. After trimming, more reliable sets of modules are 
generated.

Finally, we quantified and binarized the activation levels of the TF–target modules with AUCell 
(Aibar et  al., 2017) and visualized them with ComplexHeatmap (Gu et  al., 2016) and cytoscape 
(Shannon et al., 2003).

Cell crosstalk analysis
Given the averaged normalized expression value of a ligand gene in a sender cluster ‍i‍ as ‍EL,i‍ , and 
that of a receptor gene in receiver cluster ‍j‍ as ‍ER,j‍ , we defined the crosstalk between cluster ‍i‍ and 
cluster ‍j‍ via the ligand–receptor pair L–R is their product ‍EL,iER,j‍ . We enumerated all ligand and 
receptor genes provided by CellTalkDB (Shao et  al., 2021) and calculated crosstalk products for 
sender–receiver cluster pairs. We empirically evaluated the statistical significance of this product by 
counting the more extreme null products after shuffling the cluster labels. The overall crosstalk level 
between the sender cluster ‍i‍ and the receiver cluster ‍j‍ is defined as ‍

∑
L
∑

R EL,iER,j‍ if ‍EL,iER,j > θ‍, and 
‍θ = 1.5‍ in our cases.

We compared the crosstalk variations between the degenerated and the normal group by 
subtracting the products in two conditions (visualized Figure 5—figure supplement 2). We identified 

https://doi.org/10.7554/eLife.79585


 Tools and resources﻿﻿﻿﻿﻿﻿ Cell Biology | Medicine

Fu, Chen et al. eLife 2022;11:e79585. DOI: https://doi.org/10.7554/eLife.79585 � 6 of 24

ligand–receptor interactions that were high in the normal/degenerated group and grouped the differ-
ential interactions into ECM, TNF, TGFβ (Transforming growth factor-β), chemokine, and cytokine 
antigen-presentation categories (Figure 5—figure supplement 2A–L).

Online cell browser construction
We used the python package cellxgene to provide online cell browser service. The matrices along with 
other metadata were saved in scanpy h5ad format for cellxgene.

Results
The cellular landscape of the inner and outer parts of human menisci
To understand the composition and molecular profiles of the cells from different regions and degen-
eration states, we sampled four healthy menisci and four degenerated menisci from a patient cohort 
and performed single-cell RNA sequencing. Figure 1A illustrates the morphological patterns of the 
samples: Meniscal specimens in the normal group are smooth and complete with a clear structure. 
Specimens from the degenerated group are swollen, irregular in shape, damaged in structure, and 
vascularized. Each specimen’s inner part (white–white zone) and the outer part (red–red zone) were 
strictly separated and collected. These samples are dissociated and prepared for single-cell RNA 
sequencing (Methods), as shown in the overall workflow (Figure 1B).

After comprehensive quality control steps removing low-quality cells and inferred doublets 
(Methods), we recovered 45,744 cells from 12 samples of 8 patients (Supplementary file 1). The 
number of counts observed per cell and the number of genes observed per cell are visualized in 
Figure 1—figure supplement 1A, B. We can infer from the quality control steps that the general 
sequencing quality is good except for the E2 outer and H12 inner samples.

We conducted a survey on the inner and outer menisci’s major cell types. An unsupervised clus-
tering algorithm partitioned the cells into separated clusters (Methods), which were visualized using 
uniform manifold approximation and projection (UMAP). UMAP and stacked bar plots in Figure 1C–E 
described the distributions of cells in the inner menisci, and Figure 1F–H described them in the outer 
menisci. Figure 1C, F visualized the origin of the cells, indicating that the batch effects of the samples 
were well eliminated, and the biological variations were preserved. The cell type correlation plots in 
Figure 1—figure supplement 1C also confirmed that cells of the same type, not the same batch, had 
higher affinities. We observed five major cell types in the inner menisci: chondrocytes, lymphocytes, 
myeloid cells, endothelial cells, and a group of ACTA2+ cells. We also observed the five types in the 
outer menisci, plus a group of Schwann cells, indicating there are nerve tissues in the outer menisci. 
The percentages of cells in Figure 1E, H showed that, in general, the outer menisci had higher cell 
type diversities. In the more diverse outer menisci, the degenerated group (A1, B2, and D2) had 
higher immune cell ratios and lower ACTA2+ cell ratios.

The cell types were determined by combinations of markers in Figure 1I, J and Figure 1—figure 
supplement 2A, B. We identified cell clusters as chondrocytes if they expressed a high level of 
cartilage-related genes such as DCN, PRG4, COL1A2, COL3A1, ACAN, COMP, FN1, CHI3L1, and 
CHI3L2. We identified cell clusters with high expression levels of PLVAP, PECAM1 as endothelial cells. 
Immune cells were identified using high PTPRC, myeloid markers CD68, C1QA, HLA-DQA1, and T cell 
markers CD3D, CD3E. In addition, there are a group of cells separated from other cells in both inner 
and outer areas of the meniscus, which has high expression levels of ACTA2. Besides high expressions 
of ACTA2, this group of cells also expressed some chondrocyte-associated gene markers, such as 
COL1A2, COL3A1, DCN, and FN1. We tentatively named this ACTA2+ group ‘pericyte-like cells’ or 
PCL (Figure 1I, J and Figure 1—figure supplement 2A, B) and reanalyzed them together with the 
chondrocytes in Figure 2 and associated texts.

