Lineage-specific differences and regulatory networks governing human chondrocyte development

Abstract

To address large gaps in our understanding of the molecular regulation of articular and growth plate cartilage development in humans, we used our directed differentiation approach to generate these distinct cartilage tissues from human embryonic stem cells. The resulting transcriptomic profiles of hESC-derived articular and growth plate chondrocytes were similar to fetal epiphyseal and growth plate chondrocytes, with respect to genes both known and previously unknown to cartilage biology. With the goal to characterize the regulatory landscapes accompanying these respective transcriptomes, we mapped chromatin accessibility in hESC-derived chondrocyte lineages, and mouse embryonic chondrocytes, using ATAC-sequencing. Integration of the expression dataset with the differentially accessible genomic regions revealed lineage-specific gene regulatory networks. We validated functional interactions of two transcription factors (RUNX2 in growth plate chondrocytes and RELA in articular chondrocytes) with their predicted genomic targets. The maps we provide thus represent a framework for probing regulatory interactions governing chondrocyte differentiation. This work constitutes a substantial step towards comprehensive and comparative molecular characterizations of distinct chondrogenic lineages, and sheds new light on human cartilage development and biology.

Data availability

The accession number for the raw ATAC-seq and RNA-seq datasets reported in this paper will be publicly available upon acceptance on GEO under accession GSE195688.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Daniel Richard

    Human Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven Pregizer

    Department of Orthopedic Research, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Divya Venkatasubramanian

    Department of Orthopedic Research, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rosanne M Raftery

    Department of Orthopedic Research, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pushpanathan Muthuirulan

    Human Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zun Liu

    Human Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Terence D Capellini

    Human Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. April M Craft

    Department of Orthopedic Research, Boston Children's Hospital, Boston, United States
    For correspondence
    april.craft@childrens.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4423-8008

Funding

NIAMS (R01-AR073821)

  • April M Craft

NIAMS (R01-AR070139)

  • Terence D Capellini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was performed according to approved institutional animal care and use committee protocols at Harvard University (IACUC 13-04-161).

Human subjects: Human fetal donor samples were collected from the first trimester termination via the University of Washington (UW) Birth Defects Research Laboratory (BRDL) in full compliance with the ethical guidelines of the NIH and with the approval of UW Review Boards for the collection and distribution of human tissue for research, and Harvard University and Boston Children's Hospital for the receipt and use of such materials, and Harvard University and Boston Children's Hospital for the receipt and use of such materials (Capellini: IRB16-1504; Craft: IRB-P00017303). This is not deemed human subjects research.All reported research involving human embryonic stem cells was approved by IRB (IRB-P00017303) and ESCRO (ESCRO-2015.4.24) regulatory bodies at Boston Children's Hospital.

Copyright

© 2023, Richard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,564
    views
  • 279
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Richard
  2. Steven Pregizer
  3. Divya Venkatasubramanian
  4. Rosanne M Raftery
  5. Pushpanathan Muthuirulan
  6. Zun Liu
  7. Terence D Capellini
  8. April M Craft
(2023)
Lineage-specific differences and regulatory networks governing human chondrocyte development
eLife 12:e79925.
https://doi.org/10.7554/eLife.79925

Share this article

https://doi.org/10.7554/eLife.79925

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalío Reyes, Arthur D Lander, Marcos Nahmad
    Research Article Updated

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.