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Abstract Cell size is controlled to be within a specific range to support physiological function. To 
control their size, cells use diverse mechanisms ranging from ‘sizers’, in which differences in cell size 
are compensated for in a single cell division cycle, to ‘adders’, in which a constant amount of cell 
growth occurs in each cell cycle. This diversity raises the question why a particular cell would imple-
ment one rather than another mechanism? To address this question, we performed a series of simu-
lations evolving cell size control networks. The size control mechanism that evolved was influenced 
by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitu-
lated known size control properties of naturally occurring networks. If the mechanism is based on 
a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders 
likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case 
in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure 
is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission 
yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until 
a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the 
green algae Chlamydomonas. That these size control networks evolved such self- organized criticality 
shows how the evolution of complex systems can drive the emergence of critical processes.

Editor's evaluation
This paper develops evolutionary simulations to identify the type of molecular networks that can 
give rise to size control. The authors propose an evolutionary framework to find which factors select 
for particular mechanisms in cell size control. They show that the evolution of a specific cell size 
control mechanism is dependent on the cell cycle structure.

Introduction
Cell size is fundamental to cell physiology and function because it sets the scale of subcellular compart-
ments, cellular biosynthetic capacity, metabolism, mechanical properties, surface- to- volume ratios, 
and molecular transport (Chan and Marshall, 2010; Ginzberg et al., 2015; Neurohr et al., 2019; 
Zatulovskiy and Skotheim, 2020). While different types of cells vary enormously in size to perform 
their functions, cells within a particular type are generally uniform in size indicating that cell growth 
may be accurately coupled to division and differentiation processes. On a phenomenological level, 
there are many commonalities in how cells regulate their size even though the molecules controlling 
cell division vary across the tree of life with the most striking differences separating eukaryotes and 
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bacteria. This extreme molecular diversity in the regulatory proteins raises the question as to what are 
the common features of the control systems that evolved to implement size control.

Most generally, cell size control can be viewed as a return map where the division size is a function 
of the cell size at birth. The examination of proliferating cells in laboratory conditions has revealed a 
variety of size control phenomena that can be characterized quantitatively by plotting the size of a 
cell at birth against the amount of mass added before it divides (Amir, 2014; Facchetti et al., 2017; 
Jun and Taheri- Araghi, 2015). A ‘sizer’ has a slope of –1 so that all variation in cell mass at birth is 
compensated for in one cell cycle, whereas an ‘adder’ has a slope of 0 so that each cell adds the same 
amount of mass during the cell cycle regardless of initial size. In the case of an adder, control is weaker 
so that multiple cell cycles are required for a particularly large or small cell to return to the average cell 
size. Importantly, the slope relating size at birth with the amount of growth in the cell cycle is a metric 
that quantifies the amount of size control occurring in a particular condition.

Studies of cell size control have revealed a diverse set of phenomena. Fission yeast and mouse 
epidermal stem cells exhibit ‘sizers’, and most bacteria, archaea, and cultured human cell lines exhibit 
behavior closer to adders (Cadart et al., 2018; Eun et al., 2018; Jun et al., 2018; Sveiczer et al., 
1996; Westfall and Levin, 2017; Willis and Huang, 2017; Xie and Skotheim, 2020). Thus, while 
diverse size control behaviors have been observed, adders have been observed more often than 
sizers. This raises the question of why adders are more frequently observed if sizers, by definition, are 
more effective at controlling cell size (Barber et al., 2017; Willis et al., 2020).

To address the question of why adders are the most often observed form of cell size control, we 
used evolutionary algorithms (Holland, 1992) to identify commonalities between networks evolved 
to control cell size. Evolutionary algorithms are a class of machine learning techniques aiming at 
mimicking evolutionary processes (Crombach, 2021; François, 2014; François and Hakim, 2004; 
Xiong et al., 2019). Because of the nature of evolution, results of evolutionary computations are often 
more efficient and more creative than expected (Lehman et al., 2020). Furthermore, solutions found 
by evolutionary algorithms are constrained by their evolutionary paths followed and present similar 
characteristics to biologically evolved systems (Schaerli et al., 2018). Cell size is regulated through 
the cell cycle control network that governs transitions from one phase of the cell cycle to the next. 
The division cycle can be broken up into distinct phases that are characterized by different molecular 
activities (Morgan, 2007). While it is typically considered that there are 4 phases of the cell cycle (G1, 
S, G2, and M), we here consider a two phase model based on a G1 phase and a composite S/G2/M 
phase. This is because size control in general has been associated with either the G1/S transition or 
mitosis at the end of the cell cycle.

We start with a simple model of the cell cycle with a timer for an S/G2/M phase (Figure 1) that 
we evolve to optimize homeostatic cell size control (Figure 1B). We discovered that different control 
mechanisms could perform cell size control based on protein quantity or concentration. Simulations 
in which size control takes place in G1 phase converge toward an adder mechanism for the entire 
cell cycle and identified an active quantity sensing mechanism similar to dilution- based mechanisms 
previously identified experimentally (Chen et al., 2020; Qu et al., 2019; Schmoller et al., 2015). 
The relative durations of G1 and S/G2/M were important in determining size control properties. A 
relatively shorter S/G2/M phase favors sizer mechanisms, while longer S/G2/M phases favor adders. 
Moreover, inverting the model so that cell size controls S/G2/M and G1 is a timer, like in fission yeast, 
results in more sizer- like control. Thus, we anticipate adders arise when cell size is controlled at a point 
intermediate in the cell cycle, like the G1/S transition, while sizers will appear when cell size regulates 
a point later in the cell cycle, as is the case when G1 is proportionally longer, or control takes place at 
the transition to mitosis. We finally identify a self- organized mechanism based on fluctuation sensing 
where size control occurs on average over multiple cycles. While there is no one- to- one correspon-
dence between a specific size control mechanism and a given evolutionary pressure, our work identi-
fies clear evolutionary principles that shed light on the diverse cell size control phenomena previously 
observed experimentally.

https://doi.org/10.7554/eLife.79919
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Figure 1. Implementation of the cell cycle seed network and evolution algorithm. (A) Schematic representation of the coupling between cell size and 
cell cycle progression. The transition between G1 (red) and S phases of the cell cycle at the G1/S transition (orange) can evolve to depend on cell size, 
while the duration of the S/G2/M (blue) phase is independent of size. Cell division takes place instantaneously following mitosis (purple). (B) Schematic 
representation of the φ-evo algorithm implementation. The network generating tool takes an initial network topology as its starting point for evolution 
as well as a user- defined fitness function. φ-evo then goes through successive epochs of mutation and selection to extract a final optimized network. 
At each selection step, the fittest half of the networks are retained and duplicated for evolution in the subsequent epoch. Interactions permitted to be 
mutated by φ-evo include transcriptional activation (green arrow), transcriptional repression (red arrow) and protein- protein interactions responsible for 
complex formation (black arrow). (C) Schematic of our seed network topology implementing a simplified relaxation oscillator. Cell cycle state (G1 or S/
G2/M) is encoded via a binary switch called ‘S/G2/M Switch’ that is 0 in G1 and 1 in S/G2/M. Transition between G1 and S is controlled by the quantity 
of an inhibitor of the G1/S transition that we call  I  . The lower the quantity  I  , the higher the chance of progression through the G1/S transition. This 
interaction is represented as the grey arrow in the network topology and cannot be mutated by φ-evo. After progressing through G1/S, cells enter 
S/G2/M which we model as a pure timer of fixed duration with some uniform noise. Cell volume grows exponentially and is divided symmetrically 
following mitosis. We then follow one of the daughter cells and disregard the other one. (D) Phase- space representation of the initial relaxation 
oscillator. The X- coordinate shows the S/G2/M Switch variable, and the Y- coordinate shows the concentration of  

[
I
]
 . The oscillator runs counterclockwise 

with the left branch (x=0) corresponding to G1 and the right branch (x=1) corresponding to S/G2/M. The G1/S transition and division events are 
instantaneous in our simulations but are smoothly represented here for visualization purposes. From these transitions, we can extract the approximate 
shape of the  

[
I
]
  nullcline that we plot under the oscillator with a dashed line. We note that the position of the G1/S transition in phase- space will vary as 

a function of the volume of the cell as it depends on the quantity of  I   rather than its concentration  
[
I
]
 .

https://doi.org/10.7554/eLife.79919
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Results
Initial cell-cycle model
In general, there are two classes of mechanisms that cells use to control their size that can be sepa-
rated in terms of whether cell division or cell growth per se is regulated by cell size. Note that in this 
work, we will use mass, size, and volume interchangeably. In the first class, it is crucial that the growth 
rate per unit mass of a cell depends on cell size so that cells that are significantly larger than the 
optimum cell size grow slower (Cadart et al., 2019; Ginzberg et al., 2018; Miettinen and Björklund, 
2016; Nordholt et al., 2020; Tzur et al., 2009). Such slower growing cells are then outcompeted by 
cells closer to the optimum size even when divisions occur purely by chance (Conlon and Raff, 2003). 
While size- dependent growth mechanisms exist and do support size homeostasis, such mechanisms 
rely on inefficient growth in all the cells away from the optimum size (Ginzberg et al., 2018; Miettinen 
and Björklund, 2016; Nordholt et al., 2020). To avoid such inefficient growth, many types of cells use 
active size control mechanisms to accelerate progression through the cell cycle in larger cells (Zatu-
lovskiy and Skotheim, 2020). In our simulations, we keep cell growth rates constant over a physio-
logical range of cell sizes. This allows us to focus on the common features of the molecular networks in 
which increasing cell size drives changes in molecular activities to trigger cell division. We assume that 
cell volume  V   grows at a rate  λ

(
V
)
× V  , so that growth is exponential when  λ  is a constant. Volume is 

divided by 2 at each division after which we follow one of the two daughter cells. The growth rate sets 
the time scale for the system dynamics as it defines the doubling time  τ = ln

(
2
)

/λ . Any interdivision 
time shorter than  τ   will see the cell volume shrink at the next generation while any interdivision time 
larger than  τ   will see the cell volume grow. We also use the chemistry square bracket convention such 
that any protein X’s concentration is denoted by  

[
X
]
  . Correspondingly, its quantity is denoted by  X   

only and is defined as  X =
[
X
]
× V  .

We initialize our network evolution simulations with a very simplified model of the cell- cycle 
(Figure 1A). We model two independent phases of a symmetrically dividing cell, G1 and S/G2/M, 
separated by a commitment point at the end of G1 and division at the end of S/G2/M (Figure 1A, 
Chandler- Brown et al., 2017). We encode this cell cycle state information via a binary switch variable 
we call ‘S/G2/M Switch’ that is 0 in G1 and 1 in S/G2/M. In all simulations, we follow an inhibitor model 
(Heldt et al., 2018; Schmoller et al., 2015; Zatulovskiy et al., 2020) and assume that the probability 
of passing the G1/S transition is controlled by the quantity of a transcription regulator  I  . One way the 
quantity rather than the concentration of a molecule could be sensed is through its titration against a 
fixed cellular quantity such as the genome, which is part of a general class of titration- based cell size 
sensing mechanisms (Amodeo et al., 2015; Heldt et al., 2018; Si et al., 2019; Wang et al., 2009). 
A lower quantity of this inhibitor  I   means a higher probability of a G1/S transition at the current time 
step of the simulation (Appendix 1—figure 2). Like all other proteins, the quantity  I   is produced with 
a rate proportional to volume, degraded at a constant rate, diluted by cell growth, and equally parti-
tioned between mother and daughter cells at division (see Materials and Methods). We found that 
due to the volume scaling assumption,  

[
I
]
 ’s concentration alone was largely independent of volume 

and could not trigger a size- dependent G1/S transition, which is why we opted for the quantity of  I   
instead (Appendix 1—figure 3). Upon passing the G1/S transition, we assume cells are committed to 
division and there is a fixed time delay before they divide thus modeling S/G2/M as a timer (Chandler- 
Brown et al., 2017; Doncic et al., 2015). We initially fixed the timer duration to be roughly equal to 
50% of the doubling time  τ   with some uniform noise such that G1 and S/G2/M durations would be the 
same at equilibrium. Regulation of the quantity  I   during the cell cycle thus controls the precise timing 
of the G1/S transition, but it is not always perfect since the transition is probabilistic. This, along with 
the noise in S/G2/M timer duration, creates natural cell to cell variability in volume that needs to be 
compensated for by the evolved mechanism. We note that we initialized most of our simulations with 
one added interaction in which production of  

[
I
]
  is activated by the S/G2/M Switch variable to reset 

its concentration to a higher level before the next generation. We initially ran simulations without this 
specific interaction but found that it systematically appears in the initial stages of evolution simula-
tions. We therefore included it in the initial network to speed up our simulations. We refer the reader 
to the Appendix 1 for more details. The models used in this study are publicly available (Proulx- 
Giraldeau and François, 2022).

Typical dynamics of this simple cell- cycle model are represented in Figure 1. These dynamics are 
similar to models of cell cycles based on relaxation oscillators (Cross, 2003; Tsai et al., 2008). The left 

https://doi.org/10.7554/eLife.79919
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and right slow branches correspond to G1 and S/G2/M, respectively, and the fast horizontal branches 
represent G1/S and division. An intermediate fictitious nullcline is shown as a line that connects the 
average concentration  

[
I
]
  at G1/S and at division. Starting with cell birth, the system goes down the 

left- G1 branch because of degradation, then jumps to the right- S/G2/M branch below the threshold 
for the G1/S transition, stays there while moving up due to production by the S/G2/M Switch, until it 
jumps back to the left branch at the end of the timer phase. We note that there is no explicit volume 
control in this initial model since the only control comes from the quantity of  I   which does not initially 
depend in any way on the volume. This initial quantity sensing oscillator does not perform size control 
and instead results in unstable growth where size deviations are amplified at each generation instead 
of being corrected (Appendix 1—figure 3) as had been previously described for a size scaling inhib-
itor dilution model (Barber et al., 2017; Willis et al., 2020). Thus, the network needs to evolve some 
other interactions and/or parameters to go beyond a simple G1 inhibitor driven by production in S/
G2/M to create a viable cell lineage.

Evolution of quantity-based size control mechanisms
To examine how networks controlling cell size could evolve, we ran evolutionary simulations that 
optimize both the number of divisions  NDiv  and the coefficient of variation of the size distribution at 
birth  CVBirth  (see Materials and Methods for algorithm details). Figure 2A illustrates the behavior and 
results of a typical evolutionary run, with axes defined by both fitnesses used. Simulations successfully 
evolving size control mechanisms typically follow the same pattern. Networks initially cluster in two 
regions: region [ii] where cells have low  CVBirth  but grow too small and die after a few divisions, and 
region [i] where cells grow too big and reach our cut- off for fitness 2 (y- axis). Notice that our Pareto 
evolutionary algorithm maximizes network diversity, so that those two clusters are at first maintained 
during evolution (rank 1 Pareto networks Warmflash et al., 2012). As the number of epochs increases, 
networks in cluster [ii] have more and more divisions, but still grow too big, so that those cells are 
therefore penalized (see details in Appendix 1). At some point in evolution (around epoch 700 for 
this particular simulation), some weak control mechanism suddenly evolves, preventing cells from 
becoming too big without imposing a tight control on the average volume (see also Figure 5 for an 
explicit example of how this is done). Thus, fitness 2 collapses and the number of divisions is opti-
mized simultaneously. Cells later optimize the control to give a lower  CVBirth  . The optimal networks, 
at the right most end of this line, both maximize  NDiv  and minimize  CVBirth  .

Evolution simulations are in part reproducible and most often lead to similar network topologies. 
The evolution trajectory leading to Model A1 is a typical example (Figure 2B, see also variations of 
this network in Model A2 in Figure 2H and models A3- 6 in Appendix 1—figures 8–11). The minimal 
network common to all those models is very simple. One gene,  R , is added to the seed network and 
is both repressed and titrated by  I   forming the network motif known as a Mixed Feedback Loop 
(François and Hakim, 2005). Size control can then be understood intuitively as follows. 

[
I
]
  represses 

 
[
R
]
 , which is thus only produced in the narrow window of the cycle when  

[
I
]
  is low, i.e., when the cell is 

close to the G1/S transition and in early S/G2/M. But, since the quantity  I =
[
I
]
× V   is fixed at G1/S by 

design, the concentration  
[
I
]
  is inversely proportional to the volume of the cell at the G1/S transition 

(VG1/S) as shown in our simulations (Figure 2C). Because of this, the  
[
I
]
  dependent synthesis rate of  

[
R
]
  

and therefore its subsequent concentration are (linear) functions of the volume of VG1/S (Figure 2C), 
allowing for the cell to keep a memory of its volume at G1/S via the  

[
R
]
  variable (this holds even once 

 
[
R
]
  is constantly degraded for the remainder of the cycle). This has two effects. First, during S/G2/M,  I   

synthesis rate is proportional to volume by hypothesis (and thus to VG1/S), and  I   is titrated by  
[
R
]
 , also 

proportional to VG1/S. Both effects even out so that cells are born with a fixed quantity of inhibitor  I   
that is independent of volume (Figure 2D). Second, after division, production of  I   is 0 by hypothesis, 
but  I   still is titrated in G1 by the remaining  

[
R
]
  (still proportional to VG1/S). Because  I   quantity at the 

beginning of G1 is size independent, this ensures that daughter cells reach the  I   quantity threshold 
of G1/S earlier if they were born larger, thus ensuring size control. To confirm this, we examine the 
change in quantity of  I   as a function of time spent in G1 and of VG1/S, and we see the slope of these 
two quantities is volume- dependent (Figure 2E). We notice that this evolved size mechanism likely 
is the simplest possible allowed by our formalism: on the one hand, it entirely captures the volume 
dependency in a single variable  

[
R
]
 , and on the other hand, it ensures proper scaling of  I   both at 

birth and at G1/S for size control with the help of a single titration. Notice that such simple control 

https://doi.org/10.7554/eLife.79919
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also explains the sudden evolutionary “jump” of Pareto front around epoch 700 on Figure 2A, which 
corresponds to when the Mixed Feedback Loop motif first appears.

