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Abstract The solution of complex problems by the collective action of simple agents in both 
biologically evolved and synthetically engineered systems involves cooperative action. Under-
standing the resulting emergent solutions requires integrating across the organismal behavior of 
many individuals. Here, we investigate an ecologically relevant collective task in black carpenter 
ants Camponotus pennsylvanicus: excavation of a soft, erodible confining corral. These ants show 
a transition from individual exploratory excavation at random locations to spatially localized collec-
tive exploitative excavation and escape from the corral. Agent-based simulations and a minimal 
continuum theory that coarse-grains over individual actions and considers their integrated influ-
ence on the environment leads to the emergence of an effective phase space of behaviors, char-
acterized in terms of excavation strength and cooperation intensity. To test the theory over the 
range of both observed and predicted behaviors, we use custom-built robots (RAnts) that respond 
to stimuli to characterize the phase space of emergence (and failure) of cooperative excavation. 
Tuning the amount of cooperation between RAnts, allows us to vary the efficiency of excavation and 
synthetically generate the entire range of macroscopic phases predicted by our theory. Overall, our 
approach shows how the cooperative completion of tasks can arise from simple rules that involve 
the interaction of agents with a dynamically changing environment that serves as both an enabler 
and a modulator of behavior.

Editor's evaluation
This manuscript presents a quantitative study of how ants collaborate to excavate their escape from 
a confining barrier. The authors provide a compelling understanding of the main mechanisms driving 
the excavation process. They show how cooperative escape behavior arises from a non-trivial combi-
nation of movement, interaction with the substrate, and communication between individuals. The 
findings are supported by extensive evidence from experimental data, numerical simulations, theo-
retical modeling, and robotic implementation. This is an important paper that will be of interest to a 
broad group of researchers working on decision-making and collective behavior in living systems.

Introduction
Collective behavior is seen in organisms across many length scales, from the microscopic to the macro-
scopic (Nowak, 2006; Camazine et al., 2020; Gordon, 1999; Seeley, 2009; Couzin and Krause, 
2003). These behaviours are often functional and serve as solutions to problems associated with tasks 
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that cannot be solved efficiently at the individual level and range from brood care to foraging for food, 
protection from enemies and predation of prey, building complex architectures etc (Feinerman et al., 
2018; Ocko and Mahadevan, 2014; Hölldobler and Wilson, 2009; Peleg et al., 2018; Rasse and 
Deneubourg, 2001). Since collective behavior involves multiple individuals, this necessarily involves 
some form of communication and/or cooperation that takes different forms across scales - from 
quorum sensing in unicellular bacterium and slime molds, to the waggle dance in bees, and various 
forms of physical signal propagation in animal societies and human organizations (Rasse and Deneu-
bourg, 2001; Alcock, 2001; Pennisi, 2009; Nowak, 2006; Elster, 1998; Couzin and Krause, 2003).

The importance of environmental signals is particularly clearly seen in examples of collective task 
execution in social insects that have a long history of documented cooperative behavior (Hölldobler 
et al., 1990; Gordon, 1999; Perna and Theraulaz, 2017; Mikheyev and Tschinkel, 2004). Super-
organisms made of individuals respond to local stimuli with stereotypical actions that leave their ‘mark’ 
on the environment, creating a spatio-temporal memory, commonly known as stigmergy (Hölldobler 
and Wilson, 2009). While stigmergy is usually associated with scalar pheromone fields, a broader 
definition might include the use of signaling via chemical, mechanical and hydrodynamic means (Buhl 
et al., 2005; Mikheyev and Tschinkel, 2004), as has been quantified in recent studies of bees (Ocko 
and Mahadevan, 2014; Peleg et al., 2018). To understand how collective task execution arises, we 
need to understand how individuals switch from local uncoordinated behavior to collective coopera-
tion that translates to successful task execution in different social systems. From a biological perspec-
tive, this naturally involves understanding the neural circuits, physiology and ethology of an individual. 
A complementary perspective at the level of the collective is that of characterizing a ‘crude view of the 
whole’, which entails the quest for a small set of rules that are sufficient for task completion, along with 
the range of possible solutions that arise from these rules that might be tested experimentally. And 
finally, given the ability to engineer minimally responsive biomimetic agents such as robots (Rahwan 
et al., 2019), a question that suggests itself is that of the synthesis of effective behaviors using these 
agents. This allows us to explore regions of phase space that are hard to explore with social insects, 
and also to learn about the robustness of these behaviors using imperfect agents in uncertain and 
noisy physical environments, before looking for them in-vivo.

Here we use an ecologically relevant task in carpenter ants Camponotus Pennsylvanicus: excava-
tion and tunneling, to quantify the dynamics of successful task execution by tracking individual ants, 
create a quantitative framework that takes the form of mathematical models for agent behavior, and 
finally synthesize the behavior using robots that can sense and act. Our work complements and builds 
on earlier studies on excavation (Buhl et al., 2005; Tschinkel, 2004; Deneubourg and Franks, 1995; 
Deneubourg et al., 2002) in social insects that looked at the effects of population size and the role 
of cooperation on the efficiency of digging, while developing 1-dimensional models to understand 
the excavation process. We go beyond these studies by (i) quantifying the collective behavior of ants 
by tracking them in space-time, following the dynamics of their interaction, and the process of exca-
vation of the confining substrate, (ii) developing a theoretical framework that couples the change in 
ant density, substrate density and the rate of antennation in space and time to capture the collective 
execution of the task in terms of a few non-dimensional parameters that define the range of behaviors 
of the agents, (iii) synthesizing and recreating this collective task using custom-built robots that can 
respond to each other and the environment . An important outcome of our study is a phase diagram 
that shows the emergence of different collective behaviors associated with task completion as a 
function of just two dimensionless parameters that characterize the local rules underlying individual 
behavior and the nature of communication between agents such as ants and robots.

Materials and methods
Excavation in carpenter ants
We start with ants drawn from a mature colony of C. Pennsylvanicus that consist of a queen, the 
sole egg layer, and workers from three morphologically different castes - major, median, and minor 
(Hansen and Klotz, 2005). Although all ants perform different tasks like foraging, nest-keeping, and 
brood care to varied degrees, during excavation, major ants, equipped with their large mandibles, 
generally take the lead role, while median and minor ants transport the debris out of the nest. Ants 
communicate primarily through their antennae by using them to sense pheromones released by other 

https://doi.org/10.7554/eLife.79638
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ants and by touching other ants to identify their caste. It is this inter-organismal information exchange 
that enables the collective solution of complex tasks.

Our experiments consist of a dozen worker ants from the same colony that are anesthetized (using 

‍CO2‍) and then brought into a confining ring-like corral made out of agarose (height 10mm, inner 
radius 35mm and outer radius 55mm) flanked above and below by two hard plastic sheets. To mimic 
their natural environment in a nest, we eliminated visible light and used infrared light to monitor the 
ants using video (see Figure 1(a)). We performed 4 experiments with a collective of 12 majors ants 
and 3 sets of experiments with a mixture of 4 major, 4 media and 4 minor ants. Once we introduce 
O2 into the corral, the ants regain activity but stay still for a while before moving. They first exhibit 
wall-following until one or more of the ants initiates an exploratory excavation at a random location 
along the corral (ref Figure 2). After an initial exploratory phase the ants switch to an exploitative 
strategy in which they excavate a tunnel at a specific location and eventually break through the corral 
(see Video 1 and the sequence in Figure 1(b)). In contrast with the behavior of the 12 ant collective, 
when a single Major ant is introduced into the arena, the ant is unable to excavate through the agar 
barrier (see Video 1).

We can quantify this transition from rotationally isotropic exploration to localized excavation by 
considering both the behavior of individual ants or their effective density ‍ϱa(r,ϕ, t)‍ as a function of 
the polar coordinates ‍(r,ϕ)‍ and time t. We choose to use an effective coarse-grained density for two 
reasons: it is a more natural variable in the limit of large populations that vary in space and time, and 
is also amenable to building effective theories with fewer parameters that are easier to analyze and 
thus also compare to experiments. The ant density is obtained by averaging the position of the ants 
over a time window larger than the time taken for them to perform one task cycle , that starts with 
excavation at the boundary and ends with dropping debris in the interior of the corral (see Appendix 1 
for further details). Over time, we see that the ant density becomes localized at a particular angle and 
location along the corral; here large-scale excavation eventually leads to excavation and escape from 

Figure 1. Collective dynamics of ant excavation. (a) Colony members of the black carpenter ant Camponotus 
pennsylvanicus are confined to a porous boundary made out of Agarose. The boundary is represented by its radius 

‍R(ϕ, t)‍ (‍ϕ‍ - polar angle, ‍t ‍ - time). Bottom part shows the side-view schematic of the experimental set-up with 
the boundary made of agarose and background IR light source used to image the ants in the dark. (b) Temporal 
progression of excavation experiments as 12 ants cooperatively tunnel through the agarose confinement. The 
white line is the tracked location of the inner wall which grows in size as the excavation progresses. (c) Confinement 
area ‍A(t)‍ as a function of time (scaled by time to excavate out of the corral ‍T ‍), normalized by initial circular 
confinement with radius ‍Ro‍. (d) Evolution of the orientation distribution of the ant density, ‍P

a
ϕ(ϕ, t)‍ obtained by 

averaging along the radial direction. Ants start from an initially isotropic state and localize at an angle ‍ϕb‍ along 
the boundary. ‍T ‍ here is the excavation time. (e) Dynamics of the radial distribution of ant density ‍Pa

r (r, t)‍ as a 
function of radial distance, ‍r ‍ obtained by averaging a sector of ‍π/6‍ around the excavation site. We see that the 
ant density front propagates through the corral. The density is plotted for the same times as in (f) Evolution of the 
power spectrum ‍|R̂(k, t)|2‍ of first five Fourier modes capturing the number of tunnels formed during excavation 

‍R(ϕ, t) =
∑

k R̂(k, t)eikϕ
‍. Inset shows the real part of the Fourier coefficient, ‍ℜ(R̂)‍ at different time instants 

indicating that many modes are present in the boundary shape.

https://doi.org/10.7554/eLife.79638
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the corral (see Figure 2 and Appendix 1—figure 1 for the coarse-grained spatio-temporal evolution 
of the ant density, obtained by this averaging procedure). Simultaneously, collective excavation leads 
to an increase of the volume of excavated material, as shown in Figure 1(c) (see also Toffin et al., 
2009). By averaging the ant density over radial positions, in Figure 1(d) we show the orientation distri-
bution of the ant density ‍P

a
ϕ(ϕ, t) =

´
ϱa(r,ϕ, t)dr‍ is initially isotropic, and gradually starts to localize at 

a particular (arbitrary) value of the angle as time increases.
Averaging the density over the localized region, in Figure 1(e) we show the radial distribution of the ant 

density ‍P
a
r (r, t) =

´
ϱa(r,ϕ, t)S(ϕ)dϕ‍ (where ‍S(ϕ)‍ is a smoothing kernel localized around the excavation site) 

starts out by being initially uniform, and gradually propagates radially outwards as time increases. Consistent 
with localization and concomitant excavation (Figure 1(f) inset, Appendix 1—figure 2(c)), we see that the 
multiple azimuthal Fourier modes compete with each other initially before an elliptic mode (corresponding 
to a strongly localized state) is amplified as excavation progresses (shown in Figure 1(f), Appendix 1—
figure 2(b)). All together, our quantitative observations show that an initially isotropic and homogeneous 

Figure 2. Evolution of the ant density field, ‍ϱa(x, t)‍ (in units of #/mm2) as the tunneling progresses for experiments with 12 major ants. The density field 
is obtained by averaging the ant locations over 250 s during the tunneling process. In the second columns is the evolution of the boundary shape, ‍R(ϕ)‍ 
as a function of time where we see multiple excavation sites being explored before one of them succeeds. The darker spots in the image are the debris 
that the ants deposit as they excavate the boundary.

https://doi.org/10.7554/eLife.79638


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 5 of 32

distribution of ants in the corral induces exploration 
of multiple potential tunneling paths that transitions 
into the exploitative excavation of one specific loca-
tion that eventually leads to an excavation route.

