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Abstract
Background: Causality between plasma triglyceride (TG) levels and atherosclerotic cardiovascular 
disease (ASCVD) risk remains controversial despite more than four decades of study and two recent 
landmark trials, STRENGTH, and REDUCE- IT. Further unclear is the association between TG levels 
and non- atherosclerotic diseases across organ systems.
Methods: Here, we conducted a phenome- wide, two- sample Mendelian randomization (MR) 
analysis using inverse- variance weighted (IVW) regression to systematically infer the causal effects 
of plasma TG levels on 2600 disease traits in the European ancestry population of UK Biobank. 
For replication, we externally tested 221 nominally significant associations (p<0.05) in an inde-
pendent cohort from FinnGen. To account for potential horizontal pleiotropy and the influence 
of invalid instrumental variables, we performed sensitivity analyses using MR- Egger regres-
sion, weighted median estimator, and MR- PRESSO. Finally, we used multivariable MR (MVMR) 
controlling for correlated lipid fractions to distinguish the independent effect of plasma TG 
levels.
Results: Our results identified seven disease traits reaching Bonferroni- corrected significance in both 
the discovery (p<1.92 × 10-5) and replication analyses (p<2.26 × 10-4), suggesting a causal relation-
ship between plasma TG levels and ASCVDs, including coronary artery disease (OR 1.33, 95% CI 
1.24–1.43, p=2.47 × 10-13). We also identified 12 disease traits that were Bonferroni- significant in 
the discovery or replication analysis and at least nominally significant in the other analysis (p<0.05), 
identifying plasma TG levels as a novel potential risk factor for nine non- ASCVD diseases, including 
uterine leiomyoma (OR 1.19, 95% CI 1.10–1.29, p=1.17 × 10-5).
Conclusions: Taking a phenome- wide, two- sample MR approach, we identified causal associations 
between plasma TG levels and 19 disease traits across organ systems. Our findings suggest unreal-
ized drug repurposing opportunities or adverse effects related to approved and emerging TG- low-
ering agents, as well as mechanistic insights for future studies.
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Editor's evaluation
In this work causal associations between plasma triglyceride (TG) levels and 19 disease traits were 
identified which may provide valuable insights into the mechanism of TG biology and drug repur-
posing of TG- lowering agents. The evidence supporting the claims of the authors is solid, based on 
biobank- scale data in both discovery analysis and replication analysis. The work will be of interest to 
cardiovascular clinicians, medical geneticists, and pharmaceutical companies.

Introduction
ASCVD remains the leading cause of death worldwide despite the effectiveness of statin therapy in 
reducing low- density lipoprotein cholesterol (LDL- C) levels (Baigent et al., 2005; Roth et al., 2020). 
Additional therapeutic targets and adjunctive treatments are needed to address the burden arising 
from residual risk (Rosenson and Goonewardena, 2021). TGs play vital roles in physiology, ranging 
from energy storage and mobilization to inflammation, thrombosis, and hormone- like signaling 
(Zewinger et  al., 2020; Norata et  al., 2007). However, a causal relationship between TGs and 
ASCVDs remains controversial (Miller et al., 2011; Albrink and Man, 1959), recently culminating in 
the conflicting reports of two double- blinded randomized controlled trials (RCT), STRENGTH, and 
REDUCE- IT (Nicholls et al., 2020; Bhatt et al., 2019; Doi et al., 2021). Nevertheless, drug devel-
opment for reducing TG- rich lipoproteins (TRL) is an active area of research and several targets have 
now been validated, including angiopoietin- like 3 (ANGPTL3) (Graham et al., 2017; Dewey et al., 
2017; Musunuru et al., 2010; Gaudet et al., 2017), angiopoietin- like 4 (ANGPTL4) (Dewey et al., 
2016), and apolipoprotein C- III (APOC3) (Gaudet et al., 2015; Crosby et al., 2014). Clinical trials are 
currently evaluating these targets for dyslipidemias (Arrowhead, 2021b; Arrowhead, 2021a).

Whether TGs are causal risk factors or simply associative biomarkers remains uncertain not only 
for ASCVDs but also for other diseases of different organ systems. Understanding the causal effects 
of TGs across a broader range of human diseases could have significant implications for drug repur-
posing. TG- lowering agents, such as fibrates (Frick et al., 1987; Ginsberg et al., 2010) and omega- 3 
fatty acids Bhatt et al., 2019 have already been approved; however, not knowing which diseases 
are causally affected by TGs precludes their use for indications other than hypertriglyceridemia. 
Understanding the protective effects of TGs could also have implications for drug safety. With the 
recent approval of icosapent ethyl (Bhatt et al., 2019; Gaba et al., 2022) and the ongoing develop-
ment of other TG- lowering agents (Shaik and Rosenson, 2021), such as ANGPTL3 (Graham et al., 
2017; Dewey et al., 2017), ANGPTL4, and APOC3 inhibitors (Gaudet et al., 2015), long- term safety 
becomes a matter of concern. Post- market surveillance data are limited; therefore, identifying diseases 
with negative causal links to TGs could suggest adverse side effects, whereas protective causal links to 
TGs could suggest therapeutic avenues and indices informative for drug development. Furthermore, 
this could inform polypharmacy and drug titration in clinical practice.