These evolved size control networks, while relying on quantity sensing, are conceptually similar 
to the budding yeast network relying on concentration sensing of the cell cycle inhibitor Whi5 since 
there is a constant quantity of  I   present right after division (just like Whi5). In budding yeast, the Whi5 
protein is passively diluted in G1 to increase the stochastic rate of progression through the G1/S 

Figure 2. Evolution of feedback- based size control. (A) Typical 2D fitness trajectory for an evolutionary run. Individual networks are dots color coded 
by their epoch within the evolutionary trajectory. Fitness function of the number of divisions of a cell lineage during a time interval of fixed length 
( F1

(
NDiv

)
 , X- coordinate) and fitness function of the coefficient of variation of the volume distribution at birth ( F2

(
CVBirth

)
 , Y- coordinate). Optimal 

model behavior is located in the bottom right corner of the figure where networks produce cell lineages with many offspring and strong size control. 
First, there are several epochs without any size control; networks cluster in two regions of the Pareto front corresponding to volume going to the 
maximum allowed value (cluster [i]) or to the minimum value (cluster [ii]). Both cases are highly penalized in their fitness score. Evolution goes back 
and forth between the [i] and [ii] clusters with a slow increase in the number of divisions (X- coordinate). Eventually, some volume control evolves and 
networks transition in the [iii] cluster where their  CVBirth  is slowly optimized further until the end of the run. (B) Core network topology of the evolved 
Model A1 network that employs a feedback- based mechanism described in detail in panels C- F. (C) Concentration of  

[
I
]
  at the G1/S transition (Y- 

coordinate, left axis, orange) and average concentration of the repressor protein  
[
R
]
  in S/G2/M (Y- coordinate, right axis, light blue) as a function of 

the volume of the cell at G1/S (X- coordinate), that is, the beginning of S phase. We see here that  
[
R
]
  acts as a direct size sensor of the volume at 

G1/S. (D) Quantity of inhibitor  I   at birth as a function of volume of the cell at birth, which is independent of size due to titration by  
[
R
]
  during S/G2/M. 

(E) Trajectories of quantity of inhibitor  I   in G1 as a function of time. Trajectories are color coded as a function of the volume at G1/S during the previous 
generation’s cell cycle. For visualization purposes, trajectories are offset vertically to all begin at the average quantity of  I   at birth (t=0) shown to be on 
average independent of volume in panel D. Larger cell volumes lead to greater titration of  

[
I
]
  in G1 by  

[
R
]
 . In turn, this ensures that G1 duration of the 

daughter cell cycle is shorter, which underpins the size control mechanism. (F) Characteristic dynamics of Model A1. Circles indicate volume at G1/S. 
Extrinsic perturbations are applied to the model by temporarily changing the division ratios which kicks the system out of equilibrium at the subsequent 
cycle such that  VNextG1/S =

(
1 ± 0.5

)
⟨VG1/S⟩ . The volume relaxation back to its homeostatic value takes ~2–3 generations, almost insensitive to the fact 

that the perturbation is applied towards higher or lower volumes. (G) Amount of volume added  ∆V   in G1 (red), S/G2/M (dark blue), and over the whole 
cycle (purple) as a function of their initial volume at the beginning of these phases, that is, birth for G1 and cycle, and G1/S for S/G2/M, with the slope 
of linear fits indicated in legend. Slope of 1 corresponds to a Timer, slope of –1 to a Sizer and slope of 0 to an Adder. (H) Network topology of Model 
A2, a second evolved network that is similar to Model A1 albeit with different kinetic parameters and 2 additional interactions (see text). (I) Characteristic 
dynamics of Model A2. Extrinsic perturbations are applied like in (F). The volume relaxation back to its homeostatic value takes ~3–4 generations when 
applied towards the higher volumes but only 1 generation when applied towards the lower volumes. (J) Amount of volume added for different periods 
of the cell cycle for Model A2.

https://doi.org/10.7554/eLife.79919
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transition. The time spent in G1 depends on the initial concentration of Whi5 at birth, which scales as 

 
1
V   , to promote a sizer mechanism. Here, the concentration of  

[
I
]
  at birth scales as  

1
V   , but so does the 

threshold concentration of  
[
I
]
  regulating the G1/S transition. This is precisely why an active titration 

mechanism is required to obtain G1 size control in our setup. Such homeostatic control ensures cell 
size returns to its steady state distribution following an artificial perturbation as soon as a volume devi-
ation is detected at G1/S (Figure 2F). When we plot the amount of volume added  ∆V   for different 
phases of the cell cycle as a function of the initial volume at the beginning of these phases, we find an 
approximate adder over the whole cycle that results from weak sizer in G1 followed by a timer in S/
G2/M as has been found in budding yeast (Chandler- Brown et al., 2017; Di Talia et al., 2007; Soifer 
et al., 2016, Figure 2G).

While we chose one simple model to illustrate the control mechanism common to our set of 
evolved networks (Model A1 shown in Figure  2B), other evolved networks were more elaborate 
but illustrated a similar principle. For example, Model A2 contains extra interactions for the volume 
sensing gene  

[
R
]
 , where  

[
R
]
  is repressed by the S/G2/M Switch (meaning its production is completely 

shut down in S/G2/M leading to sawtooth- like dynamics). Furthermore,  
[
R
]
  represses the synthesis 

of  
[
I
]
 , adding another layer of repression to promote size control beyond the previously described 

titration by  
[
R
]
  (Figure 2H). If we perturb cell size to examine the dynamics of the return to steady 

state and look at the added volume during the cell cycle, we again see overall a weak adder behavior 
similar to that found in Model A1 (Figure 2I–J). We give additional examples of similarly evolved 
networks in Appendix 1—figures 8–11 where we can see the sensing and the feedback mechanism 
being implemented in slightly different ways. Yet, despite these mechanistic differences in feedback 
regulation the resulting function of the evolved networks were similar as indicated by their  CVBirth  
(Appendix 1—table 1).

Quantifying size control
To study the mechanisms implicated in cell size control, we modify the control at G1/S and introduce 
the control volume  VC  . This control variable is independent from the biochemical network and is 
maintained fixed allowing us to disconnect the actual cell volume  V   from the biochemical network and 
by forcing the G1/S transition to be triggered once  IC =

[
I
]
× VC  is low enough. We then numerically 

integrate the differential equations of the model and measure the period  T
(
VC

)
  of the simulated cell- 

cycle for this control volume. Use of the control volume allows us to break the size feedback system 
and distinguish its input,  VC  , from its output, the induced cycle period T (Angeli et al., 2004). We 
compute  T

(
VC

)
  for Models A1 and A2 and compare their responses with the analytical curves of the 

archetypical timer, adder, and sizer (Figure 3A and C). Those curves intersect at the point where the 
induced period is exactly equal to the population doubling time ( τ = ln

(
2
)

/λ ), which defines the equi-
librium volume achieved by our cell size control network corresponding to  ⟨VG1/S⟩ . Examination of the 
size control in different cell cycle phases indicates the contributions of G1 and S/G2/M to the overall 
system behavior (Figure 3B and D). We note that we later examine statistics of ensembles of evolved 
models but that Models A1 and A2 are both typical examples of evolved feedback- based models.

Quantifying precisely how the cell cycle period depends on the control volume at G1/S allows us 
to see that the  T

(
VC

)
  for Model A1 overlaps with the theoretical adder curve over a broad range of 

volumes. In contrast, Model A2 behaves as a sizer for volumes smaller than the equilibrium volume. 
However, at higher volumes it behaves more like an adder/timer similar to Model A1. Model A2’s 
equilibrium is thus ‘tuned’ by evolution to be in a regime corresponding to the minimum of the  ∆VCycle  
curve extrapolated from the  T

(
VC

)
  as shown in Figure 3D, precisely when the system transits from 

a sizer at small volumes to an adder- like behavior at higher volumes. Similar behavior was observed 
experimentally in budding yeast (Chandler- Brown et al., 2017; Delarue et al., 2017). Thus, both 
Models A1 and A2 approximate an adder near the equilibrium size, but their behavior differs further 
from equilibrium where for smaller volumes, Model A1 is still an adder while Model A2 is a sizer.

Modulating cell cycle structural constraints selects for adders or sizers
So far, our evolutionary algorithm selects networks that implement adders rather than sizers near the 
equilibrium size. This is surprising because sizers are in principle better than adders at controlling cell 
size and reducing the CV of the size distribution at birth, which is one of our fitness functions. That 
adders are more frequently observed in nature than sizers (Cadart et al., 2018; Eun et al., 2018; Jun 

https://doi.org/10.7554/eLife.79919
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et al., 2018; Westfall and Levin, 2017; Willis and Huang, 2017; Zatulovskiy and Skotheim, 2020), 
is consistent with our evolution simulations, but adds to the mystery as to why this takes place.

To gain insight into the underlying reason for the prevalence of adders, we considered what might 
be exceptional in the cases where sizers occur. The best studied, and highly accurate sizer, is found 

Figure 3. Characterizing and comparing evolved size control mechanisms. (A) Average period  T
(
VC

)
  of the oscillator of Model A1 as a function of the 

control volume  VC  at the G1/S transition. Period is normalized by  τ   the doubling time of the cell, and volume is rescaled by  ⟨VG1/S⟩ , which corresponds 
to  T

(
⟨VG1/S⟩

)
= τ  . Normalized periods larger than 1 indicate cell lineages that grow over time whereas normalized periods smaller than 1 indicate 

lineages that shrink over time. Periods for the sizer (red), adder (orange) and timer (dark blue) are shown for comparison. The S/G2/M timer period is 
incompressible and prevents a perfect sizer from existing in the large volume range as indicated by the red dotted line. Model A1 follows approximately 
the adder archetype over a large range of control volumes. (B) Added volumes  ∆V   for different phases of the cell cycles for simulations of Model A1. 
Individual dots correspond to different cell cycles for a simulation at steady- state. The full line corresponds to the extrapolation from the  T

(
VC

)
  curve 

shown in A for a restricted range of  VC  relevant to the scatter. The black cross, star and square indicate the average added volumes corresponding to 
when the system senses a volume corresponding to  ⟨VG1/S⟩  at the G1/S transition. We see that the model is predicted to follow an adder over a large 
range of volumes. (C) Average period  T

(
VC

)
  of the oscillator of Model A2, with similar conventions as for panel A. We note that the  T

(
VC

)
  curve of 

this model is closer to the sizer at lower volumes and closer to a weak adder/timer at higher volumes relative to  ⟨VG1/S⟩ . (D) Added volumes  ∆V   for 
different phases of the cell cycles for simulations of Model A2, with similar conventions as for panel B. Here we see the predicted sizer behavior at lower 
volumes and the weak adder/timer behavior at higher volumes.

https://doi.org/10.7554/eLife.79919
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in the fission yeast S. pombe (Fantes, 1977; Sveiczer et al., 1996). In contrast to budding yeast and 
human cells, where the size control takes place largely in G1 phase, fission yeast exerts size control 
later in the cell cycle at the G2/M transition. That size control took place later in the cell cycle in fission 
yeast suggested that this structural feature of its cell cycle might be responsible for its stronger size 
control. To test this, we inverted our seed network so that the G1 phase was a timer, while cell size 
control could evolve in S/G2/M (see Materials and Methods). We compare these results to the evolu-
tionary simulations starting with the ‘control’ seed network with G1 size control and an S/G2/M timer 
(Figure 2). We note that S. pombe growth rates have been reported to deviate from exponential 
(Wood and Nurse, 2015). While slower than exponential growth would aid cell size control, our anal-
ysis here is restricted to exponential growth.

To determine how the seed network structure influences the subsequent evolution of cell size 
control, we performed 120 independent evolutionary simulations for the two network structures 
initialized with the Model A1 topology and parameters (Figure 4). Sixty simulations were performed 
using Pareto optimization and another 60 simulations were performed using individual fitness opti-
mization based on the number of cell divisions  NDiv  . For each simulation’s most fit model after 500 
epochs, we calculate the CV of the volume distribution at birth,  CVBirth  , and the slope of the linear 
fit of the volume added in the entire cell cycle as a function of the cell size at birth, Slope  ∆VCycle  
(we remind the reader that a slope of –1 corresponds to a sizer, 0 to an adder, and 1 to a timer). We 
chose to use 500 epochs in our simulations because in our previous experience this was sufficient for 
networks to evolve to be near the optimum, but not so much that they were forced to extensively 
explore the effects of neutral mutations near the optimum. Model A1’s initial and Slope before evolu-
tion are indicated by the dashed black line. In the control experiment where G1 is a sizer and S/G2/M 
is a timer, most evolutionary simulations with two fitness functions (Pareto) yield models close to 
the adder regime with a low  CVBirth  . However, when only the number of divisions ( NDiv ) is used as a 
fitness, the evolutionary simulations are closer to the sizer regime, albeit with a slightly higher  CVBirth  
(Figure 4A, Welch’s t- test p<10–4). When the cell cycle structure is inverted so that G1 is a timer and 
S/G2/M is a sizer like it is in the fission yeast S. pombe, we found that more sizer- like networks evolve 
than in the control experiment (Figure 4B, Welch’s t- test on agglomerated data p=0.03). This shows 
that having a network structure like the fission yeast S. pombe promotes sizers, while having the size 
control portion of the cell cycle earlier, as in the budding yeast S. cerevisiae, promotes adders. Thus, 
performing simulations using cell cycle network structures of these two yeasts results in the evolution 
of size control mechanisms that reflect those that are naturally occurring.

The general notion that having cell size control in G1 results in adder- like mechanisms, while 
control later in the cell cycle results in more sizer- like mechanisms fits most observations of human cell 
lines grown in culture, budding yeast, and fission yeast. However, a recent study examining mouse 
epidermal stem cells growing and dividing in the skin found both a strong sizer and that this sizer was 
largely due to the size- dependent regulation of G1 (Mesa et al., 2018; Xie and Skotheim, 2020). 
This raised the question as to how a network performing size control in G1 could result in a sizer for 
the entire cell cycle. One important difference between mammalian cells grown in culture and the 
mouse epidermal stem cells growing in an animal (in vivo) is the change in the relative durations of the 
G1 and S/G2/M phases of the cell cycle. While the S/G2/M phase of the cell cycle is similar in dura-
tion in cultured cells and the epidermal stem cells in vivo at ~12 hr, the G1 phase extends ~fivefold 
from ~10 hr in culture to ~50 hr in vivo (Cadart et al., 2018; Xie and Skotheim, 2020). This suggests 
the hypothesis that the overall size control behavior can be dominated by the relatively longer cell 
cycle phase, as is likely the case for the G1 phase of epidermal stem cells. To test this hypothesis, 
we performed evolutionary simulations with size control in G1 and a timer in S/G2/M but where 
we changed the duration of the S/G2/M timer phases of the cell cycle to be significantly shorter or 
longer than the G1 phase at equilibrium. When a timer in S/G2/M is relatively shorter compared to 
G1, we generally see more sizer- like behavior can evolve (Figure 4C, Welch’s t- test on agglomerated 
data p=4 x 10–3), while when it is relatively longer, we see more adder- like or even timer- like behavior 
(Figure 4D, Welch’s t- test on agglomerated data p<10–4).

We next considered the effect of changing the amount of noise in the timer phase of the cell 
cycle. To do this, we examined the evolution of networks performing size control in G1 and where 
the S/G2/M phase with an increasing amount of noise. Increasing the noise in the timer progres-
sively reduced the amount of size control done by the network (Appendix 1—figure 5). This is likely 

https://doi.org/10.7554/eLife.79919
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Figure 4. Distinct network constraints and selection pressures bias size control evolution towards adders or sizers. Summary statistics for evolutionary 
simulations each having 500 epochs. Model A1 shown in Figure 2A- G was used as the initial seed network. 60 simulations were performed using 
Pareto optimization of the number of divisions ( NDiv ) and the CV of cell size at birth ( CVBirth ), are labeled Pareto and are shown in full colors. 60 
more simulations were performed using only the number of divisions as the fitness function, are labeled NDiv and are shown in colored outlines only. 
Scatter plots show the coefficient of variation of the size distribution at birth ( CVBirth , Y- coordinate) as a function of the fitted added volume slope over 
the whole cycle as a function of volume at birth (Slope  ∆VCycle  , X- coordinate) for the most fit models evolved during each of the 120 independent 
simulations. Horizontal box plots above the scatter plots display the distributions of the added volume slopes for the Pareto and NDiv simulations. Timer 
(dark blue), adder (orange) and sizer (red) slopes are shown respectively at 1, 0, and –1 for comparison. Vertical box plots on the right of the scatter plots 

Figure 4 continued on next page
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because the fixed duration of S/G2/M allows the system to accurately reset protein concentrations for 
the subsequent cell cycle to promote accurate G1 control (Willis et al., 2020). We also examined the 
effects of adding noise to the cellular growth rate and to volume partitioning at division and found 
similar results (Appendix 1—figures 6–7).