Model of cooperative excavation
In order to understand the dynamics of this coop-
erative excavation we first model the ants using 
discrete agents that mimic the microscopic behav-
iors of ants before turning to a coarse-grained 

field theoretic model for the evolution of the ant, pheromone and substrate density in space and time. 
In the agent-based model each ant is represented as a circular disk of radius ‍a‍ with center position 

‍rj(t)‍ and orientation ‍̂pj(t)‍ where ‍j = 1 · · · n‍, ‍n‍ being the number of ants in the domain (see Figure 3(a)). 
We approximate the confining corral in the experiments using discrete boundary elements which 
the agents can pick and place in the interior of the domain (see Figure  3(b)). Initially, a random 
collection of agents engages in exploration within the corral in the absence of external gradients, 
consistent with observations (Trible et al., 2017) but their motion is rectified either by the presence 
of pheromone gradients or reinforcing antennating signals (Hölldobler et al., 1990; Reinhard and 
Srinivasan, 2009; Waters and Bassler, 2005; Gordon et al., 1993; Hillen and Painter, 2009; Toffin 
et al., 2009). Antennation involves information moving with the ants while pheromone gradients leads 
to information being laid down in the fixed environment. However, when ants move slowly relative to 
the time for the decay of the memory associated with antennation with other ants, the dynamics of 
both these processes is similar. Then the signals laid down (or transported) by ants increases locally 
at a rate proportional to their density (Gordon, 2021), and is subject to degradation and diffusion 
slowly. Accounting for these effects, we arrive at the following dynamical equations for the evolution 
of ‍rj(t), θj(t), c(x, t)‍ as:

	﻿‍

ṙj(t) = vop̂(t)︸ ︷︷ ︸
Self-propulsion

,

‍�
(1)

	﻿‍

θ̇j = G∇⊥c︸ ︷︷ ︸
Antennation feedback

+ ηj(t)︸︷︷︸
Exploration

,

‍�
(2)

	﻿‍

∂tc = Dc∇2c� �� �
Diffusion

+ k +
n∑

j=1
H(rj(t); a)

� �� �
Production

− k−c����
Decay

.

‍�

(3)

Video 2. Dynamics of excavation from agent-
based simulation for different number of agents 
(‍n = 1, 5, 10, 22, 100‍) in the corral for parameters in tab 
Appendix 2—table 1 We see successful escape as well 
as trapped dynamics as highlighted in Figures 3 and 4.

https://elifesciences.org/articles/79638/figures#video2
Video 1. Ant experiments. ‍(i)‍ Single ant: We confined 
1 ant (major, media and minor individually) and capture 
their dynamics to see if they are capable of tunneling 
on their own; ‍(ii)‍ Multiple castes assemblage: We 
confined 12 ants, 4 for each of major, minor and media 
castes, and capture the dynamics of excavation as they 
tunnel through the boundary; ‍(iii)‍ Major ant collective 
excavation: We confined 12 major ants and capture 
the dynamics of excavation as they tunnel through the 
boundary.2.

https://elifesciences.org/articles/79638/figures#video1

https://doi.org/10.7554/eLife.79638
https://elifesciences.org/articles/79638/figures#video2
https://elifesciences.org/articles/79638/figures#video1
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Here, the orientation of the agent in Equation 1 is given by ‍̂pj = (cos θj, sin θj)‍ with ‍θj‍ being the heading 
angle, vo the characteristic speed of the agent, ‍ηj‍ is a Gaussian white noise with correlation function 

‍⟨η
k
j (t)ηl

j(t
′) = 2Daδk,lδ(t − t′)⟩‍. The agents produce an antennating field at a rate ‍k+‍ which decays at a 

rate ‍k−‍ centered around the agent, and captured by the function ‍H(rj, a) = {1‍ if ‍|x − rj|2 − a2 ≤ 0‍, and 
vanishes otherwise}. We assume that the gradient in the antennating field along the local normal, on 
the right hand side of Equation 2, determines the rotation of the agents with  ‍G‍ being the rotational 
gain. In order for the agents to initiate the excavation process, they can pick the elements from 
the boundary and drop them in the interior of the corral only when the local concentration of the 

antennating field is larger than a critical threshold 
‍c∗‍, consistent with observations (Gordon, 2021; 
Gordon et  al., 1993). Figure  3(b) shows snap-
shots (see Video  2 for a movie of the simula-
tions) of the agent-based simulations following 
Equations 1–3 showing that the agents excavate 
successfully out of the corral when the gradient 
following behavior is strong (see Appendix 2 for 
details). Given this, we expect the time taken to 

Figure 3. Agent-based simulation. (a) Schematic of the agents in our simulation captured by their position ‍r(t)‍ and 
orientation ‍̂p(t)‍ moving at speed vo. These agents generate an antennating field ‍c(x, t)‍ at a constant rate ‍k+‍ which 
decays at a rate ‍k−‍. (b) Progression of cooperative excavation of the corral by 5 agents as they pick elements from 
the boundary and drop them in the interior (see sec. Appendix 2—table 1 for parameters). Color bar shows the 
magnitude of antennating field and it varies between 0–130. (c) Snapshot of the dynamics at the end of simulations 
corresponding to ‍Tstop = 266‍ for the number of agents ‍n = 3, 13, 100‍. We see that agents can go from excavating 
successfully to being trapped in their own communication field. (d) Box plot showing the time taken to excavate 
out of the corral ‍T/ts‍ (non-dimensionalized using ‍ts‍ - time taken for an agent to travel the entire domain) as a 
function of the number of agents ‍n‍ in the corral when ‍Tstop = 266‍. For very small and very large number of agents 
the collective does not excavate out as the median ‍T/ts = Tstop‍ and they escape fastest for ‍n = 8‍.

Video 3. Successful tunneling in RAnts. ‍(i)‍ Dynamics 
of excavation by RAnts as they cooperatively tunnel 
through the corral for ‍C = 1‍ and without cooperation, 
‍C = 0‍; ‍(ii)‍ Jammed phase: When the pick-and-place 
in RAnts is deactivated (corresponding to ‍E = 0‍), they 
get jammed for ‍C = 1‍; Diffused phase: When the pick-
and-place in RAnts is deactivated and the RAnts do not 
follow the antennating field (corresponding to ‍C = 0‍), 
they diffuse around.3.

https://elifesciences.org/articles/79638/figures#video3

Video 4. Summary video showing the results from ant 
experiments, theoretical model and robot experiments.

https://elifesciences.org/articles/79638/figures#video4

https://doi.org/10.7554/eLife.79638
https://elifesciences.org/articles/79638/figures#video3
https://elifesciences.org/articles/79638/figures#video4
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escape from the corral is a function of the number of agents. In Figure 3(c and d) we see that as we 
vary the number of agents from ‍n = 1 − 100‍ , for very small or large number of agents in the corral, 
the agents are unable to escape over the time of simulations, ‍Tstop‍ (ref. Figure 3(c and d)), seen as 
saturation in the excavation time ‍T/ts‍.

In our agent-based simulations, we can encode the detailed behavior of individual ants and thus 
account for nuances and variations across the population. However, these simulations are computa-
tionally expensive as one needs to couple the dynamics of the antennating field (governed by a partial 
differential equation) with the motion of discrete agents while also evaluating the mutual interactions 
between all the agents in the corral. A complementary perspective that allows us to gain insights 
into the relevant parameters that govern the macroscopic dynamics of the collective is afforded by a 
theoretical framework that averages over the fast times and short length scale actions of the agents, 
considering spatial variations over scales much larger than a ‘mean-free path’ and ‘collision time’ asso-
ciated with agent-agent interactions. Our effective theory attempts to couple three slowly-varying 
spatio-temporal fields: the ant density ‍ϱa(x, t)‍, a communication field ‍c(x, t)‍ representing antenna-
tion and pheromone-based communication, and the corral density ‍ϱs(x, t)‍, shown schematically in 
Figure 4(a). In the continuum picture, the agents’ random motion is captured using diffusion of the 
density while the rectified motion due to pheromone gradients is captured through chemotaxis, in 
addition to being self-propelled with a velocity ‍ua‍ that is related to the local environment. Finally, 
motivated by observations of antennation (Gordon, 1999; Pagliara et al., 2018), we assume that 
when the ants are stimulated by the presence of the corral past a threshold of antennation, ‍c∗‍ they 
start excavating. The rate of excavation is assumed to be proportional to the difference in the phero-
mone concentration relative to the threshold value (see further details). Accounting for these effects, 

Figure 4. Cooperation via organism-environment-organism interaction. (a) Schematic of the model showing the interaction between the different 
spatio-temporal fields required to capture cooperative excavation of ants: ant density, ‍ϱa(x, t)‍; concentration of antennating field, ‍c(x, t)‍ capturing inter-
ant communication; density of corral, ‍ϱs(x, t)‍ representing the soft corral which the ants excavate. We capture the dynamics of excavation by ants close 
to the excavation site using the one-dimensional version of Equations 3–5. (b, c) Temporal progression of the corral density, antennating field and the 
ant density showing successful excavation for high cooperation captured using the non-dimensional number, C (representing non-dimensional strength 
of cooperation amongst ants) and faster excavation, captured using E. For reduced cooperation ants’ diffusion dominates and only partial tunnels 
are formed (see Appendix 2 for details). ‍T ‍ here is the time for excavating out of the corral. The agent density is a gaussian function centered around 
‍x = 0.5‍.

https://doi.org/10.7554/eLife.79638
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we arrive at the following dynamical equations for the evolution of ‍ϱa(x, t)‍ and ‍ϱs(x, t)‍ that are coupled 
to Equation 3 for the evolution of the communication field:

	﻿‍

∂tϱa = − ∇ · (uaϱa)︸ ︷︷ ︸
Self-propulsive

advection

+ ∇ · ( Da∇ϱa︸ ︷︷ ︸
Diffusive flux

− χϱa∇c︸ ︷︷ ︸
Tactile feedback

),

‍�
(4)

	﻿‍

∂tϱs = −ksϱs{ Θ (c − c∗)︸ ︷︷ ︸
Antennating

field threshold

} × { Θ (ϱa − ϱ∗a )︸ ︷︷ ︸
Ant density
threshold

}.

‍�
(5)

Figure 5. Two dimensional simulations showing the evolution of the ant density ‍ϱa‍, antennating field ‍c‍ and the corral density ‍ϱs‍ by evolving Equations 
3–5, capturing successful tunneling for non-dimensional numbers ‍C = 0.8, E = 1.44‍ and time of simulation ‍T = 20.0‍. The list of dimensional 
parameters used in the simulation are indicated in the Appendix 1—figure 1(f). Radius of the outer boundary, ‍Ro‍ is 5 non-dimensional units and the 
inner boundary is ‍Ri = 2.5‍ (see Appendix 2 for details). Color bar shows the magnitude of different variables and they vary between 0 and 1.

https://doi.org/10.7554/eLife.79638
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In Equation 4, the ant advection velocity is assumed to have the form ‍ua = vo(1 − ϱs/ϱo)p̂‍ where vo 
is the characteristic speed of the agents, and ‍̂p‍ is a unit vector pointing along the radial (‍θ‍) direc-
tion, and the term ‍(1 − ϱs/ϱo)‍ reflects the fact that excavating ants are slowed down by their labor; 
‍Da‍ is the diffusivity of ants, ‍χ‍ is a chemotactic gain associated with the antennating-field-following 
behavior (related to the gain ‍G‍ in the agent-based model). Here is the average density of the ants 
defined by where is the domain size. This is a natural scale of the ant density as Equation 4 is in 
conservative form and the net density of the ants is preserved over the evolution. In Equation 5, 
ks is the rate of excavation of the corral and ‍ϱ

∗
a , c∗‍ are respectively the threshold concentration of 

ant density and antennating field required to initiate excavation. We assume that the behavioral 
switches have simple switch-like responses modeled here via the Heaviside function ‍Θ(x)‍ (or its 
regularization via hyperbolic or Hill functions). It is useful to note that in the absence of excava-
tion dynamics, our framework reduces to the well known Keller-Segel model for chemotaxis (see 
Hillen and Painter, 2009 for a recent review) (also detailed in Appendix 2). The coupling of ant 
behavior to the dynamics of excavation introduces the all-important notion of functional collective 
behavior linking active agents, communication channels (the antennating and pheromone fields) 
and a dynamic, erodible corral that characterizes progress towards task completion.