Several methodological challenges have prohibited causal conclusions about TGs across human 
diseases. First, TGs are correlated with established ASCVD risk factors, such as obesity and insulin 
resistance (Eckel et  al., 2005). They also correlate with LDL particles or apolipoprotein B (apoB) 
concentration (Cromwell et al., 2007) and inversely correlated with high- density lipoprotein choles-
terol (HDL- C) (Phillips and Smith, 1991). Conventional observational studies have thus been limited 
in drawing causal inferences due to potential confounding. Second, available TG- lowering agents 
have pleiotropic effects on several major lipid fractions, including VLDL- C, LDL- C, HDL- C, and apoli-
poproteins, including APOC3 (Ginsberg et al., 2010; Keech et al., 2005; Frick et al., 1987). Thus, 
costly RCTs have had limited power to disentangle the effects of lowering TG specifically (Sarwar 
et al., 2010; Goldberg et al., 2011; Bhatt et al., 2019). Finally, MR studies have typically focused on 
individual diseases selected a priori (Davey Smith and Hemani, 2014), narrowing the scope of causal 
estimates to ASCVDs while overlooking non- ASCVD diseases (Harrison et al., 2018; Smith et al., 
2014; Allara et al., 2019).

https://doi.org/10.7554/eLife.80560
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Phenome- wide MR is a high- throughput extension of MR that estimates the causal effects of an 
exposure on multiple outcomes simultaneously. As in conventional MR, this method uses genetic 
variants as instrumental variables (IV) to proxy modifiable exposures (Smith and Ebrahim, 2003), and 
importantly, it relies on three critical assumptions: (1) The genetic variant is directly associated with 
the exposure; (2) The genetic variant is unrelated to confounders between the exposure and outcome; 
and (3) The genetic variant has no effect on the outcome other than through the exposure (Smith 
and Ebrahim, 2003). A distinction, however, is that phenome- wide MR enables comprehensive scans 
of the phenotypic spectrum, limiting bias from prior assumptions and facilitating the discovery of 
unforeseen causal relationships. This has recently become feasible with the maturation of large- scale 
biobanks providing extensive genetic and phenotypic data, such as the UK Biobank (UKB) (Bycroft 
et al., 2018) and FinnGen project (FinnGen, 2020).

Here, we use phenome- wide MR to systematically estimate the causal effects of plasma TGs on 
2600 disease outcomes in UKB, followed by replication testing in FinnGen. We then apply multiple 
MR methods for sensitivity analyses and MVMR to control for plasma LDL- C, HDL- C, and ApoB levels.

Methods
Study design and data sources
We followed the guidelines published by Burgess et al., 2020 and the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guidelines (Skrivankova et al., 2021). Accordingly, 

Figure 1. Study overview. A schematic summarizing the study design. GLGC, Global Lipids Genetics Consortium; HDL, high- density lipoprotein; IVW, 
inverse- variance weighted; LDL, low- density lipoprotein; MR, Mendelian randomization; MR- PRESSO, Mendelian Randomization Pleiotropy RESidual 
Sum and Outlier; SNP, single- nucleotide polymorphism; TG, triglyceride; UKB, UK Biobank. Tier 1 (BB): At least Bonferroni- significant in both the 
discovery and replication analyses. Tier 2 (BN): At least Bonferroni- significant in the discovery analysis and at least nominally significant in the replication 
analysis. Tier 3 (NB): At least nominally significant in the discovery analysis and at least Bonferroni- significant in the replication analysis.

https://doi.org/10.7554/eLife.80560
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we note that MR analyses rely on three important instrumental variable assumptions: (1) the genetic 
variant is directly associated with the exposure; (2) the genetic variant is unrelated to confounders 
between the exposure and outcome; and (3) the genetic variant has no effect on the outcome other 
than through the exposure (Smith and Ebrahim, 2003). We consider these assumptions more thor-
oughly in the discussion. This study uses three non- overlapping genome- wide association studies 
(GWAS). A schematic figure summarizes the study design (Figure 1).

For primary and sensitivity analyses, we conducted two- sample MR taking summary statistics for 
genetic associations with plasma TGs from one dataset (Global Lipids Genetics Consortium, GLGC) 
(Willer et al., 2013) and summary statistics for genetic associations with outcomes from a second, 
independent dataset (UKB). The CARDIoGRAMplusC4D Metabochip study by GLGC involved 
63,746 cases and 130,681 controls (Deloukas et al., 2013). UKB is a longitudinal, population- based 
cohort study with genetic and phenotypic data on over 500,000 participants aged 40–69 years at 
recruitment from across the United Kingdom during 2006–2010 (Sudlow et al., 2015). The sociode-
mographic and health- related characteristics of UKB participants have been described elsewhere (Fry 
et al., 2017).

