Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface

  1. Liheng Yang
  2. Eleanor C Semmes
  3. Cristian Ovies
  4. Christina Megli
  5. Sallie Permar
  6. Jennifer B Gilner
  7. Carolyn B Coyne  Is a corresponding author
  1. Duke University, United States
  2. University of Pittsburgh, United States
  3. Cornell University, United States

Abstract

Infections at the maternal-fetal interface can directly harm the fetus and induce complications that adversely impact pregnancy outcomes. Innate immune signaling by both fetal-derived placental trophoblasts and the maternal decidua must provide antimicrobial defenses at this critical interface without compromising its integrity. Here, we developed matched trophoblast and decidua organoids from human placentas to define the relative contributions of these cells to antiviral defenses at the maternal-fetal interface. We demonstrate that trophoblast and decidua organoids basally secrete distinct immunomodulatory factors, including the constitutive release of the antiviral type III interferon IFN-λ2 from trophoblast organoids, and differentially respond to viral infections through the induction of organoid-specific factors. Lastly, we define the differential susceptibility and innate immune signaling of trophoblast and decidua organoids to human cytomegalovirus (HCMV) and develop a co-culture model of trophoblast and decidua organoids which showed that trophoblast-derived factors protect decidual cells from HCMV infection. Our findings establish matched trophoblast and decidua organoids as ex vivo models to study vertically transmitted infections and highlight differences in innate immune signaling by fetal-derived trophoblasts and the maternal decidua.

Data availability

Sequence data have been deposited into Sequence Read Archives SUB11885513.

The following previously published data sets were used

Article and author information

Author details

  1. Liheng Yang

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6842-086X
  2. Eleanor C Semmes

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristian Ovies

    Department of Molecular Genetics and Microbiology,, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christina Megli

    Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sallie Permar

    Department of Pediatrics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer B Gilner

    Department of Obstetrics and Gynecology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carolyn B Coyne

    Department of Molecular Genetics and Microbiology, Duke University, Durham, United States
    For correspondence
    carolyn.coyne@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-6309

Funding

National Institute of Allergy and Infectious Diseases (NIHAI145828)

  • Carolyn B Coyne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jan E Carette, Stanford University School of Medicine, United States

Version history

  1. Preprint posted: March 30, 2021 (view preprint)
  2. Received: April 27, 2022
  3. Accepted: August 16, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Version of Record published: September 13, 2022 (version 2)

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,411
    views
  • 881
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liheng Yang
  2. Eleanor C Semmes
  3. Cristian Ovies
  4. Christina Megli
  5. Sallie Permar
  6. Jennifer B Gilner
  7. Carolyn B Coyne
(2022)
Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface
eLife 11:e79794.
https://doi.org/10.7554/eLife.79794

Share this article

https://doi.org/10.7554/eLife.79794

Further reading

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.