Model parametrization and description
The evolution of the ant density in Equation 4 is a combination of three dynamical processes: ant 
migration, diffusion and biased motion due to antennating. There are three time-scales associ-
ated with these three processes: a diffusion time-scale ‍τa ∼ l2/Da‍, a collective migration time-scale 
‍τv ∼ l/vo‍ and a time-scale associated with taxis  ‍τx ∼ l2/χco‍, where ‍l‍ is a characteristic length-scale. 
This last scale can be either the width of the corral to be excavated ‍L‍ (which is assumed to be of 
same order as width of initial ant density profile la), the length-scale associated with the balance 
between antennating field diffusion and decay, ‍l ∼ (Dc/k−)1/2

‍ or the length-scale due to the advec-
tion of ant density and diffusion, ‍l ∼ Da/vo‍. The antennating field in Equation 3 is governed by 
three processes, the generation of the antennating field, as well as its decay and diffusion. This 
leads to three more time-scales : an antennating field production time-scale ‍τ+ ∼ co/(k+ϱo)‍, a diffu-
sion time-scale ‍τc ∼ l2/Dc‍, and a decay time-scale ‍τ− ∼ 1/k−‍. Lastly, the dynamics of excavation 
from the corral which follows Equation 5 is governed by a characteristic time-scale ‍τs ∼ 1/ks‍. The 
list of all seven time-scales and length-scales associated with the different processes in the model 
are in Appendix 2—table 2. In terms of the different time-scales (see Appendix 2 for a list along 
with their ranges), there are a total of six dimensionless parameters, of which two non-dimensional 
numbers are qualitatively important in capturing the etho-space of collective excavation: (i) the 
scaled cooperation parameter defined as ‍C = τa/τx = χco/Da‍ which determines the relative strength 
of antennation (gradient-following) to ant diffusion with co being the maximum amplitude of the 
antennating field, (ii) the scaled excavation rate, ‍E = τv/τs = ksl/vo‍. Here, ‍l/vo‍ is the characteristic 
time-scale of ant motion, with ‍l ∼ min[(Dc/k−)1/2, la]‍, where la is the ant size (see Appendix 2 for 
details). The other four dimensionless parameters follow from the ratio of the time scale of ant 
motion and the diffusive time-scale as ‍V = τx/τa = vol/Da‍. The ratio of the rate of production of 
pheromone and the rate of diffusion or decay, leading to the parameters  ‍̂k± = τ−/τ+ = k+ϱo/(k−co)‍ 
and ‍Dc = τ−/τc = Dc/(l2k−)‍ so that the complete set of non-dimensional numbers that capture the 
dynamics of the ant collective is given by

	﻿‍ C = χco
Da

, E = ksl
vo

, V = vol
Da

, k̂± = k+ϱo
k−co

, Dc = Dc
l2k−

.‍�

In terms of these parameters, the dynamics of the ant density, the antennating field and the corral 
density given by Equations 3–5 can be written in non-dimensional form as

	﻿‍ ∂tϱa + ∇ · [(C∇c + V(1 − ϱs))ϱa] = ∇2ϱa,‍� (6)

	﻿‍ ∂tc = Dc∇2c + k̂±ϱa − c,‍� (7)

	﻿‍ ∂tϱs = − 1
4 Eϱs(1 + tanh[αc(c − c∗)]) × (1 + tanh[αc(ϱa − ϱ∗a )]).‍� (8)

https://doi.org/10.7554/eLife.79638
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Table 1. List of relevant variables and basic behaviors, for ant experiments, theoretical models and 
robotic implementation.

Ants Theoretical model Robots

Discrete ants Ant density,‍ϱa(x, t)‍ Discrete robots

Antennae communication Communication field,‍c(x, t)‍ Photormone field

Agarose corral Substrate density,‍ϱs(x, t)‍ Boundary elements

Motility Self-propulsive advection,‍ua‍ Mobile agents

Exploratory behavior Density diffusion,‍Da∇ϱa‍ Random walk

Tactile feedback Antennating field taxis,‍χϱa∇c‍ Phototaxis

Biting behavior Excavation rate, ks Collection and deposition

Neural control Dynamics of ant density Behavioral rules

To complete the formulation of our model, we also need to specify some initial conditions and boundary 
conditions for the ant density, the pheromone density, and the location of the corral boundary which 
are detailed in the Appendix 2.

Results
Linear analysis
Before we consider the different limits of the phase-space defined by the non-dimensional numbers, 
we show that the excavation process is an instability triggered by the scaled excavation parameter ‍E‍ 
in the system. Starting with the homogeneous state ‍ϱ

ss
a = ϱ∗a , css = c∗ = k+ϱo/k−, ϱss

s = 1‍ which satisfies 
the Equations 6–8, and perturbing about this configuration using a plane wave ansatz (in 1D) we write: 

‍{ϱa(x, t) − ϱss
a , c(x, t) − css, ϱss

s − ϱs(x, t)} = {ϱ̃a(k), c̃(k), ϱ̃s(k)} exp(ikx + Ωt)‍ where we assume that ‍||ϱ̃a||, ||̃c(k)||, ||ϱ̃s(k)|| ≪ 1‍. 
Then the linearized counterparts of the Equations 6–8 for the ant density, antennating field and the 
corral density read as: ‍(Ωk2)ϱ̃a + ikVϱ̃sϱo = k2Cc̃‍ ,: ‍̃c = k̂±ϱ̃a/(Ω + 1 + Dck2)‍,  ‍Ωϱ̃s = −Eϱ̃s/2‍. From this, 
we see that the growth rate ‍Ω = −E/2‍, is independent of all other parameters in the system, i.e. exca-
vating begins when ‍E > 0‍, once the ants have created a sufficiently large spatially diffuse antennating 
field. To understand the dynamics of excavation of the corral and the different phases of collective 
behavior, we now explore the role of the other non-dimensional numbers.

Limits of phase-space
Next we discuss the different limits of the phase-space defined by the non-dimensional numbers 

‍{C, E, V, k̂±, Dc}‍ and the thresholds ‍ϱ
∗
a , c∗‍.

Box 1. Ant behavior → Model → Robot behavior

Ants inside the corral move around, communicating with each other using their antennae 
before they cooperatively excavate the agarose corral. Though the detailed spatio-
temporal dynamics of each ant’s behavior is different at the microscopic level, we see that 
the cooperation between the ants results in a persistent density front (see Figure 1(d, e) 
and Figure 2) that excavates the substrate. In the theoretical description of the collective’s 
dynamics, the relevant behaviors are encoded through mutual interaction between the ants 
(via the antennating field) and the substrate. Such a description also inspires the robotic 
mimics that capture the ant collective’s average behavior. We list below the comparison 
between relevant behaviors in ants and their analogous encoding in the theoretical model as 
well as in the robots.

https://doi.org/10.7554/eLife.79638
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Figure 6. Emergent cooperative excavation dynamics in robotic ants. (a) Robot Ant (RAnt) set-up. A mobile RAnt is placed in an arena 50 cm in diameter 
surrounded by three layers of cylindrical boundary elements totalling 200 elements. The outermost layer is prevented from being pushed out of the 
arena by a circular ring. A scalar concentration field (photormone field) is projected onto a plane whose intensity can be measured by a RAnt. The 
position of each RAnt is tracked using a webcam. Each RAnt can pick up and drop the discrete boundary elements using a retractable magnet. (b) Series 
of snapshots at different times of the excavation process for a cooperation parameter C=1. (c) Flowchart of the RAnt programming. A base locomotion 
speed vb is stored internally and the rate of change ‍Ω‍ of the heading is a function of the cooperation parameter C, the photormone concentration 
‍c‍, and a stochastic process ‍W ‍ (Brownian motion). A photormone threshold ‍c∗‍ determines whether an object is grasped (with probability E) after it is 
detected by the distance sensor. (d) Orientation distribution of the RAnt density ‍P

r
ϕ(ϕ, t)‍ as a function of the azimuthal position ‍ϕ‍ is the orientation 

of the excavated tunnel. The density is plotted for different times. (e) Radial distribution of the RAnt density ‍Pr
r (r, t)‍ within a sector of ‍π/2‍ centered 

around the position of the excavated tunnel as a function of distance from the center of the arena ‍r ‍. The density is plotted for the same times as in 
(d). (f) Confinement area ‍A(t)‍ as a function of time, normalized by initial circular confinement with radius ‍Ro‍ for different cooperation parameter C. (g) 
Normalized excavation time ‍T ‍ as a function of cooperation parameter C, averaged over 5 experiments per cooperation parameter. Every experiment 
was run until the first RAnt excavated out or the experiment duration exceeded 15 min.

Small thresholds, when ‍ϱ∗ ≪ ϱo‍ and ‍c∗ ≪ co‍
When ‍ϱ

∗
a ≪ ϱo‍ and ‍c∗ ≪ co‍, we see the appearance of partial tunneling even with an initially inho-

mogeneous ant density ‍ϱa‍, independent of the pheromone dynamics. However, depending on on 
the value of the ratio ‍τs/τv‍, the ants can either excavate through the corral completely (‍τv/τs ≪ 1‍) or 
partially (‍τv/τs ≤ 1‍) (ref Appendix 2—table 3). If the ants are moving randomly, i.e. in the diffusion-
dominated regime, they can still tunnel through the corral if ‍τc ∼ τs‍ and partial tunnel through the 
corral if ‍τc ≲ τs‍. In non-dimensional terms, this translates to the relations  ‍V ∼ O(1), C ≪ 1‍ or ‍V, C ≪ 1‍ 
and ‍E ∼ O(1)‍ for the corral evolution. (Appendix 2—figure 1 shows the results of simulations of both 
the tunneling and the partial tunneling behavioral phases).

Cooperation dominated regimes when ‍C ≫ 1‍ and ‍E, V → 0‍
For efficient excavation, the ants need to work collectively by being localized and excavating fast. 
Spatial localization leads to cooperation via feedback from the antennating field (see Figure 4(b)) 
while for successful excavation, ants need to migrate towards the corral and tunnel through it, so 

https://doi.org/10.7554/eLife.79638
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Figure 7. Averaged RAnt dynamics. 
 Ultimate distribution of boundary elements and averaged RAnt density field (in units of #/cm2) over the full duration of experiments for different trials.

that their effective speed vo needs to be non-zero. To quantify these behaviors, we first look at the 
dynamics of the ant density and the antennating field in the absence of migration i.e. ‍V → 0‍ or corral 
evolution. This leads to three regimes:

•	 Diffusion dominated regime: When the antennating field diffuses rapidly, i.e. ‍Dc ∼ k̂± ≫ 1‍, then 
the equations for the evolution of the antennating field and the ant density, Equations 3-4 
simplify to

	﻿‍ −Dc∇2c = kϱa,‍� (9)

	﻿‍ ∂tϱa + χ∇ · (ϱa∇c) = Da∇2
ϱa .‍� (10)

•	 Decay dominated regime: When the antennating field decays fast i.e. ‍̂k± ∼ O(1), Dc ≪ 1‍ the 
dynamics of the antennating field Equation 3 simplifies to ‍c ≈ (k+/k−)ϱa‍ and the ant density 
evolution Equation 4 simplifies to ,

	﻿‍ ∂tϱa + χk
k−∇ · (ϱa∇ϱa) = Da∇2ϱa.‍� (11)

•	 Chemotaxis dominated regime: When the chemocactic coefficient ‍χ‍ is large, i.e. in dimen-
sionless terms ‍C ≫ 1‍, the ant collective gets jammed. To see this we linearize the Equation 11 
about a uniform ant density ‍ϱo‍ and recognize that this leads to an effective negative diffusivity 
and thus a spatio-temporal focusing of the ant density; we leave a detailed analysis of the char-
acteristics of this for future study.

To understand the balance between diffusion of the antennating field and its decay,  we note the 
appearance of a natural length scale ‍l ∼ (Dc/k−)1/2

‍ which defines the zone of influence of the field 
and provides a measure of the non-dimensional tunneling rate indicated in Figure 8. All together, our 
analysis shows that the dynamics of the antennating field controls the aggregation or diffusion of ant 
density. But for efficient excavation, especially when the activation thresholds for excavation and local-
ization ‍ϱ

∗
a , c∗‍ are large, we need both cooperation and finite velocity of migration. A catalog of the 

various regimes associated with partial tunneling, jamming, or diffusion as the dimensionless problem 
parameters are varied is listed in Appendix 2—table 3.

To understand how these different limits translate to the dynamics of excavation from the corral 
induced by the ants, we now consider the case when ‍E, V ̸= 0‍, and solve the governing Equations 
4; 5 in a one-dimensional setting (ref Appendix 2). We see that we can capture the two limits of the 
excavation behavior seen in experiments; for large excavation rates ‍E > 1‍ and cooperation param-
eter, ‍C > 1‍, we see coordinated excavation (shown in Figure 4(b) and Figure 5 in a two-dimensional 
setting), while decreasing the cooperation parameter leads to disorganized excavation (shown in 
Figure 4(c)) (see Appendix 2—figure 1). While a direct comparison with the behavior of ants is not 
easy owing to the difficulty of inferring the dynamics of information transfer through antennation, 

https://doi.org/10.7554/eLife.79638
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Figure 8. Phases of cooperation Phase-diagram of 
cooperative task execution with different phases seen 
in ants and RAnts. In the robotic experiments we tune 
the Cooperation parameter C and the Excavation rate 
E while in the ant experiments we change the caste 
mixture. In the ant experiments we see the jammed 
and diffused phases transiently before the ants relax to 
cooperative excavation.

the minimal assumptions we have made about 
the antennating field dynamics suffice to 
capture the macroscopic behavior of the collec-
tive. All together, our agent-based model and 
the phase-field model shows the emergence of 
cooperativity without the need for a plan, opti-
mization principle, or internal representations 
of the world; instead environmentally medi-
ated communication between agents (Mataric, 
1993) coupled to local behavioral rules suffice 
to realize robust excavation.