For replication analysis, we again performed two- sample MR but used summary statistics for 
TG from UKB and summary statistics for outcomes from FinnGen (Release 4; 176,899  samples; 
169,962,023 variants). FinnGen is a large public- private partnership started in August 2017 aiming 
to collect and analyze genomic and phenotypic data from 500,000 Finnish biobank participants 
(FinnGen, 2020; Kurki et al., 2022). For both primary and replication analysis, there is likely to be 
minimal sample overlap in the two- sample MR, which can cause weak- instrument bias and inflated 
type 1 error (Burgess et al., 2016).

Genetic instruments for plasma TG levels
For primary and secondary analyses, we identified 3086 single nucleotide polymorphisms (SNP) asso-
ciated with plasma TG levels in GLGC at a genome- wide significance threshold of p<5 × 10–8. A total 
of 141 independent SNPs were then selected at a linkage disequilibrium (LD) threshold of r2 <0.05 
using the 1000 Genomes LD European panel as the reference population (Auton et al., 2015). To 
select independent SNPs, we used the PLINK software’s LD clumping command (Purcell et al., 2007) 
with the following options: --clump- p1 0.00000005 --clump- p2 0.0005 --clump- r2 0.05 
--clump- kb 250. We note that the GLGC GWAS had excluded individuals known to be on lipid- 
lowering medications (Willer et al., 2013).

For replication analysis, we identified 1388 SNPs associated with plasma TG levels in UKB after 
restricting for genome- wide significance (p<5 × 10–8) and LD- clumping. The SNPs were selected at 
an LD threshold of r2 <0.05 using the 1000 Genomes LD European panel as the reference population. 
LD clumping was performed by PLINK using the same command as above. We then restricted to 
1248 SNPs for genetic instrumentation based on whether the SNP was also available in the FinnGen 
dataset. We note that the Pan- UKB GWAS study did not exclude participants based on their use of 
lipid- lowering medications.

Genetic instruments for disease outcomes
As a phenome- wide investigation, this study examined many binary disease outcomes. For outcomes 
of primary and sensitivity analyses, we used genome- wide association summary statistics from the 
European ancestry subset of UKB. The focus on European ancestry was needed to reduce heteroge-
neity and maximize statistical power. Pan- UKB had performed 16,131 GWASs on 7221 phenotypes 
in ~420,531 UKB participants of European ancestry using genetic and phenotypic data (PanUKBTeam, 
2020). A total of 7221 total phenotypes had been categorized as ‘biomarker,’ ‘continuous,’ ‘categor-
ical,’ ‘ICD- 10 code,’ ‘phecode,’ or ‘prescription’ (PanUKBTeam, 2020). We filtered for outcomes to 
retain categorical, ICD- 10, and phecode types; non- null heritability in European ancestry as estimated 
by Pan- UKB; and relevance to disease, excluding medications. This yielded 2600 traits for the primary 
analysis. The exact sample size of each GWAS for each of these traits is provided in Supplementary 
file 1.

For outcomes of replication analysis, we used genome- wide association summary statistics from 
FinnGen. To allow for compatibility between UKB and FinnGen datasets, phenotypes coded as 
FinnGen ‘endpoint IDs’ were mapped to ICD- 10 codes or phecodes corresponding to the coding 

https://doi.org/10.7554/eLife.80560
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convention used by UKB. Categorical traits in UKB could not be reliably mapped to FinnGen IDs, 
requiring us to omit categorical traits from replication analysis. Of 2444 available FinnGen outcomes, 
we ultimately selected 221 outcomes for replication testing based on two conditions: (1) The outcome 
has an equivalent phenotype documented as an ICD- 10 code or phecode in UKB, which we had 
included in the discovery analysis, and (2) the outcome was at least nominally significant (p<0.05) in 
the discovery analysis.

Statistical analyses
Primary discovery analysis used a fixed- effect inverse- variance weighted (IVW) method of two- sample 
MR over the more horizontal pleiotropy- robust MR- Egger regression method to maximize statistical 
power (Burgess et al., 2013). To proxy TG, we selected the 141 TG- associated SNPs from GLGC iden-
tified above as instrumental variables in MR testing. All SNPs were harmonized to match the effect 
and non- effect allele at each SNP. For replication analyses, we conducted IVW tests using TG- associ-
ated SNPs from UKB as exposures and 221 traits at least nominally significant (p<0.05) in the discovery 
analysis as outcomes from FinnGen. We selected UKB TG GWAS loci as the instruments for replication 
on FinnGen outcomes, rather than GLGC TG GWAS loci, to diversify the source of TG instruments 
and mitigate potential biases associated with one TG GWAS. Moreover, UKB GWAS included a larger 
study population than GLGC GWAS, providing a greater number of genetic instruments that can 
together explain more of the variance in plasma TG levels, and thus, greater statistical power and 
precision. Nevertheless, we also performed the replication analyses using TG instruments from GLGC 
and included these results as supplemental data (Supplementary file 5). R (4.1.0) was used for all 
analyses (R Development Core Team, 2021).

