Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface

  1. Liheng Yang
  2. Eleanor C Semmes
  3. Cristian Ovies
  4. Christina Megli
  5. Sallie Permar
  6. Jennifer B Gilner
  7. Carolyn B Coyne  Is a corresponding author
  1. Duke University, United States
  2. University of Pittsburgh, United States
  3. Cornell University, United States

Abstract

Infections at the maternal-fetal interface can directly harm the fetus and induce complications that adversely impact pregnancy outcomes. Innate immune signaling by both fetal-derived placental trophoblasts and the maternal decidua must provide antimicrobial defenses at this critical interface without compromising its integrity. Here, we developed matched trophoblast and decidua organoids from human placentas to define the relative contributions of these cells to antiviral defenses at the maternal-fetal interface. We demonstrate that trophoblast and decidua organoids basally secrete distinct immunomodulatory factors, including the constitutive release of the antiviral type III interferon IFN-λ2 from trophoblast organoids, and differentially respond to viral infections through the induction of organoid-specific factors. Lastly, we define the differential susceptibility and innate immune signaling of trophoblast and decidua organoids to human cytomegalovirus (HCMV) and develop a co-culture model of trophoblast and decidua organoids which showed that trophoblast-derived factors protect decidual cells from HCMV infection. Our findings establish matched trophoblast and decidua organoids as ex vivo models to study vertically transmitted infections and highlight differences in innate immune signaling by fetal-derived trophoblasts and the maternal decidua.

Data availability

Sequence data have been deposited into Sequence Read Archives SUB11885513.

The following previously published data sets were used

Article and author information

Author details

  1. Liheng Yang

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6842-086X
  2. Eleanor C Semmes

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristian Ovies

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christina Megli

    Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sallie Permar

    Department of Pediatrics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer B Gilner

    Department of Obstetrics and Gynecology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn B Coyne

    Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
    For correspondence
    carolyn.coyne@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-6309

Funding

National Institute of Allergy and Infectious Diseases (NIHAI145828)

  • Carolyn B Coyne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,494
    views
  • 1,010
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liheng Yang
  2. Eleanor C Semmes
  3. Cristian Ovies
  4. Christina Megli
  5. Sallie Permar
  6. Jennifer B Gilner
  7. Carolyn B Coyne
(2022)
Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface
eLife 11:e79794.
https://doi.org/10.7554/eLife.79794

Share this article

https://doi.org/10.7554/eLife.79794