Taken together, our simulations show how the structural features of the cell cycle are important for 
determining what type of size control ultimately evolves. G1 control is more conducive to the evolu-
tion of adders, while S/G2/M control is more conducive to sizers. Moreover, size control can be domi-
nated by the cell cycle phase of longest duration and is modulated by the specific selection criteria.

A two-step evolutionary pathway for cell size control
From our series of evolution simulations, we found a somewhat paradoxical inverse correlation 
between the added volume slope quantifying the degree of size control (sizer vs. adder) and the 

 CVBirth  (Figure 4B–C). This was surprising because it means that there is a broader distribution of 
volumes in the sizer regime where control should be more effective in theory. To better understand 
this inverted correlation between Slope  ∆VCycle  and  CVBirth  , we revisited our evolutionary simulations 
to examine the evolutionary pathways through which the networks progressed through the simulated 
epochs.

A typical evolutionary pathway for a Pareto simulation of the S. pombe- like network structure 
presented in Figure 4B is shown in detail in Figure 5. Here, Model A1 topology is conserved throughout 
evolution although individual parameter values change. In the early stages of the evolution (epoch 
650), we typically see dynamics where small cell size triggers an overshoot to a large cell size, which 
is then reduced through a series of rapid divisions (Figure 5A). Because of this small- size- triggered 
overshoot, the system behaves more like a sizer when the average behavior is analyzed (Figure 5B). 
However, the high degree of variability in the cell cycles also leads to a broad distribution of volumes 
(Figure 5C). The variability in volume is attenuated in later epochs where there are fewer and smaller 
volume overshoots triggered by small cell size (Figure 5D–I). Since small cell size no longer triggers a 
dramatic amount of cell growth, the slope of  ∆VCycle  is increased and the system converges towards 
a weak adder in which the distribution of volume at birth is more Gaussian and the  CVBirth  is lower 
(Figure 5H–I). Taken together, these analyses suggest a two- step evolutionary pathway, consistent 
with the evolutionary dynamics first seen in Figure 2A. First, a strong but imprecise sizer mechanism 
evolves where, because of noise in the system, small variations in volume lead to a dramatic overcor-
rection and overshoot of the target volume. The variability in volume produced by this overshoot is 
then reduced by attenuating the strength of the size control response. Indeed, the overall weaker 
size control allows the system to respond more mildly to size deviations, thus yielding a lower  CVBirth  
overall which we select for. Thus, selecting for a smaller  CVBirth  , i.e. better size control, can end up 
selecting for adders rather than sizers. This paradoxical result is consistent with the fact that when we 
select only for the number of cell divisions ( NDiv ), one sees that more sizer- like behavior can evolve 
(Figure 4A–C). The typical behavior before optimization of  CVBirth  is a strong sizer as illustrated in 
Figure 5A.

Fluctuation sensing and the evolution of self-organized criticality
One of the main features of smaller cells is that they have fewer proteins and mRNA. If some aspects 
of protein synthesis and degradation are subject to Poisson fluctuations, we expect such fluctuations 

show the distributions of  CVBirth  for the Pareto and NDiv simulations. Asterisks represent p- values for the Welch’s t- Test between the distributions. For 
reference,  NS  indicates  p > 0.05 , * indicates  p < 0.05 , ** indicates  p < 10−2  , *** indicates  p < 10−3  and **** indicates  p < 10−4  . The values of  CVBirth  
and Slope  ∆VCycle  for the initial seed Model A1 are shown as a black square in the scatter plot or as a dashed black line in the box plots. Each panel 
explores different cell cycle structures which are summarized by the pie charts. Cycles begin on the left of the pie charts and rotate clockwise, indicating 
the order of the sizer (red) and timer (dark blue) phases. The labels indicate each phase’s duration at equilibrium as a percentage of the doubling 
time  τ  . (A) Identical evolutionary parameters as for Model A1 evolution shown in Figure 2A–G. G1 performs size control and has a duration  0.46τ   at 
equilibrium and S/G2/M is a timer of duration  0.54τ  . (B) Evolution results for a cell cycle structure where the sizer and the timer phases of the cell cycle 
are inverted akin to S. pombe. G1 is a timer of duration  0.54τ   and S/G2/M performs size control and has duration  0.46τ   at equilibrium. (C) Evolution 
results for a G1 size control of average duration  0.64τ   at equilibrium where S/G2/M is a timer of duration  0.36τ  . (D) Evolution results for a G1 size 
control of average duration  0.28τ   at equilibrium where S/G2/M is a timer of duration  0.72τ  .

Figure 4 continued
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to produce larger concentration fluctuations in smaller cells. For example, let us assume that the 
balance of synthesis and degradation of a generic protein results into a Poisson distribution with 
parameter  

ρV
δ   , where  ρ  is the synthesis rate in number of proteins per unit of time for a reference 

volume of 1,  V   is the volume, and  δ  is the degradation rate. The average concentration of this protein 
in an exponentially growing cell will be  

ρ
δ   , which is independent of the cell volume  V   as expected from 

the production rate scaling. However, following the Bienaymé formula, the variance in the concen-
tration is  

ρV
δ × 1

V2 = ρ
δV   (Figure 6A), which decreases with volume. This result makes intuitive sense 

because bigger cells have to produce more proteins to keep concentrations constant, so that the 
fluctuations in the relative number of proteins (and thus concentration) are smaller (see Jia et al., 2021 
for a complete analytical study of how in general variance scales differently from mean when volume 
varies). Thus, if the cell could sense the size of concentration fluctuations in some way, it would be 
able to harness the cell size- dependence of such stochastic fluctuations to regulate cell division and 
control cell size.

To test if we can evolve networks that control cell size through sensing Poissonian fluctuations, we 
first initialized our simulation with a network similar to that shown in Figure 1C, but with an added 
self- activating gene  A  that can activate the production of the  I   inhibitor. We then ran evolutionary 
simulations using the cell cycle structure of a sizer controlling G1 and timer in S/G2/M, but where the 
G1/S transition is regulated by the concentration  

[
I
]
  instead of its quantity. We also used Pareto fitness 

optimization of  NDiv  and of  CVBirth  . Importantly, we use the stochastic version of our equations with 

Figure 5. System and evolutionary dynamics of cell size control networks. Snapshots of an evolutionary simulation of 2500 epochs initialized with the 
Model A1 network topology along with an S. pombe- like cell cycle structure with a timer in G1 followed by a sizer in S/G2/M (see Figure 4B). Pareto 
fitness optimization was performed using  NDiv  and  CVBirth  as fitness functions. Rows indicate simulation results for the fittest networks from evolutionary 
epochs 650 (Panels A- C), 1000 (Panels D- F), and 2500 (Panels G- I). Network topology remains the same throughout the evolutionary simulation and is 
shown on the right. Evolutionary dynamics continually reduce the selected for  CVBirth  and proceed through a noisy sizer to a less noisy adder. (A) Typical 
dynamics of the most fit model from epoch 650. (B) Added volumes  ∆V   for different phases of the cell cycle for the most fit model from epoch 650. 
Fitted slopes are indicated in the legend. Fits for the S/G2/M and Cycle added volumes were split in two separate the size control for small and large 
cells. (C) Size distributions at birth (red), G1/S (orange), and division (purple) for the most fit model from epoch 650. The coefficient of variation of the 
volume distribution at birth  CVBirth = 0.279 . (D) Typical dynamics of the most fit model from epoch 1000. (E) Added volumes  ∆V   for different phases 
of the cell cycle for the most fit model from epoch 1000. Fitted slopes are indicated in the legend. (F) Size distributions at birth (red), G1/S (orange), 
and division (purple) for the most fit model from epoch 1000. The coefficient of variation of the volume distribution at birth  CVBirth = 0.090 . (G) Typical 
dynamics of the most fit model from epoch 2500. (H) Added volumes  ∆V   for different phases of the cell cycle for the most fit model from epoch 2500. 
Fitted slopes are indicated in the legend. (I) Size distributions at birth (red), G1/S (orange), and division (purple) for the most fit model from epoch 2500. 
We see here that the sizer behavior from epoch 1000 was abandoned for a weaker adder overall yielding lower  CVBirth = 0.063 .
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Figure 6. An evolved concentration fluctuation sensing size control model exhibits self- organized criticality. (A) Size- dependent molecular noise arises 
due to Poissonian fluctuations in molecule number. Consider a protein production- degradation scheme for protein quantity X with production rate  ρ  
and degradation rate  δ  contained in a volume V. At equilibrium, the concentration of  

[
X
]
  will be given by a distribution with mean  

ρ
δ   and variance  ∝

1
V   

. The effect of V on the molecular noise is shown on the time trajectories for simulations in a constant volume of V=1 (light blue), V=5 (medium blue), 

Figure 6 continued on next page
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the molecular noise modeled using a Langevin noise term with a variance inversely proportional to 
the volume as explained above. We then extracted the most fit network and optimized it further using 
Pareto optimization of  NDiv  and of the  ∆VCycle  slope to push the models towards the sizer regime. The 
most fit network of those combined evolutionary simulations is presented in Figure 6B and demon-
strates that we can indeed evolve fluctuation- based cell size control (Model B).

The mechanism for size control that evolved based on size- dependent fluctuation sensing is 
remarkably similar to what we observed for models without size- dependent fluctuations (Figure 5A). 
For large volumes, the cycle has a constant period which corresponds to approximately 85% of the 
doubling time  τ  . This ensures that in the high- volume regime, the system shrinks over time. When the 
volume is small however, fluctuations allow the concentration  

[
A
]
  to cross the threshold of the highly 

non- linear transcriptional activation of  
[
I
]
  by  

[
A
]
 . This results in a massive increase of  

[
I
]
  that needs to 

be degraded to progress further into the cell cycle. Thus, the low volume regime occasionally leads 
to a considerable increase in G1 length and a correspondingly very large cell at division. These very 
large cells then reliably and deterministically re- enter multiple, rapid cell cycles with short G1 until 
the cell is small again and the concentration fluctuations again become large enough to trigger the 
activation of  

[
I
]
  by  

[
A
]
 . This mechanism thus appears very similar to the early sizer mechanism observed 

in other quantity sensing simulations shown in Figure 5. However, here the mechanism is based only 
on size- dependent fluctuations in protein concentration and the overall behavior is closer to an adder 
(Figure 6E).

The system dynamics that evolved to perform fluctuation- based cell size control produce volume 
distributions that are long- tailed due to the stochastic occurrence of occasional exceptionally long 
G1 phases. Interestingly, the probability distribution of cell cycle durations follows a power law 
(Figure 6F), which is due to the very broad distributions of G1 duration at lower cell volumes. A more 
controlled analysis specifying the initial conditions showed that cell cycles get increasingly long, and 
their distributions widen with decreasing control volume  VC  (Figure 6G). Such non- Gaussianity is the 
hallmark of critical behavior, suggesting that the evolution of fluctuation- based cell size control is 
based on self- organized criticality (SOC). SOC is defined as a system where an order parameter feeds 
back on a control parameter (Sornette et al., 1995; Vidiella et al., 2021). The canonical example of 

and V=50 (dark blue). Corresponding concentration distributions are shown on the right- hand side of the panel. (B) Network topology of Model B 
which evolved to sense fluctuations. Here, the G1/S transition is controlled by the concentration of  

[
I
]
  and not its quantity. (C) Characteristic cell cycle 

dynamics of Model B. Trajectories of  
[
I
]
 ,  
[
A
]
 , and S/G2/M Switch are rescaled with arbitrary units (AU) for visualization purposes. Below, we zoom- 

in on three cycles to show how a low- volume induced burst in  
[
A
]
  leads to a massive production of  

[
I
]
  inducing a temporarily prolonged G1 phase. 

Subsequently, cells become bigger and display lower molecular noise inducing a comparatively shorter G1 phase. (D) Volume distributions at birth (red), 
G1/S (orange), and division (purple) for Model B. The coefficient of variation of the volume distribution at birth  CVBirth = 0.235 . (E) Amount of volume 
added  ∆V   in G1 (red), S/G2/M (dark blue), and over the whole cycle (purple) as a function of their initial volume at the beginning of these phases, i.e., 
birth for G1 and cycle, and G1/S for S/G2/M, with the slope of linear fits indicated in legend. (F) Complementary cumulative distribution functions of the 
cycle duration (CCDF; probability that the cell cycle duration is larger than the value on the X- axis) for three models discussed in the main text: Model 
A1 (light blue), Model A2 (dashed dark blue), and Model B (red). The light grey line indicates the doubling time  τ  . We see that Model B exhibits a long 
tail past the doubling time, which is consistent with a power- law scaling of the cycle duration probability. We find a criticality indicative scaling exponent 
of –3.05 for the CCDF after fitting the tail of the distributions of 5 independent realizations of the dynamics of Model B. (G) Box plots of the cycle length 
distributions as a function of control volume  VC  at birth. Cycle lengths are normalized by the doubling time  τ  . Here,  VC  sets the molecular noise level 
to be equivalent to that of an exponentially growing cell born at  VC  but whose volume is reset to  VC  at each division. Note the very long tail of the 
distributions at small  VC  . (H) Position of the G1 attractor for inhibitor  

[
I
]
  as a function of activator  

[
A
]
 . The black dashed line corresponds to the level 

of  
[
A
]
  which triggers a transition between two modes of growth and division as shown by the position of the G1 attractor for  

[
I
]
  becoming equal to the 

concentration required to induce the G1/S transition. The two modes of growth are labeled [i] and [ii] and are also indicated in panels I- K. (I) Activator 
protein  

[
A
]
  is synthesized in bursts whose amplitude and duration are a function of volume. We define the burst duration as the total time during which  

 
[
A
]
  >0 for a cycle. The burst amplitude corresponds to the average level of  

[
A
]
  during each G1 phase. Each burst is then color- coded as a function of 

the birth volume of the cell that induced it. We use a divergent colormap whose center value (light yellow) corresponds to the average volume of the 
cells at birth and is indicated by a notch on the colorbar. Here, [i] corresponds to the deterministic regime when volume is high and [ii] corresponds to 
the noisy regime when volume is low. Note that the average volume of the cells at birth is positioned close to the black dashed line. (J) Phase- space 
representation of the relaxation oscillator in the deterministic regime [i]. The X- coordinate shows the S/G2/M Switch variable, and the Y- coordinate 
shows the concentration of  

[
I
]
 . Here, when volume is high, the position of the G1 attractor is below the  

[
I
]
  concentration at which the G1/S transition 

happens. Thus, G1/S takes place and cells are in the cell cycle with a period of ~0.85. (K) Phase- space representation of the noisy regime [ii]. Here, 
when volume is low, the position of the G1 attractor becomes greater than the  

[
I
]
  concentration at which the G1/S transition happens, and cells remain 

temporarily stuck in a prolonged G1 state and are unable to trigger the G1/S transition.

Figure 6 continued
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SOC is the sandpile to which grains of sand are added on top. As the sand accumulates, the slope 
steepens, and the angle of the pile (control parameter) increases. Eventually, this triggers avalanches 
(order parameter) that feedback to dramatically reduce the angle of the pile. This ensures that the 
system dynamically tunes itself at the critical value of the angle of the pile where avalanches can occur.

We conclude that our evolved size control network exhibits SOC based on several observations. 
Starting from a high volume, multiple divisions at a rate faster than it takes to double the biomass 
reduce cell volume  V   just like the addition of grains of sand gradually increases the slope of the pile. 
Then, for small enough volumes, bursts of  

[
A
]
  drive an extended G1 that greatly increases cell size, 

which, like the sandpile avalanches, resets the system’s control parameter (volume of the cell or angle 
of the sandpile). Interestingly, evolution tuned the system to be near a bifurcation (Figure 6I). If we 
consider the deterministic regime, in which the fluctuations in  

[
A
]
  are small, the cycle is unperturbed 

and oscillates with a period roughly equal to 85% of the doubling time (Figure 6J). In contrast, if 
we consider the noisy regime, in which the fluctuations in  

[
A
]
  are large, the cycle disappears, and 

the system stays locked in a prolonged G1 state with a high value of  
[
I
]
  which is akin to a bifurcation 

destroying the cycle (Figure 6K). This bifurcation takes place because the position of the G1 attractor 
for  

[
I
]
  becomes larger with increasing  

[
A
]
  and eventually overcomes the concentration required to 

induce the stochastic G1/S transition (Figure 6H). Then, the system remains stuck in a state where 
G1/S cannot be triggered, and cells effectively exit the cycle. As growth occurs, noise dies down 
and so does the position of the G1 attractor, eventually becoming smaller than the  

[
I
]
  concentration 

required to induce the G1/S transition which allows cells to re- enter the cell cycle. Thus, the system is 
critical from a dynamical systems standpoint and also fits the general observation that SOC systems 
tune themselves to be right at the point where the order parameter is non zero, but infinitesimal 
(Sornette et al., 1995). In our case, the bifurcation corresponds exactly to the point where  

[
A
]
  can 

sufficiently activate the production of  
[
I
]
  to prevent the G1/S transition.