For sensitivity analyses, we addressed the possible presence of horizontal pleiotropy by applying 
MR- Egger (Bowden et al., 2015), weighted median estimator (Bowden et al., 2016), and MR- PRESSO 
outlier tests (Verbanck et al., 2018) on Bonferroni- significant traits identified in the primary analysis 
above. The utility of these various methods has been extensively reviewed (Davies et  al., 2018). 
MR- PRESSO outlier tests were performed on 16 traits with significant MR- PRESSO global test results 
(p<0.05). To account for potential horizontal pleiotropy due to outliers, we examined the MR- PRESSO 
outlier test p- values from the discovery analysis, and as recommended (Burgess et al., 2020), removed 
outlier IVs (between 1 and 10 SNPs for each outcome) based on a corrected significance threshold 
(p<0.05 / 141=3.55 × 10–4). IVW tests were then re- run without the outlier IVs in the discovery analysis.

Additionally, we fitted MVMR models controlling for plasma LDL- C, HDL- C, and ApoB levels in 
the discovery stage. MVMR uses genetic variants associated with multiple exposures to estimate 
the effect of each exposure on an outcome, thereby accounting for potentially correlated exposures 
(Sanderson, 2021). We extracted the 141 LD- independent TG- associated SNPs described above from 
the summary statistics for LDL- C and HDL- C from GLGC and for ApoB from UKB. We then performed 
four MVMR IVW tests against traits Bonferroni- significant in our discovery analysis with the following 
sets of exposures: TG and LDL; TG and HDL; TG, HDL, and LDL; or TG, HDL, LDL, and ApoB.

Finally, we performed bidirectionally or reverse MR on significant results to examine the potential 
presence of reverse causation. We selected instruments for each disease as described above from 
Pan- UKB and instruments for plasma TG levels from GLGC, essentially reversing the discovery stage 
design using a fixed- effect IVW method.

To account for multiple testing, a conservative Bonferroni threshold for statistical significance was 
set to p<0.05/2600=1.92 × 10–5 for the discovery analysis. For replication analysis, a similar conserva-
tive Bonferroni threshold was set to p<0.05/221=2.26 × 10–4. We determined three tiers of statistical 
evidence based on the Bonferroni or nominal threshold (p<0.05) in both the discovery and replication 
analyses. This presentation is somewhat unconventional and partly arises from the study’s use of three 
different datasets for instrument selection. In a traditional two- stage discovery and replication design, 
Bonferroni adjustment is based on the number of significant signals from the discovery that is tested 
in replication. Here, we used three tiers of statistical evidence to present results because a standard 
meta- analysis between UKB and FinnGen was not possible, given it was not possible to reliably map 
all phenotypes between the two datasets. Additionally, Bonferroni- significant results in the replication 
analysis would have been ignored in FinnGen in a sequential two- stage design if they were also only 
nominally associated in UKB. The three tiers are defined below:

1. Tier 1 (BB): At least Bonferroni- significant in both the discovery and replication analyses.

https://doi.org/10.7554/eLife.80560
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2. Tier 2 (BN): At least Bonferroni- significant in the discovery analysis and at least nominally signif-
icant in the replication analysis.

3. Tier 3 (NB): At least nominally significant in the discovery analysis and at least Bonferroni signif-
icant in the replication analysis.

Ethical approval
UK Biobank has approval from the North West Multi- Centre Research Ethics Committee (MREC) as 
a Research Tissue Bank (RTB) (11/NW/0382), and all participants of UKB provided written informed 
consent. More information is available at (https://www.ukbiobank.ac.uk/learn-more-about-uk-bio-
bank/ about-us/ethics). The work described in this study was approved by UKB under application 
number 16218. All participants of FinnGen provided written informed consent for biobank research, 
based on the Finnish Biobank Act. The Coordinating Ethics Committee of the Hospital District of 
Helsinki and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017. More informa-
tion is available at (https://www.finngen.fi/en/code_of_conduct).