Robotic collective excavation
Although our quantitative observations of the 
collective behavior of the ants is qualitatively 
captured by both our agent-based and continuum 
models, a natural question we can ask is whether 
the coarse-grained averaging over of the commu-
nication field affects the emergence of the task 
in experiments, especially since we are unable 
to measure or directly control the microscopic 
behaviors of the ants. To go beyond our ability 
to explain the observations of ant behavior using 
our theoretical framework, we asked if we might 
be able to recreate the behavior in artificially 
engineered mimics, and probe a larger range of 
the parameters and phase-space spanned by the 

scaled excavation and cooperation parameters ‍C,E‍, than our experiments allowed us to - see Table 1 
for a list of the relevant variables across ants, models and robots Figure 5.

For this, we turn to a robotic platform to synthesize collective functional behaviors that arise 
from simple behavioral rules underlying individual programmable robots. Our custom designed 
robot ants (RAnts) are inspired by many earlier attempts to create artificial agents that are mobile 
and follow simple rules (Braitenberg, 1986; Brooks, 1991; Simon, 1996), can respond to virtual 
pheromone fields (Sugawara et al., 2004; Garnier et al., 2007) and are capable of robotic exca-
vation (Aguilar et al., 2018). Our autonomous wheeled robots can exhibit emergent embodied 
behavior (Bricard et al., 2013), and are flexible enough to allow for a range of stigmergic interac-
tions with the environment (Werfel et al., 2014; Petersen et al., 2019). This is made possible by 
having each RAnt equipped with an infrared distance sensor to detect obstacles and other RAnts, 
a retractable magnet that can pick up and drop wall elements with a ferromagnetic ring (shown in 
Figure 6(a)), and the ability to measure a virtual pheromone field generated by a light projected 
(from below) onto the surface of a transparent arena they operate in (see Figure 6(a, b), Theraulaz 
and Bonabeau, 1995; Sugawara et  al., 2004; Garnier et  al., 2007; Wang et  al., 2021). The 
intensity of this ‘photormone’ field follows the antennating field Equation 2 and thus follows the 
dynamics of a field that is linked to the locations of the RAnts and diffuses and decays away from it. 
The photormone field is realized by a projected luminous field on the arena, which the robots can 
sense. This allows us to use a local form of Equations 4; 5 to define a robot’s behavior in terms of 
an excavation rate E, a cooperation parameter C, and a threshold concentration for tunneling ‍c∗‍. 
This is encoded in the behavior-based rules (see Figure 6(c) and Appendix 3 for more details), that 
induces the following behavior: ‍(i)‍ follow gradient of projected photormone field; ‍(ii)‍ avoid obsta-
cles and other RAnts at higher photormone locations; ‍(iii)‍ pick up obstacles from high photormone 
locations and drop them at low concentration levels. Since the robots have no symbolic represen-
tation of the different signals they sense (e.g. they cannot distinguish another RAnt from a wall 
element, since both merely produce a bump in the sensor signal), the observed behavior emerges 
from this simple sequence by depending on the current state of the environment and the robot.

https://doi.org/10.7554/eLife.79638
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Varying the parameter ‍C ∈ [0, 1]‍ allows us to tune the individual behavior from random motion 
(‍C = 0‍) to tracking the photormone gradient (‍C = 1‍) (see Video 3). Varying the non-dimensional 
excavation rate ‍E‍ changes the frequency at which the robots execute pick-and-drop behavior with 
detected objects, and serves to mimic what arises in ants as a function of their morphology and 
caste (see Appendix 1 for more details). For specific values of these parameters, we followed the 
collective behavior of RAnts by averaging their position over several pick-and-drop timescales to 
obtain the RAnt density field ‍ϱr(r,ϕ, t)‍, just as for ants. When all the RAnts are programmed to have 
a cooperation parameter ‍C = 1‍, RAnts initially explore the region without picking the boundary 
element until the photormone concentration ‍c ∼ c∗‍, which happens once a particular location has 
enough visits by other RAnts. Just as for ants, we calculate the radially averaged RAnt density 

‍P
r
ϕ(ϕ, t) =

´
ϱr(r,ϕ, t)dr ‍; Figure 6(d) shows how RAnt density localizes at a (random) value of the 

azimuthal angle. As excavation progresses, the RAnt density propagates radially outwards as a 
density front just as in ants, shown in Figure 6(e) in terms of the quantity ‍P

r
r (r, t) =

´
ϱr(r,ϕ, t)dϕ‍ 

(also shown in Figure 7 for different trails when ‍C = 1‍). Concommitantly, as excavation progresses, 
the corral area increases (Toffin et al., 2009); interestingly the scaled corral area ‍A(t)/πR2

0‍ is inde-
pendent of the cooperation parameter ‍C‍ as shown in Figure 6(f) (all RAnts were programmed to 
have the same excavation rate).

However, cooperation does change the time for excavation; in Figure 6(g) we show the average 
excavation time (scaled by the characteristic time it takes for a rant to traverse the arena) and see 
that ‍T/ts‍ decreases with an increase in the cooperation parameter ‍C‍. RAnts excavated out every 
time for ‍C > 0.5‍, but are unable to complete excavation for low values of the cooperation param-
eter (within a 15-min time window). Our results show that it is the localized collective excavation 
of RAnts mediated by photormone-induced cooperation that is responsible for efficient tunneling 
and excavation; for low values of ‍C‍, tunneling is defocused and global, and thus not as effective 
(see Appendix 3—figure 2). When ‍E → 0‍ (vanishing probability for a successful pick up) but ‍C‍ is 
large(see Figure 8 and Appendix 2 for theoretical predictions), the RAnts get jammed because 
they follow the photormone field they generate but are unable to tunnel through the boundary 
constriction. On the other hand, when ‍E‍ <1 and ‍C‍<1 the agents do not cooperate and their diffu-
sive behavior prevents successful tunneling. The range of strategies can be visualized in a two-
dimensional phase space spanned by the variables ‍E‍ and ‍C‍ shown in Figure 8. Low values of ‍C‍ 
and ‍E‍ lead to diffusive (and non-functional) behavior, while high values of these variables lead to 
coordinated excavation, with the other two quadrants corresponding to jammed states (large ‍C‍, 
small ‍E‍) and partially tunneled states (large ‍E‍, small ‍C‍). Interestingly, these states are also observed 
as transients in our ant experiments, for example in the initially diffused state that is characterized 
by random motion inside the corral, when transiently jammed states and partial tunneling occur 
(see Videos 1 and 4).

Discussion
Our analysis of collective behavior in a functional task, excavation, uses quantitative observations 
of ants to build theoretical and computational models to explain them, and recreate these behav-
iors using a swarm robotic system (see Video  4 for a summary). Our simple dynamical models 
involving individual agents as well as an effective continuum theory provide a phase diagram that 
shows how the transition from an individually exploratory strategy to an exploitative cooperative 
solution is mediated by the local chemical and mechanical environment. Our study suggested 
algorithms that we then deployed in an engineered system of robots that individually follow a 
minimal set of behavioral rules that mould the environment and are modulated by it.; the malleable 
environment serves both as a spatial memory as well as a computational platform (using the spatio-
temporal photormone field and the corral). Our simulations of agent-based models and robotic 
experiments further suggest that a coarse-grained framework linking behavior, communication 
and a modulated environment is relatively robust to failure of and stochasticity in the behavior of 
individual agents (i.e. variations in initial conditions and number of agents), in the communication 
channels and in the corral geometry, in contrast to engineering approaches that aim to control all 
agents and optimize costs.

https://doi.org/10.7554/eLife.79638


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 15 of 32

Different strategies such as collective excavation, jamming, and diffusion then arise as a func-
tion of the relative strength of the cooperation (representing the ability to follow gradients and 
detect threshold values) and excavation parameters (representing the ability to move material), 
as manifested in a phase diagram, and the emergence of cooperation arises due to the relatively 
slow decay of an environmental signal (the pheromone/antennating/photormone field), coupled to 
a threshold excavation rate. Since the ability to solve complex eco-physiological problems such as 
collective excavation is directly correlated with a selective (functional) advantage in an evolutionary 
setting, perhaps collective behavior must always be studied in a functional context.

Acknowledgements
We thank the NSF PHY1606895 (SGP, LM), Swiss National Science foundation (FG, grant P400P2-
191115), Ford foundation (JK), NSF EFRI 18–30901 (LM), NSF 1764269 (LM), Kavli Institute for Bionano 
Science and Technology (SM, VM, LM), the Simons Foundation (LM) and the Henri Seydoux Fund (LM) 
for partial financial support.

Additional information

Funding

Funder Grant reference number Author

National Science 
Foundation

PHY1606895 L Mahadevan

Henri Seydoux Foundation L Mahadevan

National Science 
Foundation

PHY1606895 S Ganga Prasath

Swiss National Science 
Foundation

Fabio Giardina

Ford Foundation Jordan Kennedy

National Science 
Foundation

PHY1764269 L Mahadevan

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
S Ganga Prasath, Conceptualization, Data curation, Formal analysis, Methodology, Writing – original 
draft, Writing – review and editing; Souvik Mandal, Fabio Giardina, Conceptualization, Data curation, 
Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review and editing; 
Jordan Kennedy, Methodology; Venkatesh N Murthy, Conceptualization, Methodology, Writing – 
original draft, Project administration, Writing – review and editing; L Mahadevan, Conceptualization, 
Funding acquisition, Investigation, Writing – original draft, Project administration, Writing – review 
and editing

Author ORCIDs
S Ganga Prasath ‍ ‍ http://orcid.org/0000-0002-4545-911X
Souvik Mandal ‍ ‍ http://orcid.org/0000-0002-9552-5613
Venkatesh N Murthy ‍ ‍ http://orcid.org/0000-0003-2443-4252
L Mahadevan ‍ ‍ http://orcid.org/0000-0002-5114-0519

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.79638.sa1
Author response https://doi.org/10.7554/eLife.79638.sa2

https://doi.org/10.7554/eLife.79638
http://orcid.org/0000-0002-4545-911X
http://orcid.org/0000-0002-9552-5613
http://orcid.org/0000-0003-2443-4252
http://orcid.org/0000-0002-5114-0519
https://doi.org/10.7554/eLife.79638.sa1
https://doi.org/10.7554/eLife.79638.sa2


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 16 of 32

Additional files
Supplementary files
•  MDAR checklist 

Data availability
All the data used to generate the figures in the article are available here: https://github.com/sgan-
gaprasath/rantIFigData (copy archived at swh:1:rev:ba2c6291882cf2355c0fc5d27384a8ce0dc48cc5). 
The simulation code used in the article is also available in the same folder.

References
Aguilar J, Monaenkova D, Linevich V, Savoie W, Dutta B, Kuan H-S, Betterton MD, Goodisman MAD, 

Goldman DI. 2018. Collective clog control: optimizing traffic flow in confined biological and robophysical 
excavation. Science 361:672–677. DOI: https://doi.org/10.1126/science.aan3891, PMID: 30115804

Alcock J. 2001. Animal Behavior: An Evolutionary Approach. Sinauer Associates Sunderland.
Braitenberg V. 1986. Vehicles: Experiments in Synthetic Psychology. MIT press.
Bricard A, Caussin J-B, Desreumaux N, Dauchot O, Bartolo D. 2013. Emergence of macroscopic directed motion 

in populations of motile colloids. Nature 503:95–98. DOI: https://doi.org/10.1038/nature12673, PMID: 
24201282

Brooks RA. 1991. Intelligence without representation. Artificial Intelligence 47:139–159. DOI: https://doi.org/10.​
1016/0004-3702(91)90053-M

Buhl J, Deneubourg JL, Grimal A, Theraulaz G. 2005. Self-Organized digging activity in ant colonies. Behavioral 
Ecology and Sociobiology 58:9–17. DOI: https://doi.org/10.1007/s00265-004-0906-2

Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E. 2020. Self-Organization in 
Biological Systems. New Jersey, United States: Princeton university press. DOI: https://doi.org/10.2307/j.​
ctvzxx9tx

Couzin I, Krause J. 2003. Self-organization and collective behavior in vertebrates. Advances in the Study of 
Behavior 32:1–75. DOI: https://doi.org/10.1016/S0065-3454(03)01001-5

Deneubourg JL, Franks NR. 1995. Collective control without explicit coding: the case of communal nest 
excavation. Journal of Insect Behavior 8:417–432. DOI: https://doi.org/10.1007/BF01995316

Deneubourg JL, Lioni A, Detrain C. 2002. Dynamics of aggregation and emergence of cooperation. The 
Biological Bulletin 202:262–267. DOI: https://doi.org/10.2307/1543477, PMID: 12086998

Elster J. 1998. Social Mechanisms: An Analytical Approach to Social Theory. Cambridge, United Kingdom: 
Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511663901

Feinerman O, Pinkoviezky I, Gelblum A, Fonio E, Gov NS. 2018. The physics of cooperative transport in groups 
of ants. Nature Physics 14:683–693. DOI: https://doi.org/10.1038/s41567-018-0107-y

Garnier S, Tache F, Combe M, Grimal A, Theraulaz G. 2007. Alice in pheromone land: An experimental setup for 
the 389 study of ant-like robots. IEEE Swarm Intelligence Symposium. . DOI: https://doi.org/10.1109/SIS.2007.​
368024

Goc L. 2016. Zooids: Building blocks for swarm user interfaces. Proceedings of the 29th Annual Symposium on 
User Interface Software and Technology. 97–109.