Discussion
The last decade saw an explosion of time lapse microscopy studies measuring how cells control their 
size. These studies revealed diverse phenomena that are characterized by the correlation between cell 
size at birth and cell size at division. Size control ranged from sizers, where the size at division is uncor-
related from the size at birth, to adders, which add a constant volume in each cell division cycle, to 
timers, whose cell cycle duration is size- independent (Cadart et al., 2018; Eun et al., 2018; Jun et al., 
2018; Willis and Huang, 2017; Wood and Nurse, 2015; Zatulovskiy and Skotheim, 2020). The 
presence of these diverse phenomena raises the question as to why the underlying control networks 
evolve one rather than another type of cell size control?

To explore the evolution of cell size control networks subject to distinct selection pressures, we 
used computational evolution simulations. We initially examined the evolution of a seed cell cycle 
model consisting of G1 and S/G2/M phases of similar duration, where the G1 phase was free to evolve 
size- dependence, but the S/G2/M phase was constrained as a timer. Our simulations reliably evolved 
a control mechanism based on a Mixed Feedback Loop (François and Hakim, 2005, Figure 2). This 
network is centered on a cell cycle regulator ( I  ) that inhibits the G1/S transition in proportion to its 
quantity.  

[
I
]
  is titrated away into an inactive complex by an increasing amount of another protein  

[
R
]
  

that is synthesized in proportion to cell size. This results in a size- dependent decrease in the effective 
cell cycle inhibitor (free  

[
I
]
 ). Thus, our evolved network implements an effective dilution of a cell cycle 

inhibitor that is conceptually similar to the well- described inhibitor dilution models of budding yeast, 
human cells, and Arabidopsis plants (D’Ario et al., 2021; Schmoller et al., 2015; Xie and Skotheim, 
2020; Zatulovskiy et al., 2020). We note that we did not allow the synthesis of our proteins, such 
as  

[
I
]
 , to be size- independent as has been found for budding yeast (Chen et al., 2020; Schmoller 

et al., 2015; Swaffer et al., 2021) as this could result in a one- step implementation of cell size control 
through the pure dilution of a cell cycle inhibitor. It is therefore interesting that given the constraint 
that all proteins be made in proportion to cell size, the network still evolved an effective ‘dilution’ of 
the active form of the cell cycle inhibitor molecule  

[
I
]
  .

Our evolution simulations gave insight into factors that bias evolution towards sizer or adder type 
control mechanisms (Figure 4). First, it is worth noting that our evolution simulations were not deter-
ministic. There was no one- to- one correspondence between a given evolutionary pressure and any 
one specific cell size control mechanism. Rather, our claims represent an average behavior observed 
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over the course of many simulations. Size control, as measured by the CV at a particular point in the cell 
cycle, has contribution both from the slope of the correlation between cell size and the amount of cell 
growth, and from the amount of noise characterizing the differences between cells that are initially the 
same size (Di Talia et al., 2007). It is therefore possible that a low noise adder can produce a lower CV 
than a higher noise sizer. This is reflected in the evolutionary paths of some of our simulations, which 
traverse from a noisy sizer to a less noisy adder (Figure 5). However, we anticipate even noisy sizers 
will be better than adders at controlling cell size in response to large deviations away from the steady 
state distribution. This is because sizers will always return the cell size to be within the steady state 
distribution within a cell cycle. We note that these generic results of how sizers and adders can govern 
cell size homeostasis can be derived from more traditional analytical methods (Barber et al., 2017; 
Willis et al., 2020). However, our evolution simulations are particularly useful because the molecular 
networks that evolved give non- trivial insights into how the observed size homeostasis dynamics can 
be regulated (e.g. via a Mixed Feedback Loop or using a system close to criticality). They are also 
suggestive of evolutionary pathways: despite different evolutionary modalities and control types, a 
natural step in many of our simulated evolutions is a system with strong sizers at very small volume 
only (Figures 5 and 6). This is practically reflected in a strongly negative slope on the very left side of 
the  ∆VCycle  plots, and a positive slope at higher volume corresponding to timers (Figures 5B and 6E). 
Similar non- monotonicity of  ∆VCycle  has been identified in models of various realism and complexity 
(Chandler- Brown et al., 2017; Delarue et al., 2017) and we provide here an evolutionary explanation 
for such an effect. We thus predict that this will be observed in systems where CV at birth does not 
need to be tightly controlled.

In the selection of a size controlling G1 network followed by a timer in S/G2/M, we observed a 
prevalence of adders that is consistent with the prevalence of adders reported in the literature. While 
fewer in number, sizers have also been observed. That the most accurate sizers have been observed 
in the fission yeast S. pombe (Fantes, 1977; Sveiczer et al., 1996; Wood and Nurse, 2015), and that 
this organism performs cell size control at G2/M rather than at G1/S led us to explore the effect of cell 
cycle structure on the evolution of cell size control. We found that controlling cell size later in the cycle 
in S/G2/M biases evolution away from adders and towards sizers. In retrospect, this result can be ratio-
nalized since any size deviations incurred earlier during the timer period can be compensated for by 
the end of the cycle with the sizer. However, when the order is inverted, any size deviations escaping 
a G1 control mechanism would only be amplified by exponential volume growth during the S/G2/M 
timer period. A second recent case exhibiting sizer control was found in mouse epidermal stem cells, 
which exhibit a greatly elongated G1 phase and a relatively short S/G2/M phase (Mesa et al., 2018; 
Xie and Skotheim, 2020). We found that if we increased the relative duration of G1 in our simulations 
by shortening the S/G2/M timer, we also see a bias towards sizer control. In essence, by extending 
G1 to a larger and larger fraction of the cell cycle the control system is gradually approaching a size 
control taking place at the end of the cell cycle, that is, an S/G2/M size control. Taken together, these 
simulations suggest the principle that having size- dependent transitions later in the cell cycle selects 
for sizers, while having such transitions earlier selects for adders.

In addition to identifying cell cycle structural features that canalize evolution towards sizers and 
adders as described above, we also observed an intriguing mechanism relying on molecular fluctua-
tions. In this case, small cells would trigger an abnormally long G1 that would result in very large cells 
that decrease in size through a series of rapid cell divisions. This type of size control is reminiscent 
of that found in the green algae Chlamydomonas where a series of rapid, size- reducing cell divisions 
cease when cells go below a target size (Heldt et al., 2020). In our case, small size results in larger 
concentration fluctuations due to Poisson noise in the number of molecules. These concentration 
fluctuations, when large enough, are then able to trigger a burst of G1/S inhibitor that leads to an 
extended G1 phase and massive cell size growth before another series of rapid cell divisions is initi-
ated (Figure 6). Interestingly, the system thus performs statistical size control over many generations. 
Intriguingly, this size control mechanism exhibits hallmarks of self- organized criticality (SOC). Just like 
adding grains of sand to a pile eventually triggers avalanches, the consistent decrease of cell size 
in the rapid division cycles eventually triggers a greatly extended G1 phase. To our knowledge, this 
is the first example where self- organized criticality is obtained in artificially evolved models of gene 
networks performing a well- defined function and is consistent with the idea that evolution of complex 
systems can favor the emergence of critical processes.

https://doi.org/10.7554/eLife.79919
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Materials and methods
Mathematical formalism
To model gene networks, we follow a standard ODE based formalism, where we simulate dynamics 
of the concentrations of proteins. We use Hill functions for transcriptional interactions, and standard 
mass action kinetics for protein- protein interactions. We also assume that all proteins are degraded 
at a constant rate. For most of the simulations presented in the paper, we use deterministic ODEs for 
simplicity. Importantly, cell- to- cell variability arises from the precise timing of cell cycle progression 
events. This allows for a natural way to generate noise on cell volume that should then be compen-
sated for by the evolved network. In the last part of the paper, we explicitly include Langevin noise 
for biochemical reactions that are modeled using a classical tau- leaping formalism (Gillespie, 2007). 
Thus, each biochemical reaction takes place with a rate that corresponds to the deterministic rate, 
to which we add one white Gaussian noise with a variance equal to that rate. For example, given a 
deterministic biochemical rate  k  and a time interval of size  ∆t , we consider a tau- leaping change of 

 k∆t + N
(
0, k∆t

)
  where  N

(
0, k∆t

)
  is a random gaussian variable of mean 0 and variance  k∆t .

Volume influences protein dynamics in three ways. First, protein production rates are generally 
proportional to cell volume so that proteins reach and maintain a constant concentration that is inde-
pendent of the cell volume (Chen et al., 2020; Elliott and McLaughlin, 1978; Newman et al., 2006; 
Swaffer et al., 2021). We note that we are not allowing the cell to employ proteins such as Whi5 
in budding yeast whose production is independent of cell size so that its concentration is a direct 
readout of cell size (Schmoller et al., 2015; Swaffer et al., 2021). We chose to do this because we 
want to explore how cell size control can be done by a network with multiple feedbacks rather than 
just the concentration of a single protein with a special dedicated synthesis mechanism. Thus, the only 
deterministic influence of volume on concentration dynamics is on the dilution rate, which is propor-
tional to the cell growth rate  λ

(
V
)
  (see details in Appendix 1). At cell division, we also assume that 

proteins are equally partitioned between the daughter cells, that is, the concentration is the same 
before and after division. Note that we scale all our variables so that a concentration of one arbitrary 
unit corresponds roughly to 1000 proteins in a 100fL cell (Milo et al., 2010). Additionally, we scale 
the time variable so that 1 arbitrary time unit corresponds roughly to 30 min (Di Talia et al., 2007).

In this study, we chose a hierarchical way of introducing noise in the system, starting with the 
biggest contributing factor and incrementally adding additional sources of noise in subsequent anal-
yses. All simulations presented include noise (stochastic control of G1/S transition and timing of S/
G2/M, see below) in the cell cycle phases, whose CV has been found to be as high as 50% (Di Talia 
et al., 2007). Then, we introduced protein production noise via Langevin noise because the CV of 
regulatory protein concentrations is typically 20–30% (Newman et al., 2006). Importantly, the cell 
volume also contributes to stochastic effects, which are larger in smaller cells with fewer molecules. 
Thus, for stochastic simulations, we include a multiplicative 

 
1√
V  

 contribution to the added Gaussian 

noise term (see more complete description in the Appendix 1).
We also checked that our results are largely invariant when adding other sources of noise (see 

Appendix 1—figures 5–7). In these simulations, we also included noise in cell growth rate (CV ~15%; 
e.g. Di Talia et al., 2007), and in mass partitioning at cytokinesis (CV ~10%; e.g. Zatulovskiy et al., 
2020).

Evolutionary procedure
To evolve networks regulating cell size, we use the  φ - evo software (Henry et al., 2018) with a modified 
numerical integrator accounting for volume dynamics and volume dependencies as described above 
(Figure 1B).  φ - evo simulates the Darwinian evolution of a population of gene networks. A network 
is encoded with the help of a bipartite graph connecting biochemical species (typically proteins) 
and interactions between them (we use a custom- made Python library). Networks are converted into 
an ensemble of stochastic differential equations using a Python to C interpreter. This code is then 
compiled and integrated on the fly to compute the behavior of the networks.

Each selection step in the algorithm is referred to as an epoch rather than the more commonly 
used term generation because we use the term generation to refer to cell divisions in the simulations. 
At each epoch of the algorithm, each gene network is simulated, and its fitness computed. Based on 
the fitness function(s) (see below), half of the networks are selected and duplicated, while the other 
half is discarded to maintain a constant population size. The duplicated networks are then randomly 
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mutated. From the most to least probable, mutations consist in random changes of parameters of 
the network, random removal of interactions, and random additions of interactions or new proteins. 
Absolute mutation rates are adjusted as a function of the number of evolutionary epochs so that 
all networks in a population are mutated on average once per epoch. This implements a numerical 
equivalent of the biological Drake’s rule that mutation rates adjust with genome size (Lynch, 2007). 
Practically, this prevents the known phenomenon of code- bloating in evolutionary simulations (Foster, 
2001) and also means that the total number of epochs is a good proxy of the number of mutations (in 
random directions) needed to evolve the best networks. All of this is easily made with our customized 
Python library encoding networks. For more details on technical aspects and implementations of the 

 φ - evo software, we refer the reader to Henry et al., 2018.
Realistic evolutionary processes select for multiple phenotypes in parallel. While trade- offs between 

those phenotypes are non- trivial, it has been observed that phenotypes typically define an evolution-
arily Pareto front (Shoval et al., 2012; Warmflash et al., 2012). We thus perform network selection 
using a Pareto mode (Warmflash et al., 2012), in which two distinct fitness functions are computed. 
During the selection step, networks are first Pareto ranked. For example, consider two networks A 
and B and two fitness functions f1 and f2. f1

A refers to the fitness of network A calculated with function 
f1. Assuming fitness functions are to be maximized, we say network A Pareto- dominates network B 
if both f1

A > f1
B and f2

A ≥ f2
B. Rank 1 networks are networks which are not dominated by any other 

networks, Rank 2 networks are networks dominated only by Rank 1 networks, and Rank 3 networks 
are only dominated by Rank 1 and Rank 2 networks and so on. The algorithm then selects half of the 
population of Rank 1 networks using a fitness sharing algorithm to maximize population diversity (see 
details in Warmflash et al., 2012). One advantage of Pareto selection is the increased flexibility of the 
evolutionary process. Multiple fitness functions can provide different optimization paths in parameter 
space, which prevents the selection process from getting stuck in a local optimum of a single fitness 
function. We also perform a few simulations with only one fitness function, in which case networks are 
simply ranked based on their fitness.

We impose two evolutionary selection pressures in the form of two fitness functions. The first 
fitness function is simply the number of cell divisions during a long period, which we call  NDiv  . This 
is consistent with the classical definition of fitness as optimizing the number of offspring and is to be 
maximized by the algorithm. The second fitness function is the coefficient of variation of the volume 
distribution at birth for those  NDiv  generations, which we call  CVBirth  and is to be minimized by the 
algorithm. This penalizes broad distributions of volume at birth, which are detrimental to cell size 
homeostasis, which is what we aim to examine here. We further imposed fitness penalties to prevent 
way too small or too big cells, see Appendix 1. There, we also study alternative fitness functions, 
such as least- square residual function to minimize volume variation about a target size, and the fitted 
slope of the amount of volume added at each cycle to be minimized to drive models toward being 
a sizer.

Varying cell cycle structure
We also ran evolutionary simulations with different cell cycle structures. For evolutionary simulations 
where the G1/S transition was controlled by the concentration of  

[
I
]
  , we simply change the probability 

to pass the G1/S transition to depend on concentration  
[
I
]
  instead of its quantity  I  . For evolutionary 

simulations with a cell cycle structure similar to that found in the fission yeast S. pombe, we invert the 
cell cycle network structure. In this case,  I   quantity controls division and the Switch is turned on for a 
fixed amount of time in G1. In terms of the relaxation oscillator, this means that the left branch is now 
S/G2/M and the right branch is G1.
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Appendix 1
In section Mathematical implementation, we first describe how to modify deterministic and 
stochastic ODEs to account for a exponentially growing cell volume. In section Size control, we 
describe the three size control archetypes, namely the timer, the adder, and the sizer, as well as 
our implementation of the initial seed cell cycle model. Then, in section Evolutionary algorithm, 
we give details on the  φ - evo evolutionary algorithm. In section Analysis of sources of noise, we 
present evolutionary simulations investigating the effects of noise on the evolved networks. Finally, 
in sections Model descriptions and Additional models, we provide parameter values and equations 
for the models presented in the main text and for additional models produced by our evolutionary 
simulations.

Mathematical implementation
Deterministic
All biochemical concentrations can be described as a quantity of molecules of a biochemical species 
divided by the volume that contains it. The fundamental equation describing all concentrations is 
thus:

 [X](t) = X(t)
V(t)  (1)

Here,  X(t)  is the quantity of molecules of an arbitrary biochemical species  X   as a function of time and 
 V(t)  is the volume of the cell containing said species as a function of time. We will use the bracket 
notation  [X](t)  for concentrations. In this project, we will model all biochemical species directly at the 
concentration level and assume proteins are uniformly distributed in an exponentially growing cell 
volume. The absolute growth rate of the cell  λ  is chosen to be constant over a large viable range of 
cell volume and is otherwise 0. Consequently, volume grows over time with a fixed absolute growth 
rate  λ = 0.25  over a viable volume range following the equation:

 
dV
dt = λV(t)  (2)

Deterministic rate equations describing the dynamics of the biochemical species at the concentration 
level have to be adjusted to take into consideration a time- varying volume. From Equation 1 and the 
derivative chain rule, we get:

 
d[X]
dt = d

dt
X(t)
V(t) = 1

V(t)
dX
dt − X(t)

V(t)2
dV
dt   

which we can combine with Equation 2 to give:

 
d[X]
dt = 1

V(t)

(
dX
dt

���
V=Cst

)
− λ[X](t) = f([X](t)) − λ[X](t)

  (3)

The first term in the Equation 3,  f([X](t)) , corresponds to the usual biochemical reaction rates that 
occur when the volume of the cell is fixed. The second term,  −λ[X](t) , is a dilution term that we can 
interpret as an effective degradation of the concentration  [X](t)  due to the exponential growth of 
the cell volume over time.