Results
Genetically proxied plasma TG levels and phenome-wide disease risk
In the discovery analysis, we identified nominally significant associations (p<0.05) between plasma TG 
levels and 598 disease traits in UKB (Supplementary file 1). Of these, 39 disease traits were statisti-
cally significant after multiple testing corrections with a conservative Bonferroni- corrected threshold 
(p<1.92 × 10–5). As a positive control, plasma TG levels were positively associated with gout with an 
odds ratio (OR) of 1.78 for gout (95% CI 1.52–2.09, p=7.41 × 10–11), in agreement with prior studies 
(Yu et al., 2021). In the replication analysis, we identified nominally significant associations (p<0.05) 
between plasma TG levels and 71 disease traits in FinnGen (Supplementary file 2). Of these, 22 traits 
were Bonferroni- significant. A summary of the 19 most statistically significant and replicated results 
has been organized into three predefined tiers of evidence (Figure 2). We note that the magnitude 
of estimates from the discovery analysis was generally greater than those from replication analysis, 
especially among tier 1 and tier 2 associations, potentially as a manifestation of winner’s curse bias 
(Göring et al., 2001).

For tier 1 results, genetically determined plasma TG levels were positively associated with seven 
disease traits in both the discovery and replication analyses. These were Bonferroni- significant in 
both analyses, and all were related to dyslipidemias or ASCVD. Among traits related to ASCVD, the 
strongest association by statistical significance was for angina pectoris in both the discovery UKB 
cohort (OR 1.39, 95% CI 1.29–1.51, p=2.11 × 10–13) and the replication FinnGen cohort (OR 1.30, 
95% CI 1.24–1.37, p=1.25 × 10–26). For tier 2 results, plasma TG levels were positively associated 
with three disease traits, including non- ASCVDs: gout, uterine leiomyoma, and ‘other aneurysms’ 
(phecode- 442). The strongest association by significance, after gout, was for leiomyoma of the uterus 
in both the discovery (OR 1.19, 95% CI 1.10–1.29, p=1.17 × 10–5) and replication cohorts (OR 1.06, 
95% CI 1.02–1.11, p=3.60 × 10–3). For tier 3 results, nine disease traits were identified, and a greater 
proportion were non- ASCVD traits. The strongest association by significance was for hypertension 
in both the discovery (OR 1.51, 95% CI 1.08–1.23, p=3.20 × 10–5) and replication cohorts (OR 1.17, 
95% CI 1.14–1.22, p=9.49 × 10–20).

Sensitivity analyses using MR-PRESSO, MR-Egger, weighted median, 
and reverse MR
To account for potential horizontal pleiotropy bias due to outlier IVs, we next used the MR- PRESSO 
test on the 19 significant and replicated associations identified above, which were categorized into 
three tiers of statistical evidence. MR- PRESSO suspected outlier IVs for 16 of the 19 associations, and 
between 1 and 10 IVs were identified for eight associations (Supplementary file 3). We then re- ran 
IVW MR for these eight associations after removing outlier IVs. Among tier 1 results, all seven associa-
tions increased in significance after outlier removal (Figure 3). For tier 2 results, 2 of 3 associations had 
significant global MR- PRESSO test values, but no outlier IVs were removed. For tier 3 results, seven of 
nine associations had significant global MR- PRESSO test values, and outlier IVs were removed for one 
of these associations, which increased in significance: hypertension (p=3.20 × 10–5 to p=2.80 × 10–8). 

https://doi.org/10.7554/eLife.80560
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Tier 3 (NB)

Tier 2 (BN)

Tier 1 (BB)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Myocardial infarction

Unstable angina pectoris

Coronary atherosclerosis

Hyperlipidemia

Ischemic heart disease

Angina pectoris

Disorders of lipoprotein metabolism

*Other aneurysm

*Leiomyoma of uterus

Gout

*Calculus of kidney and ureter

*Paroxysmal tachycardia

*Hemorrhage from respiratory passages

*Diverticular disease of intestine

*Pain in throat and chest

*Alcoholic liver disease

Cardiac arrest

Aortic aneurysm

*Hypertension

Odds Ratio (95% CI)

Discovery in UKB Replication in FinnGen

Figure 2. Causal estimates of genetically proxied plasma triglyceride (TG) levels on disease risk using inverse- variance weighted (IVW) regression in UKB 
and FinnGen. Causal estimates from IVW regression are shown as odds ratios (OR) per 1 SD increase in plasma TG levels (mmol/L). Asterisks indicate 
novel associations. Black indicates discovery analysis results using UKB. Red indicates replication analysis results using FinnGen. Horizontal error bars 
represent 95% CIs. Tier 1 (BB): At least Bonferroni- significant in both the discovery (p<1.92 × 10–5) and replication (p<2.26 × 10–4) analyses. Tier 2 (BN): At 
least Bonferroni- significant in the discovery analysis (p<1.92 × 10–5) and at least nominally significant in the replication analysis (p<0.05). Tier 3 (NB): At 
least nominally significant in the discovery analysis (p<0.05) and at least Bonferroni significant in the replication analysis (p<2.26 × 10–4). Full results and 
sample sizes (n) of each GWAS for each trait are provided in Supplementary file 1 and Supplementary file 2.

https://doi.org/10.7554/eLife.80560
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Tier 3 (NB)
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Tier 1 (BB)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Myocardial infarction

Unstable angina pectoris

Coronary atherosclerosis
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Ischemic heart disease