Functional coordination of the heterogeneous chondrocytes and PCL 
cells
We built a comprehensive cell identity framework by charting the meniscal chondrocytes and PCL cells 
into a hierarchical coordination system. Unlike the other single-cell cartilage studies that assigned cell 
types with several marker genes, we defined cell types in a top-down way to simultaneously reveal 
subtle granular-view variations and exhibit general similarities.

https://doi.org/10.7554/eLife.79585
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Figure 1. Single-cell RNA-seq reveals major cell classes in human menisci. (A) Photographs of typical normal and degenerative meniscus specimens. 
(B) The overall workflow of the single-cell sequencing. Inner and outer meniscal parts are collected separately from patients with normal/degenerated 
menisci. (C, D) Distributions of cells in the inner meniscus samples. Cells of the degeneration batches and the normal batches are integrated together. 
(C) Uniform manifold approximation and projection (UMAP) visualization of donor origins (inner parts). (D) UMAP visualization of the cell identity 
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To develop such a cell identity framework, we took multiple factors into account: clustering labels, 
clustering granularities, marker gene expression specificity, generalization abilities across samples 
and conditions, supporting evidences in other studies, matrix compositions, and biological functions 
(Methods). We finally identified five chondral clusters named chondrocyte-1 to chondrocyte-5 (Ch.1–
Ch.5 in Figure 2A) and two pericyte-like cell clusters (PCL.1 and PCL.2 in Figure 2A) named ACTA2+ 
cells in Figure 1D, G. The distribution shown in Figure 2B, C shows cells from different batches were 
mixed well after data integration. The correlations illustrated in Figure 2—figure supplement 1A and 
the marker gene heatmap in Figure 2—figure supplement 1B indicated that inner and outer samples 
had consistent expression profiles. From these analyses, we can infer that batch effects are resolved 
well, and biological variations were retained.

We visualized the cell type identification framework in a tree in Figure 2D, which assigned labels to 
cells with hierarchical marker combinations. Common fibroblast markers like DCN and LUM are highly 
expressed in the chondral class. Smooth muscle cell and pericyte markers like ACTA2, TAGLN, and 
MYL9 are highly expressed in the PCL class. More detailed marker expressions in chondrocyte and 
PCL subpopulations were visualized in a heatmap in Figure 2F and Figure 2—figure supplement 1C. 
The marker genes differentially expressed in each subpopulation shown in the heatmap are given in 
Supplementary file 2.

For more granular cell subtypes, we analyzed their biological functions using GSVA (Hänzelmann 
et  al., 2013) in Figure 3C–F, Figure 2—figure supplement 2H and gene set overrepresentation 
enrichment analysis (GSEA) (Wu et  al., 2021) in Figure  2—figure supplement 2A–G. The gene 
expressions and function predictions suggested subtypes dominating homeostasis states, subtypes 
associated with the pro-/anti-angiogenesis process, as well as subtypes associated with the construc-
tion/disassembly of the ECM.

We constructed GRN using pySCENIC (Aibar et al., 2017; Van de Sande et al., 2020) to deci-
pher the common and unique programs behind the chondrocyte and the PCL populations. In the 
inferred GRN, links originate from the upstream TFs to the downstream targets. Each TF forms a 
module of nodes that contains its targets. We calculated the module activation scores and showed 
the binarized states of the gene regulatory programs in Figure 2—figure supplement 3A. Figure 2—
figure supplement 3B visualizes a core part of TFs and targets in the GRN. Several polygons were 
added to annotate subcluster-specific GRN modules. We found that PCLs shared common gene regu-
latory modules represented by STAT4, NR2F2, and chondrocyte subcluster Ch 2–5 shared TRPS1, 
FOXC1, HOXD10, and each subcluster possessed some specific modules. For example, Ch.2 had 
KLF6, FOXN3, AKR1A1, Ch.3 had SIX3, Ch.4 had CEBPA, and Ch.5 had MYBL2. This GRN analysis also 
explained intra-PCL heterogeneities and indicated PCL cells were a distinct population with divergent 
gene regulatory programs, although they have some collagen-producing transcriptomic features like 
chondrocytes.

The characteristics and function predictions of PCL cells in the meniscal 
microenvironment
The PCL cells present strong muscle contractile gene expression signatures (Figure 2F), including 
ACTA2, MYL9, TAGLN, etc. ACTA2, which encodes a smooth muscle actin involved in vascular 
contractility, as well as TAGLN (transgelin) and MYH/MYL (myosin heavy/light chains) genes. These 
genes have been used for identifying pericytes or smooth muscle cells across multiple human organs, 
including intervertebral disc (Gan et al., 2021), intestinal tract (Elmentaite et al., 2021), heart (Litvi-
nukova et al., 2020), brain (Smyth et al., 2018), etc. The gene set enrichment analyses of these 

compartments (inner parts). (E) The percentages of the identified cell classes in six samples of the inner meniscus. (F, G) Distributions of cells in the outer 
meniscus samples. Cells of the degeneration batches and the normal batches were integrated together. UMAP visualization of the donor origins and 
cell identity compartments (outer parts). (H) The percentages of the classes in six samples of the outer meniscus. (I, J) The expression levels of the major 
class markers of the inner cells (upper) and the outer cells (lower). Darker colors indicate higher expression levels.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quality control metrics for single-cell RNA sequencing.

Figure supplement 2. Signature genes of the large cell classes.

Figure 1 continued
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Figure 2. Identification of chondrocyte and PCL subclusters in human meniscus. (A) Uniform manifold approximation and projection (UMAP) 
visualization of the chondrocyte and PCL class cells. (B, C) UMAP visualization of the distribution of chondrocytes at different anatomical sites (up) and 
different sample statuses (down). (D) A schematic diagram of the hierarchical classification of chondrocyte subgroups. The classification criteria are along 
the tree path, and each group’s highly expressed marker genes are given below each cluster. (E) A cluster-level heatmap shows extracellular matrix 
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signature genes suggested the PCL population has a discrepant molecular identity from the chon-
drocyte lineage because GO terms such as ‘muscle contraction’, ‘muscle organ development’, and 
‘smooth muscle cell proliferation’ were enriched (Figure 2—figure supplement 2F).