Gordon DM, Paul RE, Thorpe K. 1993. What is the function of encounter patterns in ant colonies? Animal 
Behaviour 45:1083–1100. DOI: https://doi.org/10.1006/anbe.1993.1134

Gordon DM. 1999. Ants at Work: How an Insect Society Is Organized. Simon and Schuster.
Gordon DM. 2021. Movement, encounter rate, and collective behavior in ant colonies. Annals of the 

Entomological Society of America 114:541–546. DOI: https://doi.org/10.1093/aesa/saaa036, PMID: 34512857
Hansen LD, Klotz JH. 2005. Carpenter Ants of the United States and Canada. Cornell University Press.
Hillen T, Painter KJ. 2009. A user’s guide to PDE models for chemotaxis. Journal of Mathematical Biology 

58:183–217. DOI: https://doi.org/10.1007/s00285-008-0201-3, PMID: 18626644
Hölldobler B, Hölldobler B, Wilson EO. 1990. The Ants. Massachusetts, United States: Harvard University Press. 

DOI: https://doi.org/10.1007/978-3-662-10306-7
Hölldobler B, Wilson EO. 2009. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies. 

WW Norton & Company.
Mataric MJ. 1993. Designing emergent behaviors: From local interactions to collective intelligence. Proceedings 

of the Second International Conference on Simulation of Adaptive Behavior. 432–441.
Mikheyev AS, Tschinkel WR. 2004. Nest architecture of the ant formica pallidefulva: structure, costs and rules of 

excavation. Insectes Sociaux 51:30–36. DOI: https://doi.org/10.1007/s00040-003-0703-3
Nowak MA. 2006. Evolutionary Dynamics: Exploring the Equations of Life. Massachusetts, United States: 

Harvard university press. DOI: https://doi.org/10.2307/j.ctvjghw98
Ocko SA, Mahadevan L. 2014. Collective thermoregulation in bee clusters. Journal of the Royal Society, Interface 

11:20131033. DOI: https://doi.org/10.1098/rsif.2013.1033, PMID: 24335563
Pagliara R, Gordon DM, Leonard NE. 2018. Regulation of harvester ant foraging as a closed-loop excitable 

system. PLOS Computational Biology 14:12. DOI: https://doi.org/10.1371/journal.pcbi.1006200, PMID: 
30513076

https://doi.org/10.7554/eLife.79638
https://github.com/sgangaprasath/rantIFigData
https://github.com/sgangaprasath/rantIFigData
https://archive.softwareheritage.org/swh:1:dir:4b52f1ebf00a10a76a1e854a1fd916a0768b827a;origin=https://github.com/sgangaprasath/rantIFigData;visit=swh:1:snp:9ebfe3a853a2710394fffc9dbf8c99b54b3c1f38;anchor=swh:1:rev:ba2c6291882cf2355c0fc5d27384a8ce0dc48cc5
https://doi.org/10.1126/science.aan3891
http://www.ncbi.nlm.nih.gov/pubmed/30115804
https://doi.org/10.1038/nature12673
http://www.ncbi.nlm.nih.gov/pubmed/24201282
https://doi.org/10.1016/0004-3702(91)90053-M
https://doi.org/10.1016/0004-3702(91)90053-M
https://doi.org/10.1007/s00265-004-0906-2
https://doi.org/10.2307/j.ctvzxx9tx
https://doi.org/10.2307/j.ctvzxx9tx
https://doi.org/10.1016/S0065-3454(03)01001-5
https://doi.org/10.1007/BF01995316
https://doi.org/10.2307/1543477
http://www.ncbi.nlm.nih.gov/pubmed/12086998
https://doi.org/10.1017/CBO9780511663901
https://doi.org/10.1038/s41567-018-0107-y
https://doi.org/10.1109/SIS.2007.368024
https://doi.org/10.1109/SIS.2007.368024
https://doi.org/10.1006/anbe.1993.1134
https://doi.org/10.1093/aesa/saaa036
http://www.ncbi.nlm.nih.gov/pubmed/34512857
https://doi.org/10.1007/s00285-008-0201-3
http://www.ncbi.nlm.nih.gov/pubmed/18626644
https://doi.org/10.1007/978-3-662-10306-7
https://doi.org/10.1007/s00040-003-0703-3
https://doi.org/10.2307/j.ctvjghw98
https://doi.org/10.1098/rsif.2013.1033
http://www.ncbi.nlm.nih.gov/pubmed/24335563
https://doi.org/10.1371/journal.pcbi.1006200
http://www.ncbi.nlm.nih.gov/pubmed/30513076


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 17 of 32

Peleg O, Peters JM, Salcedo MK, Mahadevan L. 2018. Collective mechanical adaptation of honeybee swarms. 
Nature Physics 14:1193–1198. DOI: https://doi.org/10.1038/s41567-018-0262-1

Pennisi E. 2009. On the origin of cooperation. Science 325:1196–1199. DOI: https://doi.org/10.1126/science.​
325_1196, PMID: 19729633

Pereira TD, Tabris N, Li J, Ravindranath S, Papadoyannis ES, Wang ZY, Turner DM, McKenzie-Smith G, 
Kocher SD, Falkner AL. 2020. Sleap: Multi-Animal Pose Tracking. [bioRxiv]. DOI: https://doi.org/10.1101/2020.​
08.31.276246

Perna A, Theraulaz G. 2017. When social behaviour is moulded in clay: on growth and form of social insect nests. 
The Journal of Experimental Biology 220:83–91. DOI: https://doi.org/10.1242/jeb.143347, PMID: 28057831

Petersen KH, Napp N, Stuart-Smith R, Rus D, Kovac M. 2019. A review of collective robotic construction. 
Science Robotics 4:28. DOI: https://doi.org/10.1126/scirobotics.aau8479, PMID: 33137745

Rahwan I, Cebrian M, Obradovich N, Bongard J, Bonnefon JF, Breazeal C, Crandall JW, Christakis NA, Couzin ID, 
Jackson MO, Jennings NR, Kamar E, Kloumann IM, Larochelle H, Lazer D, McElreath R, Mislove A, Parkes DC, 
Roberts ME, Shariff A, et al. 2019. Machine behaviour. Nature 568:477–486. DOI: https://doi.org/10.1038/​
s41586-019-1138-y, PMID: 31019318

Rasse Ph, Deneubourg JL. 2001. Dynamics of nest excavation and nest size regulation of Lasius niger 
(Hymenoptera: Formicidae). Journal of Insect Behavior 14:433–449. DOI: https://doi.org/10.1023/A:​
1011163804217

Reinhard J, Srinivasan MV. 2009. The role of scents in honey bee foraging and recruitment. Food Exploitation by 
Social Insects: Ecological, Behavioral, and Theoretical Approaches 1:165–182. DOI: https://doi.org/10.1201/​
9781420075618.ch9

Seeley TD. 2009. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Massachusetts, United 
States: Harvard University Press. DOI: https://doi.org/10.1093/aesa/89.6.907

Simon HA. 1996. The Sciences of the Artificial. Massachusetts, United States: MIT press.
Sugawara K, Kazama T, Watanabe T. 2004. Foraging behavior of interacting robots with virtual pheromone. 

IEEE/RSJ International Conference on Intelligent Robots and Systems. . DOI: https://doi.org/10.1109/IROS.​
2004.1389878

Theraulaz G, Bonabeau E. 1995. Coordination in distributed building. Science 269:686–688. DOI: https://doi.​
org/10.1126/science.269.5224.686, PMID: 17758813

Toffin E, Di Paolo D, Campo A, Detrain C, Deneubourg JL. 2009. Shape transition during nest digging in ants. 
PNAS 106:18616–18620. DOI: https://doi.org/10.1073/pnas.0902685106, PMID: 19846774

Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang N-C, Matthews BJ, Oxley PR, Kronauer DJC. 2017. 
Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170:727–
735.. DOI: https://doi.org/10.1016/j.cell.2017.07.001, PMID: 28802042

Tschinkel WR. 2004. The nest architecture of the florida harvester ant, pogonomyrmex badius. Journal of Insect 
Science 4:21. DOI: https://doi.org/10.1093/jis/4.1.21, PMID: 15861237

Wang G, Phan TV, Li S, Wombacher M, Qu J, Peng Y, Chen G, Goldman DI, Levin SA, Austin RH, Liu L. 2021. 
Emergent field-driven robot swarm states. Physical Review Letters 126:10. DOI: https://doi.org/10.1103/​
PhysRevLett.126.108002, PMID: 33784150

Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and 
Developmental Biology 21:319–346. DOI: https://doi.org/10.1146/annurev.cellbio.21.012704.131001, PMID: 
16212498

Werfel J, Petersen K, Nagpal R. 2014. Designing collective behavior in a termite-inspired robot construction 
team. Science 343:754–758. DOI: https://doi.org/10.1126/science.1245842, PMID: 24531967

https://doi.org/10.7554/eLife.79638
https://doi.org/10.1038/s41567-018-0262-1
https://doi.org/10.1126/science.325_1196
https://doi.org/10.1126/science.325_1196
http://www.ncbi.nlm.nih.gov/pubmed/19729633
https://doi.org/10.1101/2020.08.31.276246
https://doi.org/10.1101/2020.08.31.276246
https://doi.org/10.1242/jeb.143347
http://www.ncbi.nlm.nih.gov/pubmed/28057831
https://doi.org/10.1126/scirobotics.aau8479
http://www.ncbi.nlm.nih.gov/pubmed/33137745
https://doi.org/10.1038/s41586-019-1138-y
https://doi.org/10.1038/s41586-019-1138-y
http://www.ncbi.nlm.nih.gov/pubmed/31019318
https://doi.org/10.1023/A:1011163804217
https://doi.org/10.1023/A:1011163804217
https://doi.org/10.1201/9781420075618.ch9
https://doi.org/10.1201/9781420075618.ch9
https://doi.org/10.1093/aesa/89.6.907
https://doi.org/10.1109/IROS.2004.1389878
https://doi.org/10.1109/IROS.2004.1389878
https://doi.org/10.1126/science.269.5224.686
https://doi.org/10.1126/science.269.5224.686
http://www.ncbi.nlm.nih.gov/pubmed/17758813
https://doi.org/10.1073/pnas.0902685106
http://www.ncbi.nlm.nih.gov/pubmed/19846774
https://doi.org/10.1016/j.cell.2017.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28802042
https://doi.org/10.1093/jis/4.1.21
http://www.ncbi.nlm.nih.gov/pubmed/15861237
https://doi.org/10.1103/PhysRevLett.126.108002
https://doi.org/10.1103/PhysRevLett.126.108002
http://www.ncbi.nlm.nih.gov/pubmed/33784150
https://doi.org/10.1146/annurev.cellbio.21.012704.131001
http://www.ncbi.nlm.nih.gov/pubmed/16212498
https://doi.org/10.1126/science.1245842
http://www.ncbi.nlm.nih.gov/pubmed/24531967


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 18 of 32

Appendix 1

Ant experiments
Experimental setup - handling ants
We collected two queen-right mature colonies of Camponotus pennsylvanicus, established in logs 
of fallen trees, from the Middlesex Fells Reserve (42.45 °N, 71.11 °W) in August 2019. Each mature 
colony consists of three morphologically distinct castes of worker ants: major, media and minor, with 
an average body length of ‍7 mm‍, ‍5 mm‍ for media, and ‍4 mm‍ respectively. We placed the collected 
wooden logs housing those colonies in two separate plastic “home" boxes. We coated the inner wall 
of each home box with ant-slip Fluon to prevent the ants from escaping the home box. Each home 
box was connected to a foraging box by a tube through which ants travelled to and fro. We kept the 
whole set up in the laboratory with a 12 hour light-dark cycle, 30°C temperature and 50–70% relative 
humidity. Before we moved to the next phase of the experiment, i.e. the data collection, we waited 
for the ants to resume foraging and excavation of woods (for expanding their galleries) inside their 
home wooden log; this took 3–5 days after the relocation.