Angina pectoris

Disorders of lipoprotein metabolism

*Other aneurysm

*Leiomyoma of uterus

Gout
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Odds Ratio (95% CI)

IVW IVW after MR−PRESSO MR−Egger Weighted Median

Figure 3. Causal estimates of genetically proxied plasma triglyceride (TG) levels on disease risk using MR- Egger, Weighted Median, and Mendelian 
randomization pleiotropy residual sum and outlier (MR- PRESSO) methods in UKB. Shown are sensitivity analysis results from the discovery stage using 
instruments from Global Lipids Genetics Consortium (GLGC) and outcomes from UKB. Associations with insignificant global MR- PRESSO test results 
(p>0.05) were not rerun and do not have data points for inverse- variance weighted (IVW) after MR- PRESSO. Tier 1 (BB): At least Bonferroni- significant in 
both the discovery (p<1.92 × 10–5) and replication (p<2.26 × 10–4) analyses. Tier 2 (BN): At least Bonferroni- significant in the discovery analysis (p<1.92 × 
10–5) and at least nominally significant in the replication analysis (p<0.05). Tier 3 (NB): At least nominally significant in the discovery analysis (p<0.05) and 
at least Bonferroni significant in the replication analysis (p<2.26 × 10–4). Horizontal error bars represent 95% CIs. Full results and sample sizes (n) of each 
GWAS for each trait are found in Supplementary file 1 and Supplementary file 3.

https://doi.org/10.7554/eLife.80560
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Importantly, all associations maintained the same effect direction after the MR- PRESSO outlier test, in 
keeping with the initial discovery analysis.

To further account for horizontal pleiotropy, we conducted sensitivity analyses for the 19 significant 
and replicated traits using the MR- Egger and weighted median estimators on UKB data (Figure 3). 
MR- Egger results were comparable to IVW results for all 19 traits across the three tiers of evidence. 
However, weighted median results were less statistically significant than IVW and MR- Egger results for 
most traits except for disorders of lipid metabolism, hyperlipidemia, and hypertension.

Finally, we performed reverse MR to estimate the effects of significant disease traits on plasma TG 
levels, selecting instruments from UKB and GLGC, respectively. Genetic data were sufficiently avail-
able to perform this analysis for 9 of the 19 diseases of interest. These results are presented in Supple-
mentary file 6. Expectedly, ‘disorders of lipoprotein metabolism’ and ‘hyperlipidemia’ had positive 
effects on plasma TG levels; however, no other examined disease trait showed results suggesting 
reverse causation.

Separating the independent effects of plasma TG levels
To isolate the independent effect of plasma TG levels from those of correlated lipid fractions, we next 
conducted MVMR on the 19 significant and replicated associations using the IVW estimator on UKB 
data, adjusting for plasma HDL- C, LDL- C, or both simultaneously (Figure 4). For tier 1 associations, 
we observed an increase in statistical significance for disorders of lipid metabolism and hyperlipid-
emia after adjustment. For tier 2 results, we observed an increase in significance for gout. For tier 3 
results, we observed an increase in significance for alcoholic liver disease, paroxysmal tachycardia, and 
calculus of the kidney and ureter. Aside from these, MVMR led to a decrease in statistical significance 
for the remaining associations. However, all 19 associations remained in the same direction of causality 
despite multivariable adjustment (Supplementary file 4).

Discussion
We performed phenome- wide, two- sample MR to estimate the causal effects of plasma TG levels 
on a spectrum of human disease traits (n=2600) using a discovery cohort from UKB and a replication 
cohort from FinnGen. We report seven disease traits reaching Bonferroni- corrected significance in 
both the discovery and replication analyses, which we categorized as tier 1 results. These traits were 
predominantly manifestations of ASCVD, such as ischemic heart disease, angina pectoris, and myocar-
dial infarction. Using MVMR, we found that these associations remained even after controlling for 
LDL- C, HDL- C, and ApoB levels (Figure 4). We also identified three disease traits that are Bonferroni- 
significant in discovery (p<1.92 × 10–5) and at least nominally significant in replication (p<0.05), catego-
rized as tier 2 results. Lastly, we identified nine disease traits at least nominally significant in discovery 
and Bonferroni- significant in replication, categorized as tier 3 results. Several of these non- ASCVD 
disease traits have never been reported to be causally associated with TGs, potentially introducing 
new opportunities for drug repurposing and experimental study.