In the work of Sun et al., 2020, they named a similar ACTA2+ MYLK+ MCAM+ MYL9+cluster as the 
FCP and claimed FCP could differentiate into degenerated meniscus progenitors (DegP) in degen-
erated menisci, or into adipogenic/osteogenic lineages when cultured ex vivo. We did not name the 
population we found as FCP for three reasons: Firstly, enrichment analyses showed its similarity to 
pericytes/smooth muscle cells. Secondly, our PCL population showed weak differentiation potential 
into DegP because this group of cells in our data did not show concentrated expressions of DegP 
markers GREM1, CDCP1, and DNER. Thirdly, the only expressions of GREM1, CDCP1, and DNER 
were sporadically distributed on the UMAP plot (Figure 2—figure supplement 4B) and topologically 
separated from our ACTA2+ MYLK+ MCAM+ MYL9+PCL cluster (Figure 2A, Figure 2—figure supple-
ment 4A).

We named this population as PCL considering multiple factors. The PCL cells are more abundant in 
the vascularized outer meniscus region than in the avascular inner part (Figure 1E, H). Our immuno-
fluorescence imaging found that this population of cells lay around the vascular endothelial cells and 
formed a tube shape outside the blood vessels (Figure 4A, B). Like the meniscus, the intervertebral 
disc also has cartilage tissue and blood vessel structures. Gan et al., 2021 named a group of ACTA2+ 
MCAM+ TAGLN+ in the human intervertebral disc as pericytes, which can be a reference for defining 
meniscal cell clusters. For these reasons, we inferred that the ACTA2+ MYL9+ TAGLN + population 
in our meniscus samples belong to the mural structure around the meniscal vasculature and chose 
to name this cluster as the ‘pericyte-like cell’ considering its signature gene expressions, functional 
analyses, and spatial distributions. We admit that it is difficult to fully distinguish pericyte from smooth 
muscle cells purely based on the transcriptomes because the two cell types share numerous markers, 
and their markers appear to be dynamic and affected by the tissue types and pathogenic states (van 
Dijk et al., 2015).

It is known that pericytes attach to the surface of vascular endothelial cells and maintain vascula-
ture stability via the endothelium–pericyte crosstalk (Eilken et al., 2017; Sugihara et al., 2020). We 
therefore inferred that these cells in the meniscal microenvironments could maintain vascular stability 
like pericytes according to the GSVA results and the decreased percentages of PCLs in the degen-
eration group. Previous studies have shown that pericytes have pro-angiogenesis capabilities (Eilken 
et al., 2017; Armulik et al., 2011). In our datasets, we observed expressions of multiple potential 
angiogenesis inhibition genes. For example, in Figure 3—figure supplement 1, we showed that both 
PCL.1 and PCL.2 expressed ECM components Collagen IVα1 (COL4A1), Collagen IVα2 (COL4A2), 
and Collagen XVIII (COL18A1), the non-collagenous fragments of which (i.e., arresten, canstatin, and 
endostatin, respectively) were known to have anti-angiogenesis functions (de Castro Brás and Fran-
gogiannis, 2020; Marneros and Olsen, 2001). We also plotted multiple other pro-/anti-angiogenesis 
factors’ expressions in Figure 3—figure supplement 1B to have a full view of the pro-/anti-effects and 
found the pro-angiogenesis genes were seldom expressed in PCL either.

We identified two subtle subclusters within the PCL class. One subcluster PCL.1 expresses a higher 
level of FABP4, RGS5, and the other PCL.2 subcluster has relatively higher expressions of MYH11, 
MYH9, CNN1, and TAGLN. Kumar et al., 2017 analyzed these genes’ functions in the specification and 
diversification of pericyte/smooth muscle cells from mesenchymoangioblasts. The GSVA suggested 

(ECM)-related gene expressions in each chondrocyte/PCL subpopulation. (F) A cell-level heatmap reveals the normalized expression of differentially 
expressed genes for each cluster defined in (D). (G) Violin plots score nine molecular themes of each cell type (leukocyte migration, suppression of 
angiogenesis, angiogenesis, response to BMP, collagen fibril, response to IL1, response to TGFβ, response to TNF, and myofibril). We calculated the 
scores using gene set variation analysis (GSVA) with gene sets picked from MSigDB.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Label agreements of the chondrocyte and pericyte-like cells across samples.

Figure supplement 2. Gene ontology enrichment of chondrocyte and PCL subcluster markers.

Figure supplement 3. Regulons derived by pySCENIC.

Figure supplement 4. Public chondrocyte datasets reanalysis (I).

Figure 2 continued
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Figure 3. Degeneration molecular patterns in chondrocytes and PCLs. (A) A volcano plot shows differentially expressed genes with high fold-change 
values. The comparison was made between (1) degenerated chondrocytes/PCL cells and (2) normal chondrocytes/PCL cells. (B) The proportion of each 
subcluster of chondrocytes in the degenerated and normal meniscus. (C–F) Gene set variation analysis (GSVA) of each cluster under degenerated/
normal conditions. Gene sets supported functions are evaluated using GSVA (Methods), and scaled values are visualized in the heatmaps. We observed 
Ch.2 and Ch.3 had high scores for matrix disassembly activities, angiogenesis activities, chemotaxis activities, and chondrocyte hypertrophy regardless 
of the normal/degeneration status. The cycling chondrocytes Ch.5 have high scores in the cell-cycle-related terms.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression levels of selected gene sets.