Appendix 1—figure 1. Dynamics of ant density field, ‍ϱa(x, t)‍ (in units of #/mm2) obtained by averaging the ant 
location and the boundary shape ‍R(ϕ)‍ when 4 ants each of major, media and minor types are confined inside the 
agar ring for different trials.

About 10 minutes prior to the experiments, we collected ants engaged in wood excavation from 
the surface of the nest log. We used insect aspirators for collecting the ants. Once we collected all 
ants needed for the experiment, we subjected the ants to Carbon dioxide anaesthesia for 1 minute. 
Next, we placed the anaesthetised ants in the agarose well in the experimental arena; we placed 
each ant at least 1 cm away from any other ant. Ants regained their activity in the next 5–10 minutes.

Experimental setup - confinement
For the next phase of the experiment, we needed to confine the ants in an excavatable enclosure. This 
is the corral that the ants need to bite through to free themselves. We used a ring-like confinement 
made of agarose gel, with a height of 10 mm, an inner radius of 35 mm and outer radius of 55 mm, 
making the ring 20 mm thick. To make a precise shape of the ring repeatedly, we custom-built a 

https://doi.org/10.7554/eLife.79638
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casting mold made of acrylic plastic. We started preparing for the Agar ring before we collected 
the ants. For making the ring, first, we thoroughly mixed ‍3 gm‍ of Agar powder in ‍100 ml‍ of tap 
water. We then warmed the solution in a microwave oven until the solution started bubbling and 
appeared clear. Next, we poured the solution in the plastic mold, and kept it in 30‍ ‍ C temperature 
for 25 minutes; the agarose gel solidified and become opaque during this time. Once the agarose 
turned solid, we placed the ring on top of plastic sheet in the arena. Next, we placed the ants inside 
the ring and put a perti dish lid on top of the agarose ring. Thus, we confined the ants - with a solid 
plastic floor and ceiling, and an excavatable agarose gel wall. A schematic of the set-up is shown in 
Figure 1(b).

Experimental setup - arena and video recording
The arena consists of a piece of white 3 mm thick plastic sheet as the substratum, illuminated with 
infrared back-light, and surrounded by a 1.5 cm high plastic wall coated with Fluon ant-slip. We 
placed a Point Grey (FLIR) Grasshopper3 GS3-U3-41C6NIR camera, fitted with a 65 mm macro lens, 
on top of the arena to capture the view of the whole ring. The camera recorded the videos with 30 
fps recording speed and 1024×1024 pixels resolution.

Markerless tracking
Leveraging an open source, deep-learning based pose estimator package SLEAP (Pereira et al., 
2020), we track 3 body parts in each ant - head, thorax, and abdomen (gaster). Sample results 
obtained from this tracking is shown in Appendix 1—figure 2(e) and in ‍(f − h)‍ we quantify the noise 
statistics of ant motion and its orientation using the tracking data. Ants initially move randomly 
in the confinement and one of the ants starts the excavation process after which several ants 
start excavating cooperatively at the same location. When the tunneling happens, all the ants are 
orientated along the tunnel. We see this through the progression of the orientation distribution 
of ants ‍P(θ, t)‍ in Appendix 1—figure 2(j). To characterize the localization in ant orientation as the 
excavation proceeds, we use a von-Mises distribution (the analog of a Gaussian distribution for a 
periodic variable, given by ‍P(θ, t;µ(t), K(t)) = exp [K cos(θ − µ)]/2πI0(K)‍) of the ants (where μ is the 
mean local orientation associated with location of tunnel along the boundary). In Appendix 1—
figure 2(k), we see that over time, ‍K(t)‍ increases, i.e. the variance decreases. During the excavation 
process, ants bite through the corral, carry the debris from the excavation site and drop it in the 
interior of the confinement. This happens over and over again until all the ants excavate out. We see 
this captured in the oscillations of the location of ants as shown in Appendix 1—figure 2(i).

Average dynamics
We have a total of 7 sets of experiments with four sets of experiments with a collective of 12 
majors ants and 3 sets of experiments with a mixture of 4 major, 4 media and 4 minor ants. Using 
the recorded video of the ant excavation dynamics, we threshold the intensity to extract only the 
ant boundary and average the ant dynamics over 250  secs. This gives us a density field of ants 
representing the locations where the ants have been and the amount of time they spend. We found 
in our experiments that each ant bites the corral, picks the bitten piece and transports it into the 
interior of the confinement. This process takes approximately 60 secs (see Appendix 1—figure 2(i)) 
and we would like to average the ant dynamics over several ‘turn over’ time-scales. We chose 250 secs 
and the obtained density field is shown in Appendix 1—figure 2. We perform this averaging for 
the experiments with all major ants as well as the mixture of different castes. In all the experiments, 
an ant density front propagates through the corral as they excavate and gradually tunnel through.

Boundary tracking
From the recorded videos, we also track the locations in which the ants excavate for creating 
the tunnel. For that, we used a custom image processing Matlab script. First, we created a mask 
superimposing on the area encircled by the inner ring of the corral; we colored the mask with a 
shade different from the corral. When ants excavated the corral, the Matlab script could detect the 
difference in the shade/color of the excavated area. Using this contrast, we track the continuously 
changing boundary.

https://doi.org/10.7554/eLife.79638
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Appendix 1—figure 2. Quantifying competition between different modes of exploration and the transition 
towards exploitation. (a, b) Shape of the boundary tunnel during the tunneling process and the approximate 
representation of the shape using first 9 Fourier modes. (c) Evolution of the magnitude of the first 9 Fourier modes 
of the boundary: ‍R(ϕ, t) =

∑
k R̂(k, t)eikϕ

‍. (d) Evolution of boundary location, ‍R(t)‍ at different ‍ϕ‍ values and the 
excavation rate. (g) Collage of boundary evolution showing tunnel formation in six experiments. (e) Location and 
orientation of the ants obtained from tracking the gaster (orange) and heat (blue) of all the ants. (f) Is the von 
Mises parameter highlighting strength of focus in ant orientation thorough a fit to the ‍P(θ)‍ obtained by a curve fit 
to the distribution. (g) Image showing evolution of the boundary as the excavation process happens for different 
experimental trials. (h) Location of center of ants with orientation during the excavation process. (i) Average 
orientation distribution ‍P(θ)‍ of all the ants showing hints of localization which is evident when plotted over time. 
(j) Noise statistics of ant velocity along the body axis, ‍v||‍ and in the normal direction, ‍v⊥‍. Dashed lines again are 
Gaussian fit to the data. Ants have zero mean velocity normal to its axis. (k) Noise statistics of orientation with peak 
close to 0 because of resting of the ants which otherwise follows a Gaussian which is the dashed line.

This is shown as a super-imposed image on the right side of Appendix 1—figure 2 where ‍R(ϕ, t)‍ 
is the radius of the ring as a function of the polar angle ‍ϕ‍. Tunnels are locations along ‍ϕ‍ which see 
increase in the radius. We quantify this by plotting ‍R(t)‍ in Appendix 1—figure 2(d). We also quantify 
the number of tunnels by decomposing the shape into different Fourier modes as detailed in the 
caption.

https://doi.org/10.7554/eLife.79638
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Appendix 2
Agent-based model of cooperative task execution
The results shown in Figure 3 are based on a numerical simulation where discrete agents operate 
in a continuum scalar communication field, and governed by Equation (1), Equations 2; 3 . Some 
additional behavioral rules have to be defined to model the interaction of agents with the substrate. 
We realize the substrate by discrete obstacles arranged in a circular ring. Agents will attach to an 
obstacle if they are within the detection range, ld, and if the measured communication field value is 
above the threshold, i.e. ‍c ≥ c∗hi‍. The agent will then reverse its direction of motion, by changing the 
sign of ‍G‍ in Equation (2). This results in a gradient descent behavior and the attached obstacle will 
be detached once the measured communication field value satisfies ‍c < c∗lo‍. After detachment, the 
sign of ‍G‍ is changed again. If agents encounter other agents or obstacles within the detection radius 
but ‍c < c∗‍, the agents will avoid the obstacle by turning randomly.

There are a few tuned behaviors we implemented to allow scaling the simulation to larger 
numbers of agents while maintaining the tunneling behavior. First, the gradient ‍∇⊥c‍ in Equation (2) 
is is multiplied by a sigmoid function to limit the turning rate of the agents. Second, the noise term 
in Equation (2) was set to zero for this simulation and the only source of randomness are the random 
turns during obstacle avoidance. Third, agents pause for ‍tp1‍ when they encounter an obstacle and 
for ‍tp2‍ when picking up an obstacle. This helps disrupting potential “pheromone traps” to be formed 
where agents are bound to a region of space due to a high field concentration.

The simulation parameters are described in the following table. All parameters are non-
dimensionalized by the corral size ‍L‍ as a natural length scale and the base speed of the agents, v0as 
a natural speed.

Appendix 2—table 1. Parameters of agent-based simulation.

Parameter Description Value

nr Number of agents 1–100

no Number of substrate elements 300

nl Number of corral layers 3

‍T ‍ Maximum simulation time 66

‍k+‍ Communication field production rate 97.5

‍k−‍ Communication field decay rate 0.75

‍Da‍ Communication field diffusivity ‍4.2 × 10−3‍

‍c
∗
hi‍ Excavation threshold ‍

1
2

k+
k− ‍

‍c
∗
lo‍ Detachment threshold 0.11

‍σ
2
g‍ Agent field production width (variance) ‍2.8 × 10−3‍

ld Agent obstacle detection range 0.03

‍tp1‍ Pause after obstacle detection 0.07

‍lp2‍ Pause after substrate attachment 0.27

‍G‍ Rotational gain 0.135

Continuum model of cooperative task execution
The dimensional equations for the ant-density ‍ϱa(x, t)‍, antennating field ‍c(x, t)‍ and the corral ‍ϱs(x, t)‍ 
are given by,

	﻿‍ ∂tϱa + ∇ · (uaϱa) = ∇ · (Da∇ϱa − χϱa∇c),‍� (12)

	﻿‍ ∂tc = Dc∇2
c + k + ϱa − k−c,‍� (13)

https://doi.org/10.7554/eLife.79638
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	﻿‍ ∂tϱs = − 1
4 ksϱs(1 + tanh[αc(c − c∗)])(1 + tanh[αc(ϱa − ϱ∗a )]),‍� (14)

where velocity of the collective is ‍ua = vo(1 − ϱs/ϱo)p̂‍, capturing the reduction in velocity as the ant 
collides with the corral. We approximate the Heaviside function, ‍Θ(x)‍ here using the hyperbolic 
function ‍[1 + tanh(x)]/2‍. In the coarse-grained picture describing the collective tunneling seen in 
experiments the relevant variables (shown schematically in Figure 4) are the density of ants, ‍ϱa‍; 
their velocity, ‍ua‍; amplitude of the antennating field, ‍c‍; the density of corral, ‍ϱs‍. Here we discuss the 
limits of phase-space that are not described in the main text i.e. when ‍E, ̸= 0‍ and also the simulation 
details.

Appendix 2—table 2. Time-scales and length-scales associated with different processes in the 
model in Equation 12- Equation 14.