Our results are consistent with prior work suggesting that plasma TG levels are causally associated 
with ASCVD risk (Sarwar et al., 2010; Castañer et al., 2020; Do et al., 2013; Dewey et al., 2016; 
Holmes et  al., 2015; White et  al., 2016; Varbo et  al., 2013; Ibi et  al., 2021; Rosenson et  al., 
2021). We do not prove here that circulating TGs per se are directly atherogenic; rather, we show 
that plasma TG measurement, which comprises multiple classes of triglyceride- rich lipoproteins (TRL) 
and their remnants, captures a clinically significant mechanism that is causally associated with ASCVD 
(Rosenson et al., 2021). This interpretation is consistent with an emerging view that apolipoprotein 
B (ApoB) particle number is a more important determinant of atherogenesis than LDL- C and that TRL 
particles are as important a risk factor in ASCVD as LDL particles since they each carry a single ApoB 
molecule (Ference et al., 2019; Marston et al., 2022; Richardson et al., 2020). According to this 
paradigm, the causal association we observe between plasma TG levels and ASCVD risk may be medi-
ated by the concentration of ApoB particles in TRLs, captured by plasma TG level measurements. We 
evaluated this possibility by accounting for ApoB levels in a MVMR framework and found that signif-
icant causal associations persist between plasma TG levels and all examined ASCVD traits, despite 
a modest decrease in effect size (Figure 4; Supplementary file 4). These data suggest that ApoB 
levels may explain at least a portion of the detected associations; however, plasma TG measurement 
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Angina pectoris
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Figure 4. Causal estimates of genetically proxied plasma triglyceride (TG) levels on disease risk using multivariable inverse- variance weighted (IVW) 
regression controlling for plasma low- density lipoprotein cholesterol (LDL- C), high- density lipoprotein cholesterol (HDL- C), and apolipoprotein B (ApoB) 
levels in UKB. Shown are the multivariable MR (MVMR) results from the discovery analysis, using genetic instruments for plasma TG levels from Global 
Lipids Genetics Consortium (GLGC) and disease traits from UKB. Levels of statistical significance are categorized into three tiers: Tier 1 (BB): At least 
Bonferroni- significant in both the discovery (p<1.92 × 10–5) and replication (p<2.26 × 10–4) analyses. Tier 2 (BN): At least Bonferroni- significant in the 
discovery analysis (p<1.92 × 10–5) and at least nominally significant in the replication analysis (p<0.05). Tier 3 (NB): At least nominally significant in the 
discovery analysis (p<0.05) and at least Bonferroni significant in the replication analysis (p<2.26 × 10–4). Horizontal error bars represent 95% CIs. Full 
results are provided in Supplementary file 4. Sample sizes (n) of each GWAS for each trait are found in Supplementary file 1.

https://doi.org/10.7554/eLife.80560


 Research article      Genetics and Genomics | Medicine

Park, Bafna et al. eLife 2023;12:e80560. DOI: https://doi.org/10.7554/eLife.80560  11 of 18

appears to capture additional mechanisms of ASCVD risk involving cholesterol- enriched TRL remnants 
that remain unclear. Scientific interest in the atherogenic mechanisms of TRLs continues to grow, as 
recently reviewed elsewhere (Borén et al., 2022; Ginsberg et al., 2021).

Regarding non- ASCVDs, we present suggestive genetic evidence of potentially causal associa-
tions between plasma TG levels and uterine leiomyomas (uterine fibroids), diverticular disease of the 
intestine, paroxysmal tachycardia, hemorrhage from respiratory passages (hemoptysis), and calculus 
of kidney and ureter (kidney stones). Due to the weaker statistical evidence supporting these asso-
ciations, special caution is encouraged when interpreting these results to infer causality, and further 
replication and validation studies are essential for all tier 2 and 3 results. Nevertheless, prior studies 
have reported correlational associations between many of these diseases and plasma TG levels or 
risk factors correlated to plasma TGs. For example, studies had documented positive correlations 
between leiomyoma risk and plasma TG levels (Uimari et al., 2016; Tonoyan et al., 2021; Peshkova 
et al., 2020). Others had shown diverticular disease risk is positively associated with BMI, body fat 
percentage, and visceral fat area (Shih et al., 2022; Freckelton et al., 2018; Böhm, 2021). Similarly, 
kidney stones have been associated with the triglyceride- glucose (TyG) index (Qin et al., 2021), and 
atrial tachycardias have been associated with VLDL levels in metabolic syndrome patients (Lee et al., 
2017; Park and Lee, 2018). Our study is the first to suggest that these associations may be causally 
related and specific to plasma TG levels, as opposed to confounding risk factors, such as obesity and 
hormone replacement therapy. However, we note that these associations were not as robust as those 
in tier 1 associations related to ASCVDs, and we encourage caution in drawing causal conclusions 
from these estimates of a causal effect. Though, we present the rationale for potentially repurposing 
TG- lowering agents towards these non- ASCVD indications and for pursuing mechanistic studies inter-
rogating TG biology, RCTs remain the gold standard for assessing causality and remain necessary for 
assessing clinical potential.