Figure supplement 2. Public chondrocyte datasets reanalysis (II).

Figure supplement 3. Comprehensive integration of public data and in-house data.

Figure supplement 4. Finding differentially expressed genes (DEGs) in total chondrocytes and PCLs (degenerated vs. normal).

Figure supplement 5. Interpreting differentially expressed genes (DEGs) in total chondrocytes and PCLs (degenerated vs. normal).

Figure 3 continued on next page
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that PCL.1 had more active responses to the pro-inflammatory cytokines IL-1 and TNF-α (Figure 2G) 
and expressed higher levels of chemokines genes CCL2, CCL19, CCL21, CXCL12 (Figure 3—figure 
supplement 1D), and COL4A1/2 (Figure 3—figure supplement 1E). The GSVA scores suggested that 
PCL.2 had higher myofibril gene set activation scores, indicating this population could have higher 
muscle contractility and may regulate the blood flow in the microvasculature (van Dijk et al., 2015).

Chondrocyte subpopulations and their potential roles in ECM 
remodeling
The ECMs in meniscal tissues undergo continuous remodeling processes to keep homeostasis of the 
microenvironment. We aimed to reveal meniscal chondrocyte heterogeneities and to find their associ-
ations with the ECM homeostasis and remodeling in normal and degeneration states. With the hierar-
chical cell type definition framework, we identified two major branches and a small cluster undergoing 
cell-cycle phase transitions in the chondrocyte class. These branches of cells were predicted to have 
varied roles in the construction and maintenance of the ECM, angiogenesis, and leukocyte chemotaxis.

The largest branch is the chondrocyte-1 (Ch.1) population that highly expresses CHAD, CHI3L1, 
CHI3L2, ECRG (C2orf40), and APOD. Some of these genes (e.g., CHI3L1/2) have been described as 
the markers of RegC (Ji et al., 2019). This cluster’s percentage decreased in the degeneration group. 
The gene set activation analysis indicated that this population of cells had anti-angiogenesis effects 
(Figure 2G). In Figure 2E, we visualized the gene expressions that play essential roles in the ECM 
according to the Matrisome project (Naba et al., 2012). ECM-related gene expressions indicated 
Ch.1 highly expressed ECM regulators TIMP1 and TIMP4, which were inhibitors of ECM destruction 
proteins. Hence, we inferred that the CHAD+ Ch.1 population is a cluster of chondrocytes that main-
tain homeostasis in the meniscal tissue. We named another part of this branch that expresses high 
levels of PRG4, HTRA1, FN1, CD55, TIMP3, CDON, AMTN as Ch.3 (PRG4). We inferred that Ch.3 
cells had lubrication function because the protein proteoglycan 4 (PRG4) has a lubrification function 
on the articular cartilage surface, and these cells were located near the surface of the meniscus. Our 
immunofluorescence staining further confirmed that its marker CDON expresses along the surface 
region of the meniscus (Figure  4). This population highly expresses TIMP1/2/3 (Figure  3—figure 
supplement 1A) and may inhibit the matrix decomposition by opposing the MMP/ADAM/ADAMTS 
family enzymes.

One branch that highly expresses FNDC1 and THY1 has two subclusters. One TGFBI+ subcluster 
in this branch has particularly high expression levels of FNDC1, so we named it chondrocyte2-FNDC1 
(Ch.2). The Ch.2 population highly expresses OA marker genes (Fisch et  al., 2018) and chon-
drocyte hypertrophy genes (Ji et al., 2019) such as type I, III, and VI collagen genes (COL1A1/2, 
COL3A1, COL6A1/2/3), POSTN, MMP2, SPARC, and MXRA5 (Figure  3—figure supplement 2A, 
B). Among these upregulated genes, FNDC1 and MXRA5 have been recently reported as signa-
tures of chondrocyte-mediated valve calcification in aortic stenosis (Bouchareb et al., 2021). It is also 
known that MXRA5 (matrix remodeling-associated protein 5) is a TGF-β1 regulated gene (Poveda 
et al., 2017), which is consistent with the high GSVA scores of ‘Response to TGFβ’ in Ch.2 shown in 
Figure 2G. Besides MMP2, this population also expresses other MMP, ADAM, and ADAMTS family 
genes, such as MMP11/13/14, ADAM9/12, and ADAMTS2, which can target collagen, aggrecans or 
other ECM components (Figure 3—figure supplement 1A). The increased expression of these genes 
indicated that Ch.2 (FNDC1) is a chondrocyte population associated with aberrant ECM degradation 
and remodeling, and this population may contribute to the progress of human meniscal degeneration. 
The other CFD+ subcluster in this branch expresses high levels of CFD, CFH, C1R, C1S, CXCL12, and 
VCAN. We name it Ch.4 (CFD). This subcluster expresses genes associated with alternative comple-
ment activation pathways (C1R, C1S, C2, C3, C6, and C7) and may promote inflammation by recruiting 
macrophages and neutrophils (Figure 3—figure supplement 1C).

Figure supplement 6. Finding composition changes and differentially expressed genes (DEGs) in individual chondrocyte and PCL clusters 
(degenerated vs. normal).

Figure supplement 7. Shifts of cell type compositions and inflammation states.

Figure 3 continued
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Figure 4. Immunofluorescent staining of human menisci demonstrating resident cell subtypes. Representative immunofluorescence staining images. 
Color settings: MMP14 for Ch.2 cells (orange), SERPINA1 for Ch.1 cells (magenta), ACTA2 for PCL cells (white), CDON for Ch.3 cells (cyan), CYP1B1 
for Ch.4 cells (yellow), CD31 for endothelial cells (green), and CD45 for immune cells (green). Nuclei are stained blue (DAPI). Scale bar 20 μm. (A) 
Multiplexed IF staining of the normal meniscus. (B) Multiplex IF staining of the degenerated meniscus. (C) IF staining of CDON in a normal sample. 