Time-scale Process

‍τv ∼ l/vo‍ Ant collective migration

‍τx ∼ l2/(χco)‍ Taxis due to antennating field gradient

‍τ+ ∼ co/(k+ϱo)‍ Antennating field production

‍τc ∼ l2/Dc‍ Antennation field diffusion

‍τ− ∼ 1/k−‍ Antennating field decay

‍τs ∼ 1/ks‍ Corral excavation

Length-scale Process

‍L‍ Corral width

la Initial width of ant density

‍Da/vo‍ Ant density advection-diffusion

‍(Dc/k−)1/2
‍ Antennating field diffusion-decay

‍τa ∼ l2/Da‍ Ant diffusion

Limits of phase-space when ‍E ̸= 0‍
Different phases of task execution/failure arise when the excavation parameter ‍E‍ and the cooperation 
parameter ‍C‍ are varied. In the cooperation dominated phase if the excavation rate of the agents is 
small, they get jammed and the analysis in the previous section holds true. When the cooperation 
among the agents is low, we have ‍C ≪ 1‍ which results in diffusion dominated regime. Based on the 
strength of the excavation parameter ‍E‍, the corral can be partially tunneled or just diffuse. Since 
we assume that the relevant length scale is of the same order as the width of the corral, ‍L ∼ l‍, 
our analysis reduces to different phases based on whether ‍E ≫ 1‍ (where we get partial-tunneling) 
or ‍E ≪ 1‍ (we get diffusion). Based on this we get partial tunneling or diffused phase as listed in 
Appendix 2—table 3. In Appendix 2—figure 1 we show results from 1-D simulations highlighting 
the effect of different terms we have discussed from Equations 4 and 5 corresponding to different 
parts of the phase space of cooperative excavation. In the ant density diffusion dominated regime, 
i.e. ‍C ≪ 1, E ≪ 1‍, shown in Appendix 2—figure 1(b), there is little cooperation; rapid diffusion with 
slow excavation results in no tunneling. As we have seen in Figure 4(b, e), tunneling and partial 
tunneling are inferred through the ultimate state of the corral and the ant-density. In Appendix 2—
figure 1(d, e) we show how the relative rate of the antennating field diffusion compared to decay, 
i.e. ‍Dc ∼ O(1)‍ leads to either tunneling or partial tunneling as we vary the cooperation parameter ‍C‍. 
Decreasing ‍C‍ causes the maximum of ‍ϱa(x, t)‍, ‍c(x, t)‍ to go down (ref Appendix 2—figure 1(c)),and 
the width of the initial ant density field increases. Increasing ‍C‍ leads to successful tunneling driven 
by the propagation of the location of maximum ant density xloc due to excavation of the corral. 
Furthermore, we see that the ants can be jammed either because the antennating field diffusion 
dominates, i.e. ‍Dc ∼ k̂± ≫ 1‍, or because of the same field decays rapidly, i.e. ‍̂k± ∼ O(1), Dc ≪ 1‍. In 
both these cases however cooperation is what drives the aggregation. Lastly, we see that in order 
to achieve partial tunneling there are several routes depending upon the relative magnitudes of 

‍{C, E, V, k̂±, Dc}‍ listed in Appendix 2—table 3.

https://doi.org/10.7554/eLife.79638
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Appendix 2—figure 1. The ant density field,‍ϱa(x, t)‍ antennating field ‍c(x, t)‍ and corral density ‍ϱs(x, t)‍ for various 
scenarios of interest in the phase-space. (a) Partial tunneling and tunneling when the threshold for excavation is 
small i.e. ‍ϱ

∗
a = c∗ = 0.01‍, we see homogeneous excavation and can get tunneling and partial tunneling; (b) when 

we are in the diffusive phase where ant density diffusion dominates, ‍C = 0.02‍ and the excavation rate is very small, 
‍E = 6 × 10−4‍; (d, e) partial tunneling and tunneling when the length scale due to antennating field diffusion and 
decay is of the same order as the initial ant density i.e. ‍la ∼ (Da/k−)1/2

‍; (c) Evolution of maximum value of ‍ϱa, c‍ 
for 3 different C and fixed ‍E = 1.44‍. (f) Table with parameters used in simulations corresponding to different titles 
shown in gray bar in ‍(a − e)‍

Appendix 2—table 3. Different phases in different limits of phase-space of parameters in the 
model.

‍C‍ ‍E‍ ‍V‍ ‍̂k±‍ ‍Dc‍ Phase

‍≫ 1‍ ‍≫ 1‍ ‍≫ 1‍ ‍O(1)‍ ‍≪ 1‍ Tunneling

‍≫ 1‍ ‍≫ 1‍ ‍≫ 1‍ ‍≪ 1‍ ‍O(1)‍ Tunneling

‍≪ 1‍ ‍≫ 1‍ ‍≫ 1‍ ‍O(1)‍ ‍≪ 1‍ Partial-Tunneling

Appendix 2—table 3 Continued on next page
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‍C‍ ‍E‍ ‍V‍ ‍̂k±‍ ‍Dc‍ Phase

‍≪ 1‍ ‍≫ 1‍ ‍≫ 1‍ ‍≪ 1‍ ‍O(1)‍ Partial-Tunneling

‍≫ 1‍ ‍≪ 1‍ - ‍O(1)‍ ‍≪ 1‍ Jammed

‍≫ 1‍ ‍≪ 1‍ - ‍≪ 1‍ ‍O(1)‍ Jammed

‍≪ 1‍ ‍≪ 1‍ - - - Diffused

Simulation details
All the simulations shown in the main text as well the ones above were performed using 
commercial software ‍COMSOLTM‍, in their general form Partial Differential Equations solver. 
We choose a very fine resolution with maximum mesh size of 0.005 in a domain of size 2 units 
in 1D simulations and maximum mesh size of 0.25 in a circular domain of radius 5 units in 2D. 
The initial condition for the ant density, ‍ϱa(r, 0)‍ is ‍exp(−(r − ro)2/2l2a)‍ where ‍ro = 0.4, la = 0.16‍ and 
the density of the corral ‍ϱs(r, 0)‍ is chosen to be ‍[1 + tanh(α(r − 2.5))]/2‍ where ‍α = 30‍. We set the 
parameter ‍αc = 50‍ in 1D, ‍αc = 10‍ in 2D while ‍ϱ

∗ = 0.3, c∗ = 0.01‍. The other parameters used in 
the simulations in Figure 4, Figure 1 and Figure 5. ‍(a − e)‍ are listed in ‍(f)‍. In the 2D simulations 
in Figure  5 we assume a spatio-temporally varying self-propulsive velocity field of the form, 
‍ua = vo{exp(−y2/2σ2), exp(−t/τ )(1 − exp(−(x − xo)2/2σ2))}, vo = 0.1, xo = 0.2,σ2 = 0.75, τ = 10‍.

Appendix 2—table 3 Continued

https://doi.org/10.7554/eLife.79638
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Appendix 3

Robot Ants
RAnt design
RAnts were designed to accommodate the essential electronic and electromechanical parts required 
for locomotion, picking and placing, and sensing. An exploded view is shown in Appendix 3—figure 
1. RAnts are powered with a rechargeable 3.7 V battery with 400mAh (Pkcell LIPO 801735) and 
are coordinated with a microcontroller (Adafruit ItsyBitsy M0 Express). The RAnt’s wheels have a 
diameter of 25 mm and are directly driven with two brushed DC motors with a planetary gearbox 
rated at 85 RPM at 3.7 V. Rubber o-rings are attached to the wheels to increase traction. A dual 
motor controller (Pololu DRV8835 Dual Motor Driver Carrier) sets the desired output speed of the 
motors given a PWM signal from the microcontroller. The mechanism to pick up wall elements 
was realized using a permanent magnet that is retractable inside the RAnt. A linear servo motor 
(Spektrum SPMSA2005) moves a permanent magnet inside a guide such that, when fully extended, 
the magnet attracts ferromagnetic materials and when retracted, the magnetic force is small enough 
to drop any previously attached objects.

Appendix 3—figure 1. Exploded view of a RAnt and a wall element.

The objects to be picked up are cylindrical wall elements of dimension 22mm×40mm made 
of polyvinyl chloride (PVC) tubes which have a ferromagnetic ring of 3 mm thickness embedded 
in them. The ring was 3D printed using polylactic acid (PLA) mixed with steel powder (colorFabb 
SteelFill) and was sandwiched between two PVC tubes. If the RAnt is sufficiently close (≈3 mm) to a 
wall element with an engaged magnet, the ring in the wall element is attracted to the magnet and 

https://doi.org/10.7554/eLife.79638
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the wall element is slightly lifted from the ground (≈1 mm) for transportation due to the elevated 
position of the magnet relative to the ferromagnetic ring. RAnts have two typers of sensors; two light 
sensors (Adafruit ALS-PT19) located at the bottom left and right of the RAnt (relative to the direction 
of travel) and an infrared (IR) distance sensor (Everlight ITR20001 opto interrupter) capable of 
detecting objects within 3 cm in front of the RAnt. The chassis of the RAnt is 3D printed using acrylic 
styrene acrylonitrile (ASA) and supports all the internal components. The wheels of the RAnts were 
printed with the same material. Due to the design of the wheel arrangement, which was inspired by 
the zooid robots (Goc, 2016), we require two small steel caster balls of 3 mm in diameter that help 
stabilize the RAnt. The steel balls can be pressed into the bottom of the 3D printed chassis. A 3D 
printed case made of ASA encloses all internal components of the RAnts, except for a small switch to 
power the RAnt on or off. A small blue sticker of 6 mm in diameter was placed on the center top of 
the case and is used for tracking of the RAnt’s position with the webcam mounted above the arena.

RAnt programming
The RAnt behavior is coordinated by the microcontroller which we programmed according to the 
pseudocode shown in Algorithm 1. The program is initialized with a variable ‍d‍ that encodes the 
direction of travel (1 for forward, –1 for backward), the cooperation parameter ‍C ∈ [0, 1]‍, the RAnt’s 
base speed vb, and the light intensity threshold ‍c∗‍. This threshold was set at 50% of the maximal light 
intensity that can be generated by the photormone field multiplied by the cooperation parameter, 
i.e. ‍c∗ = 0.5 × cmax × C‍.

After initialization, the program enters a while loop which is running until the RAnt is switched 
off or the battery voltage drops below 3.5 V. The loop starts with setting the heading of the RAnt, 
which effectively sets the turning rate. The turning rate is a function of the cooperation parameter 
and a stochastic process ‍W ‍ (Wiener process) which is integrated in the microprocessor. The turning 
rate follows the equation

	﻿‍ Ω = Cd cL−cR
cmax

+
(
1 − C

)
b sin

(
πW

)
‍� (15)

with ‍cL‍ and ‍cR‍ the photormone intensity measured in the left and right light sensors, respectively, 
‍cmax‍ is the maximal photormone intensity measurable by the sensors, and ‍b = 0.3‍ is a fixed amplitude. 
Using a sine function we map the stochastic process ‍W ‍ to the range ‍[−1, 1]‍ to avoid getting stuck in 
constant rotation for large excursions of ‍W ‍. The first term in Equation 15 corresponds to phototaxis 
using the projected photormone and the second term to a random walk. We can tune the influence 
of either terms with the cooperation parameter ‍C‍ from pure phototaxis at ‍C = 1‍ to a random walk 
at ‍C = 0‍. The turning rate is used to define the rotation speed of each wheel. One wheel is always 
turning at a base rate ‍ω1 = ωb = vb/R‍ (with ‍R‍ the wheel’s radius) and the other wheel at

	﻿‍ ω2 = ωb
(
1 − 2∥Ω∥

)
.‍� (16)

The assignment of ‍ω1‍ and ‍ω2‍ to the left and right wheel is flipped according to the sign of ‍Ω‍. With 
this definition, at a value of ‍Ω = ±1‍ a RAnt turns on the spot without any translation and at ‍Ω = 0‍ the 
RAnt moves on a straight path without rotation.

After the heading was defined and the turning rates sent to the motor driver, the distance sensor 
is checked for any obstacles that are present up to ‍3cm‍ in front of the RAnt. At the same time, the 
light sensors are checked and compared to the threshold value ‍c∗‍. If an object is detected and the 
photormone value exceeds ‍c∗‍, the RAnt performs a fetching manoeuvre that consists of engaging 
the magnet with probability ‍E‍, moving forward for a second with half the base speed vb then move 
backwards for the same amount of time. After the fetching manoeuvre, the direction parameter is 
inverted, i.e. ‍d = −1‍. If an object is picked up with the magnet after the fetching maanoeuvre, the 
distance sensor will report a detected object as long as it is attached to the magnet. Since ‍d = −1‍, 
the RAnt will perform the same type of gradient driven locomotion described in Equation 15 and 
Equation 16 but the sign of the signal sent to the motor driver will be inverted, resulting in a reverse 
motion of the RAnt. If an object is detected, but the photormone concentration in both sensors is 
lower than ‍c∗‍, an avoidance manoeuvre is performed which consists of a random rotation in place in 
any direction with the intent to turn away from the detected obstacle.