To further simplify the expression for  f([X](t)) , we make an assumption about the production rates 
of all biochemical species in our models. Let us consider the rate equation describing the dynamics 
of the quantity of an arbitrary protein  X   with generic production rate  ρ  and degradation rate  δ  
contained in a fixed cell volume  V  .

 
dX(t)

dt = ρ− δX(t)  

Here,  f([X](t))  is given by:

 f([X](t)) = 1
V

dX(t)
dt = ρ

V − δ[X](t)  

We assume that all the proteins in our models are constitutively expressed by the cell. In other 
words, the production rates  ρ  are linear functions of the cell volume  ρ = ρ(V(t)) = ρ0V(t) . This ensures 
that the protein production rates scale with the volume such that concentrations stay constant over 
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time which is a general feature of most proteins in S. cerevisiae (Chen et al., 2020; Newman et al., 
2006; Swaffer et al., 2021). This yields:  f([X](t)) = ρ0 − δ[X](t) 

Taken altogether with Equation 3, the deterministic dynamics of a constitutively expressed 
arbitrary protein concentration  [X](t)  contained in an exponentially growing cell volume are given by:

 
d[X]
dt = ρ0 − (δ + λ)[X](t)  (4)

Stochastic
To simulate molecular noise, we follow a classical tau- leaping formalism (Gillespie, 2007). Specifically, 
we choose the Euler- Maruyama implementation to generate approximate solutions to stochastic 
differential equations (Kloeden and Platen, 1992).

As we have done before in the deterministic case, let us first consider the quantity of an arbitrary 
protein  X(t)  in order to extract the equation for the concentration  [X](t) . Let’s assume  X(t)  is changing 
via a single biochemical reaction rate  

dX
dt = g(X(t))  over the time interval  [0, T]  given  X(t = 0) = X0 . We 

will show later how this approach can be generalized to include multiple reaction rates. We begin 
by partitioning the time interval in  N   equal segments of length  ∆t  such that  0 < t1 < t2 < ... < tN = T   
with  tn = n ·∆t ,  n ∈ {1, N} .

The Euler- Murayama approximate solution to the stochastic differential equation at the discrete 
time points tn is then recursively given by the following equation for  n ∈ {1, N − 1}  where the single 
biochemical reaction is assumed to happen with a Poisson rate (corresponding to the deterministic 
rate), which adds one white Gaussian noise to the differential equations with a variance equal to that 
rate:

 Xn+1 = Xn + g(Xn)∆t +
√

|g(Xn)|∆t · N (0, 1)  (5)

Here,  Xn = X(tn) ,  g(Xn)  is the drift term,  
√

|g(Xn)|  is the diffusion term and  N (0, 1)  is a random Gaussian 
variable of mean 0 and variance 1. In other words,  Xn+1  is a random Gaussian variable of mean 
 Xn + g(Xn)∆t  and variance  |g(Xn)|∆t . Since this describes the quantity of proteins, we also have to 
consider the change in volume over time to recover the equation for the concentration of proteins, 
 [X](t) . Thus, let’s consider the volume of the cell  V(t)  at the discrete time points tn, which is given 
recursively by the equation:

 Vn+1 = Vn + λVn∆t = Vn(1 + λ∆t)  (6)

Here, we define  Vn = V(tn)  and recover the  λVn  term from Equation 2. We assume that the volume 
time evolution is noiseless for simplicity. To recover, the differential equation describing the protein 
concentration, we evaluate the expression  [X]n+1 = Xn+1

Vn+1  . Thus, combining Equations 5 and 6, we 
get:

 

[X]n+1 = Xn+g(Xn)∆t+
√

|g(Xn)|∆t·N (0,1)
Vn(1+λ∆t)

[X]n+1 = 1
1+λ∆t

(
[X]n + g([X]n)∆t +

√
|g([X]n)|∆t

Vn
· N (0, 1)

)

  

where we identify  
1

Vn
g(Xn) = g([X]n)  as the rate equation describing the concentration of the 

consitutively expressed protein  [X](t)  when the volume  V   is fixed as described in the deterministic 
case. Then, we compute the derivative as:

 

d[X]
dt

����
tn
≈ [X]n+1−[X]n

∆t

= 1
∆t(1+λ∆t)

(
[X]n − (1 + λ∆t)[X]n + g([X]n)∆t +

√
|g([X]n)|∆t

Vn
· N (0, 1)

)

= 1
1+λ∆t

(
g([X]n) − λ[X]n +

√
|g([X]n)|

Vn∆t · N (0, 1)
)

  

Finally, we recover the approximate full differential equation for the protein concentration by 
expanding the prefactor in the last equation to the  0th  order in  ∆t  assuming it to be small to give:

 

d[X]
dt

����
tn
≈ g([X]n) − λ[X]n +

√
|g([X]n)|

Vn∆t · N (0, 1)
  (7)

https://doi.org/10.7554/eLife.79919
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So far, we have assumed that there is only a single biochemical reaction rate  g([X](t)) . We can however 
easily generalize our approach to include additional reaction rates by summing up the contribution 
of each rate to the total differential equation. Given  M   independent reaction rates  gi([X](t))  and the 
properties of random Gaussian variables, we can easily generalize:

 

d[X]
dt

����
tn
≈

∑M
i=1 gi([X]n) − λ[X]n +

∑M
i=1

(√
|gi([X]n)|

Vn∆t · Ni(0, 1)
)

  
(8)

Importantly, the  Ni  are Gaussian vectors accounting for the noise correlations associated with single 
reactions. For instance, imagine one protein  Xk  turns into another protein  Xp , then the corresponding 
Gaussian vector for this interaction takes the form  N (0, 1)(x⃗k − x⃗p)  where  ⃗xk  is vector of length 
corresponding with the number of variables in the system whose  k - th component is equal to 1 with 
0s elsewhere. This indicates that the molecular fluctuation due to this reaction should have opposite 
signs for  Xk  and  Xp  as expected.

The term  λ[X]n  is a dilution term that corresponds to an effective degradation of protein 
concentration  [X]n  as seen in the deterministic case. Interestingly, we highlight the  

1
Vn   dependency in 

the noise term. We can understand this dependency intuitively by considering a protein production 
process with a Poisson parameter  θ . In this scenario, the mean and the variance of the protein 
quantity distribution is given by the parameter  θ . Going back to concentration space, there are an 
infinite number of combinations of protein quantity and volume that can give the same concentration 

 [X] = X/V  . Thus, we need to specify both the protein number  X   and the volume  V   to correctly model 
the molecular noise contributing to fluctuations in concentrations.

Size control
Initial seed network
To guide the evolutionary process, we begin with an initial seed network. We base our first seed 
network on the phenomenology of the budding yeast S. cerevisiae’s cell cycle, where cell size 
primarily regulates the timing of the START transition in late G1 (Schmoller et  al., 2015). This 
regulation allows small daughter cells to delay the G1/S transition allowing them to catch- up in size 
by extending the G1 phase. S/G2/M duration on the other hand is largely independent of cell size. 
We note that while budding yeast divide asymmetrically, our simulated cells divide symmetrically. 
In our simple initial seed network, the cell cycle consists of two phases, G1 and S/G2/M, which 
respectively denote the pre- G1/S and post- G1/S phases of the cell cycle. The transition between 
these two phases is controlled by the level of a transcription regulator we call  I  . Like the Whi5 
protein in S. cerevisiae,  I   is an inhibitor of the G1/S transition such that the lower its level, the higher 
the chances of cell cycle progression. Since protein production rates were assumed to be dependent 
on volume (as described in section Mathematical implementation), we found that  I  ’s concentration 
alone was largely independent of volume and could not trigger a size- dependent G1/S transition 
as Whi5 does in budding yeast. Thus, we chose the quantity of  I   defined as  I(t) = [I](t) × V(t)  as 
the control variable for this transition. We chose to model the probability of the G1/S transition 
occurring at the next time point of the simulation with a sigmoid- shaped curve given by Equation 9 
that can be visualized in Appendix 1—figure 1. We maintain  θ = 0.8  and  nθ = 8  fixed throughout this 
project. We chose these values because they give a similar amount of noise in the G1/S transition as 
observed experimentally (Di Talia et al., 2007; Chandler- Brown et al., 2017).

 PG1/S(t) = 2
1+exp ((I(t)/θ)nθ )  (9)

https://doi.org/10.7554/eLife.79919
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Appendix 1—figure 1. Probability of the G1/S transition occurring at the next time step. X- coordinate is the 
quantity of the transcriptional regulator  I  . Y- coordinate is the probability of the G1/S transition occurring at the 
next time step  ∆t . Parameters  θ = 0.8  and  nθ = 8 .

In our seed model, we encode cell cycle state using a binary variable S/G2/M Switch, which is 0 in 
G1 and turns to 1 in S/G2/M once the G1/S transition takes place. Following S. cerevisiae’s cell cycle 
structure where S/G2/M duration is independent of cell size, we fix S/G2/M duration to be  ∼ 50%  
of the doubling time  τ = 1

λ ln 2  with uniform noise unless stated otherwise. This way, cells can tune 
the length of their cell cycle by adjusting G1 length while being constrained by the incompressible 
length of the timer in S/G2/M,  TS/G2/M .

Following S/G2/M, cells divide such that  V
(n+1)
Birth = V(n)

Division/f   with  f   the division fraction. The  n  
exponent here is referencing the  n - th generation in the cell lineage. We choose  f = 2  for all simulations 
performed in this study unless explicitly mentioned otherwise. We assume perfect partitioning of all 
proteins between the two daughter cells such that the proteins’ concentrations remain the same 
before and after division. After division, we follow one of the two daughter cells during their own 
subsequent cycle. If we simulate the cell lineage for a long time, ergodicity guarantees that all 
volume states will be visited given stable growth and we can extract population statistics from the 
lineage data itself. Here, cell growth is exponential on the single cell level since we were assessing 
size control mechanisms that take size as an input to cell cycle control. We are not exploring the very 
interesting case where growth deviates from the exponential. In that case, size homoeostasis would 
have a contribution from some cells in the population outcompeting others in terms of their growth 
and we would have to simulate the entire cell population and not disregard one of the daughter 
cells as we do here.

Inspired by the dynamics of Whi5, which is produced in S/G2/M and diluted in G1, we chose an 
initial seed network where S/G2/M Switch activates the transcription of the  I   inhibitor. This ensures 
that the concentration  [I]  is ‘reset’ to a higher value following S/G2/M and prevents cells from 
skipping entirely the G1 phase of the subsequent cycle which would quickly send the volume of the 
cell converging quickly towards 0. We note that this interaction systematically appeared anyway in 
our early evolution simulation so we chose to include it in the initial seed network to accelerate the 
evolutionary process.

Size control archetypes
Size control mechanisms are often compared to three well- characterized models or archetypes in 
order to quantify the strength of the size control mechanism under study. Specifically, there are 
timers, adders and sizers. In this subsection, we will define each archetype and show that we can 
summarize them via a control volume response curve  T(VC)  as described in the main text.

https://doi.org/10.7554/eLife.79919
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First, let’s consider the timescale of growth. Given  V(t = 0) = V0 , the solution  V(t)  of the volume 
Equation 2 is  V(t) = V0eλt

 . From this equation, we can easily recover the doubling time  τ   defined as 
the time required to double a cell’s volume ( V(τ ) = 2V0 ) which yields:

 τ = 1
λ ln 2  (10)

The doubling time  τ   is only a function of the growth rate  λ . Since we are only considering symmetrical 
division events, fixed interdivision times shorter than the doubling time will yield progressively 
smaller daughter cells. Similarly, fixed interdivision times longer than the doubling time will yield 
progressively larger daughter cells. Thus, the absolute growth rate  λ  sets the timescale for cell cycle 
dynamics if we want to simulate a stable cell lineage.

With the quantity sensing of the inhibitor I at the G1/S transition (see Equation 9), we find that 
the instantaneous volume at G1/S sets the concentration of the biochemical species for the rest of 
the cycle and until the next G1/S transition in the daughter’s cell cycle. Consequently, it regulates the 
timing of the G1 phase of the daughter cell and thus creates a return map for the volume at G1/S. 
We find that the volume at G1/S at the  (n + 1) - th generation  V

(n+1)
G1/S   is given recursively by:

 V(n+1)
G1/S = V(n)

G1/S·e
λ(TS/G2/M+TG1(V(n)

G1/S))

2 = V(n)
G1/S·e

λT(V(n)
G1/S)

2   

To study the mechanisms of cell size control, we choose to define a useful new variable: the control 
volume  VC . This control variable is independent from the biochemical network and maintained fixed 
allowing us to break the size feedback, and distinguish its input, the volume  V  , from its output, the 
induced cycle period  T  . With this new variable, we can modify the control at G1/S by forcing the 
transitions to trigger once  IC = [I] × VC  is low enough. We can then extract the response curve of 
the system, that is, the cell cycle period induced from sensing this control volume at G1/S  T(VC) . We 
represent this process schematically in Appendix 1—figure 2A.

The control volume at which the response curve  T(VC)  is equal to the doubling time  τ   corresponds 
to the equilibrium volume,  Veq , for this network. Indeed, if  T(Veq) = τ  , then the cell cycle length will 
ensure that this cell exactly doubles its volume during its cell cycle and returns to the same  Veq  at 
the next generation. This volume is a fixed point of the volume return map and can be either stable 
or unstable. Theoretically, there could be size control mechanisms with multiple fixed points of the 
response curve, but practically we have not seen this emerge from any of our evolution experiments 
and therefore assume that  Veq  is unique. In the main text, we have substituted  Veq  by the average 
value of the volume at the time where volume is sensed as both of these values are essentially 
identical. This corresponds to  ⟨VG1/S⟩  for models with a sizer in G1 and a timer in S/G2/M and 

 ⟨VDivision⟩  for networks with a timer in G1 and a sizer in S/G2/M.
Size variation naturally occurs in our models due to the precise timing of G1 and S/G2/M cycle 

phases which are both noisy, so the volume does not stay at  Veq  for very long. The stability of growth 
around this equilibrium volume however will depend on the sign of the local derivative with respect 
to control volume of the  T(VC)  response curve and we will consider the following three cases:

•  is strictly increasing with  VC . In this case, small deviations around  Veq  are amplified over succes-
sive generations and the volume quickly shrinks to 0 or explodes to  ∞ . In this case, we say that 

 Veq  is an unstable fixed point of the response curve.
•   T(VC)  is constant with  VC . In this special case and assuming exponential growth of the volume, 

the only stable mode of growth corresponds to the response curve  T(VC) = τ  . This corresponds 
to the only stable timer archetype. In this particular scenario,  Veq  is not well defined as there 
are an infinite number of volumes where the response curve intersects the doubling time.

•   T(VC)  is strictly decreasing with  VC . In this case, cells correct for size deviations over successive 
generations and perform size control. In this case, we say that  Veq  is a stable fixed point of the 
response curve.

Here, we found the  T(VC)  curves that were selected by the evolutionary algorithm were all decreasing 
with  VC  as expected for stable size control mechanisms. Thus, for the remainder of this document, 
we will assume that  Veq  is uniquely defined and corresponds to a stable fixed point of the control 
volume response curve.

https://doi.org/10.7554/eLife.79919
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Timer
The timer archetype describes mechanisms that monitor time rather than size. If the cycle duration 
of the timer is tuned precisely to the doubling time  τ = 1

λ ln 2 , cells will double their mass over the 
course the cell cycle to ensure that newborn daughter cells have the same volume at birth as their 
mothers did when they were born. Consequently, this category of mechanisms is notoriously bad 
at correcting for size deviations given exponential cell volume. If growth was linear however, this 
mechanism would allow for size control to take place.

 TTimer(VC) = τ = 1
λ ln 2  (11)

Adder
The adder archetype describes mechanisms where cells add a constant amount of cell volume 
during each cycle. We define  ∆  the increment of added volume between birth and division, that 
is  ∆ = VDivision − VBirth . For adder mechanisms, the added volume at each cycle is constant and 
does not depend on cell size. In this case, initial size deviations are reduced by a factor of 2 at 
each division such that the volume at birth geometrically converges to the added volume  ∆  over 
successive generations. To recover the adder response curve  TAdder(VC) , we consider that by 
definition,  VDivision = VBirtheλTAdder . From this equation and the definition of the adder, we can recover 
the cycle period  TAdder :

 
TAdder(VBirth) = 1

λ ln
(

∆
VBirth + 1

)
  

We would like write this equation as a function of the control volume  VC  at G1/S and the equilibrium 
volume  Veq  alone. Assuming that the G1/S transition is followed by a timer in S/G2/M, we can write 

 VBirth = VCeλTS/G2/M /2 . Similarly, since we know by definition that  TAdder(Veq) = τ  , we can recover that 
the added volume increment is  ∆ = VeqeλTS/G2/M /2 . Finally, we can combine these two expressions 
with to recover the final expression of the adder response curve:

 
TAdder(VC) = 1

λ ln
(

Veq
VC

+ 1
)
  (12)

We note here that if the control volume was measured at division or at birth, the response curve of 
the adder would be unchanged. The only difference would be that both  VC  and  Veq  would correspond 
to volumes at division or birth volumes instead of volume at the G1/S transition. Here for example, 
the volume increment  ∆  corresponds to the  Veq  at birth.