Figure 4 continued on next page
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Ch.5 represents chondrocytes in proliferation states. They highly expressed the S- and G2M-phase 
cell-cycle genes such as STMN1, CDK1, CENPF, HMGB2, CDKN3, TOP2A and were mostly found in 
the degenerated samples. It is generally thought that cells during mitosis condense their chromatins, 
downregulated genes that maintain cell identities, and reestablish the gene expression patterns 
when the mitosis exits (Palozola et al., 2017). Hence, it is hard to judge whether Ch.5 is a high-
stemness chondrocyte progenitor cluster or a dividing differentiated cell cluster based on these highly 
expressed markers. We may assume that the cells, though in a proliferation state, retained some 
transcripts before mitosis, and we may infer their origins or fates via the reference mapping analysis. 
We re-assigned Ch.5 cell identities using cells in Ch.1–Ch.4 clusters as a reference with SingleR (Aran 
et al., 2019) and found 98.63% Ch.5 cells were mapped to Ch.2 and the rest were mapped to Ch.3 
(Figure 3—figure supplement 7F). This identity mapping suggested the proliferative Ch.5 could be 
the origin of the Ch.2 cells increased in the degenerated group.

We did not directly adopt the chondrocyte terminology used in other studies such as Ji et al., 
2019 and Sun et al., 2020, but instead used Ch.1–Ch.5 to represent the subclusters because our 
data spans chondrocytes of higher quantity and greater heterogeneity. We have examined the liter-
ature markers on our data in Figure  2—figure supplement 4A, B. Those markers did not show 
highly concentrated expressional patterns. We reanalyzed the data in Sun et al., 2020 and validated 
our markers (Figure 3—figure supplement 2C–E). We found Ch.1 markers CHI3L1/2 expressed on 
clusters 1, 2, 7, Ch.2 markers FNDC1 expressed on clusters 0 and 3, and cycling cell markers STMN1 
expressed on clusters 5 and 6. The expressions of FNDC1, TGFBI, PRG4, CFD, and CFH were highly 
overlapped with each other, which is slightly different with our data (Figure 3—figure supplement 
2E). We performed a comprehensive integration of our data and the public data in Sun et al., 2020 
using Seurat (Stuart et al., 2019). Figure 3—figure supplement 3A, B shows the transferred UMAP 
coordinates after integration. From the comprehensive integration results, we inferred that our data 
spanned broader transcriptomic states and the public data mainly corresponded to a subset near 
Ch.2, Ch.3, and Ch.5 locations. We calculated the percentages of transferred labels in the public 
clusters (Figure 3—figure supplement 3C–E) and revealed their mutual correspondences. We found 
the ACTA2+ cluster 3 in public data partially mapped to the PCL cells in our data. We used a hierar-
chically clustered joint heatmap of our data and public data to visualize the cluster correspondences 
(Figure  3—figure supplement 3F). Considering these integration results, we believe our cluster 
labels and markers span a larger state space and could better represent cellular heterogeneities.

Degeneration and zonation-associated cell subpopulation changes
We compared the overall gene expression differences between the normal and degenerations 
conditions for chondral and PCL populations and derived a series of conditional DEGs. We identi-
fied genes upregulated in the degeneration group, such as COL1A1, COL1A2, COL3A1, COL6A1, 
POSTN, SPARC, CILP, TGFBI, DPT, and ATMN, and genes upregulated in the normal group, such as 
APOD, CHI3L1, CHI3L2, CEBPD, C11orf96, C2orf40 (ECRG4), ACTA2, TAGLN, BCAM, and MCAM 
(shown in Figure 3A and Figure 3—figure supplement 4, an extended list of genes in Figure 3—
figure supplement 5A). The enrichment analysis interpreting the potential functions of these DEGs 
is available in Figure 3—figure supplement 5B, C. We believe the overall expression differences 
are mainly contributed by the cell type compositional changes because these genes are identified 
as markers of the chondrocyte subpopulations. For example, the expressions of Ch.2 marker genes 
COL1A1/2, COL3A1, COL6A1, and SPARC are higher in the degenerated group; and Ch.3 markers 
AMTN and CILP also have higher expressions in the degenerated group; whereas PCL cell markers 
ACTA2, TAGLN, BCAM, and MCAM are highly expressed in the normal group. All these expression 
differences are consistent with our compositional observations that Ch.2 and Ch.3 increased in degen-
eration and Ch.1 and PCL decreased in degeneration (Figure 3B and Figure 3—figure supplement 
6A). Besides overall differences, we also calculated the DEGs in each cluster between the degener-
ated and normal conditions (Figure 3—figure supplement 6B) and found more subtle expressional 

(D) IF staining of CDON in a degenerated sample. (E) IF staining of CD31 in a normal sample. (F) IF staining of CD31 in a degenerated sample. (G) IF 
staining of CD45 in a normal sample. (H) IF staining of CD45 in a degenerated sample (IF: immunofluorescence). The inner and outer zones of menisci 
were annotated with arrows.

Figure 4 continued
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shifts in the degeneration states. Considering all factors above, it appears that the overall expres-
sional changes after degeneration could be explained by the increase of Ch.2 and Ch.3 as well as the 
decrease of PCL cells.