The next if-statement checks again if an obstacle is detected, but without the condition that the 
direction parameter is equal to one. If no obstacle is detected, the direction parameter ‍d‍ is set to 
one and the magnet is disengaged.

https://doi.org/10.7554/eLife.79638
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Algorithm 1: RAnt behavioral algorithm

Result: Cooperative escape in Robot Ants
‍d = 1;‍
‍C ∈ [0, 1];‍ 

while true do 
    set heading; 
    if ‍object detected & d = 1‍ then 
        if ‍c > c∗‍ then 
            engage magent with probability E; 
            fetch object; 
            ‍d = −1;‍ 
        else 
            turn away from object; 
        end 
    end 
    if ‍no object detected ‍ then 
        ‍d = 1;‍ 
        disengage magnet; 
    end 
    if ‍d = 1 and P < kC‍ then 
        disengage magnet; 
        turn away from object; 
        ‍d = 1;‍ 
    end 
end 

 

This guarantees that if a fetching manoeuvre is performed but the wall element was not picked 
up or the object was another RAnt, the RAnt goes back to moving forward.

The last if-statement checks whether the RAnt is in the reverse mode ‍d = −1‍ and if the 
photormone concentration dropped below the threshold ‍c∗‍. if both statements are true, the magnet 
is disengaged, dropping any potentially picked up wall elements, and the direction parameter is set 
back to ‍d = 1‍. In order to avoid the RAnt from picking up the just dropped element, it performs a 
random rotation in place in any direction before going back to the start of the main loop.

Experimental set-up
The photormone was projected with an Epson EX9200 projector onto an acrylic sheet with a 
translucent top, which served as the surface on which the RAnts are operating. The projector uses 
three-chip digital light processing (DLP) which is required for the light sensors in the RAnts to pick 
up the photormone field. Tests with single-chip DLP projectors generated large noise in the light 
sensors and phototaxis was not possible. The dynamics of the photormone field is a function of the 
RAnt’s positions and is given by

	﻿‍ ∂tc = D∇2c − kMc + kP
∑n

i=1 N (ri,Σ)‍� (17)

with ‍c = c(x, t)‍ the photormone concentration at position ‍x = [x, y]‍ and time ‍t‍, ‍D = 10−5 m2s−1‍ the 
diffusion coefficient, ‍kM = 1 s−1‍ the decay rate, ‍kP = 6.5 s−1‍ the photormone production rate, ‍n‍ the 
number of RAnts detected in the arena, ‍N (ri,Σ)‍ a bivariate normal distribution with the position of 
the ‍i‍ th RAnt ‍ri‍ as the mean and covariance ‍Σ‍ with diagonal entries ‍σ2 = 10−4m2‍. The position of the 
RAnts are used as the centers of sources of photormone. If a RAnt is not moving, photormone is built 
up with rate ‍kP‍ at that location over time and diffuses out. When the RAnt moves to a new location, 
the built up photormone decays with rate ‍kM‍. The reasoning for the parameter choices is as follows. 
The parameters were tuned to allow for a RAnt located at one position for one second to leave a 
detectable trace for 5 seconds. During that time, another RAnt moving at base speed ‍vb ≈ 5cm/s‍ 
can travel half the diameter of the arena. The diffusion length over the decay time scale is ‍≈ 3mm‍ 
which may appear small, however, RAnts are not always moving at base speed but often located 
in a particular location for multiple seconds to even minutes. The parameter choice described here 
has shown to neither saturate the domain with photormone nor be too volatile, but allowing the 
photormone to act as a spatiotemporal memory for the RAnts over the course of an experiment.

https://doi.org/10.7554/eLife.79638
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The positions of the RAnts are tracked with a webcam mounted above the arena and evaluated 
in Matlab. Blue markers are attached on the centroid of the case’s upper surface which allow to use 
a simple blob detection to identify the pixel position of the RAnts. The photormone concentration 
is then dynamically updated in the same Matlab script and displayed on the RAnt arena with the 
projector. The tracking and integration of the photormone field is executed in real time which 
restricted the update rate of the projected field to ‍8 Hz‍ on average. The low refresh rate did not 
have any noticeable consequences for the conducted experiments but might have affected results 
for RAnts with a much larger base speed and more volatile photormone dynamics.

The set-up of the enclosure for the RAnts consisted of approximately 200 wall elements arranged 
in three concentric circles where the outermost circle had a diameter of ‍50 cm‍. The outermost circle 
was prevented from being pushed outward from their initial position by a thin plastic ring that was 
attached to the base of the arena. The plastic ring was thick enough to prevent wall elements from 
leaving the confinement, but thin enough for RAnts to roll over it to escape the arena. For every 
experiment we randomly placed the rants in the arena and waited for the first RAnt to excavate out 
or the time limit of 15 minutes to be reached. At that point, data was stored and the experiment 
ended. Most experiments required no intervention, but in case of an empty battery of a RAnt or any 
unexpected critical failure during the experiments, we had two RAnts standing by to replace the 
defective RAnt. Since all RAnts are identical and the main memory is communicated through the 
environment and the photormone concentration, a switch has no further statistical consequences on 
the outcome of the experiments. There was no leader and no dedicated roles, which makes every 
RAnt replaceable.

We conducted experiments for five cooperation parameters ‍C = {0, 0.25, 0.5, 0.75, 1}‍ at fixed 
excavation rate ‍E = 1‍ and repeated experiments five times for each parameter. Every RAnt’s software 
was updated before a new set of five experiments with the same cooperation parameter was 
conducted. For every experiment, we stored the webcam data and time stamps. The video frames 
were post-processed and locations of all RAnts and wall elements were stored as a function of time.

For the phase diagram experiments we used the previous data for cooperation parameters ‍C = 0‍ 
and ‍C = 1‍ for partial tunneling and tunneling, respectively. To induce jamming behavior and diffusion 
behavior the excavation rate had to be changed in the internal programming of the RAnts. By setting 
the excavation rate ‍E = 0‍ the probability of the magnet engaging vanished which led to jamming for 
high cooperation parameters, and diffusion for low cooperation parameters. We only collected data 
for two trials of a few minutes each in the diffusion and jamming case as tunneling cannot be initiated 
with disengaged magnets which reduces the timescales over which the behavior occurs.

Cooperation parameter
We explored the effect of cooperation parameters on the excavation time and excavation 
performance as stated in the main text. Five cooperation parameters, i.e. ‍C = {0, 0.25, 0.5, 0.75, 1}‍, 
were selected each of which was tested in five RAnt experiments with five RAnts. Appendix 3—
figure 3 shows the final wall element distribution and the RAnt density averaged over the whole trial 
for all the conducted 25 experiments.

From the final wall element distribution one can deduce the degree of focus during the tunneling 
effort. For low cooperation parameters the initial three layers are excavated at multiple excavation 
sites. As the cooperation parameter increases, less excavation sites are visible and at ‍C = 1‍ there is 
in general only one large excavation site.

https://doi.org/10.7554/eLife.79638
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Appendix 3—figure 2. Characterization of the excavation using the von-Mises distribution. (a) Von Mises 
concentration parameter, ‍Kb‍, of the angular position of the excavated boundary elements as a function of time for 
different cooperation parameters and averaged over 5 experiments per cooperation parameter. (b) Total travelled 
distance of RAnts for different cooperation parameters. The travelled distance ‍x‍ is scaled by the size of the arenda 
‍D‍. The dashed line shows the travelled distance of a RAnt moving at base speed vb constantly. (c) RAnts’ averaged 
speed ‍v‍ normalized by ‍vb = D/ts‍ for different cooperation parameters C.

While the final wall distribution shows only a snapshot in time, the RAnt distribution is averaged 
over time and therefore displays where the RAnts were mostly located throughout the run. At low 
cooperation numbers, the RAnt density is generally distributed all across the arena. Localization 
of the density toward one region was observed for low cooperation parameters as excavated wall 
elements were forming a new boundary that confined the RAnt motion to that region (see e.g. ‍C = 0‍ 
T4, ‍C = 0.25‍ T4). As the cooperation number increases, more distinct localized density becomes 
apparent. Due to the photormone field Rants operating at higher cooperation parameter values are 
more likely to start excavating in locations where RAnts have previously been present. The location 
of that attracting field is not known a priori, but emerges spontaneously through the interaction 
with other RAnts. The location of the peak density field at higher cooperation numbers strongly 
correlates with the point of excavation in the wall. The difference in RAnt behavior as a function of 
the cooperation parameter is the degree of focus during excavation as represented by the von Mises 
parameter of the angular position of excavated boundary elements shown in Appendix 3—figure 
2(a). A large value of the parameter indicates a high degree of concentration of the excavation effort, 
while low values indicate a scattered distribution of many digging sites. Another metric to assess the 
behavioral difference induced by the cooperation parameter is the traveled distance of the RAnts. 
Appendix 3—figure 2(b) displays the total travelled distance of a rant ‍x‍ normalized by the arena 
diameter ‍D‍ as a function of the normalized time ‍t/ts‍, where ‍ts = D/vb‍ and vb the base speed, shows 
that RAnts travel a greater distance in the same amount of time at higher concentration parameters. 
The theoretical limit of the travelled distance is shown with the dashed line in the left-hand side 
figure, reflecting that RAnts do not constantly move at base speed, but are interrupted by other 
RAnts, obstacles, and fetching/dropping manoeuvres. As shown in Appendix 3—figure 2(c), RAnts 
travel at about a fifth of the base speed on average. An increase of the average speed is observed 
as a function of the cooperation parameter, which can be explained by the fact that obstacles are 
more scattered at lower cooperation parameters, effectively reducing the mean free path of a RAnt.

https://doi.org/10.7554/eLife.79638
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Appendix 3—figure 3. Final wall element distribution and averaged RAnt density field (in units of #/cm2) over the 
full duration of the run for all 20 experiments.

RAnt density
In our main result we used five RAnts to explore cooperative excavation in an artificial system. More 
RAnts than five hindered the excavation behavior as fellow RAnts would block each others path or 
disturb a RAnt during the fetching and deposition of wall elements. Fewer RAnts did manage to 
excavate out, but the excavation rate is slower and the spontaneous formation of an excavation site 
due to accumulation of photormone occurs later if at all. Appendix 3—figure 4 shows the final wall 
element positions and RAnt density field averaged over time for ‍C = 1‍ and two experiments with one 
RAnt and two experiments with three RAnts.

https://doi.org/10.7554/eLife.79638
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Appendix 3—figure 4. Final wall element distribution and averaged RAnt density field (in units of #/cm2) over the 
full duration of the run for experiments with one and three RAnts. The cooperation parameter was set to ‍C = 1‍ and 
the experiments was repeated twice (Trials T1 and T2).

A single RAnt can efficiently excavate a site if an initial photormone seed is present, but it is not 
robust. In fact, even though the RAnt in T2 managed to remove some elements in the last layer, it 
never excavated out but lost the photormone seed where it was digging and started diffusing again. 
Three rants were more successful in generating an initial photormone seed, but excavation occured 
at multiple sites even for ‍C = 1‍ since the lower number of RAnts did not generate one dominating 
photormone field.

Phases of cooperation in RAnts
In the RAnt case we can infer the phase in which the RAnts operate by looking at the tunnel size, 
‍1/Kb(t)‍ and the location along the boundary at which the RAnts are localized, ‍ϱr(ϕ)‍ as they execute 
their task. We find that in the jammed and diffused phase there exists no tunnel and the variance 
remains zero throughout the process. However the location along the boundary ‍ϕb‍ at which the RAnts 
spend their time the most has a large peak around the jammed location due to high cooperation 
which in the case of diffusion remains widespread (see Appendix 3—figure 5).

Jammed

Tunneling

Dif used

Partial Tunneling

f

Appendix 3—figure 5. From the RAnt experiments in Figure 8, ‍Kb‍ is the von Mises concentration parameter 
computed from the location of the boundary and ‍ϱr‍ is the angular distribution of the RAnts in the arena averaged 
over time. ‍ϕb‍ is the time-averaged mean azimuthal location of the RAnts in the arena. RAnts present over longer 
periods in a particular sector of the arena will cause a peak in ‍ϱr‍. One can infer the phase the RAnts are in by 
measuring these two quantities.

A successful tunnel, as we have already seen, has an initial increase in the variance that plateaus 
rapidly due to cooperation driven focus at a given location. As the RAnts are localized, focusing on 

https://doi.org/10.7554/eLife.79638


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Prasath, Mandal, Giardina et al. eLife 2022;11:e79638. DOI: https://​doi.​org/​10.​7554/​eLife.​79638 � 32 of 32

their task, we again see peaks around the location of the tunnel. For a partial tunnel, due to low 
cooperation, the variance in the tunnel size is large and the location along the boundary the RAnts 
spend their effort is spread out. Thus the phase the RAnts operate in can be distinguished by using 
information about the environment, i.e. the tunnel size, in combination with agent dynamics, i.e. 
their location.

https://doi.org/10.7554/eLife.79638
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