Sizer
The sizer archetype describes mechanisms that measure size directly and allow a cell to return to a 
target volume  VTarget  after a single generation, irrespective of how big or small a cell was initially. For 
sizers,  V

Division = VTarget = VBirtheλTSizer
  by definition.

We can then extract:

 
TSizer(VBirth) = 1

λ ln
(

VTarget
VBirth

)
  

We can then write  VBirth  and  VTarget  as a function of the control volume at G1/S  VC  and the equilibrium 
volume  Veq . Using the same definitions as before  VBirth = VCeλTS/G2/M /2  and  TSizer(Veq) = τ  , we find that 

 Vtarget = VeqeλTS/G2/M
 . The sizer response curve thus follows:

 
TSizer(VC) = 1

λ ln
(

2Veq
VC

)
  (13)

We note again here that if the volume was measured at division or at birth, the equation for the sizer 
would be identical with the only difference being that the control volume  VC  and the equilibrium 
volumes  Veq  would correspond to division or birth volumes respectively.

https://doi.org/10.7554/eLife.79919
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Appendix 1—figure 2. Control volume and archetype response curves. (A) Schematic representation of the way 
we break the feedback in the system and impose a control volume  VC  (red arrow) at the G1/S transition in order to 
record the induced cell cycle period  T(VC) . (B) Response curve of the 3 size control archetypes. X- coordinate is the 
control volume at G1/S  VC  normalized by the equilibrium volume  Veq . Y- coordinate is the response curve of the 
models  T(VC)  normalized by the doubling time  τ  . The dark blue curve is the response curve for the timer of length 
 τ  , the orange curve the response curve for the adder, and the red curve the response curve for the sizer. The 
dotted grey line indicates the equilibrium volume  Veq . The shaded region corresponds to the region where growth 
is unstable and volume diverges over successive generations.

The three archetypes’ response curves are shown in Appendix 1—figure 2B. From these curves 
and given the particular cell cycle structures we examined, we can extract multiple relevant measures 
of size control such as the volume at birth, G1/S, and division from which we get the added volume 
during each phase of the cell cycle. It is noteworthy that the derivative of the added volumes  ∆V   
with respect to the birth volume  VBirth  for the timers, adders, and sizers, are respectively 1, 0, and 
–1. Size control mechanisms are typically compared to the 3 archetypes by measuring the amount of 
added cell volumes over their cell cycles  ∆VCycle  and then fitting a linear model to these data points. 
The fitted slope of the linear model then informs what archetype this particular mechanism is more 
akin to. Some models evolved with added volume slopes lower than –1 and we call those super- 
sizers. Such mechanisms overcompensate for volume deviations about the equilibrium value which 
can increase variation in the size distribution instead of decreasing it.

https://doi.org/10.7554/eLife.79919
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Response curve of the seed networks

Appendix 1—figure 3. Response curves for the initial seed networks. Columns indicate the size scaling 
assumption of the protein production rates as indicated above the figure. Rows indicate quantity or concentration 
sensing of inhibitor  I   at the G1/S transition assumption as indicated on the left side of the figure. In each panel, 
we first show the seed network’s response curve  T(VC)  as a function of control volume  VC  at G1/S. Sizer (red), 
adder (orange) and timer (dark blue) archetypes are shown for comparison. Second, we provide a schematic 
representation of the  [I]  trajectory in G1. Schematic trajectories are shown for low volumes (light pink) and high 
volumes (dark red). (A) Quantity sensing of  I  at G1/S with a size- dependent production rate in S/G2/M. Here, 
cells are born with a constant concentration  [I] . Because of the quantity sensing at G1/S, the concentration of  [I]  
at G1/S scales as  1/V  . Thus, the time spent in G1 scales with  V  . This is the initial seed network we chose for most 
of our evolution experiments. (B) Quantity sensing of  I  at G1/S with a size- independent production rate in S/
G2/M. Here, cells are born with a concentration  [I]  at birth that scales as  1/V  . Because of the quantity sensing at 
G1/S, we again find that the concentration of  [I]  at G1/S scales as  1/V  . Thus, the time spent in G1 is constant. (C) 
Concentration sensing of  [I]  at G1/S with a size- dependent production rate in S/G2/M. Here, cells are born with 
a constant concentration  [I] . Because of the concentration sensing at G1/S, we find that the concentration of  [I]  
at G1/S is constant. Thus, the time spent in G1 is constant. (D) Concentration sensing of  [I]  at G1/S with a size- 
independent production rate in S/G2/M. Here, cells are born with a concentration  [I]  that scales as  1/V  . Because 
of the concentration sensing at G1/S, we find that the concentration of  [I]  at G1/S is constant. Thus, the time spent 
in G1 scales as  1/V  .

In light of the control volume and response curve definitions from subsection 2.2, we can revisit 
the initial seed model and investigate how different assumptions alter the stability of growth and 
division in a cell lineage. Specifically, we investigate the size scaling assumption of the protein 
production rates and the concentration vs. quantity sensing of the transcriptional regulator  I   at G1/S 
as previously described in Section 1. We summarize our results in Appendix 1—figure 3.

First, let us consider the G1 trajectory of the transcriptional regulator  [I]  who is solely produced 
during the S/G2/M timer. The dynamics of  [I](t)  in G1 will be described by the following equation:

 [I](t)|G1 = [I]0e−(δ+λ)t
  (14)

Here, the time variable  t  represents the time since birth,  [I]0 = [I](t = 0) ,  δ  is the protein’s degradation 
rate and  λ  is the growth rate of the cell volume. This equation holds until the G1/S transition where 
the S/G2/M Switch is turned on again and G1 ends. Because the degradation of the inhibitor does 
not yet depend on volume in any way, the time spent in G1 will only be dependent on the ratio 
between: (1) the initial condition at birth  [I]0 ; (2) the final condition at the G1/S transition,  [I]G1/S .

We found that the size scaling assumption of the protein production rates influences the initial 
condition at birth  [I]0 . When production rates scale with size, we find that  [I]0  is independent of 
volume. This is expected as this assumption was chosen specifically to model proteins whose 
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concentrations are independent of size. Conversely, when we modify this assumption and consider 
that protein production rates are independent of size (e.g. like Whi5 in budding yeast), we find that 
the system produces a constant quantity of inhibitor instead of a constant concentration. This means 
that the initial concentration at birth  [I]0  scales as  1/V  .

Similarly, when imposing quantity sensing of I at G1/S, we found that the concentration of inhibitor 
at G1/S  [I]G1/S  scales as  1/V  . Finally, when imposing concentration sensing of I at G1/S, we found a 
constant concentration of inhibitor at G1/S  [I]G1/S  as was expected by design.

Together, those assumptions alter the scaling of the duration of the G1 phase of the initial seed 
cycle. We summarize these results and present the models’ response curves  T(VC)  in Appendix 1—
figure 3 where each row and column corresponds to a specific combination of assumptions. There, 
in Appendix 1—figure 3A, we see that for the combination of size- scaling production rate and 
quantity sensing at G1/S, we get a cell cycle period that is increasing with control volume  VC . This 
is undesirable and leads to unstable growth of the cell lineage towards 0 or  ∞ , but rewards the 
evolution of size control mechanisms that can prevent this unstable growth. We chose this initial 
seed model for most of our evolutionary simulations. In Appendix  1—figure 3B,C, we found 
that the two assumptions compensated each other to create size- independent timer models. The 
parameters of the network can be precisely fine- tuned to yield a response period of exactly  τ   as 
was done to produce the response curves shown here. Thus, it is technically possible to evolve a 
size control mechanism using these initial seed models, but we chose not to go down that path 
because we wanted to evolve an active size control mechanism. Finally, in Appendix 1—figure 3D, 
we see that if we assume that protein production rates do not scale with size and that the G1/S 
transition depends on the concentration of inhibitor  [I] , we get an initial seed model that already 
accomplishes size control as it displays a response curve that decreases with control volume  VC . This 
simple model loosely corresponds to the Whi5 inhibitor dilution model of budding yeast (Schmoller 
et al., 2015) where a constant quantity of inhibitor Whi5 is present at birth (and thus a concentration 

 [Whi5] ∝ 1/V  ) and is passively diluted in G1 until it reaches concentration threshold that triggers the 
G1/S transition.

Evolutionary algorithm
Here we briefly describe the  φ - evo evolutionary algorithm from Henry et al., 2018 that we used 
to evolve size control networks. We refer the reader to the original publication’s main text and 
supplementary material for a more thorough description of the algorithm. A schematic representation 
of the algorithm’s architecture is shown in Appendix 1—figure 4.

First, an initial seed network is selected by the user as the starting point of the evolution simulation. 

 φ - evo then clones this first individual to create a population of networks. At each epoch, mutations 
are randomly applied to the networks of the population. Those mutations vary from topological 
changes to the network, where biochemical species or interactions can be added or removed, to 
non- topological changes, where the networks’ kinetic parameter values are modified. Following 
mutations, networks are ranked based on their performance at accomplishing the biological function 
we select for. This performance is encoded via a user- defined fitness function that is problem specific. 
We give details about the specific implementation of the fitness functions for cell size control in the 
following subsection. After ranking the networks,  φ - evo proceeds to select the most fit half of the 
network population. The less fit half is then discarded and replaced by a copy of the most fit half to 
maintain a constant population size. With this,  φ - evo completes the first epoch of the evolutionary 
process. We use the term epoch here rather than the term ’generation’ which we retain to describe a 
cell lineage. A predetermined number of epochs of mutation and selection are then performed after 
which a final population of networks is extracted.

https://doi.org/10.7554/eLife.79919
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Appendix 1—figure 4. Schematic representation of the  φ - evo algorithm. We begin with a user- defined initial 
seed network as starting point of the evolutionary process. The seed network is cloned to give a first population 
of networks. Individuals are then mutated randomly given the mutation parameters of the run. The dynamics and 
fitness scores of the networks are then computed and ranked. The best half of the population is selected and 
retained and the rest are discarded. The best half is then duplicated to maintain a constant population size  N  . We 
then repeat these instructions for a predefined number of epochs, after which a final population of networks is 
extracted and analyzed.

Fitness
In order to rank and select networks based on their performance at accomplishing a specific 
biological function, we design a specific objective function that we call fitness. Here, we chose a 
fitness function that could quantify a model’s ability to produce many viable descendants during a 
fixed time period of length  t . We initially considered a simple fitness function to be minimized by 
 φ - evo,  f0 = −NDiv . Here  NDiv  is the number of divisions or generations in a cell lineage produced 
during a total time period of length  t . Noise at the G1/S transition and in the S/G2/M timer duration 
act as a source of variation in volume at each generation which needs to be controlled by the 
evolved networks in order to prevent the cell volumes from diverging. Thus, networks that perform 
size control display a high number of divisions  NDiv . The cycle duration distribution of a size control 
network will be centered around the doubling time  τ   in order to promote stable growth. Thus, on 
average, we expect a fit network to exhibit a maximum number of  max(NDiv) = t/τ   divisions during 
a simulation of length  t . Note that this number is mostly independent of the volume range selected 
by the evolutionary simulation as the doubling time  τ   is independent of the initial volume of the cell 
at the beginning of each cycle. There is a small effect on  NDiv  from the initial conditions chosen for 
the system of ODEs modelling the cell cycle, but this effect is mostly negligible as long as the total 
time period  t ≫ τ  .

In our first evolution experiments, we found that the single objective function  f0 = −NDiv  was 
insufficient alone to evolve a cycling network. A possible reason for this is that the fitness landscape 
in parameter space defined by  f0  is mostly flat far from the optimum and is difficult to navigate as it 
doesn’t incrementally guide the evolution process towards a proper size control phenotype. Indeed, 
a network that does not perform size control will display very few divisions before diverging towards 
sizes of 0 or  ∞ . In contrast, a network that does performs some size control, even if performed 
badly, will display mostly stable growth with many divisions and the volume will not diverge over 
successive generations. There is thus an all or nothing effect with this fitness function. We found that 
optimization process would often get stuck in a local optima with a low number of divisions and could 
not find a path to the global optima of size control. Because of this, we chose to turn towards multi- 
objective Pareto optimization which aims to simultaneously optimize several fitness functions. The 
idea here is that an additional fitness function can guide the evolutionary process through a different 
path in parameter space and could allow the evolutionary procedure to escape local optima.
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In the Pareto optimization framework, we consider  N   equally important objective functions 

 ⃗f = (f0, f1, ..., fN) . Assuming that fitness functions are to be maximized, we say that individual  i  (strictly) 
dominates individual  j  if and only if their fitness  ⃗f i

  and  ⃗f j
  are such that:

 ∀ k ∈ {1, N}, fik ≥ fjk and ∃ k′ ∈ {1, N} | fik′ > fjk′  

The algorithm then selects half of the population of the highest rank using a fitness sharing algorithm 
to maximize population diversity. We refer the reader to Warmflash et al., 2012 for more details on 
this procedure.

For this project, we chose to limit the optimization process to two fitness functions. We chose 

 f0 = −Ndiv  as the first fitness function. We tested different measures of size control for the second 
objective function which are described in the following subsections. In most of the cases, we chose 
the coefficient of variation of the size distribution at birth  CVBirth  to be minimized as the second 
fitness function. In any case, we typically run 10 independent realizations of a network’s performance 
and compute the average fitness score over those runs to buffer variations in fitness scores.

Residuals
We first tested a least squared residuals fitness function to be minimized by  φ - evo. This function 
yielded successful evolutionary runs but was abandoned due to requiring a user- defined target 
volume  Vt . Indeed, we wanted to avoid the bias where we could select for biochemical networks 
matching a specific volume range. We used the following equation for the fitness function with  V

(n)
Birth  

indicating the cell volume at birth at the  n - th generation in a lineage.

 f1 = 1
NDivVt

√∑NDiv
n=1 (V(n)

Birth − Vt)2
  (15)

We nevertheless present the result of a successful evolution run using Pareto optimization of  NDiv  and 
 f1  in Appendix 1—figure 11 where we obtain a version of the feedback- based network topology 
of Model A1.

Coefficient of variation
We then considered the coefficient of variation of the size distribution at birth ( CVBirth ) to be 
minimized by  φ - evo. The  CVBirth  is a measure of size control that normalizes the variance of the size 
distribution at birth with respect to its mean and is thus mostly insensitive to the absolute volume 
range of the cell. We chose this second fitness function in most of the Pareto optimization evolution 
experiments as described in the main text.

 f2 = CVBirth =
√

Var[VBirth]
E[VBirth]   (16)

Added volume slope in G1
We also considered directly optimizing the fitted slope of the volume added in G1 as a function of 
volume at birth to reinforce the sizer behavior in G1. As described in the main text, given a series 
of volume values at birth and at G1/S,  V

(i)
Birth  and  V

(i)
G1/S  for  i ∈ {1, NDiv} , the added volumes in G1 are 

defined as:

 ∆V(i)
G1 = V(i)

G1/S − V(i)
Birth  

The best fit slope  m  of a linear model  ∆VG1 = m · VBirth + b  has a closed- form equation which is given 
as a function of the lineage data directly:

 

m =
NDiv·

(
NDiv∑
i=1

V(i)
Birth·∆V(i)

G1

)
−
(

NDiv∑
i=1

V(i)
Birth

)
·
(

NDiv∑
i=1

∆V(i)
G1

)

NDiv·
NDiv∑
i=1

(
V(i)

Birth

)2
−
(

NDiv∑
i=1

V(i)
Birth

)2

  

(17)

A slope of –1 corresponds to a sizer, a slope of 0 to an adder and a slope of +1 corresponds to 
a timer. In order to directly optimize the size control mechanism in G1 and to bias towards sizer 
mechanisms and to keep the fitness values positive, we considered the following fitness function to 
be minimized by  φ - evo:
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 f3 = m + 1  (18)

Fitness penalties
In order to keep biochemical concentrations and cell volumes at reasonable levels, we chose to bound 
volume growth to a range  V ∈ [Vmin, Vmax]  with  Vmin = 0.1  and  Vmax = 100 . To guide the evolution of 
size control and to have a well defined steady- state distribution of cell sizes, we chose to impose 
fitness penalties on networks that would see their volumes reach one of those bounds at some point 
during a run. This applies to all evolution experiments performed in this study, but we will describe 
the case of the  NDiv  and  CVBirth  fitness functions as they were used most of the time during this study.

Firstly, if the volume reached  Vmin , we considered the cell too small and declared it dead. At 
that point, any further cycles would not contribute to fitness scores. With this penalty, networks are 
guided towards preventing or at least delaying the time at which the volume becomes too small for 
the cell to remain viable.