To explore each subcluster’s biofunction in degeneration, we performed GSVA analyses of each 
population in two conditions. We first analyzed the GSVA scores of ECM-related gene ontology terms 
in Figure 3C and found Ch.2 could have high ECM disassembly scores while Ch.3 could negatively 
regulate the disassembly regardless of the degeneration states. They could play essential roles in the 
anabolic/catabolic balance. Ch.2 and Ch.3 also got high scores in leukocyte chemotaxis (Figure 3D), 
angiogenesis (Figure  3E), and chondrocyte hypertrophy-associated terms (Figure  3F); while in 
contrast, Ch.1 had relatively lower scores on these terms. This is consistent with the fact that Ch.1 cells 
dominate the normal meniscus (Figure 3B), and leukocyte infiltration and angiogenesis mainly happen 
in the degenerated meniscus. Ch.5 got high scores on the cell-cycle-related terms (Figure 3F). PCL 
cells got higher pro-angiogenesis scores in degenerated samples than in normal samples. The GSVA 
analyses indicated the increased or decreased subclusters in degenerated samples had pro- or anti-
degeneration functions and further supported that the compositional changes of subclusters primarily 
contributed to the degeneration process.

It is acknowledged that the inner and outer zones have varied recovery abilities, ECM compositions, 
cellular compositions, and mechanical characteristics. But it is still unknown which zone is the primary 
contributor to joint inflammation in OA. We analyzed the zonation-dependent cellular state shift and 
computationally evaluated inflammation response scores in two regions. From the cell density plots 
in Figure 3—figure supplement 7A, B, we found that the inner zone chondrocytes shift from the 
Ch.1 positions to the Ch.3 positions, while the outer zone chondrocytes shift to Ch.2 and Ch.4 posi-
tions. Both zones have cell state shifts after degeneration. We compared the cell densities instead of 
directly comparing the subpopulation percentages. Since the molecular profiles of subclusters vary 
on a continuum and the clustering boundaries could be vague, directly comparing the percentages 
with paired/unpaired statistical tests could miss the state shifts (Figure 3—figure supplement 7C, D). 
Compared to Ch.3, the Ch.2 cells have higher scores on the responses to inflammation cytokines TNF 
and IL1 (Figure 2—figure supplement 2H). We also evaluated the GSVA scores of three inflammation 
gene sets on the chondrocytes and found the outer-degenerated groups consistently got significantly 
higher inflammation scores than the outer-normal group. In contrast, the inner zone cells did not have 
this trend (Figure  3—figure supplement 7E). From the computational analyses, we inferred that 
outer menisci could contribute more to joint inflammation in OA.

Spatially resolve cell subtype distributions with in situ imaging
We used immunofluorescence staining to validate the subpopulation markers and study the spatial 
distribution of the subclusters in the human meniscus. Among the top 20 marker genes (according to 
log2 fold-change values) for each chondrocyte subpopulation, we chose SERPINA1, MMP14, CDON, 
CYP1B1, ACTA2, CD31, and CD45 for staining. Normal and degenerated meniscus sample slides were 
simultaneously stained with the following antibodies: anti-SERPINA1 for Ch1(CHAD), anti-MMP14 
for Ch2(FNDC1), anti-CYPIB1 for Ch4(CFD), and anti-ACTA2 for PCL cells. We used anti-CD31, anti-
CDON, and anti-CD45 to label vascular endothelial cells, Ch3(PRG4), and immune cells for immu-
nofluorescence staining. From the staining results, we can clearly find that CDON + chondrocytes 
were mainly distributed on the surface of the meniscus tissue, and ACTA2+ pericytes were presented 
surrounding blood vessels. SERPINA1+, CYP1B1+, and MMP14+ chondrocytes were mixed and scat-
tered inside the meniscus. Immune cells were mainly distributed around the blood vessels in the 
meniscus. Compared with the normal samples, the number of ACTA2+ chondrocytes was decreased, 
the number of MMP14+ chondrocytes was markedly increased, and the number of vascular endothe-
lial cells was significantly increased in degenerative specimens (Figure 4A–H).

Crosstalk changes of chondrocytes, leukocytes, and endothelial cells in 
meniscus degeneration
Besides chondrocytes, various types of leukocytes, and endothelial cells also have indispensable roles 
in the occurrence and development of cartilage degeneration and OA (Hsueh et al., 2021; Alahdal 
et al., 2021).

https://doi.org/10.7554/eLife.79585
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For the leukocyte part, we identified macrophages/monocytes, neutrophils, mast cells, dendritic 
cells, T cells, and cycling immune cells in normal and degenerated meniscal samples (Figure  5A, 
B, Figure 5—figure supplement 1A). Macrophage/monocyte makes up the largest portion of the 
total immune population. The percentages of macrophage/monocyte, T cell, dendritic cell, and total 
immune cell increased in the degeneration group, which was consistent with the vascularization and 
the damage-induced inflammation (Figure  5B, C). We noticed some pro-inflammatory cytokine/
chemokine genes upregulated in degeneration samples, for example, interleukin genes IL1A, IL1B, 
IL6, IL15, and IL18 upregulated in the cycling subpopulation (Figure 5A); chemokine genes CXCL1, 
CCL3, and CXCL3 upregulated in macrophages/monocytes (Figure 5—figure supplement 1D). We 
also noticed increased expressions of metallothionein genes in the degenerated group, for example, 
MT1X and MT1G in macrophages/monocytes (Figure 5—figure supplement 1B), MT1X, MT2A, and 
MT1E in T cells (Figure 5—figure supplement 1C).