Our results also suggest a novel, negative causal association between plasma TG levels and alco-
holic liver disease (ALD), suggesting that excessively reducing plasma TG levels may increase the risk 
of this disease trait. A mechanistic explanation for this association remains elusive as previous studies 
on dysregulated lipid metabolism in liver disease have generally focused on non- alcoholic fatty liver 
disease (NAFLD). However, one animal study suggests that medium- chain TGs may decrease lipid 
peroxidation and reverse established alcoholic liver injury in rat models of ALD (Nanji et al., 1996). 
Nevertheless, that elevated TG levels may protect against ALD is surprising and requires external 
validation. It remains unclear whether this association is only relevant to lifelong, chronic lowering of 
plasma TG levels rather than transient lowering by drug- based interventions. It is also unclear whether 
ALD could be prevented by increasing TG levels. This finding suggests the potential intolerability 
of TG- lowering agents and the importance of maintaining these drugs’ concentrations within thera-
peutic windows for patient safety; however, we reiterate that this tier 3 association was only nominally 
significant in discovery, while Bonferroni- significant in replication, and future studies are needed to 
validate the statistical evidence.

The study has several limitations. First, MR is a powerful but potentially fallible method that relies 
on several key assumptions, namely that genetic instruments are (i) associated with the exposure (the 
relevance assumption); (ii) have no common cause with the outcome (the independence assumption); 
and (iii) have effects on the outcome solely through the exposure (the exclusion restriction assump-
tion) (Hartwig et al., 2016). In MR, (i) is relatively straightforward to test, while (ii) and (iii) are difficult 
to establish unequivocally. As a prominent example, horizontal or type I pleiotropy has been shown to 
be common in genetic variation, which can bias MR estimates (Verbanck et al., 2018; Jordan et al., 
2019). This occurs when a genetic instrument is associated with multiple traits other than the outcome 
of interest. To detect and correct for this as best as possible, we used various MR tests as sensitivity 
analyses that each aims to adjust for or account for the presence of horizontal pleiotropy, including 
MR- PRESSO, as well as MR- Egger and weighted median methods. There is no universally accepted 
method that is perfectly robust to horizontal pleiotropy, but we take the best current approach by 
using multiple methods and examining the consistency of results. A second limitation of the study is 
that genetic variants confer exposures that are lifelong but small in effect size; thus, MR may over- or 
underestimate the effect sizes of pharmacological interventions. MR also cannot make comparisons 
between TG- lowering agents as it evaluates drug targets, not drug subclasses and unique pharmaco-
dynamics (Gill et al., 2019; Sofat et al., 2010). However, the utility of MR in drug target validation is 
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well- established as estimates still indicate the presence and direction of causality (Gill et al., 2021). 
Third, UKB and FinnGen have innate differences in participant demographics and medical coding 
systems, due in part to the former being based in the United Kingdom and the latter in Finland. As 
such, the potential misclassification of participants in the case- control assignment is a liability to this 
study. We exercised caution in mapping UKB traits to FinnGen traits, but we were unable to reliably 
map all ‘categorical’ traits from UKB to corresponding traits in FinnGen, testing for replication only 
221 of the 598 associations that were nominally significant in the primary analysis. We note however 
that, despite geographical differences, both datasets largely involve White European participants 
of older age, with the mean age in UKB and FinnGen being 56.5 and 59.8, respectively. Fourth, 
discovery and replication analyses were not completely independent, since UKB data were used in 
both analyses. This could potentially exacerbate demographic and measurement biases inherent to 
UKB; however, we show that taking a traditional replication approach using GLGC instead of UKB for 
selecting exposure instruments in replication returns comparable tier 1 results (Supplementary file 
5), while losing statistical power to highlight many of the tier 2 and 3 results. Fifth, the GLGC GWAS 
used to select instruments for plasma TG levels in discovery had accounted for lipid- lowering treat-
ment, while the UKB GWAS used in replication had not. Last, we acknowledge that this study was 
restricted to populations of European ancestry, limiting the generalizability of our findings. A recent 
study observed comparable MR estimates for the causal effects of lipid traits on ischemic stroke risk 
between African and European ancestry individuals (Fatumo et al., 2021), suggesting the potential 
generalizability of MR results across ancestries in some specific cases. Nevertheless, trans- ancestry MR 
analyses are warranted to validate our study’s findings in diverse ancestry populations.

In conclusion, this study demonstrates a high- throughput application of two- sample MR to estimate 
the causal effects of plasma TG levels on phenome- wide disease risk. Future studies may consider 
the functional and qualitative attributes of TRL subtypes, and metabolomic data partitioning TRLs 
by size and composition may soon enable this to identify the specific component of a plasma TG 
measurement that drives disease risk in the detected associations (Holmes et al., 2015). With the 
proliferation of multi- omic data, this systematic MR approach could be generalized to study the causal 
effects of serum biomarkers on disease risk, at scale. However, caution is still warranted in inferring 
causality, as MR depends on specific assumptions and the validity of those assumptions must be 
carefully assessed. Thus, diverse study designs remain necessary to triangulate evidence on the causal 
effects of plasma TG levels.
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