Similarly, when volume reaches  Vmax , we penalize the fitness functions but in a different way. 
Because volume growth is restricted to the domain below  Vmax , we set the growth rate  λ = 0  when 
 V = Vmax . In this case, we sometimes see networks make use of this growth arrest and exploit this 
artificial feature. This phenomenon can sometimes be seen in computational evolution where digital 
mirages are often exploited by optimization processes (Lehman et al., 2020). Here, such exploitative 
networks have initially long cycle periods  T ≫ τ   and can sometimes spend the majority of their cell 
cycle in this growth arrest phase. Over successive epochs, this period  T   gets shortened to get more 
and more divisions to take place during a run, shortening the time spent in growth arrest at each 
cycle. Eventually, this optimization leads to a particular type of model that has very sloppy size 
control but that scores highly with the fitness functions because of the artificial growth arrest. Such 
networks develop a timer with period  T ≈ τ   and use the artificial growth arrest to buffer any volume 
variation incurred from late G1/S transition or noisy S/G2/M duration. These networks are optimal 
from an  NDiv  perspective since they exactly double their mass at each cycle and perform the same 
number of division cycles during a run as an actual size control network. They are also more than 
optimal from a  CVBirth  since their growth is always stopped at  Vmax . Thus, without fail, their birth 
volume  VBirth = Vmax/2  and there is no variation at all in the distribution. This size control illusion 
is a global optimum of the 2D- fitness space and must thus be heavily penalized to prevent the 
optimization from selecting this phenotype. Thus, when  V = Vmax , we only count 70% of the divisions 

 NDiv  which is sufficient to distinguish this artificial phenotype from actual size control mechanisms. 
Additionally, we penalize the  CVBirth  score by adding to it a penalty of  +10 . This is significantly 
different from the usual range of coefficient of variations which lie between 0 and 0.5 typically, and 
prevents the optimization from selecting the artificial phenotype.

The introduction of these fitness penalties improved the convergence rate of the  φ - evo algorithm 
significantly. Specifically, we believe the penalty on  Vmax  being somewhat less severe than the one 
for  Vmin  improved the convergence rate drastically. This is probably because the initial cell cycle 
model chosen for the evolution runs exhibits unstable growth and inevitably sees the cell volume 
grow to  Vmax  or shrink to  Vmin  rapidly as shown in Appendix 1—figure 3. Thus, the fitness landscape 
surrounding the initial cell cycle model is quite flat and is difficult to navigate from an optimization 
perspective. Gradual improvements to the  NDiv  fitness function at  Vmax  by spending less and less 
time in growth arrest seemed to have helped the optimization process. This guided the algorithm 
towards better size control models more often than if penalties were absent.

Overall, even if the penalties somewhat biased the evolutionary process into following a 
phenotypic trajectory, they improved the convergence rate of the evolutionary process dramatically 
to the point that we decided to keep them for all experiments.

Biochemical interactions
Many ‘inverse- approach’ approaches in systems biology have focused on purely transcriptional 
networks (Cotterell and Sharpe, 2010; François et al., 2007; Fujimoto et al., 2008; Ten Tusscher 
and Hogeweg, 2011;), because they are generic, easier to study and can efficiently describe many 
biological dynamics (Alon, 2007). In this project, we extend the biochemical interactions available for 
evolution: we not only model transcriptional activation and repression but also include complexation 
also known as protein- protein interaction (PPI), and assume there passive degradation. Adding PPIs 
is especially crucial because they are well known to lead to non- linear effects (Buchler and Cross, 
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2009; Buchler and Louis, 2008) allowing for the simple implementation of complex dynamics such 
as genetic oscillations (François and Hakim, 2005) observed e.g. in circadian clocks (François, 
2005), and such non- linear effects indeed play crucial roles for control in our evolved model. The 
equations for these interactions are presented in this subsection.

We model transcriptional activation of arbitrary network species Y’s production from species X 
using the following Hill equation:

 ActivationX→Y([X], tX:Y, nX:Y) = ([X]/tX:Y)nX:Y

1+([X]/tX:Y)nX:Y   (19)

Similarly, repression of arbitrary species Y’s production from species X is modeled via the following 
Hill equation:

 RepressionX→Y([X], tX:Y, nX:Y) = 1
1+([X]/tX:Y)nX:Y   (20)

In these equations,  tX:Y   is the threshold required for  [X]  to activate or repress  [Y]  at 50% of its 
capacity and  nX:Y   is the Hill coefficient. While both types of interactions are modeled using Hill 
equations, their combined effects on a network species’ dynamics is computed differently. Indeed, 
only the maximum of all the activations is accounted for whereas the inhibitions are multiplicative 
and all are accounted for. Additionally, we allow some species to be produced at a basal rate  b  
independent of any activator which counts as an additional activation.

Altogether using an example, assuming multiple species  X1, ..., Xq  activate the production of 
species Z while multiples species  Y1, ..., Yr  repress it, and assuming that Z has a basal production rate 

 bZ   and a maximum production rate  pZ  , then the total contribution of these interactions to the ODE 
for the dynamics of  [Z]  is given by:

 

d[Z]
dt = max

[
pZ · max

[
([X1]/tX1:Z)nX1:Z

1+([X1]/tX1:Z)nX1:Z , ... , ([Xq]/tXq :Z)nXq :Z

1+([Xq]/tXq :Z)nXq :Z

]
, bZ

]

·
r∏

i=1

1
1+([Yi]/tYi :Z)nYi :Z

  

(21)

We use the law of mass- action to model PPIs and passive degradation. Specifically, if arbitrary species 
X and Y interact together and form a complex Z given a forward rate kf and a backwards rate kb, then 
the contribution of these interactions to the ODE for the dynamics of the system will be given by:

 
d[X]

dt = d[Y]
dt = − d[Z]

dt = −kf[X] · [Y] + kb[Z]  (22)

Lastly, all network species are assumed to be degraded at a passive rate. Thus, if an arbitrary species 
X is solely degraded with a rate  δX  , then the dynamic equation for the dynamics of  [X]  will be given 
by:

 
d[X]

dt = −δX[X]  (23)

Analysis of sources of noise
As mentioned in the main text and in this Appendix, we chose a hierarchical way of introducing 
noise in the system, starting with the biggest contributing factor and incrementally adding additional 
sources of noise in subsequent analyses. We first included noise in the cell cycle phases, specifically 
in the timing of the G1/S transition and in the length of the S/G2/M phase. Then in the later parts, 
we introduced protein production noise modeled as Langevin noise.

In the simulations presented in the main text, we chose not to include noise in the growth rate 
and in the division ratio as the recorded noise level for in experiments for these measures is lower 
than that for the timing of the cell cycle and the protein concentration noise (Di Talia et al., 2007; 
Newman et al., 2006; Zatulovskiy et al., 2020). Nevertheless, those are crucial assumptions that 
we made that we chose to investigate in more details here.

In subsection S/G2/M noise, we investigate how the level of noise in S/G2/M affects the 
conclusions drawn in the main text. Then, in subsection Growth rate noise we do the same for noise 
in the growth rate and in subsection Division ratio noise for the division ratio.

Appendix 1—table 1 shows the values of  CVBirth  of the three models presented in the main text 
compared to the values reported in the literature for budding yeast (Di Talia et al., 2007), fission 
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yeast (Sveiczer et al., 1996) and mouse epidermal stem cell grown in the animal (Xie and Skotheim, 
2020).

Appendix 1—table 1. Coefficients of variation: models and experiments.

Models Data

Name  CVBirth Cell type Time of size measure  CV  

A1 0.098 Haploid budding yeast Budding 0.17

A2 0.095 Haploid fission yeast Fission 0.06

B 0.235 Mouse epidermal stem cell Birth 0.17

S/G2/M noise
Here, we perform similar evolution experiments to those reported in Figure 4 of the main text to 
examine the effect of modulating the noise in the S/G2/M timer. We thus perform three independent 
experiment where we set the CV in the timer period to 0%, 5%, and 8% corresponding to no, medium, 
and high noise respectively. For reference, the CV of the timer period in the control condition where 
Model A1 was evolved is 3%. Note that we maintain the average duration of the timer to be about 
half the time it takes to double the cell’s volume. Having specified the S/G2/M timer parameters and 
starting from the initial seed network of Model A1, we perform evolution and select networks as 
previously. We compare ensembles of 60 networks for each noise level, half of them evolved under 
the Pareto optimization of  NDiv  and  CVBirth  and the other half under the single objective optimization 
of  NDiv . The results are shown in Appendix 1—figure 5.

Increasing the noise, progressively leads to a loss of the sizer signature and increases the  CVBirth . 
This is likely because the fixed duration of S/G2/M allows the system to accurately reset protein 
concentrations for the subsequent cell cycle to promote accurate G1 control (Willis et al., 2020). 
Thus, an increasing level of noise becomes associated with a worse accuracy in the size control 
mechanism which leads to loss of the sizer signature and increased  CVBirth  as can be seen in 
Appendix 1—figure 5D,E. Other results from the main text remain unchanged.

Appendix 1—figure 5. S/G2/M noise analysis. Summary statistics for evolutionary simulations each having 500 
epochs. Model A1 was used as the initial seed network. 30 simulations were performed using Pareto optimization 
Appendix 1—figure 5 continued on next page
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of the number of divisions ( NDiv ) and the CV of cell size at birth ( CVBirth ), are labeled Pareto and are shown in 
full colors. 30 more simulations were performed using only the number of divisions as the fitness function, are 
labeled  NDiv  and are shown in colored outlines only. Scatter plots show the coefficient of variation of the size 
distribution at birth ( CVBirth , Y- coordinate) as a function of the fitted added volume slope over the whole cycle as 
a function of volume at birth (Slope  ∆VCycle , X- coordinate) for the most fit models evolved during each of the 60 
independent simulations. Horizontal box plots above the scatter plots in A- C display the distributions of the added 
volume slopes for the Pareto and  NDiv  simulations. Timer (dark blue), adder (orange) and sizer (red) slopes are 
shown respectively at 1, 0, and –1 for comparison. Vertical box plots on the right of the scatter plots in A- C show 
the distributions of  CVBirth  for the Pareto and  NDiv  simulations. Asterisks represent p- values for the Welch’s t- Test 
between the distributions. For reference,  NS  indicates  p > 0.05 , * indicates  p < 0.05 , ** indicates  p < 10−2

 , *** 
indicates  p < 10−3

  and **** indicates  p < 10−4
 . The values of  CVBirth  and Slope  ∆VCycle  for the initial seed 

Model A1 are shown as a black square in the scatter plot or as a dashed black line in the box plots. Each panel 
explores different S/G2/M noise levels. (A) Evolution results for no noise in S/G2/M duration. (B) Evolution results 
for a noise level in S/G2/M duration equal to 5%. (C) Evolution results for a noise level in S/G2/M duration equal 
to 8%. (D) Evolved Slope  ∆VCycle  distributions as a function of noise level in S/G2/M. For reference, noise level 
for the Control experiment from Figure 4 corresponds to 3%. Box plots in D- E represent the distributions for both 
the Pareto and  NDiv  evolution experiments. Here, increased S/G2/M noise leads to loss of the sizer signature. 
(E) Evolved  CVBirth  distributions as a function of noise level in S/G2/M. Here, increased S/G2/M noise leads to 
increased variability in the cell size distributions at birth.

Growth rate noise
Here, we perform similar evolution experiments as we did for the noise in S/G2/M but this time by 
adding noise in the growth rate  λ . Specifically, at each generation of a cell’s lineage, we sample a 
growth rate from a Gaussian distribution centered around 0.25, the initial value we used in the rest 
of this project. We perform three evolution experiments with coefficient of variations for the growth 
rate distributions set to 3%, 5% and 8% corresponding to low, medium and high noise respectively. 
We perform 30 independent evolution runs with the Pareto optimization framework for each  λ  noise 
level, each of them starting from the initial seed network of Model A1. The results are shown in 
Appendix 1—figure 6.

We note that on average, the growth rate will remain centered around the same value, thus not 
affecting the optimal fitness score networks are able to achieve. However, individual variations at 
each cycle perturb the ability of the system of accomplishing size control by always modifying the 
doubling time  τ = ln(2)/λ . This leads to progressive loss of the sizer signature and also increases 
the  CVBirth . This increased noise in the system sometimes sends the cell volume towards 0 or  ∞  as 
volume is kicked outside of the control mechanism’s working range. Since this behavior is highly 
penalized in the fitness functions scoring, the evolution finds a way to prevent this from happening 
via different strategies. Interestingly, at higher noise levels, strong sizers can still evolve but are not 
the most common phenotype. Instead, evolution seems to favor timers that reliably ensure timely 
cell division generation after generation. There is however a trade- off and these models exhibit a 
higher  CVBirth  due to the lower amount of size control. Adders can also be evolved at all tested noise 
levels and provide good size control with reliably low  CVBirth .

Appendix 1—figure 5 continued
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Appendix 1—figure 6. Growth rate noise analysis. Summary statistics for evolutionary simulations each having 
500 epochs. Model A1 was used as the initial seed network. Only 30 simulations were performed using Pareto 
optimization of the number of divisions ( NDiv ) and the CV of cell size at birth ( CVBirth ), are labeled Pareto. Scatter 
plots show the coefficient of variation of the size distribution at birth ( CVBirth , Y- coordinate) as a function of the 
fitted added volume slope over the whole cycle as a function of volume at birth (Slope  ∆VCycle , X- coordinate) for 
the most fit models evolved during each of the 30 independent simulations. Horizontal box plots above the scatter 
plots in A- C display the distributions of the added volume slopes. Timer (dark blue), adder (orange) and sizer (red) 
slopes are shown respectively at 1, 0, and –1 for comparison. Vertical box plots on the right of the scatter plots in 
A- C show the distributions of  CVBirth . Asterisks represent p- values for the Welch’s t- Test between the distributions. 
For reference,  NS  indicates  p > 0.05 , * indicates  p < 0.05 , ** indicates  p < 10−2

 , *** indicates  p < 10−3
  and 

**** indicates  p < 10−4
 . The values of  CVBirth  and Slope  ∆VCycle  for the initial seed Model A1 are shown as a 

black square in the scatter plot or as a dashed black line in the box plots. Each panel explores different growth 
rate noise levels. (A) Evolution results for low noise in growth rate with associated coefficient of variation at 3%. 
(B) Evolution results for medium noise in growth rate with associated coefficient of variation at 5%. (C) Evolution 
results for high noise in growth rate with associated coefficient of variation at 8% (D) Evolved Slope  ∆VCycle  
distributions as a function of noise level in the growth rate. For reference, noise level for the Control experiment 
from Figure 4 corresponds to no noise. Here, increased growth rate noise leads to rapid loss of the sizer signature. 
(E) Evolved  CVBirth  distributions as a function of noise level in the growth rate. Here, increased growth rate noise 
leads to increased variability in the cell size distributions at birth.

Division ratio noise
Here, we perform similar evolution experiments as we did for the noise in S/G2/M and in  λ , but this 
time by adding noise in the division fraction  f  . Specifically, at each generation of a cell’s lineage, 
we sample  f   from a Gaussian distribution centered around 2, the initial value we used in the rest 
of this project for symmetrical divisions. We perform three evolution experiments with coefficient 
of variations for the growth rate distributions set to 2%, 4% and 8% corresponding to low, medium 
and high noise respectively. We perform 30 independent evolution runs with the Pareto optimization 
framework for each  f   noise level, each of them starting from the initial seed network of Model A1. 
The results are shown in Appendix 1—figure 7.

The results of this experiment are very similar to those for noise in the growth rate  λ  described in 
the previous subsection. Indeed, changing the division fraction  f   does not change the doubling time 
 τ   directly like for  λ . Instead, it changes the cycle period around which cells see their volume shrink 
or grow over successive generations. Indeed, for a division fraction  f  , this equilibrium time between 
shrinking and growth becomes  τf = ln(f)/λ . Intuitively, if  f   is bigger than 2, then cells need to spend 
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a little bit more time in their cell cycles for growth to occur in order to compensate for this increased 
division fraction. This increased noise in  f   leads to progressive loss of the sizer signature as seen 
before and also increases the  CVBirth . The division fraction noise has a big effect on premature 
cell death. Indeed, at the highest noise level tested where  CVf = 8% , we saw many runs end with 
premature cell death to the point where three evolution runs were completely unable to find a 
mechanism able to prevent this. As a result of this strong pressure to avoid premature cell death, 
evolution turns once again to timers instead of sizers in the noisier regime. As before, adders seem 
to be the most reliable size control phenotype exhibiting low  CVBirth .