We identified an arterial–capillary–venous gradient in the meniscal endothelial cell population 
(Figure 5E–G) with other organs’ endothelial markers (Schupp et al., 2021; Kalucka et al., 2020). 
The capillary–arterial endothelial cells highly express GJA5; the capillary endothelial cells highly 
expressed PLVAP; and the capillary–venous endothelial cells highly expressed VWF. These endo-
thelial cells comprise the microvascular and capillary vessels. A tiny cluster of lymphatic endothelial 
cells was also observed, which may come from the lymphatic vessels in the meniscus. We compared 
the total endothelial cells between the normal/degenerated groups and reported a list of DEGs 
(Figure 5H). In the normal group, CST3, ACKR1, RBP7, and IGFBP4 were upregulated, while in the 
degenerated group, S100A4, DDIT4, CRIP1, and MGP were upregulated. CST3 is ranked first in the 
normal group DEGs, which was reported to have inhibition effects on the proliferation, migration, 
tube formation, and permeability of endothelial cells (Li et al., 2018). ACKR1 is also highly expressed 
in the normal group, which encodes a chemokine decoy receptor inhibiting the effectiveness of other 
chemokines (Rot, 2005). These molecules contributed to the blood vessel’s stability in the normal 
group.

With all major classes of meniscal cells being identified, we inferred the cell–cell interactions (CCIs) 
based on the ligand and receptor expressions and compared the interaction intensities between the 
normal/degenerated samples. The results suggested that CCI intensities generally increased in the 
degeneration group, especially for the endothelial cells and immune cells (Figure 5I). These enhanced 
CCIs are also consistent with the angiogenesis and leukocyte recruitment phenomena in the degen-
eration group (Figure 6). Figure 5J shows some instances of the significant CCIs originating from the 
sender cell type to the receiver cell type. For example, in the degenerated meniscus, we observed 
that a chemokine gene CXCL8 was upregulated by macrophages/monocytes, neutrophils, DCs; and 
its receptor gene SDC2 was expressed in chondrocytes and the pericyte-like cells. We also observed 
significant CALM1/2-INSR CCIs occurred in the degeneration in which angiogenesis happened – 
many cell types upregulated CALM1/2, and endothelial cells upregulated the insulin receptor gene 
INSR. This observation is consistent with a previous study showing insulin receptors’ pro-angiogenesis 
functions. (Walker et al., 2021). We also identified multiple other cell–cell crosstalks enhanced in 
the degeneration group that are involved in immunoregulations. They are mediated by TNF super-
family interactions (TNF, TNFSF10 → VSIR, TNFRSF1A/B), and TGF superfamily interactions (INHBA → 
ENG), and Class I HLA → APLP2 interactions. In Figure 5—figure supplement 2A–L, we provided a 
detailed resource of the predicted CCIs. We illustrated sender–receiver CCI pairs high in the normal or 
degeneration groups. Note that all the CCIs mentioned above were derived using gene expressions 
and curated lists of ligands and receptors. We did not examine these computational inferences with 
experiments.

Based on the above observations, we inferred that the immune cells and endothelial cells could be 
important regulators for chondrocytes and ECMs (Figure 6). It has been known that the degenerated 
ECM released damage-associated molecular patterns (DAMPs) that initiated inflammatory responses 
(Martel-Pelletier et al., 2016; Chen et al., 2017a). According to our inference, immune cells could 
sense the DAMP signals, migrate to the inflammatory meniscus and produce cytokines and chemo-
kines. The inflammation could in turn enhance ECM catabolic enzymes like MMP/ADAM/ADAMTS, 
stimulate blood vessel proliferation, and further promote immune infiltration in the meniscal tissue. 
These factors work in a manner like a ‘positive feedback loop’. In common conditions, the DAMP-
induced inflammation will reverse when the DAMP molecules are cleared (Zindel and Kubes, 2020). 

https://doi.org/10.7554/eLife.79585
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Figure 5. Immune, endothelial cells, and their crosstalk with chondrocytes. (A) Uniform manifold approximation and projection (UMAP) visualization of 
the immune cell types in the meniscus. (B) UMAP visualization of the statuses of samples (degenerated/normal). (C) Per-sample bar plots visualize the 
immune cell percentage changes between the normal and degenerated group. (D) Changes in immune cell percent between normal and degenerated 
groups. Error bars show the standard deviations of the data. Wilcoxon p values: Mac.Mo 0.004, Cycling 0.10, DC 0.14, Neu 0.19, T 0.22, Mast 1.0. (E) 

Figure 5 continued on next page
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However, if the above factors work in the positive feedback loop in some perturbed conditions, they 
can mutually promote each other and drive the microenvironment away from homeostasis.

Discussion
Recent single-cell studies have shown the importance of meniscal progenitors in tissue engineering 
and given a rough picture of the meniscal cell types. However, the existing data were still insufficient 
to reveal degeneration participants in the microenvironment. In this work, we investigated meniscal 
chondrocytes, developed a hierarchical classification system, and classified the cells into five major 

UMAP visualization of the endothelial class cells’ subtypes. (F) UMAP visualization of sample status. (G) UMAP visualization of the anatomical regions. (H) 
Top differentially expressed genes between different health states (degenerated vs. normal). The heatmap shows z-score-scaled gene expression values. 
(I) General cell–cell crosstalk between large populations. The ligand–receptor pair crosstalk was evaluated at the large population level (Methods). (J) 
Representative crosstalk was significantly enhanced in the degeneration group.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Immune cell signature genes.

Figure supplement 2. Ligand–receptor pairs that were up-/downregulated in degeneration.