Appendix 1—figure 7. Division fraction noise analysis. Summary statistics for evolutionary simulations each having 
500 epochs. Model A1 was used as the initial seed network. Only 30 simulations were performed using Pareto 
optimization of the number of divisions ( NDiv ) and the CV of cell size at birth ( CVBirth ), are labeled Pareto. Scatter 
plots show the coefficient of variation of the size distribution at birth ( CVBirth , Y- coordinate) as a function of the 
fitted added volume slope over the whole cycle as a function of volume at birth (Slope  ∆VCycle , X- coordinate) for 
the most fit models evolved during each of the 30 independent simulations. Horizontal box plots above the scatter 
plots in A- C display the distributions of the added volume slopes. Timer (dark blue), adder (orange) and sizer (red) 
slopes are shown respectively at 1, 0, and –1 for comparison. Vertical box plots on the right of the scatter plots in 
A- C show the distributions of  CVBirth . Asterisks represent p- values for the Welch’s t- Test between the distributions. 
For reference,  NS  indicates  p > 0.05 , * indicates  p < 0.05 , ** indicates  p < 10−2

 , *** indicates  p < 10−3
  and 

**** indicates  p < 10−4
 . The values of  CVBirth  and Slope  ∆VCycle  for the initial seed Model A1 are shown as a 

black square in the scatter plot or as a dashed black line in the box plots. Each panel explores different division 
fraction  f   noise levels. (A) Evolution results for low noise in division fraction with associated coefficient of variation 
at 2%. (B) Evolution results for medium noise in division fraction with associated coefficient of variation at 4%. (C) 
Evolution results for high noise in division fraction with associated coefficient of variation at 8%. 27/30 evolution 
runs succeeded and are shown here. (D) Evolved Slope  ∆VCycle  distributions as a function of noise level in the 
division fraction. For reference, noise level for the Control experiment from Figure 4 corresponds to no noise. 
Here, increased noise leads to rapid loss of the sizer signature. (E) Evolved  CVBirth  distributions as a function of 
noise level in the division fraction. Here, increased noise leads to increased variability in the cell size distributions 
at birth.

Model descriptions
In this section, we give the full set of equations and parameter values of the models from the main 
text. We remind the reader that we scale all our variables so that a concentration of one arbitrary 
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unit corresponds roughly to 1000 proteins in a 100fL cell (Milo et al., 2010). Additionally, we scale 
the time variable such that 1 arbitrary time unit corresponds roughly to 30 min (Di Talia et al., 2007).

Model A1
The parameter values of the Model A1 are shown in Appendix  1—table 2 along with the 
corresponding differential equations in Equation 24.

Appendix 1—table 2. Model A1 parameter values.

Parameter Value Parameter Value

p2 0.369408  δ3 0.4574764

 t1:2 1.104619  kf1 6.783001

 n1:2 3.215727  kb1 0.195168

 δ2 0.083827  δ4 4.244007

p3 0.703658  kf2 0.021174

 t2:3 0.044938  kb2 1.075146

 n2:3 3.266732  δ5 1.1010876

 

d[I]
dt = p2

(S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 − kf1[I] · [R] + kb1[S4] − kf2[I]2 + kb2[S5]

−(δ2 + λ)[I]
d[R]

dt = p3
1

1+([I]/t2:3)n2:3 − kf1[I] · [R] + kb1[S4] − (δ3 + λ)[I]
d[S4]

dt = kf1[I] · [R] − kb1[S4] − (δ4 + λ)[S4]
d[S5]

dt = kf2[I]2 − kb2[S5] − (δ5 + λ)[S5]   (24)

Model A2
The parameter values of the Model A2 are shown in Appendix  1—table 3 along with the 
corresponding differential equations in Equation 25.

Appendix 1—table 3. Model A2 parameter values.

Parameter Value Parameter Value

 p2 1.915601  n1:3 2.751652

 t1:2 0.17872  t2:3 0.441106

 n1:2 2.09054  n2:3 2.780297

 t3:2 0.962612  δ3 0.045051

 t3:2 2.144666  kf1 0.839879

 δ2 0.019495  kb1 0.381067

 p3 1.944803  δ4 0.913992

 t1:3 0.422939 0

 

d[I]
dt = p2 (S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2
1

1+([R]/t3:2)n3:2 − kf1[I] · [R] + kb1[S4]

−kf2[I]2 + kb2[S5] − (δ2 + λ)[I]
d[R]

dt = p3 1
1+([I]/t2:3)n2:3

1
1+(S/G2/M Switch/t1:3)n1:3 − kf1[I] · [R] + kb1[S4]

−(δ3 + λ)[I]
d[S4]

dt = kf1[I] · [R] − kb1[S4] − (δ4 + λ)[S4]   (25)
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Model B
The parameter values of the fluctuation- sensing Model B are shown in Appendix 1—table 4 along 
with the corresponding stochastic differential equations in Equation 26. We note that the C0 
parameter in the noise terms of the equation is a concentration scaling factor.

Appendix 1—table 4. Model B parameter values.

Parameter Value Parameter Value

p2 4.968896  n3:3 3.189190

 t1:2 2.569361  δ3 0.246561

 n1:2 0.952178 p4 4.674459

 t3:2 0.131057  δ4 1.010978

 n3:2 9.219961 kf 3.194116

 δ2 0.521437 kb 4.634009

p3 0.113586  δ5 1.165439

 t3:3 2.183079 C0 1

 

d[I]
dt = p2 · max

(
(S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 , ([A]/t3:2)n3:2

1+([A]/t3:2)n3:2

)
− (δ2 + λ)[I]

+N1(0, 1) ·

√
p2·max

(
(S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 , ([A]/t3:2)n3:2
1+([A]/t3:2)n3:2

)
+δ2[I]

V·C0·∆t
d[A]

dt = p3 · ([A]/t3:3)n3:3

1+([A]/t3:3)n3:3 − kf[A] · [S4] + kb[S5] − (δ3 + λ)[I]

+N2(0, 1) ·

√
p3·

([A]/t3:3)n3:3
1+([A]/t3:3)n3:3 +δ3[A]

V·C0·∆t −N3(0, 1) ·
√

kf[A]·[S4]
V·C0·∆t

+N4(0, 1) ·
√

kb[S5]
V·C0·∆t

d[S4]
dt = p4 − kf[A] · [S4] + kb[S5] − (δ4 + λ)[S4] −N3(0, 1) ·

√
kf[A]·[S4]
V·C0·∆t

+N4(0, 1) ·
√

kb[S5]
V·C0·∆t + N5(0, 1) ·

√
p4+δ4[S4]
V·C0·∆t

d[S5]
dt = kf[A] · [S4] − kb[S5] − (δ5 + λ)[S5] + N3(0, 1) ·

√
kf[A]·[S4]
V·C0·∆t

−N4(0, 1) ·
√

kb[S5]
V·C0·∆t + N6(0, 1) ·

√
δ5[S5]

V·C0·∆t   (26)

Additional models
Here we present additional models that were evolved but not discussed in the main text to provide 
more examples of size control mechanisms.

Model A3
Model A3 is similar to Model A1, but lacks the homodimerization interaction of  I   (see Equation 24). 
This specific model results in a weak adder/timer that displays a non- linear size control response 
curve. This is similar to Model A2 where we see a sizer/adder behavior in the low control volume 
regime and adder/timer behavior in the high control volume regime.

This model’s behavior is summarized in Appendix  1—figure 8. The parameter values of the 
model are shown in Appendix 1—table 5 along with the corresponding differential equations in 
Equation 27. This model was evolved with the Pareto fitness optimization framework to maximize 

 NDiv  and minimize  CVBirth . The initial seed model topology for this evolutionary simulation was the 
quantity sensing oscillator shown in Appendix 1—figure 3A and was optimized during 3000 epochs.
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Appendix 1—figure 8. Model A3’s behavior. (A) Network topology of the evolved Model A3. S3 is as a size sensor 
and titrates  I   in a size- dependent manner. (B) Size distributions at birth (red), G1/S (orange), and division (purple). 
(C) Added volumes in G1 (red), S/G2/M (blue) and over the whole cycle (purple) as a function of the volume at 
the beginning of those phases. (D) Temporal dynamics of the model, colors correspond to the variables in A. (E) 
Response curve  T(VC)  as a function of control volume  VC  at the G1/S transition.

Appendix 1—table 5. Model A3 parameter values.

Parameter Value Parameter Value

p2 5.606156  t2:3 1.410420

 t1:2 0.066136  n2:3 3.434213

 n1:2 8.177965 kf 1.930909

b2 0.911279 kb 3.871610

 δ2 0.257920  δ3 0.013294

p3 5.887584  δ4 1.803926

 

d[I]
dt = max

(
p2 · (S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 , b2

)
− kf[I] · [S3] + kb[S4]

−(δ2 + λ)[I]
d[S3]

dt = p3
1+(I/t2:3)n2:3 − kf[I] · [S3] + kb[S4] − (δ3 + λ)[S3]

d[S4]
dt = kf[I] · [S3] − kb[S4] − (δ4 + λ)[S4]   (27)

Model A4
Model A4 is similar in essence to Model A1, albeit more unstable. In this model,  S4  is the size 
sensor. Instead of using a PPI to titrate  I   in a size- dependent manner in G1, this model leverages 
a transcriptional repression to modulate the production of  I   directly rather than its effective 
degradation. The model’s behavior is summarized in Appendix 1—figure 9. The parameter values 
of the model are shown in Appendix 1—table 6 along with the corresponding differential equations 
in Equation 28. Notably, Appendix 1—figure 9E shows that the model’s response curve in the 
low control volume regime is ill- defined. In this model specifically, when the low volume regime 
is reached, the concentration of inhibitor  I   at G1/S increases due to quantity sensing  [I] ∝ 1/V  . 
Then, because of the homodimerization of  I   into S3, we see the concentration  [S3]  also rise. We 

https://doi.org/10.7554/eLife.79919


 Research article Computational and Systems Biology

Proulx- Giraldeau et al. eLife 2022;11:e79919. DOI: https://doi.org/10.7554/eLife.79919  43 of 46

can see both of these curves spike up momentarily in the trajectories of Appendix 1—figure 9D 
around  t ≈ 136 . The problem arises if this increase is too strong. Then, S3 activates the production of 
additional  I  , kick- starting a positive feedback loop that creates more and more inhibitor  I  , effectively 
interrupting the oscillator and making the period ill- defined. In practice, due to intrinsic noise at the 
G1/S transition and in the S/G2/M timer length, we’ve seen a cell lineage terminate prematurely 
before it can reach the maximum number of  NDiv  allowed in a simulation because of this problem. 
One could say this model is thus less fit than those presented in the main text, although it displays 
an added volume slope over its cycle of –0.41 and is close to a sizer.

This model was evolved using a Pareto fitness optimization that maximizes  NDiv  and minimizes 

 CVBirth . The initial model topology was the quantity sensing oscillator of Appendix 1—figure 3A 
which was optimized over 4000 epochs.

Appendix 1—figure 9. Model A4’s behavior. (A) Network topology of the evolved Model A4. S4 is the size sensor 
and represses the production of  I   in a size- dependent manner. (B) Size distributions at birth (red), G1/S (orange) 
and division (purple). (C) Added volumes in G1 (red), S/G2/M (blue) and over the whole cycle (purple) as a function 
of initial volume at the start of those phases. (D) Temporal dynamics of the model, colors correspond to the 
variables in A. (E) Response curve  T(VC)  as a function of control volume  VC  at the G1/S transition.

Appendix 1—table 6. Model A4 parameter values.

Parameter Value Parameter Value

p2 5.6604334  δ2 0.001059

 t1:2 0.408208 kf 0.843408

 n1:2 1.769233 kb 1.680321

 t3:2 0.887392  δ3 0.825150

 n3:2 6.437683 p4 4.674459

 t4:2 0.197495  t2:4 0.744119

 n4:2 3.238633  n2:4 3.451469

b2 0.800255  δ4 1.929584
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d[I]
dt = max

(
p2 · max

(
(S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 , ([S3]/t3:2)n3:2

1+([S3]/t3:2)n3:2

)
, b2

)

· 1
1+(S4/t4:2)n4:2 − kf[I]2 + kb[S3] − (δ2 + λ)[I]

d[S3]
dt = kf[I]2 − kb[S3] − (δ3 + λ)[S3]

d[S4]
dt = p4

1+(I/t2:4)n2:4 − (δ4 + λ)[S4]   

(28)

Model A5
Model A5 is another variation on Model A1 but here within the S. pombe cell cycle framework 
where  I   controls the timing of division directly and the Switch is turned on in G1 instead of S/G2/M. 
Here,  S3  directly senses size and does so via the PPI linking I,  S3 , and  S7 . Indeed, since I is inversely 
proportional to the volume at G1/S due to quantity sensing and since  S7  is solely produced via 
complex formation of I with  S3 ,  S7  is also inversely proportional to volume. Consequently,  S3 , which 
is almost solely produced via the dissociation of  S7 , becomes a direct sensor of the size of the cell.

Then, instead of using a PPI to titrate  I   in a size- dependent manner as is done in Models A1 and 
A2, Model A5 leverages a transcriptional repression mechanism to modulate the production of  I   
directly instead of its degradation, precisely like in Model A4. The model’s behavior is summarized 
in Appendix 1—figure 10. The parameter values of the model are shown in Appendix 1—table 7 
along with the corresponding differential equations in Equation 29.

This model was evolved using a Pareto fitness optimization that maximizes  N Div  and minimizes 

 CVBirth . The seed model topology was the quantity sensing oscillator of Appendix 1—figure 3A 
which was optimized over 2500 epochs.

Appendix 1—figure 10. Model A5’s behavior. (A) Network topology of the evolved Model A5. S3 is the size sensor 
and represses the production of  I   in a size- dependent manner. (B) Size distributions at birth (red), G1/S (orange) 
and division (purple). (C) Added volumes in G1 (red), S/G2/M (blue) and over the whole cycle (purple) as a function 
of initial volume at the start of those phases. (D) Temporal dynamics of the model, colors correspond to the 
variables in A. (E) Response curve  T(VC)  as a function of control volume  VC  at division.
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Appendix 1—table 7. Model A5 parameter values.

Parameter Value Parameter Value

p2 2.379635 b4 2.624939

 t1:2 0.142770  δ4 1.499653

 n1:2 0.383384  δ5 0.006318

 t3:2 0.714386  δ6 0.983140

 n3:2 8.642875  δ7 0.481592

 t4:2 1.754776  kf1 0.226150

 n4:2 7.783080  kb1 3.793388

b2 0.195855  kf2 1.608325

 δ2 0.576282  kb2 3.322565

b3 0.582449  kf3 2.999118

 δ3 0.318466  kb3 0.906997

 

d[I]
dt = p2 · max

(
(G1 Switch/t1:2)n1:2

1+(G1 Switch/t1:2)n1:2 , b2

)
· 1

1+(S3/t3:2)n3:2 · 1
1+(S4/t4:2)n4:2

−kf1[I] · [S4] + kb1[S6] − kf2[I]2 + kb2[S5] − kf3[I] · [S3] + kb3[S7]

−(δ2 + λ)[I]
d[S3]

dt = b3 − kf3[I] · [S3] + kb3[S7] − (δ3 + λ)[S3]
d[S4]

dt = b4 − kf1[I] · [S4] + kb1[S6] − (δ4 + λ)[S4]
d[S5]

dt = kf2[I]2 − kb2[S5] − (δ5 + λ)[S5]
d[S6]

dt = kf1[I] · [S4] − kb1[S6] − (δ6 + λ)[S6]
d[S7]

dt = kf3[I] · [S3] − kb3[S7] − (δ7 + λ)[S7]   (29)

Model A6
Model A6 is yet another version of Model A1 evolved with slightly different fitness functions. This 
model was evolved using a Pareto fitness optimization that maximizes  NDiv  and minimizes the sum 
of squared residuals from a target volume at birth as described in Equation 15. For reference, the 
target volume at birth chosen for this simulation was  Vt = 10 . The initial model topology was the 
quantity sensing oscillator of Appendix 1—figure 3A which was optimized over 3000 epochs.

The model’s behavior is summarized in Appendix 1—figure 11. The parameter values of the 
model are shown in Appendix 1—table 8 along with the corresponding differential equations in 
Equation 30.
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Appendix 1—figure 11. Model A6’s behavior. (A) Network topology of the evolved Model A6. S3 is the size sensor 
and represses the production of  I   in a size- dependent manner. (B) Size distributions at birth (red), G1/S (orange) 
and division (purple). (C) Added volumes in G1 (red), S/G2/M (blue) and over the whole cycle (purple) as a function 
of initial volume at the start of those phases. (D) Temporal dynamics of the model, colors correspond to the 
variables in A. (E) Response curve  T(VC)  as a function of control volume  VC  at the G1/S transition.

Appendix 1—table 8. Model A6 parameter values.

Parameter Value Parameter Value

p2 0.369408  δ2 0.093159

 t1:2 0.748731  kf1 0.533415

 n1:2 3.850889  kb1 3.141514

p3 3.868044  δ3 0.626507

 t2:3 0.082081  kf2 3.911233

 n2:3 3.638939  kb2 1.885120

 t3:3 0.599375  δ4 0.821609

 n3:3 6.300643  δ5 1.882484

 

d[I]
dt = p2

(S/G2/M Switch/t1:2)n1:2

1+(S/G2/M Switch/t1:2)n1:2 − kf1[I]2 + kb1[S4] − kf2[I] · [S3] + kb2[S5]

−(δ2 + λ)[I]
d[S3]

dt = p3
1

1+(([I]/t2:3)n2:3 )
1

1+(([S3]/t3:3)n3:3 ) − kf2[I] · [S3] + kb2[S5] − (δ3 + λ)[S3]
d[S4]

dt = kf1[I]2 − kb1[S4] − (δ4 + λ)[S4]
d[S5]

dt = kf2[I] · [S3] − kb2[S5] − (δ5 + λ)[S5]   (30)

https://doi.org/10.7554/eLife.79919
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