Figure 5 continued
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Figure 6. A schematic diagram of the microenvironment changes between the normal and the degenerated meniscus. The left side visualizes the 
homeostasis meniscus, where Ch.1 is the dominant chondrocyte population. In this situation, the extracellular matrix (ECM) decomposition and 
synthesis reach a dynamic equilibrium, and the aberrant proliferation of blood vessels is inhibited. The right side visualizes the degenerated meniscus, 
where the orchestrated microenvironment balance is broken. The pericyte-like cells detach from the blood vessels and lower the stability of the blood 
vessels. The endothelial cells grew and formed new blood vessels in the degenerated area. The vascular permeability increased and allowed more 
immune cells to infiltrate the degenerated tissue. Ch.2 and Ch.3 increased in quantity and produced more matrix disassembly enzymes, damaging the 
ECM, releasing angiogenesis factors, and recruiting more immune cells. The immune cells, such as macrophage/monocytes, DCs, and T cells, also have 
chemotaxis functions. There are also cycling chondrocytes and nerve tissue cells in the meniscus.
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populations (Ch.1–Ch.5). We identified endothelial cells enriched in both outer meniscal parts and 
inner parts, which are typically conceived as avascular ‘white–white zone’. We inferred that these 
unanticipated cells were the degeneration product because newly generated vascular endothelial 
cells usually occur in cartilage as OA progresses (Goldring and Goldring, 2016). Surrounding the 
microvessels are the pericyte-like cells possessing muscle contraction features. We also observed 
Schwann cells, which typically wrap around the neurons, indicating there are nerve tissues in the 
human meniscus. For the immune cells, we observed monocytes/macrophages, DCs, T cells, neutro-
phils, mast cells, and some cycling immune cells.

The meniscal microenvironment changes significantly from the homeostasis when the degener-
ation progresses (Figure 6). In normal meniscal tissues, the synthesis and disassembly of the matrix 
molecules were balanced in the orchestrated ECM metabolism. We inferred that the dominant Ch.1 
population was essential to the balance maintenance because they expressed TIMP family molecules 
that inhibited the ECM decomposers (MMP/ADAM/ADAMTS). The PCL population that adhered to 
the surface of endothelial cells maintained vasculature stability. The high-level expressions of atyp-
ical chemokine receptors like ACKR1 neutralized the chemokines and attenuated the angiogenesis 
(Xu et al., 2007). The patrolling immune cells mainly pass by the tissue in the blood vessel without 
residing or being attracted.

However, the balanced microenvironment was altered significantly in the degenerated meniscal 
tissues. The expression of ECM decomposers (MMP/ADAM/ADAMTS family molecules) from chon-
dral subpopulations Ch.2 and Ch.3 might surpass the inhibition forces (TIMP) and decompose the 
ECM by breaking large PG molecules into fragments. We believe the blood vessels have two sides in 
the homeostasis of the meniscus. On the one hand, the blood vessels can help to restore acute injuries 
to health; on the other hand, the proliferated blood vessels can build pathways for the immune cells so 
that they can infiltrate the meniscal matrix and cause inflammation. We observed multiple synergistic 
factors promoting angiogenesis and increased endothelial percentages in the degenerated samples. 
While the pericyte stabilizes the blood vessel in health, the detachment and decrease of the pericyte 
may lead to pathological states (Figueiredo et al., 2020; Armulik et al., 2011; Diéguez-Hurtado 
et  al., 2019). On the vascular wall, the endothelial cells could downregulate ACKR1 expressions, 
respond to the pro-angiogenesis factors like VEGFA, FGF, IGF1, TGFβ produced by the Ch.2, Ch.3 
Ch.4, grew new branches, increased the vascular permeability. Changing the chondrocyte subtype 
ratios and limiting blood vessel proliferation may delay or reverse the meniscus degeneration.

In addition to these findings from the analyses of the meniscal single-cell sequencing data, we have 
also made an interactive website to store and let readers to browse the processed data. Readers can 
directly access the website through the link http://meni.singlecell.info:3000/, and perform online anal-
yses of the results, comparison of differential genes between two special clusters, or data downloading.

In the design of this study, we only partitioned samples into two health states: normal and degen-
erated. If we distinguish the disease severity of the meniscus samples, we could establish more fine-
grained links between the molecular profiles and the disease. Another limitation of this study is that 
females make up the majority of our donors (Supplementary file 1), since OA is more common in 
middle-aged and older females. The cellular profiles observed in this study may better represent the 
female population. We observed a small number of nerve tissue cells, which also hindered detailed 
analysis of them. Our functional coordination of chondrocyte subtypes was confined to the meniscus 
environment, even though there were signs that chondrocytes across different cartilage tissues were 
not distinct and had many common features. We hope a future molecular coordination framework 
could integrate chondrocytes across multiple cartilage tissues, different health states, anatomical 
regions, and differentiation stages, guiding the precise taxonomy of chondrocytes when more single-
cell cartilage studies are released.

In conclusion, we systematically profiled the cellular diversities in the inner and outer meniscus 
and reported the microenvironmental alterations in the healthy and degenerated states. Our study 
is an informative complement to the existing meniscal single-cell sequencing data and provides an 
important reference for the study of meniscal degeneration. The study suggested that we should 
pay attention to the blood vessel’s functional duality in acute and chronic inflammation. Preserving 
the pericyte-like cells wrapping around the vessels might be a potential strategy to alleviate chronic 
degeneration. Systematically coordinating of angiogenesis, inflammation response, ECM catabolism, 
and preventing their mutual reinforcement could be a strategy for delaying or reversing meniscus 
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degeneration. The meniscus is an important and representative fibrocartilage in the human body. We 
speculated that the cellular and molecular mechanisms observed in this study on meniscal degener-
ation, such as angiogenesis and inflammation, could also apply to intervertebral discs and articular 
cartilage degeneration. It could shed new light on the diagnosis and treatment of other degeneration-
associated musculoskeletal diseases like low back pain and joint pain.
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